Merge tag 'fixes-for-3.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 #include <linux/file.h>
74
75 #include <net/ip.h>
76 #include <net/icmp.h>
77 #include <net/route.h>
78 #include <net/ipv6.h>
79 #include <net/inet_common.h>
80
81 #include <linux/socket.h> /* for sa_family_t */
82 #include <linux/export.h>
83 #include <net/sock.h>
84 #include <net/sctp/sctp.h>
85 #include <net/sctp/sm.h>
86
87 /* WARNING: Please do not remove the SCTP_STATIC attribute to
88 * any of the functions below as they are used to export functions
89 * used by a project regression testsuite.
90 */
91
92 /* Forward declarations for internal helper functions. */
93 static int sctp_writeable(struct sock *sk);
94 static void sctp_wfree(struct sk_buff *skb);
95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
96 size_t msg_len);
97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
99 static int sctp_wait_for_accept(struct sock *sk, long timeo);
100 static void sctp_wait_for_close(struct sock *sk, long timeo);
101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
102 union sctp_addr *addr, int len);
103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
107 static int sctp_send_asconf(struct sctp_association *asoc,
108 struct sctp_chunk *chunk);
109 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
110 static int sctp_autobind(struct sock *sk);
111 static void sctp_sock_migrate(struct sock *, struct sock *,
112 struct sctp_association *, sctp_socket_type_t);
113
114 extern struct kmem_cache *sctp_bucket_cachep;
115 extern long sysctl_sctp_mem[3];
116 extern int sysctl_sctp_rmem[3];
117 extern int sysctl_sctp_wmem[3];
118
119 static int sctp_memory_pressure;
120 static atomic_long_t sctp_memory_allocated;
121 struct percpu_counter sctp_sockets_allocated;
122
123 static void sctp_enter_memory_pressure(struct sock *sk)
124 {
125 sctp_memory_pressure = 1;
126 }
127
128
129 /* Get the sndbuf space available at the time on the association. */
130 static inline int sctp_wspace(struct sctp_association *asoc)
131 {
132 int amt;
133
134 if (asoc->ep->sndbuf_policy)
135 amt = asoc->sndbuf_used;
136 else
137 amt = sk_wmem_alloc_get(asoc->base.sk);
138
139 if (amt >= asoc->base.sk->sk_sndbuf) {
140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
141 amt = 0;
142 else {
143 amt = sk_stream_wspace(asoc->base.sk);
144 if (amt < 0)
145 amt = 0;
146 }
147 } else {
148 amt = asoc->base.sk->sk_sndbuf - amt;
149 }
150 return amt;
151 }
152
153 /* Increment the used sndbuf space count of the corresponding association by
154 * the size of the outgoing data chunk.
155 * Also, set the skb destructor for sndbuf accounting later.
156 *
157 * Since it is always 1-1 between chunk and skb, and also a new skb is always
158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
159 * destructor in the data chunk skb for the purpose of the sndbuf space
160 * tracking.
161 */
162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 {
164 struct sctp_association *asoc = chunk->asoc;
165 struct sock *sk = asoc->base.sk;
166
167 /* The sndbuf space is tracked per association. */
168 sctp_association_hold(asoc);
169
170 skb_set_owner_w(chunk->skb, sk);
171
172 chunk->skb->destructor = sctp_wfree;
173 /* Save the chunk pointer in skb for sctp_wfree to use later. */
174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175
176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
177 sizeof(struct sk_buff) +
178 sizeof(struct sctp_chunk);
179
180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
181 sk->sk_wmem_queued += chunk->skb->truesize;
182 sk_mem_charge(sk, chunk->skb->truesize);
183 }
184
185 /* Verify that this is a valid address. */
186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
187 int len)
188 {
189 struct sctp_af *af;
190
191 /* Verify basic sockaddr. */
192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
193 if (!af)
194 return -EINVAL;
195
196 /* Is this a valid SCTP address? */
197 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
198 return -EINVAL;
199
200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
201 return -EINVAL;
202
203 return 0;
204 }
205
206 /* Look up the association by its id. If this is not a UDP-style
207 * socket, the ID field is always ignored.
208 */
209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 {
211 struct sctp_association *asoc = NULL;
212
213 /* If this is not a UDP-style socket, assoc id should be ignored. */
214 if (!sctp_style(sk, UDP)) {
215 /* Return NULL if the socket state is not ESTABLISHED. It
216 * could be a TCP-style listening socket or a socket which
217 * hasn't yet called connect() to establish an association.
218 */
219 if (!sctp_sstate(sk, ESTABLISHED))
220 return NULL;
221
222 /* Get the first and the only association from the list. */
223 if (!list_empty(&sctp_sk(sk)->ep->asocs))
224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
225 struct sctp_association, asocs);
226 return asoc;
227 }
228
229 /* Otherwise this is a UDP-style socket. */
230 if (!id || (id == (sctp_assoc_t)-1))
231 return NULL;
232
233 spin_lock_bh(&sctp_assocs_id_lock);
234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
235 spin_unlock_bh(&sctp_assocs_id_lock);
236
237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
238 return NULL;
239
240 return asoc;
241 }
242
243 /* Look up the transport from an address and an assoc id. If both address and
244 * id are specified, the associations matching the address and the id should be
245 * the same.
246 */
247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
248 struct sockaddr_storage *addr,
249 sctp_assoc_t id)
250 {
251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
252 struct sctp_transport *transport;
253 union sctp_addr *laddr = (union sctp_addr *)addr;
254
255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
256 laddr,
257 &transport);
258
259 if (!addr_asoc)
260 return NULL;
261
262 id_asoc = sctp_id2assoc(sk, id);
263 if (id_asoc && (id_asoc != addr_asoc))
264 return NULL;
265
266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
267 (union sctp_addr *)addr);
268
269 return transport;
270 }
271
272 /* API 3.1.2 bind() - UDP Style Syntax
273 * The syntax of bind() is,
274 *
275 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
276 *
277 * sd - the socket descriptor returned by socket().
278 * addr - the address structure (struct sockaddr_in or struct
279 * sockaddr_in6 [RFC 2553]),
280 * addr_len - the size of the address structure.
281 */
282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 {
284 int retval = 0;
285
286 sctp_lock_sock(sk);
287
288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
289 sk, addr, addr_len);
290
291 /* Disallow binding twice. */
292 if (!sctp_sk(sk)->ep->base.bind_addr.port)
293 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
294 addr_len);
295 else
296 retval = -EINVAL;
297
298 sctp_release_sock(sk);
299
300 return retval;
301 }
302
303 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304
305 /* Verify this is a valid sockaddr. */
306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
307 union sctp_addr *addr, int len)
308 {
309 struct sctp_af *af;
310
311 /* Check minimum size. */
312 if (len < sizeof (struct sockaddr))
313 return NULL;
314
315 /* V4 mapped address are really of AF_INET family */
316 if (addr->sa.sa_family == AF_INET6 &&
317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
318 if (!opt->pf->af_supported(AF_INET, opt))
319 return NULL;
320 } else {
321 /* Does this PF support this AF? */
322 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 return NULL;
324 }
325
326 /* If we get this far, af is valid. */
327 af = sctp_get_af_specific(addr->sa.sa_family);
328
329 if (len < af->sockaddr_len)
330 return NULL;
331
332 return af;
333 }
334
335 /* Bind a local address either to an endpoint or to an association. */
336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 {
338 struct net *net = sock_net(sk);
339 struct sctp_sock *sp = sctp_sk(sk);
340 struct sctp_endpoint *ep = sp->ep;
341 struct sctp_bind_addr *bp = &ep->base.bind_addr;
342 struct sctp_af *af;
343 unsigned short snum;
344 int ret = 0;
345
346 /* Common sockaddr verification. */
347 af = sctp_sockaddr_af(sp, addr, len);
348 if (!af) {
349 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
350 sk, addr, len);
351 return -EINVAL;
352 }
353
354 snum = ntohs(addr->v4.sin_port);
355
356 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
357 ", port: %d, new port: %d, len: %d)\n",
358 sk,
359 addr,
360 bp->port, snum,
361 len);
362
363 /* PF specific bind() address verification. */
364 if (!sp->pf->bind_verify(sp, addr))
365 return -EADDRNOTAVAIL;
366
367 /* We must either be unbound, or bind to the same port.
368 * It's OK to allow 0 ports if we are already bound.
369 * We'll just inhert an already bound port in this case
370 */
371 if (bp->port) {
372 if (!snum)
373 snum = bp->port;
374 else if (snum != bp->port) {
375 SCTP_DEBUG_PRINTK("sctp_do_bind:"
376 " New port %d does not match existing port "
377 "%d.\n", snum, bp->port);
378 return -EINVAL;
379 }
380 }
381
382 if (snum && snum < PROT_SOCK &&
383 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
384 return -EACCES;
385
386 /* See if the address matches any of the addresses we may have
387 * already bound before checking against other endpoints.
388 */
389 if (sctp_bind_addr_match(bp, addr, sp))
390 return -EINVAL;
391
392 /* Make sure we are allowed to bind here.
393 * The function sctp_get_port_local() does duplicate address
394 * detection.
395 */
396 addr->v4.sin_port = htons(snum);
397 if ((ret = sctp_get_port_local(sk, addr))) {
398 return -EADDRINUSE;
399 }
400
401 /* Refresh ephemeral port. */
402 if (!bp->port)
403 bp->port = inet_sk(sk)->inet_num;
404
405 /* Add the address to the bind address list.
406 * Use GFP_ATOMIC since BHs will be disabled.
407 */
408 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
409
410 /* Copy back into socket for getsockname() use. */
411 if (!ret) {
412 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
413 af->to_sk_saddr(addr, sk);
414 }
415
416 return ret;
417 }
418
419 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
420 *
421 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
422 * at any one time. If a sender, after sending an ASCONF chunk, decides
423 * it needs to transfer another ASCONF Chunk, it MUST wait until the
424 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
425 * subsequent ASCONF. Note this restriction binds each side, so at any
426 * time two ASCONF may be in-transit on any given association (one sent
427 * from each endpoint).
428 */
429 static int sctp_send_asconf(struct sctp_association *asoc,
430 struct sctp_chunk *chunk)
431 {
432 struct net *net = sock_net(asoc->base.sk);
433 int retval = 0;
434
435 /* If there is an outstanding ASCONF chunk, queue it for later
436 * transmission.
437 */
438 if (asoc->addip_last_asconf) {
439 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
440 goto out;
441 }
442
443 /* Hold the chunk until an ASCONF_ACK is received. */
444 sctp_chunk_hold(chunk);
445 retval = sctp_primitive_ASCONF(net, asoc, chunk);
446 if (retval)
447 sctp_chunk_free(chunk);
448 else
449 asoc->addip_last_asconf = chunk;
450
451 out:
452 return retval;
453 }
454
455 /* Add a list of addresses as bind addresses to local endpoint or
456 * association.
457 *
458 * Basically run through each address specified in the addrs/addrcnt
459 * array/length pair, determine if it is IPv6 or IPv4 and call
460 * sctp_do_bind() on it.
461 *
462 * If any of them fails, then the operation will be reversed and the
463 * ones that were added will be removed.
464 *
465 * Only sctp_setsockopt_bindx() is supposed to call this function.
466 */
467 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
468 {
469 int cnt;
470 int retval = 0;
471 void *addr_buf;
472 struct sockaddr *sa_addr;
473 struct sctp_af *af;
474
475 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
476 sk, addrs, addrcnt);
477
478 addr_buf = addrs;
479 for (cnt = 0; cnt < addrcnt; cnt++) {
480 /* The list may contain either IPv4 or IPv6 address;
481 * determine the address length for walking thru the list.
482 */
483 sa_addr = addr_buf;
484 af = sctp_get_af_specific(sa_addr->sa_family);
485 if (!af) {
486 retval = -EINVAL;
487 goto err_bindx_add;
488 }
489
490 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
491 af->sockaddr_len);
492
493 addr_buf += af->sockaddr_len;
494
495 err_bindx_add:
496 if (retval < 0) {
497 /* Failed. Cleanup the ones that have been added */
498 if (cnt > 0)
499 sctp_bindx_rem(sk, addrs, cnt);
500 return retval;
501 }
502 }
503
504 return retval;
505 }
506
507 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
508 * associations that are part of the endpoint indicating that a list of local
509 * addresses are added to the endpoint.
510 *
511 * If any of the addresses is already in the bind address list of the
512 * association, we do not send the chunk for that association. But it will not
513 * affect other associations.
514 *
515 * Only sctp_setsockopt_bindx() is supposed to call this function.
516 */
517 static int sctp_send_asconf_add_ip(struct sock *sk,
518 struct sockaddr *addrs,
519 int addrcnt)
520 {
521 struct net *net = sock_net(sk);
522 struct sctp_sock *sp;
523 struct sctp_endpoint *ep;
524 struct sctp_association *asoc;
525 struct sctp_bind_addr *bp;
526 struct sctp_chunk *chunk;
527 struct sctp_sockaddr_entry *laddr;
528 union sctp_addr *addr;
529 union sctp_addr saveaddr;
530 void *addr_buf;
531 struct sctp_af *af;
532 struct list_head *p;
533 int i;
534 int retval = 0;
535
536 if (!net->sctp.addip_enable)
537 return retval;
538
539 sp = sctp_sk(sk);
540 ep = sp->ep;
541
542 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
543 __func__, sk, addrs, addrcnt);
544
545 list_for_each_entry(asoc, &ep->asocs, asocs) {
546
547 if (!asoc->peer.asconf_capable)
548 continue;
549
550 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
551 continue;
552
553 if (!sctp_state(asoc, ESTABLISHED))
554 continue;
555
556 /* Check if any address in the packed array of addresses is
557 * in the bind address list of the association. If so,
558 * do not send the asconf chunk to its peer, but continue with
559 * other associations.
560 */
561 addr_buf = addrs;
562 for (i = 0; i < addrcnt; i++) {
563 addr = addr_buf;
564 af = sctp_get_af_specific(addr->v4.sin_family);
565 if (!af) {
566 retval = -EINVAL;
567 goto out;
568 }
569
570 if (sctp_assoc_lookup_laddr(asoc, addr))
571 break;
572
573 addr_buf += af->sockaddr_len;
574 }
575 if (i < addrcnt)
576 continue;
577
578 /* Use the first valid address in bind addr list of
579 * association as Address Parameter of ASCONF CHUNK.
580 */
581 bp = &asoc->base.bind_addr;
582 p = bp->address_list.next;
583 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
584 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
585 addrcnt, SCTP_PARAM_ADD_IP);
586 if (!chunk) {
587 retval = -ENOMEM;
588 goto out;
589 }
590
591 /* Add the new addresses to the bind address list with
592 * use_as_src set to 0.
593 */
594 addr_buf = addrs;
595 for (i = 0; i < addrcnt; i++) {
596 addr = addr_buf;
597 af = sctp_get_af_specific(addr->v4.sin_family);
598 memcpy(&saveaddr, addr, af->sockaddr_len);
599 retval = sctp_add_bind_addr(bp, &saveaddr,
600 SCTP_ADDR_NEW, GFP_ATOMIC);
601 addr_buf += af->sockaddr_len;
602 }
603 if (asoc->src_out_of_asoc_ok) {
604 struct sctp_transport *trans;
605
606 list_for_each_entry(trans,
607 &asoc->peer.transport_addr_list, transports) {
608 /* Clear the source and route cache */
609 dst_release(trans->dst);
610 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
611 2*asoc->pathmtu, 4380));
612 trans->ssthresh = asoc->peer.i.a_rwnd;
613 trans->rto = asoc->rto_initial;
614 sctp_max_rto(asoc, trans);
615 trans->rtt = trans->srtt = trans->rttvar = 0;
616 sctp_transport_route(trans, NULL,
617 sctp_sk(asoc->base.sk));
618 }
619 }
620 retval = sctp_send_asconf(asoc, chunk);
621 }
622
623 out:
624 return retval;
625 }
626
627 /* Remove a list of addresses from bind addresses list. Do not remove the
628 * last address.
629 *
630 * Basically run through each address specified in the addrs/addrcnt
631 * array/length pair, determine if it is IPv6 or IPv4 and call
632 * sctp_del_bind() on it.
633 *
634 * If any of them fails, then the operation will be reversed and the
635 * ones that were removed will be added back.
636 *
637 * At least one address has to be left; if only one address is
638 * available, the operation will return -EBUSY.
639 *
640 * Only sctp_setsockopt_bindx() is supposed to call this function.
641 */
642 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
643 {
644 struct sctp_sock *sp = sctp_sk(sk);
645 struct sctp_endpoint *ep = sp->ep;
646 int cnt;
647 struct sctp_bind_addr *bp = &ep->base.bind_addr;
648 int retval = 0;
649 void *addr_buf;
650 union sctp_addr *sa_addr;
651 struct sctp_af *af;
652
653 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
654 sk, addrs, addrcnt);
655
656 addr_buf = addrs;
657 for (cnt = 0; cnt < addrcnt; cnt++) {
658 /* If the bind address list is empty or if there is only one
659 * bind address, there is nothing more to be removed (we need
660 * at least one address here).
661 */
662 if (list_empty(&bp->address_list) ||
663 (sctp_list_single_entry(&bp->address_list))) {
664 retval = -EBUSY;
665 goto err_bindx_rem;
666 }
667
668 sa_addr = addr_buf;
669 af = sctp_get_af_specific(sa_addr->sa.sa_family);
670 if (!af) {
671 retval = -EINVAL;
672 goto err_bindx_rem;
673 }
674
675 if (!af->addr_valid(sa_addr, sp, NULL)) {
676 retval = -EADDRNOTAVAIL;
677 goto err_bindx_rem;
678 }
679
680 if (sa_addr->v4.sin_port &&
681 sa_addr->v4.sin_port != htons(bp->port)) {
682 retval = -EINVAL;
683 goto err_bindx_rem;
684 }
685
686 if (!sa_addr->v4.sin_port)
687 sa_addr->v4.sin_port = htons(bp->port);
688
689 /* FIXME - There is probably a need to check if sk->sk_saddr and
690 * sk->sk_rcv_addr are currently set to one of the addresses to
691 * be removed. This is something which needs to be looked into
692 * when we are fixing the outstanding issues with multi-homing
693 * socket routing and failover schemes. Refer to comments in
694 * sctp_do_bind(). -daisy
695 */
696 retval = sctp_del_bind_addr(bp, sa_addr);
697
698 addr_buf += af->sockaddr_len;
699 err_bindx_rem:
700 if (retval < 0) {
701 /* Failed. Add the ones that has been removed back */
702 if (cnt > 0)
703 sctp_bindx_add(sk, addrs, cnt);
704 return retval;
705 }
706 }
707
708 return retval;
709 }
710
711 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
712 * the associations that are part of the endpoint indicating that a list of
713 * local addresses are removed from the endpoint.
714 *
715 * If any of the addresses is already in the bind address list of the
716 * association, we do not send the chunk for that association. But it will not
717 * affect other associations.
718 *
719 * Only sctp_setsockopt_bindx() is supposed to call this function.
720 */
721 static int sctp_send_asconf_del_ip(struct sock *sk,
722 struct sockaddr *addrs,
723 int addrcnt)
724 {
725 struct net *net = sock_net(sk);
726 struct sctp_sock *sp;
727 struct sctp_endpoint *ep;
728 struct sctp_association *asoc;
729 struct sctp_transport *transport;
730 struct sctp_bind_addr *bp;
731 struct sctp_chunk *chunk;
732 union sctp_addr *laddr;
733 void *addr_buf;
734 struct sctp_af *af;
735 struct sctp_sockaddr_entry *saddr;
736 int i;
737 int retval = 0;
738 int stored = 0;
739
740 chunk = NULL;
741 if (!net->sctp.addip_enable)
742 return retval;
743
744 sp = sctp_sk(sk);
745 ep = sp->ep;
746
747 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
748 __func__, sk, addrs, addrcnt);
749
750 list_for_each_entry(asoc, &ep->asocs, asocs) {
751
752 if (!asoc->peer.asconf_capable)
753 continue;
754
755 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
756 continue;
757
758 if (!sctp_state(asoc, ESTABLISHED))
759 continue;
760
761 /* Check if any address in the packed array of addresses is
762 * not present in the bind address list of the association.
763 * If so, do not send the asconf chunk to its peer, but
764 * continue with other associations.
765 */
766 addr_buf = addrs;
767 for (i = 0; i < addrcnt; i++) {
768 laddr = addr_buf;
769 af = sctp_get_af_specific(laddr->v4.sin_family);
770 if (!af) {
771 retval = -EINVAL;
772 goto out;
773 }
774
775 if (!sctp_assoc_lookup_laddr(asoc, laddr))
776 break;
777
778 addr_buf += af->sockaddr_len;
779 }
780 if (i < addrcnt)
781 continue;
782
783 /* Find one address in the association's bind address list
784 * that is not in the packed array of addresses. This is to
785 * make sure that we do not delete all the addresses in the
786 * association.
787 */
788 bp = &asoc->base.bind_addr;
789 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
790 addrcnt, sp);
791 if ((laddr == NULL) && (addrcnt == 1)) {
792 if (asoc->asconf_addr_del_pending)
793 continue;
794 asoc->asconf_addr_del_pending =
795 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
796 if (asoc->asconf_addr_del_pending == NULL) {
797 retval = -ENOMEM;
798 goto out;
799 }
800 asoc->asconf_addr_del_pending->sa.sa_family =
801 addrs->sa_family;
802 asoc->asconf_addr_del_pending->v4.sin_port =
803 htons(bp->port);
804 if (addrs->sa_family == AF_INET) {
805 struct sockaddr_in *sin;
806
807 sin = (struct sockaddr_in *)addrs;
808 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
809 } else if (addrs->sa_family == AF_INET6) {
810 struct sockaddr_in6 *sin6;
811
812 sin6 = (struct sockaddr_in6 *)addrs;
813 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
814 }
815 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
816 " at %p\n", asoc, asoc->asconf_addr_del_pending,
817 asoc->asconf_addr_del_pending);
818 asoc->src_out_of_asoc_ok = 1;
819 stored = 1;
820 goto skip_mkasconf;
821 }
822
823 /* We do not need RCU protection throughout this loop
824 * because this is done under a socket lock from the
825 * setsockopt call.
826 */
827 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
828 SCTP_PARAM_DEL_IP);
829 if (!chunk) {
830 retval = -ENOMEM;
831 goto out;
832 }
833
834 skip_mkasconf:
835 /* Reset use_as_src flag for the addresses in the bind address
836 * list that are to be deleted.
837 */
838 addr_buf = addrs;
839 for (i = 0; i < addrcnt; i++) {
840 laddr = addr_buf;
841 af = sctp_get_af_specific(laddr->v4.sin_family);
842 list_for_each_entry(saddr, &bp->address_list, list) {
843 if (sctp_cmp_addr_exact(&saddr->a, laddr))
844 saddr->state = SCTP_ADDR_DEL;
845 }
846 addr_buf += af->sockaddr_len;
847 }
848
849 /* Update the route and saddr entries for all the transports
850 * as some of the addresses in the bind address list are
851 * about to be deleted and cannot be used as source addresses.
852 */
853 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
854 transports) {
855 dst_release(transport->dst);
856 sctp_transport_route(transport, NULL,
857 sctp_sk(asoc->base.sk));
858 }
859
860 if (stored)
861 /* We don't need to transmit ASCONF */
862 continue;
863 retval = sctp_send_asconf(asoc, chunk);
864 }
865 out:
866 return retval;
867 }
868
869 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
870 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
871 {
872 struct sock *sk = sctp_opt2sk(sp);
873 union sctp_addr *addr;
874 struct sctp_af *af;
875
876 /* It is safe to write port space in caller. */
877 addr = &addrw->a;
878 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
879 af = sctp_get_af_specific(addr->sa.sa_family);
880 if (!af)
881 return -EINVAL;
882 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
883 return -EINVAL;
884
885 if (addrw->state == SCTP_ADDR_NEW)
886 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
887 else
888 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
889 }
890
891 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
892 *
893 * API 8.1
894 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
895 * int flags);
896 *
897 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
898 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
899 * or IPv6 addresses.
900 *
901 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
902 * Section 3.1.2 for this usage.
903 *
904 * addrs is a pointer to an array of one or more socket addresses. Each
905 * address is contained in its appropriate structure (i.e. struct
906 * sockaddr_in or struct sockaddr_in6) the family of the address type
907 * must be used to distinguish the address length (note that this
908 * representation is termed a "packed array" of addresses). The caller
909 * specifies the number of addresses in the array with addrcnt.
910 *
911 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
912 * -1, and sets errno to the appropriate error code.
913 *
914 * For SCTP, the port given in each socket address must be the same, or
915 * sctp_bindx() will fail, setting errno to EINVAL.
916 *
917 * The flags parameter is formed from the bitwise OR of zero or more of
918 * the following currently defined flags:
919 *
920 * SCTP_BINDX_ADD_ADDR
921 *
922 * SCTP_BINDX_REM_ADDR
923 *
924 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
925 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
926 * addresses from the association. The two flags are mutually exclusive;
927 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
928 * not remove all addresses from an association; sctp_bindx() will
929 * reject such an attempt with EINVAL.
930 *
931 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
932 * additional addresses with an endpoint after calling bind(). Or use
933 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
934 * socket is associated with so that no new association accepted will be
935 * associated with those addresses. If the endpoint supports dynamic
936 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
937 * endpoint to send the appropriate message to the peer to change the
938 * peers address lists.
939 *
940 * Adding and removing addresses from a connected association is
941 * optional functionality. Implementations that do not support this
942 * functionality should return EOPNOTSUPP.
943 *
944 * Basically do nothing but copying the addresses from user to kernel
945 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
946 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
947 * from userspace.
948 *
949 * We don't use copy_from_user() for optimization: we first do the
950 * sanity checks (buffer size -fast- and access check-healthy
951 * pointer); if all of those succeed, then we can alloc the memory
952 * (expensive operation) needed to copy the data to kernel. Then we do
953 * the copying without checking the user space area
954 * (__copy_from_user()).
955 *
956 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
957 * it.
958 *
959 * sk The sk of the socket
960 * addrs The pointer to the addresses in user land
961 * addrssize Size of the addrs buffer
962 * op Operation to perform (add or remove, see the flags of
963 * sctp_bindx)
964 *
965 * Returns 0 if ok, <0 errno code on error.
966 */
967 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
968 struct sockaddr __user *addrs,
969 int addrs_size, int op)
970 {
971 struct sockaddr *kaddrs;
972 int err;
973 int addrcnt = 0;
974 int walk_size = 0;
975 struct sockaddr *sa_addr;
976 void *addr_buf;
977 struct sctp_af *af;
978
979 SCTP_DEBUG_PRINTK("sctp_setsockopt_bindx: sk %p addrs %p"
980 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
981
982 if (unlikely(addrs_size <= 0))
983 return -EINVAL;
984
985 /* Check the user passed a healthy pointer. */
986 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
987 return -EFAULT;
988
989 /* Alloc space for the address array in kernel memory. */
990 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
991 if (unlikely(!kaddrs))
992 return -ENOMEM;
993
994 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
995 kfree(kaddrs);
996 return -EFAULT;
997 }
998
999 /* Walk through the addrs buffer and count the number of addresses. */
1000 addr_buf = kaddrs;
1001 while (walk_size < addrs_size) {
1002 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1003 kfree(kaddrs);
1004 return -EINVAL;
1005 }
1006
1007 sa_addr = addr_buf;
1008 af = sctp_get_af_specific(sa_addr->sa_family);
1009
1010 /* If the address family is not supported or if this address
1011 * causes the address buffer to overflow return EINVAL.
1012 */
1013 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1014 kfree(kaddrs);
1015 return -EINVAL;
1016 }
1017 addrcnt++;
1018 addr_buf += af->sockaddr_len;
1019 walk_size += af->sockaddr_len;
1020 }
1021
1022 /* Do the work. */
1023 switch (op) {
1024 case SCTP_BINDX_ADD_ADDR:
1025 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1026 if (err)
1027 goto out;
1028 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1029 break;
1030
1031 case SCTP_BINDX_REM_ADDR:
1032 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1033 if (err)
1034 goto out;
1035 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1036 break;
1037
1038 default:
1039 err = -EINVAL;
1040 break;
1041 }
1042
1043 out:
1044 kfree(kaddrs);
1045
1046 return err;
1047 }
1048
1049 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1050 *
1051 * Common routine for handling connect() and sctp_connectx().
1052 * Connect will come in with just a single address.
1053 */
1054 static int __sctp_connect(struct sock* sk,
1055 struct sockaddr *kaddrs,
1056 int addrs_size,
1057 sctp_assoc_t *assoc_id)
1058 {
1059 struct net *net = sock_net(sk);
1060 struct sctp_sock *sp;
1061 struct sctp_endpoint *ep;
1062 struct sctp_association *asoc = NULL;
1063 struct sctp_association *asoc2;
1064 struct sctp_transport *transport;
1065 union sctp_addr to;
1066 struct sctp_af *af;
1067 sctp_scope_t scope;
1068 long timeo;
1069 int err = 0;
1070 int addrcnt = 0;
1071 int walk_size = 0;
1072 union sctp_addr *sa_addr = NULL;
1073 void *addr_buf;
1074 unsigned short port;
1075 unsigned int f_flags = 0;
1076
1077 sp = sctp_sk(sk);
1078 ep = sp->ep;
1079
1080 /* connect() cannot be done on a socket that is already in ESTABLISHED
1081 * state - UDP-style peeled off socket or a TCP-style socket that
1082 * is already connected.
1083 * It cannot be done even on a TCP-style listening socket.
1084 */
1085 if (sctp_sstate(sk, ESTABLISHED) ||
1086 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1087 err = -EISCONN;
1088 goto out_free;
1089 }
1090
1091 /* Walk through the addrs buffer and count the number of addresses. */
1092 addr_buf = kaddrs;
1093 while (walk_size < addrs_size) {
1094 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1095 err = -EINVAL;
1096 goto out_free;
1097 }
1098
1099 sa_addr = addr_buf;
1100 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1101
1102 /* If the address family is not supported or if this address
1103 * causes the address buffer to overflow return EINVAL.
1104 */
1105 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1106 err = -EINVAL;
1107 goto out_free;
1108 }
1109
1110 port = ntohs(sa_addr->v4.sin_port);
1111
1112 /* Save current address so we can work with it */
1113 memcpy(&to, sa_addr, af->sockaddr_len);
1114
1115 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1116 if (err)
1117 goto out_free;
1118
1119 /* Make sure the destination port is correctly set
1120 * in all addresses.
1121 */
1122 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1123 err = -EINVAL;
1124 goto out_free;
1125 }
1126
1127 /* Check if there already is a matching association on the
1128 * endpoint (other than the one created here).
1129 */
1130 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1131 if (asoc2 && asoc2 != asoc) {
1132 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1133 err = -EISCONN;
1134 else
1135 err = -EALREADY;
1136 goto out_free;
1137 }
1138
1139 /* If we could not find a matching association on the endpoint,
1140 * make sure that there is no peeled-off association matching
1141 * the peer address even on another socket.
1142 */
1143 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1144 err = -EADDRNOTAVAIL;
1145 goto out_free;
1146 }
1147
1148 if (!asoc) {
1149 /* If a bind() or sctp_bindx() is not called prior to
1150 * an sctp_connectx() call, the system picks an
1151 * ephemeral port and will choose an address set
1152 * equivalent to binding with a wildcard address.
1153 */
1154 if (!ep->base.bind_addr.port) {
1155 if (sctp_autobind(sk)) {
1156 err = -EAGAIN;
1157 goto out_free;
1158 }
1159 } else {
1160 /*
1161 * If an unprivileged user inherits a 1-many
1162 * style socket with open associations on a
1163 * privileged port, it MAY be permitted to
1164 * accept new associations, but it SHOULD NOT
1165 * be permitted to open new associations.
1166 */
1167 if (ep->base.bind_addr.port < PROT_SOCK &&
1168 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1169 err = -EACCES;
1170 goto out_free;
1171 }
1172 }
1173
1174 scope = sctp_scope(&to);
1175 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1176 if (!asoc) {
1177 err = -ENOMEM;
1178 goto out_free;
1179 }
1180
1181 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1182 GFP_KERNEL);
1183 if (err < 0) {
1184 goto out_free;
1185 }
1186
1187 }
1188
1189 /* Prime the peer's transport structures. */
1190 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1191 SCTP_UNKNOWN);
1192 if (!transport) {
1193 err = -ENOMEM;
1194 goto out_free;
1195 }
1196
1197 addrcnt++;
1198 addr_buf += af->sockaddr_len;
1199 walk_size += af->sockaddr_len;
1200 }
1201
1202 /* In case the user of sctp_connectx() wants an association
1203 * id back, assign one now.
1204 */
1205 if (assoc_id) {
1206 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1207 if (err < 0)
1208 goto out_free;
1209 }
1210
1211 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1212 if (err < 0) {
1213 goto out_free;
1214 }
1215
1216 /* Initialize sk's dport and daddr for getpeername() */
1217 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1218 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1219 af->to_sk_daddr(sa_addr, sk);
1220 sk->sk_err = 0;
1221
1222 /* in-kernel sockets don't generally have a file allocated to them
1223 * if all they do is call sock_create_kern().
1224 */
1225 if (sk->sk_socket->file)
1226 f_flags = sk->sk_socket->file->f_flags;
1227
1228 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1229
1230 err = sctp_wait_for_connect(asoc, &timeo);
1231 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1232 *assoc_id = asoc->assoc_id;
1233
1234 /* Don't free association on exit. */
1235 asoc = NULL;
1236
1237 out_free:
1238
1239 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1240 " kaddrs: %p err: %d\n",
1241 asoc, kaddrs, err);
1242 if (asoc) {
1243 /* sctp_primitive_ASSOCIATE may have added this association
1244 * To the hash table, try to unhash it, just in case, its a noop
1245 * if it wasn't hashed so we're safe
1246 */
1247 sctp_unhash_established(asoc);
1248 sctp_association_free(asoc);
1249 }
1250 return err;
1251 }
1252
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254 *
1255 * API 8.9
1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257 * sctp_assoc_t *asoc);
1258 *
1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261 * or IPv6 addresses.
1262 *
1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264 * Section 3.1.2 for this usage.
1265 *
1266 * addrs is a pointer to an array of one or more socket addresses. Each
1267 * address is contained in its appropriate structure (i.e. struct
1268 * sockaddr_in or struct sockaddr_in6) the family of the address type
1269 * must be used to distengish the address length (note that this
1270 * representation is termed a "packed array" of addresses). The caller
1271 * specifies the number of addresses in the array with addrcnt.
1272 *
1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274 * the association id of the new association. On failure, sctp_connectx()
1275 * returns -1, and sets errno to the appropriate error code. The assoc_id
1276 * is not touched by the kernel.
1277 *
1278 * For SCTP, the port given in each socket address must be the same, or
1279 * sctp_connectx() will fail, setting errno to EINVAL.
1280 *
1281 * An application can use sctp_connectx to initiate an association with
1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1283 * allows a caller to specify multiple addresses at which a peer can be
1284 * reached. The way the SCTP stack uses the list of addresses to set up
1285 * the association is implementation dependent. This function only
1286 * specifies that the stack will try to make use of all the addresses in
1287 * the list when needed.
1288 *
1289 * Note that the list of addresses passed in is only used for setting up
1290 * the association. It does not necessarily equal the set of addresses
1291 * the peer uses for the resulting association. If the caller wants to
1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293 * retrieve them after the association has been set up.
1294 *
1295 * Basically do nothing but copying the addresses from user to kernel
1296 * land and invoking either sctp_connectx(). This is used for tunneling
1297 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298 *
1299 * We don't use copy_from_user() for optimization: we first do the
1300 * sanity checks (buffer size -fast- and access check-healthy
1301 * pointer); if all of those succeed, then we can alloc the memory
1302 * (expensive operation) needed to copy the data to kernel. Then we do
1303 * the copying without checking the user space area
1304 * (__copy_from_user()).
1305 *
1306 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1307 * it.
1308 *
1309 * sk The sk of the socket
1310 * addrs The pointer to the addresses in user land
1311 * addrssize Size of the addrs buffer
1312 *
1313 * Returns >=0 if ok, <0 errno code on error.
1314 */
1315 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1316 struct sockaddr __user *addrs,
1317 int addrs_size,
1318 sctp_assoc_t *assoc_id)
1319 {
1320 int err = 0;
1321 struct sockaddr *kaddrs;
1322
1323 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1324 __func__, sk, addrs, addrs_size);
1325
1326 if (unlikely(addrs_size <= 0))
1327 return -EINVAL;
1328
1329 /* Check the user passed a healthy pointer. */
1330 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1331 return -EFAULT;
1332
1333 /* Alloc space for the address array in kernel memory. */
1334 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1335 if (unlikely(!kaddrs))
1336 return -ENOMEM;
1337
1338 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1339 err = -EFAULT;
1340 } else {
1341 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1342 }
1343
1344 kfree(kaddrs);
1345
1346 return err;
1347 }
1348
1349 /*
1350 * This is an older interface. It's kept for backward compatibility
1351 * to the option that doesn't provide association id.
1352 */
1353 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1354 struct sockaddr __user *addrs,
1355 int addrs_size)
1356 {
1357 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1358 }
1359
1360 /*
1361 * New interface for the API. The since the API is done with a socket
1362 * option, to make it simple we feed back the association id is as a return
1363 * indication to the call. Error is always negative and association id is
1364 * always positive.
1365 */
1366 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1367 struct sockaddr __user *addrs,
1368 int addrs_size)
1369 {
1370 sctp_assoc_t assoc_id = 0;
1371 int err = 0;
1372
1373 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1374
1375 if (err)
1376 return err;
1377 else
1378 return assoc_id;
1379 }
1380
1381 /*
1382 * New (hopefully final) interface for the API.
1383 * We use the sctp_getaddrs_old structure so that use-space library
1384 * can avoid any unnecessary allocations. The only defferent part
1385 * is that we store the actual length of the address buffer into the
1386 * addrs_num structure member. That way we can re-use the existing
1387 * code.
1388 */
1389 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1390 char __user *optval,
1391 int __user *optlen)
1392 {
1393 struct sctp_getaddrs_old param;
1394 sctp_assoc_t assoc_id = 0;
1395 int err = 0;
1396
1397 if (len < sizeof(param))
1398 return -EINVAL;
1399
1400 if (copy_from_user(&param, optval, sizeof(param)))
1401 return -EFAULT;
1402
1403 err = __sctp_setsockopt_connectx(sk,
1404 (struct sockaddr __user *)param.addrs,
1405 param.addr_num, &assoc_id);
1406
1407 if (err == 0 || err == -EINPROGRESS) {
1408 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1409 return -EFAULT;
1410 if (put_user(sizeof(assoc_id), optlen))
1411 return -EFAULT;
1412 }
1413
1414 return err;
1415 }
1416
1417 /* API 3.1.4 close() - UDP Style Syntax
1418 * Applications use close() to perform graceful shutdown (as described in
1419 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1420 * by a UDP-style socket.
1421 *
1422 * The syntax is
1423 *
1424 * ret = close(int sd);
1425 *
1426 * sd - the socket descriptor of the associations to be closed.
1427 *
1428 * To gracefully shutdown a specific association represented by the
1429 * UDP-style socket, an application should use the sendmsg() call,
1430 * passing no user data, but including the appropriate flag in the
1431 * ancillary data (see Section xxxx).
1432 *
1433 * If sd in the close() call is a branched-off socket representing only
1434 * one association, the shutdown is performed on that association only.
1435 *
1436 * 4.1.6 close() - TCP Style Syntax
1437 *
1438 * Applications use close() to gracefully close down an association.
1439 *
1440 * The syntax is:
1441 *
1442 * int close(int sd);
1443 *
1444 * sd - the socket descriptor of the association to be closed.
1445 *
1446 * After an application calls close() on a socket descriptor, no further
1447 * socket operations will succeed on that descriptor.
1448 *
1449 * API 7.1.4 SO_LINGER
1450 *
1451 * An application using the TCP-style socket can use this option to
1452 * perform the SCTP ABORT primitive. The linger option structure is:
1453 *
1454 * struct linger {
1455 * int l_onoff; // option on/off
1456 * int l_linger; // linger time
1457 * };
1458 *
1459 * To enable the option, set l_onoff to 1. If the l_linger value is set
1460 * to 0, calling close() is the same as the ABORT primitive. If the
1461 * value is set to a negative value, the setsockopt() call will return
1462 * an error. If the value is set to a positive value linger_time, the
1463 * close() can be blocked for at most linger_time ms. If the graceful
1464 * shutdown phase does not finish during this period, close() will
1465 * return but the graceful shutdown phase continues in the system.
1466 */
1467 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1468 {
1469 struct net *net = sock_net(sk);
1470 struct sctp_endpoint *ep;
1471 struct sctp_association *asoc;
1472 struct list_head *pos, *temp;
1473 unsigned int data_was_unread;
1474
1475 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1476
1477 sctp_lock_sock(sk);
1478 sk->sk_shutdown = SHUTDOWN_MASK;
1479 sk->sk_state = SCTP_SS_CLOSING;
1480
1481 ep = sctp_sk(sk)->ep;
1482
1483 /* Clean up any skbs sitting on the receive queue. */
1484 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1485 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1486
1487 /* Walk all associations on an endpoint. */
1488 list_for_each_safe(pos, temp, &ep->asocs) {
1489 asoc = list_entry(pos, struct sctp_association, asocs);
1490
1491 if (sctp_style(sk, TCP)) {
1492 /* A closed association can still be in the list if
1493 * it belongs to a TCP-style listening socket that is
1494 * not yet accepted. If so, free it. If not, send an
1495 * ABORT or SHUTDOWN based on the linger options.
1496 */
1497 if (sctp_state(asoc, CLOSED)) {
1498 sctp_unhash_established(asoc);
1499 sctp_association_free(asoc);
1500 continue;
1501 }
1502 }
1503
1504 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1505 !skb_queue_empty(&asoc->ulpq.reasm) ||
1506 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1507 struct sctp_chunk *chunk;
1508
1509 chunk = sctp_make_abort_user(asoc, NULL, 0);
1510 if (chunk)
1511 sctp_primitive_ABORT(net, asoc, chunk);
1512 } else
1513 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1514 }
1515
1516 /* On a TCP-style socket, block for at most linger_time if set. */
1517 if (sctp_style(sk, TCP) && timeout)
1518 sctp_wait_for_close(sk, timeout);
1519
1520 /* This will run the backlog queue. */
1521 sctp_release_sock(sk);
1522
1523 /* Supposedly, no process has access to the socket, but
1524 * the net layers still may.
1525 */
1526 sctp_local_bh_disable();
1527 sctp_bh_lock_sock(sk);
1528
1529 /* Hold the sock, since sk_common_release() will put sock_put()
1530 * and we have just a little more cleanup.
1531 */
1532 sock_hold(sk);
1533 sk_common_release(sk);
1534
1535 sctp_bh_unlock_sock(sk);
1536 sctp_local_bh_enable();
1537
1538 sock_put(sk);
1539
1540 SCTP_DBG_OBJCNT_DEC(sock);
1541 }
1542
1543 /* Handle EPIPE error. */
1544 static int sctp_error(struct sock *sk, int flags, int err)
1545 {
1546 if (err == -EPIPE)
1547 err = sock_error(sk) ? : -EPIPE;
1548 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1549 send_sig(SIGPIPE, current, 0);
1550 return err;
1551 }
1552
1553 /* API 3.1.3 sendmsg() - UDP Style Syntax
1554 *
1555 * An application uses sendmsg() and recvmsg() calls to transmit data to
1556 * and receive data from its peer.
1557 *
1558 * ssize_t sendmsg(int socket, const struct msghdr *message,
1559 * int flags);
1560 *
1561 * socket - the socket descriptor of the endpoint.
1562 * message - pointer to the msghdr structure which contains a single
1563 * user message and possibly some ancillary data.
1564 *
1565 * See Section 5 for complete description of the data
1566 * structures.
1567 *
1568 * flags - flags sent or received with the user message, see Section
1569 * 5 for complete description of the flags.
1570 *
1571 * Note: This function could use a rewrite especially when explicit
1572 * connect support comes in.
1573 */
1574 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1575
1576 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1577
1578 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1579 struct msghdr *msg, size_t msg_len)
1580 {
1581 struct net *net = sock_net(sk);
1582 struct sctp_sock *sp;
1583 struct sctp_endpoint *ep;
1584 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1585 struct sctp_transport *transport, *chunk_tp;
1586 struct sctp_chunk *chunk;
1587 union sctp_addr to;
1588 struct sockaddr *msg_name = NULL;
1589 struct sctp_sndrcvinfo default_sinfo;
1590 struct sctp_sndrcvinfo *sinfo;
1591 struct sctp_initmsg *sinit;
1592 sctp_assoc_t associd = 0;
1593 sctp_cmsgs_t cmsgs = { NULL };
1594 int err;
1595 sctp_scope_t scope;
1596 long timeo;
1597 __u16 sinfo_flags = 0;
1598 struct sctp_datamsg *datamsg;
1599 int msg_flags = msg->msg_flags;
1600
1601 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1602 sk, msg, msg_len);
1603
1604 err = 0;
1605 sp = sctp_sk(sk);
1606 ep = sp->ep;
1607
1608 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1609
1610 /* We cannot send a message over a TCP-style listening socket. */
1611 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1612 err = -EPIPE;
1613 goto out_nounlock;
1614 }
1615
1616 /* Parse out the SCTP CMSGs. */
1617 err = sctp_msghdr_parse(msg, &cmsgs);
1618
1619 if (err) {
1620 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1621 goto out_nounlock;
1622 }
1623
1624 /* Fetch the destination address for this packet. This
1625 * address only selects the association--it is not necessarily
1626 * the address we will send to.
1627 * For a peeled-off socket, msg_name is ignored.
1628 */
1629 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1630 int msg_namelen = msg->msg_namelen;
1631
1632 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1633 msg_namelen);
1634 if (err)
1635 return err;
1636
1637 if (msg_namelen > sizeof(to))
1638 msg_namelen = sizeof(to);
1639 memcpy(&to, msg->msg_name, msg_namelen);
1640 msg_name = msg->msg_name;
1641 }
1642
1643 sinfo = cmsgs.info;
1644 sinit = cmsgs.init;
1645
1646 /* Did the user specify SNDRCVINFO? */
1647 if (sinfo) {
1648 sinfo_flags = sinfo->sinfo_flags;
1649 associd = sinfo->sinfo_assoc_id;
1650 }
1651
1652 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1653 msg_len, sinfo_flags);
1654
1655 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1656 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1657 err = -EINVAL;
1658 goto out_nounlock;
1659 }
1660
1661 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1662 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1663 * If SCTP_ABORT is set, the message length could be non zero with
1664 * the msg_iov set to the user abort reason.
1665 */
1666 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1667 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1668 err = -EINVAL;
1669 goto out_nounlock;
1670 }
1671
1672 /* If SCTP_ADDR_OVER is set, there must be an address
1673 * specified in msg_name.
1674 */
1675 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1676 err = -EINVAL;
1677 goto out_nounlock;
1678 }
1679
1680 transport = NULL;
1681
1682 SCTP_DEBUG_PRINTK("About to look up association.\n");
1683
1684 sctp_lock_sock(sk);
1685
1686 /* If a msg_name has been specified, assume this is to be used. */
1687 if (msg_name) {
1688 /* Look for a matching association on the endpoint. */
1689 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1690 if (!asoc) {
1691 /* If we could not find a matching association on the
1692 * endpoint, make sure that it is not a TCP-style
1693 * socket that already has an association or there is
1694 * no peeled-off association on another socket.
1695 */
1696 if ((sctp_style(sk, TCP) &&
1697 sctp_sstate(sk, ESTABLISHED)) ||
1698 sctp_endpoint_is_peeled_off(ep, &to)) {
1699 err = -EADDRNOTAVAIL;
1700 goto out_unlock;
1701 }
1702 }
1703 } else {
1704 asoc = sctp_id2assoc(sk, associd);
1705 if (!asoc) {
1706 err = -EPIPE;
1707 goto out_unlock;
1708 }
1709 }
1710
1711 if (asoc) {
1712 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1713
1714 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1715 * socket that has an association in CLOSED state. This can
1716 * happen when an accepted socket has an association that is
1717 * already CLOSED.
1718 */
1719 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1720 err = -EPIPE;
1721 goto out_unlock;
1722 }
1723
1724 if (sinfo_flags & SCTP_EOF) {
1725 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1726 asoc);
1727 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1728 err = 0;
1729 goto out_unlock;
1730 }
1731 if (sinfo_flags & SCTP_ABORT) {
1732
1733 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1734 if (!chunk) {
1735 err = -ENOMEM;
1736 goto out_unlock;
1737 }
1738
1739 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1740 sctp_primitive_ABORT(net, asoc, chunk);
1741 err = 0;
1742 goto out_unlock;
1743 }
1744 }
1745
1746 /* Do we need to create the association? */
1747 if (!asoc) {
1748 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1749
1750 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1751 err = -EINVAL;
1752 goto out_unlock;
1753 }
1754
1755 /* Check for invalid stream against the stream counts,
1756 * either the default or the user specified stream counts.
1757 */
1758 if (sinfo) {
1759 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1760 /* Check against the defaults. */
1761 if (sinfo->sinfo_stream >=
1762 sp->initmsg.sinit_num_ostreams) {
1763 err = -EINVAL;
1764 goto out_unlock;
1765 }
1766 } else {
1767 /* Check against the requested. */
1768 if (sinfo->sinfo_stream >=
1769 sinit->sinit_num_ostreams) {
1770 err = -EINVAL;
1771 goto out_unlock;
1772 }
1773 }
1774 }
1775
1776 /*
1777 * API 3.1.2 bind() - UDP Style Syntax
1778 * If a bind() or sctp_bindx() is not called prior to a
1779 * sendmsg() call that initiates a new association, the
1780 * system picks an ephemeral port and will choose an address
1781 * set equivalent to binding with a wildcard address.
1782 */
1783 if (!ep->base.bind_addr.port) {
1784 if (sctp_autobind(sk)) {
1785 err = -EAGAIN;
1786 goto out_unlock;
1787 }
1788 } else {
1789 /*
1790 * If an unprivileged user inherits a one-to-many
1791 * style socket with open associations on a privileged
1792 * port, it MAY be permitted to accept new associations,
1793 * but it SHOULD NOT be permitted to open new
1794 * associations.
1795 */
1796 if (ep->base.bind_addr.port < PROT_SOCK &&
1797 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1798 err = -EACCES;
1799 goto out_unlock;
1800 }
1801 }
1802
1803 scope = sctp_scope(&to);
1804 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1805 if (!new_asoc) {
1806 err = -ENOMEM;
1807 goto out_unlock;
1808 }
1809 asoc = new_asoc;
1810 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1811 if (err < 0) {
1812 err = -ENOMEM;
1813 goto out_free;
1814 }
1815
1816 /* If the SCTP_INIT ancillary data is specified, set all
1817 * the association init values accordingly.
1818 */
1819 if (sinit) {
1820 if (sinit->sinit_num_ostreams) {
1821 asoc->c.sinit_num_ostreams =
1822 sinit->sinit_num_ostreams;
1823 }
1824 if (sinit->sinit_max_instreams) {
1825 asoc->c.sinit_max_instreams =
1826 sinit->sinit_max_instreams;
1827 }
1828 if (sinit->sinit_max_attempts) {
1829 asoc->max_init_attempts
1830 = sinit->sinit_max_attempts;
1831 }
1832 if (sinit->sinit_max_init_timeo) {
1833 asoc->max_init_timeo =
1834 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1835 }
1836 }
1837
1838 /* Prime the peer's transport structures. */
1839 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1840 if (!transport) {
1841 err = -ENOMEM;
1842 goto out_free;
1843 }
1844 }
1845
1846 /* ASSERT: we have a valid association at this point. */
1847 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1848
1849 if (!sinfo) {
1850 /* If the user didn't specify SNDRCVINFO, make up one with
1851 * some defaults.
1852 */
1853 memset(&default_sinfo, 0, sizeof(default_sinfo));
1854 default_sinfo.sinfo_stream = asoc->default_stream;
1855 default_sinfo.sinfo_flags = asoc->default_flags;
1856 default_sinfo.sinfo_ppid = asoc->default_ppid;
1857 default_sinfo.sinfo_context = asoc->default_context;
1858 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1859 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1860 sinfo = &default_sinfo;
1861 }
1862
1863 /* API 7.1.7, the sndbuf size per association bounds the
1864 * maximum size of data that can be sent in a single send call.
1865 */
1866 if (msg_len > sk->sk_sndbuf) {
1867 err = -EMSGSIZE;
1868 goto out_free;
1869 }
1870
1871 if (asoc->pmtu_pending)
1872 sctp_assoc_pending_pmtu(sk, asoc);
1873
1874 /* If fragmentation is disabled and the message length exceeds the
1875 * association fragmentation point, return EMSGSIZE. The I-D
1876 * does not specify what this error is, but this looks like
1877 * a great fit.
1878 */
1879 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1880 err = -EMSGSIZE;
1881 goto out_free;
1882 }
1883
1884 /* Check for invalid stream. */
1885 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1886 err = -EINVAL;
1887 goto out_free;
1888 }
1889
1890 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1891 if (!sctp_wspace(asoc)) {
1892 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1893 if (err)
1894 goto out_free;
1895 }
1896
1897 /* If an address is passed with the sendto/sendmsg call, it is used
1898 * to override the primary destination address in the TCP model, or
1899 * when SCTP_ADDR_OVER flag is set in the UDP model.
1900 */
1901 if ((sctp_style(sk, TCP) && msg_name) ||
1902 (sinfo_flags & SCTP_ADDR_OVER)) {
1903 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1904 if (!chunk_tp) {
1905 err = -EINVAL;
1906 goto out_free;
1907 }
1908 } else
1909 chunk_tp = NULL;
1910
1911 /* Auto-connect, if we aren't connected already. */
1912 if (sctp_state(asoc, CLOSED)) {
1913 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1914 if (err < 0)
1915 goto out_free;
1916 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1917 }
1918
1919 /* Break the message into multiple chunks of maximum size. */
1920 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1921 if (IS_ERR(datamsg)) {
1922 err = PTR_ERR(datamsg);
1923 goto out_free;
1924 }
1925
1926 /* Now send the (possibly) fragmented message. */
1927 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1928 sctp_chunk_hold(chunk);
1929
1930 /* Do accounting for the write space. */
1931 sctp_set_owner_w(chunk);
1932
1933 chunk->transport = chunk_tp;
1934 }
1935
1936 /* Send it to the lower layers. Note: all chunks
1937 * must either fail or succeed. The lower layer
1938 * works that way today. Keep it that way or this
1939 * breaks.
1940 */
1941 err = sctp_primitive_SEND(net, asoc, datamsg);
1942 /* Did the lower layer accept the chunk? */
1943 if (err)
1944 sctp_datamsg_free(datamsg);
1945 else
1946 sctp_datamsg_put(datamsg);
1947
1948 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1949
1950 if (err)
1951 goto out_free;
1952 else
1953 err = msg_len;
1954
1955 /* If we are already past ASSOCIATE, the lower
1956 * layers are responsible for association cleanup.
1957 */
1958 goto out_unlock;
1959
1960 out_free:
1961 if (new_asoc) {
1962 sctp_unhash_established(asoc);
1963 sctp_association_free(asoc);
1964 }
1965 out_unlock:
1966 sctp_release_sock(sk);
1967
1968 out_nounlock:
1969 return sctp_error(sk, msg_flags, err);
1970
1971 #if 0
1972 do_sock_err:
1973 if (msg_len)
1974 err = msg_len;
1975 else
1976 err = sock_error(sk);
1977 goto out;
1978
1979 do_interrupted:
1980 if (msg_len)
1981 err = msg_len;
1982 goto out;
1983 #endif /* 0 */
1984 }
1985
1986 /* This is an extended version of skb_pull() that removes the data from the
1987 * start of a skb even when data is spread across the list of skb's in the
1988 * frag_list. len specifies the total amount of data that needs to be removed.
1989 * when 'len' bytes could be removed from the skb, it returns 0.
1990 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1991 * could not be removed.
1992 */
1993 static int sctp_skb_pull(struct sk_buff *skb, int len)
1994 {
1995 struct sk_buff *list;
1996 int skb_len = skb_headlen(skb);
1997 int rlen;
1998
1999 if (len <= skb_len) {
2000 __skb_pull(skb, len);
2001 return 0;
2002 }
2003 len -= skb_len;
2004 __skb_pull(skb, skb_len);
2005
2006 skb_walk_frags(skb, list) {
2007 rlen = sctp_skb_pull(list, len);
2008 skb->len -= (len-rlen);
2009 skb->data_len -= (len-rlen);
2010
2011 if (!rlen)
2012 return 0;
2013
2014 len = rlen;
2015 }
2016
2017 return len;
2018 }
2019
2020 /* API 3.1.3 recvmsg() - UDP Style Syntax
2021 *
2022 * ssize_t recvmsg(int socket, struct msghdr *message,
2023 * int flags);
2024 *
2025 * socket - the socket descriptor of the endpoint.
2026 * message - pointer to the msghdr structure which contains a single
2027 * user message and possibly some ancillary data.
2028 *
2029 * See Section 5 for complete description of the data
2030 * structures.
2031 *
2032 * flags - flags sent or received with the user message, see Section
2033 * 5 for complete description of the flags.
2034 */
2035 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2036
2037 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2038 struct msghdr *msg, size_t len, int noblock,
2039 int flags, int *addr_len)
2040 {
2041 struct sctp_ulpevent *event = NULL;
2042 struct sctp_sock *sp = sctp_sk(sk);
2043 struct sk_buff *skb;
2044 int copied;
2045 int err = 0;
2046 int skb_len;
2047
2048 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2049 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2050 "len", len, "knoblauch", noblock,
2051 "flags", flags, "addr_len", addr_len);
2052
2053 sctp_lock_sock(sk);
2054
2055 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2056 err = -ENOTCONN;
2057 goto out;
2058 }
2059
2060 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2061 if (!skb)
2062 goto out;
2063
2064 /* Get the total length of the skb including any skb's in the
2065 * frag_list.
2066 */
2067 skb_len = skb->len;
2068
2069 copied = skb_len;
2070 if (copied > len)
2071 copied = len;
2072
2073 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2074
2075 event = sctp_skb2event(skb);
2076
2077 if (err)
2078 goto out_free;
2079
2080 sock_recv_ts_and_drops(msg, sk, skb);
2081 if (sctp_ulpevent_is_notification(event)) {
2082 msg->msg_flags |= MSG_NOTIFICATION;
2083 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2084 } else {
2085 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2086 }
2087
2088 /* Check if we allow SCTP_SNDRCVINFO. */
2089 if (sp->subscribe.sctp_data_io_event)
2090 sctp_ulpevent_read_sndrcvinfo(event, msg);
2091 #if 0
2092 /* FIXME: we should be calling IP/IPv6 layers. */
2093 if (sk->sk_protinfo.af_inet.cmsg_flags)
2094 ip_cmsg_recv(msg, skb);
2095 #endif
2096
2097 err = copied;
2098
2099 /* If skb's length exceeds the user's buffer, update the skb and
2100 * push it back to the receive_queue so that the next call to
2101 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2102 */
2103 if (skb_len > copied) {
2104 msg->msg_flags &= ~MSG_EOR;
2105 if (flags & MSG_PEEK)
2106 goto out_free;
2107 sctp_skb_pull(skb, copied);
2108 skb_queue_head(&sk->sk_receive_queue, skb);
2109
2110 /* When only partial message is copied to the user, increase
2111 * rwnd by that amount. If all the data in the skb is read,
2112 * rwnd is updated when the event is freed.
2113 */
2114 if (!sctp_ulpevent_is_notification(event))
2115 sctp_assoc_rwnd_increase(event->asoc, copied);
2116 goto out;
2117 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2118 (event->msg_flags & MSG_EOR))
2119 msg->msg_flags |= MSG_EOR;
2120 else
2121 msg->msg_flags &= ~MSG_EOR;
2122
2123 out_free:
2124 if (flags & MSG_PEEK) {
2125 /* Release the skb reference acquired after peeking the skb in
2126 * sctp_skb_recv_datagram().
2127 */
2128 kfree_skb(skb);
2129 } else {
2130 /* Free the event which includes releasing the reference to
2131 * the owner of the skb, freeing the skb and updating the
2132 * rwnd.
2133 */
2134 sctp_ulpevent_free(event);
2135 }
2136 out:
2137 sctp_release_sock(sk);
2138 return err;
2139 }
2140
2141 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2142 *
2143 * This option is a on/off flag. If enabled no SCTP message
2144 * fragmentation will be performed. Instead if a message being sent
2145 * exceeds the current PMTU size, the message will NOT be sent and
2146 * instead a error will be indicated to the user.
2147 */
2148 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2149 char __user *optval,
2150 unsigned int optlen)
2151 {
2152 int val;
2153
2154 if (optlen < sizeof(int))
2155 return -EINVAL;
2156
2157 if (get_user(val, (int __user *)optval))
2158 return -EFAULT;
2159
2160 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2161
2162 return 0;
2163 }
2164
2165 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2166 unsigned int optlen)
2167 {
2168 struct sctp_association *asoc;
2169 struct sctp_ulpevent *event;
2170
2171 if (optlen > sizeof(struct sctp_event_subscribe))
2172 return -EINVAL;
2173 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2174 return -EFAULT;
2175
2176 /*
2177 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2178 * if there is no data to be sent or retransmit, the stack will
2179 * immediately send up this notification.
2180 */
2181 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2182 &sctp_sk(sk)->subscribe)) {
2183 asoc = sctp_id2assoc(sk, 0);
2184
2185 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2186 event = sctp_ulpevent_make_sender_dry_event(asoc,
2187 GFP_ATOMIC);
2188 if (!event)
2189 return -ENOMEM;
2190
2191 sctp_ulpq_tail_event(&asoc->ulpq, event);
2192 }
2193 }
2194
2195 return 0;
2196 }
2197
2198 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2199 *
2200 * This socket option is applicable to the UDP-style socket only. When
2201 * set it will cause associations that are idle for more than the
2202 * specified number of seconds to automatically close. An association
2203 * being idle is defined an association that has NOT sent or received
2204 * user data. The special value of '0' indicates that no automatic
2205 * close of any associations should be performed. The option expects an
2206 * integer defining the number of seconds of idle time before an
2207 * association is closed.
2208 */
2209 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2210 unsigned int optlen)
2211 {
2212 struct sctp_sock *sp = sctp_sk(sk);
2213
2214 /* Applicable to UDP-style socket only */
2215 if (sctp_style(sk, TCP))
2216 return -EOPNOTSUPP;
2217 if (optlen != sizeof(int))
2218 return -EINVAL;
2219 if (copy_from_user(&sp->autoclose, optval, optlen))
2220 return -EFAULT;
2221
2222 return 0;
2223 }
2224
2225 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2226 *
2227 * Applications can enable or disable heartbeats for any peer address of
2228 * an association, modify an address's heartbeat interval, force a
2229 * heartbeat to be sent immediately, and adjust the address's maximum
2230 * number of retransmissions sent before an address is considered
2231 * unreachable. The following structure is used to access and modify an
2232 * address's parameters:
2233 *
2234 * struct sctp_paddrparams {
2235 * sctp_assoc_t spp_assoc_id;
2236 * struct sockaddr_storage spp_address;
2237 * uint32_t spp_hbinterval;
2238 * uint16_t spp_pathmaxrxt;
2239 * uint32_t spp_pathmtu;
2240 * uint32_t spp_sackdelay;
2241 * uint32_t spp_flags;
2242 * };
2243 *
2244 * spp_assoc_id - (one-to-many style socket) This is filled in the
2245 * application, and identifies the association for
2246 * this query.
2247 * spp_address - This specifies which address is of interest.
2248 * spp_hbinterval - This contains the value of the heartbeat interval,
2249 * in milliseconds. If a value of zero
2250 * is present in this field then no changes are to
2251 * be made to this parameter.
2252 * spp_pathmaxrxt - This contains the maximum number of
2253 * retransmissions before this address shall be
2254 * considered unreachable. If a value of zero
2255 * is present in this field then no changes are to
2256 * be made to this parameter.
2257 * spp_pathmtu - When Path MTU discovery is disabled the value
2258 * specified here will be the "fixed" path mtu.
2259 * Note that if the spp_address field is empty
2260 * then all associations on this address will
2261 * have this fixed path mtu set upon them.
2262 *
2263 * spp_sackdelay - When delayed sack is enabled, this value specifies
2264 * the number of milliseconds that sacks will be delayed
2265 * for. This value will apply to all addresses of an
2266 * association if the spp_address field is empty. Note
2267 * also, that if delayed sack is enabled and this
2268 * value is set to 0, no change is made to the last
2269 * recorded delayed sack timer value.
2270 *
2271 * spp_flags - These flags are used to control various features
2272 * on an association. The flag field may contain
2273 * zero or more of the following options.
2274 *
2275 * SPP_HB_ENABLE - Enable heartbeats on the
2276 * specified address. Note that if the address
2277 * field is empty all addresses for the association
2278 * have heartbeats enabled upon them.
2279 *
2280 * SPP_HB_DISABLE - Disable heartbeats on the
2281 * speicifed address. Note that if the address
2282 * field is empty all addresses for the association
2283 * will have their heartbeats disabled. Note also
2284 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2285 * mutually exclusive, only one of these two should
2286 * be specified. Enabling both fields will have
2287 * undetermined results.
2288 *
2289 * SPP_HB_DEMAND - Request a user initiated heartbeat
2290 * to be made immediately.
2291 *
2292 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2293 * heartbeat delayis to be set to the value of 0
2294 * milliseconds.
2295 *
2296 * SPP_PMTUD_ENABLE - This field will enable PMTU
2297 * discovery upon the specified address. Note that
2298 * if the address feild is empty then all addresses
2299 * on the association are effected.
2300 *
2301 * SPP_PMTUD_DISABLE - This field will disable PMTU
2302 * discovery upon the specified address. Note that
2303 * if the address feild is empty then all addresses
2304 * on the association are effected. Not also that
2305 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2306 * exclusive. Enabling both will have undetermined
2307 * results.
2308 *
2309 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2310 * on delayed sack. The time specified in spp_sackdelay
2311 * is used to specify the sack delay for this address. Note
2312 * that if spp_address is empty then all addresses will
2313 * enable delayed sack and take on the sack delay
2314 * value specified in spp_sackdelay.
2315 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2316 * off delayed sack. If the spp_address field is blank then
2317 * delayed sack is disabled for the entire association. Note
2318 * also that this field is mutually exclusive to
2319 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2320 * results.
2321 */
2322 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2323 struct sctp_transport *trans,
2324 struct sctp_association *asoc,
2325 struct sctp_sock *sp,
2326 int hb_change,
2327 int pmtud_change,
2328 int sackdelay_change)
2329 {
2330 int error;
2331
2332 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2333 struct net *net = sock_net(trans->asoc->base.sk);
2334
2335 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2336 if (error)
2337 return error;
2338 }
2339
2340 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2341 * this field is ignored. Note also that a value of zero indicates
2342 * the current setting should be left unchanged.
2343 */
2344 if (params->spp_flags & SPP_HB_ENABLE) {
2345
2346 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2347 * set. This lets us use 0 value when this flag
2348 * is set.
2349 */
2350 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2351 params->spp_hbinterval = 0;
2352
2353 if (params->spp_hbinterval ||
2354 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2355 if (trans) {
2356 trans->hbinterval =
2357 msecs_to_jiffies(params->spp_hbinterval);
2358 } else if (asoc) {
2359 asoc->hbinterval =
2360 msecs_to_jiffies(params->spp_hbinterval);
2361 } else {
2362 sp->hbinterval = params->spp_hbinterval;
2363 }
2364 }
2365 }
2366
2367 if (hb_change) {
2368 if (trans) {
2369 trans->param_flags =
2370 (trans->param_flags & ~SPP_HB) | hb_change;
2371 } else if (asoc) {
2372 asoc->param_flags =
2373 (asoc->param_flags & ~SPP_HB) | hb_change;
2374 } else {
2375 sp->param_flags =
2376 (sp->param_flags & ~SPP_HB) | hb_change;
2377 }
2378 }
2379
2380 /* When Path MTU discovery is disabled the value specified here will
2381 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2382 * include the flag SPP_PMTUD_DISABLE for this field to have any
2383 * effect).
2384 */
2385 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2386 if (trans) {
2387 trans->pathmtu = params->spp_pathmtu;
2388 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2389 } else if (asoc) {
2390 asoc->pathmtu = params->spp_pathmtu;
2391 sctp_frag_point(asoc, params->spp_pathmtu);
2392 } else {
2393 sp->pathmtu = params->spp_pathmtu;
2394 }
2395 }
2396
2397 if (pmtud_change) {
2398 if (trans) {
2399 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2400 (params->spp_flags & SPP_PMTUD_ENABLE);
2401 trans->param_flags =
2402 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2403 if (update) {
2404 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2405 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2406 }
2407 } else if (asoc) {
2408 asoc->param_flags =
2409 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2410 } else {
2411 sp->param_flags =
2412 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2413 }
2414 }
2415
2416 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2417 * value of this field is ignored. Note also that a value of zero
2418 * indicates the current setting should be left unchanged.
2419 */
2420 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2421 if (trans) {
2422 trans->sackdelay =
2423 msecs_to_jiffies(params->spp_sackdelay);
2424 } else if (asoc) {
2425 asoc->sackdelay =
2426 msecs_to_jiffies(params->spp_sackdelay);
2427 } else {
2428 sp->sackdelay = params->spp_sackdelay;
2429 }
2430 }
2431
2432 if (sackdelay_change) {
2433 if (trans) {
2434 trans->param_flags =
2435 (trans->param_flags & ~SPP_SACKDELAY) |
2436 sackdelay_change;
2437 } else if (asoc) {
2438 asoc->param_flags =
2439 (asoc->param_flags & ~SPP_SACKDELAY) |
2440 sackdelay_change;
2441 } else {
2442 sp->param_flags =
2443 (sp->param_flags & ~SPP_SACKDELAY) |
2444 sackdelay_change;
2445 }
2446 }
2447
2448 /* Note that a value of zero indicates the current setting should be
2449 left unchanged.
2450 */
2451 if (params->spp_pathmaxrxt) {
2452 if (trans) {
2453 trans->pathmaxrxt = params->spp_pathmaxrxt;
2454 } else if (asoc) {
2455 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2456 } else {
2457 sp->pathmaxrxt = params->spp_pathmaxrxt;
2458 }
2459 }
2460
2461 return 0;
2462 }
2463
2464 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2465 char __user *optval,
2466 unsigned int optlen)
2467 {
2468 struct sctp_paddrparams params;
2469 struct sctp_transport *trans = NULL;
2470 struct sctp_association *asoc = NULL;
2471 struct sctp_sock *sp = sctp_sk(sk);
2472 int error;
2473 int hb_change, pmtud_change, sackdelay_change;
2474
2475 if (optlen != sizeof(struct sctp_paddrparams))
2476 return - EINVAL;
2477
2478 if (copy_from_user(&params, optval, optlen))
2479 return -EFAULT;
2480
2481 /* Validate flags and value parameters. */
2482 hb_change = params.spp_flags & SPP_HB;
2483 pmtud_change = params.spp_flags & SPP_PMTUD;
2484 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2485
2486 if (hb_change == SPP_HB ||
2487 pmtud_change == SPP_PMTUD ||
2488 sackdelay_change == SPP_SACKDELAY ||
2489 params.spp_sackdelay > 500 ||
2490 (params.spp_pathmtu &&
2491 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2492 return -EINVAL;
2493
2494 /* If an address other than INADDR_ANY is specified, and
2495 * no transport is found, then the request is invalid.
2496 */
2497 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2498 trans = sctp_addr_id2transport(sk, &params.spp_address,
2499 params.spp_assoc_id);
2500 if (!trans)
2501 return -EINVAL;
2502 }
2503
2504 /* Get association, if assoc_id != 0 and the socket is a one
2505 * to many style socket, and an association was not found, then
2506 * the id was invalid.
2507 */
2508 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2509 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2510 return -EINVAL;
2511
2512 /* Heartbeat demand can only be sent on a transport or
2513 * association, but not a socket.
2514 */
2515 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2516 return -EINVAL;
2517
2518 /* Process parameters. */
2519 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2520 hb_change, pmtud_change,
2521 sackdelay_change);
2522
2523 if (error)
2524 return error;
2525
2526 /* If changes are for association, also apply parameters to each
2527 * transport.
2528 */
2529 if (!trans && asoc) {
2530 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2531 transports) {
2532 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2533 hb_change, pmtud_change,
2534 sackdelay_change);
2535 }
2536 }
2537
2538 return 0;
2539 }
2540
2541 /*
2542 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2543 *
2544 * This option will effect the way delayed acks are performed. This
2545 * option allows you to get or set the delayed ack time, in
2546 * milliseconds. It also allows changing the delayed ack frequency.
2547 * Changing the frequency to 1 disables the delayed sack algorithm. If
2548 * the assoc_id is 0, then this sets or gets the endpoints default
2549 * values. If the assoc_id field is non-zero, then the set or get
2550 * effects the specified association for the one to many model (the
2551 * assoc_id field is ignored by the one to one model). Note that if
2552 * sack_delay or sack_freq are 0 when setting this option, then the
2553 * current values will remain unchanged.
2554 *
2555 * struct sctp_sack_info {
2556 * sctp_assoc_t sack_assoc_id;
2557 * uint32_t sack_delay;
2558 * uint32_t sack_freq;
2559 * };
2560 *
2561 * sack_assoc_id - This parameter, indicates which association the user
2562 * is performing an action upon. Note that if this field's value is
2563 * zero then the endpoints default value is changed (effecting future
2564 * associations only).
2565 *
2566 * sack_delay - This parameter contains the number of milliseconds that
2567 * the user is requesting the delayed ACK timer be set to. Note that
2568 * this value is defined in the standard to be between 200 and 500
2569 * milliseconds.
2570 *
2571 * sack_freq - This parameter contains the number of packets that must
2572 * be received before a sack is sent without waiting for the delay
2573 * timer to expire. The default value for this is 2, setting this
2574 * value to 1 will disable the delayed sack algorithm.
2575 */
2576
2577 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2578 char __user *optval, unsigned int optlen)
2579 {
2580 struct sctp_sack_info params;
2581 struct sctp_transport *trans = NULL;
2582 struct sctp_association *asoc = NULL;
2583 struct sctp_sock *sp = sctp_sk(sk);
2584
2585 if (optlen == sizeof(struct sctp_sack_info)) {
2586 if (copy_from_user(&params, optval, optlen))
2587 return -EFAULT;
2588
2589 if (params.sack_delay == 0 && params.sack_freq == 0)
2590 return 0;
2591 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2592 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2593 pr_warn("Use struct sctp_sack_info instead\n");
2594 if (copy_from_user(&params, optval, optlen))
2595 return -EFAULT;
2596
2597 if (params.sack_delay == 0)
2598 params.sack_freq = 1;
2599 else
2600 params.sack_freq = 0;
2601 } else
2602 return - EINVAL;
2603
2604 /* Validate value parameter. */
2605 if (params.sack_delay > 500)
2606 return -EINVAL;
2607
2608 /* Get association, if sack_assoc_id != 0 and the socket is a one
2609 * to many style socket, and an association was not found, then
2610 * the id was invalid.
2611 */
2612 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2613 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2614 return -EINVAL;
2615
2616 if (params.sack_delay) {
2617 if (asoc) {
2618 asoc->sackdelay =
2619 msecs_to_jiffies(params.sack_delay);
2620 asoc->param_flags =
2621 (asoc->param_flags & ~SPP_SACKDELAY) |
2622 SPP_SACKDELAY_ENABLE;
2623 } else {
2624 sp->sackdelay = params.sack_delay;
2625 sp->param_flags =
2626 (sp->param_flags & ~SPP_SACKDELAY) |
2627 SPP_SACKDELAY_ENABLE;
2628 }
2629 }
2630
2631 if (params.sack_freq == 1) {
2632 if (asoc) {
2633 asoc->param_flags =
2634 (asoc->param_flags & ~SPP_SACKDELAY) |
2635 SPP_SACKDELAY_DISABLE;
2636 } else {
2637 sp->param_flags =
2638 (sp->param_flags & ~SPP_SACKDELAY) |
2639 SPP_SACKDELAY_DISABLE;
2640 }
2641 } else if (params.sack_freq > 1) {
2642 if (asoc) {
2643 asoc->sackfreq = params.sack_freq;
2644 asoc->param_flags =
2645 (asoc->param_flags & ~SPP_SACKDELAY) |
2646 SPP_SACKDELAY_ENABLE;
2647 } else {
2648 sp->sackfreq = params.sack_freq;
2649 sp->param_flags =
2650 (sp->param_flags & ~SPP_SACKDELAY) |
2651 SPP_SACKDELAY_ENABLE;
2652 }
2653 }
2654
2655 /* If change is for association, also apply to each transport. */
2656 if (asoc) {
2657 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2658 transports) {
2659 if (params.sack_delay) {
2660 trans->sackdelay =
2661 msecs_to_jiffies(params.sack_delay);
2662 trans->param_flags =
2663 (trans->param_flags & ~SPP_SACKDELAY) |
2664 SPP_SACKDELAY_ENABLE;
2665 }
2666 if (params.sack_freq == 1) {
2667 trans->param_flags =
2668 (trans->param_flags & ~SPP_SACKDELAY) |
2669 SPP_SACKDELAY_DISABLE;
2670 } else if (params.sack_freq > 1) {
2671 trans->sackfreq = params.sack_freq;
2672 trans->param_flags =
2673 (trans->param_flags & ~SPP_SACKDELAY) |
2674 SPP_SACKDELAY_ENABLE;
2675 }
2676 }
2677 }
2678
2679 return 0;
2680 }
2681
2682 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2683 *
2684 * Applications can specify protocol parameters for the default association
2685 * initialization. The option name argument to setsockopt() and getsockopt()
2686 * is SCTP_INITMSG.
2687 *
2688 * Setting initialization parameters is effective only on an unconnected
2689 * socket (for UDP-style sockets only future associations are effected
2690 * by the change). With TCP-style sockets, this option is inherited by
2691 * sockets derived from a listener socket.
2692 */
2693 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2694 {
2695 struct sctp_initmsg sinit;
2696 struct sctp_sock *sp = sctp_sk(sk);
2697
2698 if (optlen != sizeof(struct sctp_initmsg))
2699 return -EINVAL;
2700 if (copy_from_user(&sinit, optval, optlen))
2701 return -EFAULT;
2702
2703 if (sinit.sinit_num_ostreams)
2704 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2705 if (sinit.sinit_max_instreams)
2706 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2707 if (sinit.sinit_max_attempts)
2708 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2709 if (sinit.sinit_max_init_timeo)
2710 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2711
2712 return 0;
2713 }
2714
2715 /*
2716 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2717 *
2718 * Applications that wish to use the sendto() system call may wish to
2719 * specify a default set of parameters that would normally be supplied
2720 * through the inclusion of ancillary data. This socket option allows
2721 * such an application to set the default sctp_sndrcvinfo structure.
2722 * The application that wishes to use this socket option simply passes
2723 * in to this call the sctp_sndrcvinfo structure defined in Section
2724 * 5.2.2) The input parameters accepted by this call include
2725 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2726 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2727 * to this call if the caller is using the UDP model.
2728 */
2729 static int sctp_setsockopt_default_send_param(struct sock *sk,
2730 char __user *optval,
2731 unsigned int optlen)
2732 {
2733 struct sctp_sndrcvinfo info;
2734 struct sctp_association *asoc;
2735 struct sctp_sock *sp = sctp_sk(sk);
2736
2737 if (optlen != sizeof(struct sctp_sndrcvinfo))
2738 return -EINVAL;
2739 if (copy_from_user(&info, optval, optlen))
2740 return -EFAULT;
2741
2742 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2743 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2744 return -EINVAL;
2745
2746 if (asoc) {
2747 asoc->default_stream = info.sinfo_stream;
2748 asoc->default_flags = info.sinfo_flags;
2749 asoc->default_ppid = info.sinfo_ppid;
2750 asoc->default_context = info.sinfo_context;
2751 asoc->default_timetolive = info.sinfo_timetolive;
2752 } else {
2753 sp->default_stream = info.sinfo_stream;
2754 sp->default_flags = info.sinfo_flags;
2755 sp->default_ppid = info.sinfo_ppid;
2756 sp->default_context = info.sinfo_context;
2757 sp->default_timetolive = info.sinfo_timetolive;
2758 }
2759
2760 return 0;
2761 }
2762
2763 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2764 *
2765 * Requests that the local SCTP stack use the enclosed peer address as
2766 * the association primary. The enclosed address must be one of the
2767 * association peer's addresses.
2768 */
2769 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2770 unsigned int optlen)
2771 {
2772 struct sctp_prim prim;
2773 struct sctp_transport *trans;
2774
2775 if (optlen != sizeof(struct sctp_prim))
2776 return -EINVAL;
2777
2778 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2779 return -EFAULT;
2780
2781 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2782 if (!trans)
2783 return -EINVAL;
2784
2785 sctp_assoc_set_primary(trans->asoc, trans);
2786
2787 return 0;
2788 }
2789
2790 /*
2791 * 7.1.5 SCTP_NODELAY
2792 *
2793 * Turn on/off any Nagle-like algorithm. This means that packets are
2794 * generally sent as soon as possible and no unnecessary delays are
2795 * introduced, at the cost of more packets in the network. Expects an
2796 * integer boolean flag.
2797 */
2798 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2799 unsigned int optlen)
2800 {
2801 int val;
2802
2803 if (optlen < sizeof(int))
2804 return -EINVAL;
2805 if (get_user(val, (int __user *)optval))
2806 return -EFAULT;
2807
2808 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2809 return 0;
2810 }
2811
2812 /*
2813 *
2814 * 7.1.1 SCTP_RTOINFO
2815 *
2816 * The protocol parameters used to initialize and bound retransmission
2817 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2818 * and modify these parameters.
2819 * All parameters are time values, in milliseconds. A value of 0, when
2820 * modifying the parameters, indicates that the current value should not
2821 * be changed.
2822 *
2823 */
2824 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2825 {
2826 struct sctp_rtoinfo rtoinfo;
2827 struct sctp_association *asoc;
2828
2829 if (optlen != sizeof (struct sctp_rtoinfo))
2830 return -EINVAL;
2831
2832 if (copy_from_user(&rtoinfo, optval, optlen))
2833 return -EFAULT;
2834
2835 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2836
2837 /* Set the values to the specific association */
2838 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2839 return -EINVAL;
2840
2841 if (asoc) {
2842 if (rtoinfo.srto_initial != 0)
2843 asoc->rto_initial =
2844 msecs_to_jiffies(rtoinfo.srto_initial);
2845 if (rtoinfo.srto_max != 0)
2846 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2847 if (rtoinfo.srto_min != 0)
2848 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2849 } else {
2850 /* If there is no association or the association-id = 0
2851 * set the values to the endpoint.
2852 */
2853 struct sctp_sock *sp = sctp_sk(sk);
2854
2855 if (rtoinfo.srto_initial != 0)
2856 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2857 if (rtoinfo.srto_max != 0)
2858 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2859 if (rtoinfo.srto_min != 0)
2860 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2861 }
2862
2863 return 0;
2864 }
2865
2866 /*
2867 *
2868 * 7.1.2 SCTP_ASSOCINFO
2869 *
2870 * This option is used to tune the maximum retransmission attempts
2871 * of the association.
2872 * Returns an error if the new association retransmission value is
2873 * greater than the sum of the retransmission value of the peer.
2874 * See [SCTP] for more information.
2875 *
2876 */
2877 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2878 {
2879
2880 struct sctp_assocparams assocparams;
2881 struct sctp_association *asoc;
2882
2883 if (optlen != sizeof(struct sctp_assocparams))
2884 return -EINVAL;
2885 if (copy_from_user(&assocparams, optval, optlen))
2886 return -EFAULT;
2887
2888 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2889
2890 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2891 return -EINVAL;
2892
2893 /* Set the values to the specific association */
2894 if (asoc) {
2895 if (assocparams.sasoc_asocmaxrxt != 0) {
2896 __u32 path_sum = 0;
2897 int paths = 0;
2898 struct sctp_transport *peer_addr;
2899
2900 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2901 transports) {
2902 path_sum += peer_addr->pathmaxrxt;
2903 paths++;
2904 }
2905
2906 /* Only validate asocmaxrxt if we have more than
2907 * one path/transport. We do this because path
2908 * retransmissions are only counted when we have more
2909 * then one path.
2910 */
2911 if (paths > 1 &&
2912 assocparams.sasoc_asocmaxrxt > path_sum)
2913 return -EINVAL;
2914
2915 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2916 }
2917
2918 if (assocparams.sasoc_cookie_life != 0) {
2919 asoc->cookie_life.tv_sec =
2920 assocparams.sasoc_cookie_life / 1000;
2921 asoc->cookie_life.tv_usec =
2922 (assocparams.sasoc_cookie_life % 1000)
2923 * 1000;
2924 }
2925 } else {
2926 /* Set the values to the endpoint */
2927 struct sctp_sock *sp = sctp_sk(sk);
2928
2929 if (assocparams.sasoc_asocmaxrxt != 0)
2930 sp->assocparams.sasoc_asocmaxrxt =
2931 assocparams.sasoc_asocmaxrxt;
2932 if (assocparams.sasoc_cookie_life != 0)
2933 sp->assocparams.sasoc_cookie_life =
2934 assocparams.sasoc_cookie_life;
2935 }
2936 return 0;
2937 }
2938
2939 /*
2940 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2941 *
2942 * This socket option is a boolean flag which turns on or off mapped V4
2943 * addresses. If this option is turned on and the socket is type
2944 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2945 * If this option is turned off, then no mapping will be done of V4
2946 * addresses and a user will receive both PF_INET6 and PF_INET type
2947 * addresses on the socket.
2948 */
2949 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2950 {
2951 int val;
2952 struct sctp_sock *sp = sctp_sk(sk);
2953
2954 if (optlen < sizeof(int))
2955 return -EINVAL;
2956 if (get_user(val, (int __user *)optval))
2957 return -EFAULT;
2958 if (val)
2959 sp->v4mapped = 1;
2960 else
2961 sp->v4mapped = 0;
2962
2963 return 0;
2964 }
2965
2966 /*
2967 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2968 * This option will get or set the maximum size to put in any outgoing
2969 * SCTP DATA chunk. If a message is larger than this size it will be
2970 * fragmented by SCTP into the specified size. Note that the underlying
2971 * SCTP implementation may fragment into smaller sized chunks when the
2972 * PMTU of the underlying association is smaller than the value set by
2973 * the user. The default value for this option is '0' which indicates
2974 * the user is NOT limiting fragmentation and only the PMTU will effect
2975 * SCTP's choice of DATA chunk size. Note also that values set larger
2976 * than the maximum size of an IP datagram will effectively let SCTP
2977 * control fragmentation (i.e. the same as setting this option to 0).
2978 *
2979 * The following structure is used to access and modify this parameter:
2980 *
2981 * struct sctp_assoc_value {
2982 * sctp_assoc_t assoc_id;
2983 * uint32_t assoc_value;
2984 * };
2985 *
2986 * assoc_id: This parameter is ignored for one-to-one style sockets.
2987 * For one-to-many style sockets this parameter indicates which
2988 * association the user is performing an action upon. Note that if
2989 * this field's value is zero then the endpoints default value is
2990 * changed (effecting future associations only).
2991 * assoc_value: This parameter specifies the maximum size in bytes.
2992 */
2993 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2994 {
2995 struct sctp_assoc_value params;
2996 struct sctp_association *asoc;
2997 struct sctp_sock *sp = sctp_sk(sk);
2998 int val;
2999
3000 if (optlen == sizeof(int)) {
3001 pr_warn("Use of int in maxseg socket option deprecated\n");
3002 pr_warn("Use struct sctp_assoc_value instead\n");
3003 if (copy_from_user(&val, optval, optlen))
3004 return -EFAULT;
3005 params.assoc_id = 0;
3006 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3007 if (copy_from_user(&params, optval, optlen))
3008 return -EFAULT;
3009 val = params.assoc_value;
3010 } else
3011 return -EINVAL;
3012
3013 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3014 return -EINVAL;
3015
3016 asoc = sctp_id2assoc(sk, params.assoc_id);
3017 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3018 return -EINVAL;
3019
3020 if (asoc) {
3021 if (val == 0) {
3022 val = asoc->pathmtu;
3023 val -= sp->pf->af->net_header_len;
3024 val -= sizeof(struct sctphdr) +
3025 sizeof(struct sctp_data_chunk);
3026 }
3027 asoc->user_frag = val;
3028 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3029 } else {
3030 sp->user_frag = val;
3031 }
3032
3033 return 0;
3034 }
3035
3036
3037 /*
3038 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3039 *
3040 * Requests that the peer mark the enclosed address as the association
3041 * primary. The enclosed address must be one of the association's
3042 * locally bound addresses. The following structure is used to make a
3043 * set primary request:
3044 */
3045 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3046 unsigned int optlen)
3047 {
3048 struct net *net = sock_net(sk);
3049 struct sctp_sock *sp;
3050 struct sctp_association *asoc = NULL;
3051 struct sctp_setpeerprim prim;
3052 struct sctp_chunk *chunk;
3053 struct sctp_af *af;
3054 int err;
3055
3056 sp = sctp_sk(sk);
3057
3058 if (!net->sctp.addip_enable)
3059 return -EPERM;
3060
3061 if (optlen != sizeof(struct sctp_setpeerprim))
3062 return -EINVAL;
3063
3064 if (copy_from_user(&prim, optval, optlen))
3065 return -EFAULT;
3066
3067 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3068 if (!asoc)
3069 return -EINVAL;
3070
3071 if (!asoc->peer.asconf_capable)
3072 return -EPERM;
3073
3074 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3075 return -EPERM;
3076
3077 if (!sctp_state(asoc, ESTABLISHED))
3078 return -ENOTCONN;
3079
3080 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3081 if (!af)
3082 return -EINVAL;
3083
3084 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3085 return -EADDRNOTAVAIL;
3086
3087 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3088 return -EADDRNOTAVAIL;
3089
3090 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3091 chunk = sctp_make_asconf_set_prim(asoc,
3092 (union sctp_addr *)&prim.sspp_addr);
3093 if (!chunk)
3094 return -ENOMEM;
3095
3096 err = sctp_send_asconf(asoc, chunk);
3097
3098 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3099
3100 return err;
3101 }
3102
3103 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3104 unsigned int optlen)
3105 {
3106 struct sctp_setadaptation adaptation;
3107
3108 if (optlen != sizeof(struct sctp_setadaptation))
3109 return -EINVAL;
3110 if (copy_from_user(&adaptation, optval, optlen))
3111 return -EFAULT;
3112
3113 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3114
3115 return 0;
3116 }
3117
3118 /*
3119 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3120 *
3121 * The context field in the sctp_sndrcvinfo structure is normally only
3122 * used when a failed message is retrieved holding the value that was
3123 * sent down on the actual send call. This option allows the setting of
3124 * a default context on an association basis that will be received on
3125 * reading messages from the peer. This is especially helpful in the
3126 * one-2-many model for an application to keep some reference to an
3127 * internal state machine that is processing messages on the
3128 * association. Note that the setting of this value only effects
3129 * received messages from the peer and does not effect the value that is
3130 * saved with outbound messages.
3131 */
3132 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3133 unsigned int optlen)
3134 {
3135 struct sctp_assoc_value params;
3136 struct sctp_sock *sp;
3137 struct sctp_association *asoc;
3138
3139 if (optlen != sizeof(struct sctp_assoc_value))
3140 return -EINVAL;
3141 if (copy_from_user(&params, optval, optlen))
3142 return -EFAULT;
3143
3144 sp = sctp_sk(sk);
3145
3146 if (params.assoc_id != 0) {
3147 asoc = sctp_id2assoc(sk, params.assoc_id);
3148 if (!asoc)
3149 return -EINVAL;
3150 asoc->default_rcv_context = params.assoc_value;
3151 } else {
3152 sp->default_rcv_context = params.assoc_value;
3153 }
3154
3155 return 0;
3156 }
3157
3158 /*
3159 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3160 *
3161 * This options will at a minimum specify if the implementation is doing
3162 * fragmented interleave. Fragmented interleave, for a one to many
3163 * socket, is when subsequent calls to receive a message may return
3164 * parts of messages from different associations. Some implementations
3165 * may allow you to turn this value on or off. If so, when turned off,
3166 * no fragment interleave will occur (which will cause a head of line
3167 * blocking amongst multiple associations sharing the same one to many
3168 * socket). When this option is turned on, then each receive call may
3169 * come from a different association (thus the user must receive data
3170 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3171 * association each receive belongs to.
3172 *
3173 * This option takes a boolean value. A non-zero value indicates that
3174 * fragmented interleave is on. A value of zero indicates that
3175 * fragmented interleave is off.
3176 *
3177 * Note that it is important that an implementation that allows this
3178 * option to be turned on, have it off by default. Otherwise an unaware
3179 * application using the one to many model may become confused and act
3180 * incorrectly.
3181 */
3182 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3183 char __user *optval,
3184 unsigned int optlen)
3185 {
3186 int val;
3187
3188 if (optlen != sizeof(int))
3189 return -EINVAL;
3190 if (get_user(val, (int __user *)optval))
3191 return -EFAULT;
3192
3193 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3194
3195 return 0;
3196 }
3197
3198 /*
3199 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3200 * (SCTP_PARTIAL_DELIVERY_POINT)
3201 *
3202 * This option will set or get the SCTP partial delivery point. This
3203 * point is the size of a message where the partial delivery API will be
3204 * invoked to help free up rwnd space for the peer. Setting this to a
3205 * lower value will cause partial deliveries to happen more often. The
3206 * calls argument is an integer that sets or gets the partial delivery
3207 * point. Note also that the call will fail if the user attempts to set
3208 * this value larger than the socket receive buffer size.
3209 *
3210 * Note that any single message having a length smaller than or equal to
3211 * the SCTP partial delivery point will be delivered in one single read
3212 * call as long as the user provided buffer is large enough to hold the
3213 * message.
3214 */
3215 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3216 char __user *optval,
3217 unsigned int optlen)
3218 {
3219 u32 val;
3220
3221 if (optlen != sizeof(u32))
3222 return -EINVAL;
3223 if (get_user(val, (int __user *)optval))
3224 return -EFAULT;
3225
3226 /* Note: We double the receive buffer from what the user sets
3227 * it to be, also initial rwnd is based on rcvbuf/2.
3228 */
3229 if (val > (sk->sk_rcvbuf >> 1))
3230 return -EINVAL;
3231
3232 sctp_sk(sk)->pd_point = val;
3233
3234 return 0; /* is this the right error code? */
3235 }
3236
3237 /*
3238 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3239 *
3240 * This option will allow a user to change the maximum burst of packets
3241 * that can be emitted by this association. Note that the default value
3242 * is 4, and some implementations may restrict this setting so that it
3243 * can only be lowered.
3244 *
3245 * NOTE: This text doesn't seem right. Do this on a socket basis with
3246 * future associations inheriting the socket value.
3247 */
3248 static int sctp_setsockopt_maxburst(struct sock *sk,
3249 char __user *optval,
3250 unsigned int optlen)
3251 {
3252 struct sctp_assoc_value params;
3253 struct sctp_sock *sp;
3254 struct sctp_association *asoc;
3255 int val;
3256 int assoc_id = 0;
3257
3258 if (optlen == sizeof(int)) {
3259 pr_warn("Use of int in max_burst socket option deprecated\n");
3260 pr_warn("Use struct sctp_assoc_value instead\n");
3261 if (copy_from_user(&val, optval, optlen))
3262 return -EFAULT;
3263 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3264 if (copy_from_user(&params, optval, optlen))
3265 return -EFAULT;
3266 val = params.assoc_value;
3267 assoc_id = params.assoc_id;
3268 } else
3269 return -EINVAL;
3270
3271 sp = sctp_sk(sk);
3272
3273 if (assoc_id != 0) {
3274 asoc = sctp_id2assoc(sk, assoc_id);
3275 if (!asoc)
3276 return -EINVAL;
3277 asoc->max_burst = val;
3278 } else
3279 sp->max_burst = val;
3280
3281 return 0;
3282 }
3283
3284 /*
3285 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3286 *
3287 * This set option adds a chunk type that the user is requesting to be
3288 * received only in an authenticated way. Changes to the list of chunks
3289 * will only effect future associations on the socket.
3290 */
3291 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3292 char __user *optval,
3293 unsigned int optlen)
3294 {
3295 struct net *net = sock_net(sk);
3296 struct sctp_authchunk val;
3297
3298 if (!net->sctp.auth_enable)
3299 return -EACCES;
3300
3301 if (optlen != sizeof(struct sctp_authchunk))
3302 return -EINVAL;
3303 if (copy_from_user(&val, optval, optlen))
3304 return -EFAULT;
3305
3306 switch (val.sauth_chunk) {
3307 case SCTP_CID_INIT:
3308 case SCTP_CID_INIT_ACK:
3309 case SCTP_CID_SHUTDOWN_COMPLETE:
3310 case SCTP_CID_AUTH:
3311 return -EINVAL;
3312 }
3313
3314 /* add this chunk id to the endpoint */
3315 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3316 }
3317
3318 /*
3319 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3320 *
3321 * This option gets or sets the list of HMAC algorithms that the local
3322 * endpoint requires the peer to use.
3323 */
3324 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3325 char __user *optval,
3326 unsigned int optlen)
3327 {
3328 struct net *net = sock_net(sk);
3329 struct sctp_hmacalgo *hmacs;
3330 u32 idents;
3331 int err;
3332
3333 if (!net->sctp.auth_enable)
3334 return -EACCES;
3335
3336 if (optlen < sizeof(struct sctp_hmacalgo))
3337 return -EINVAL;
3338
3339 hmacs= memdup_user(optval, optlen);
3340 if (IS_ERR(hmacs))
3341 return PTR_ERR(hmacs);
3342
3343 idents = hmacs->shmac_num_idents;
3344 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3345 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3346 err = -EINVAL;
3347 goto out;
3348 }
3349
3350 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3351 out:
3352 kfree(hmacs);
3353 return err;
3354 }
3355
3356 /*
3357 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3358 *
3359 * This option will set a shared secret key which is used to build an
3360 * association shared key.
3361 */
3362 static int sctp_setsockopt_auth_key(struct sock *sk,
3363 char __user *optval,
3364 unsigned int optlen)
3365 {
3366 struct net *net = sock_net(sk);
3367 struct sctp_authkey *authkey;
3368 struct sctp_association *asoc;
3369 int ret;
3370
3371 if (!net->sctp.auth_enable)
3372 return -EACCES;
3373
3374 if (optlen <= sizeof(struct sctp_authkey))
3375 return -EINVAL;
3376
3377 authkey= memdup_user(optval, optlen);
3378 if (IS_ERR(authkey))
3379 return PTR_ERR(authkey);
3380
3381 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3382 ret = -EINVAL;
3383 goto out;
3384 }
3385
3386 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3387 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3388 ret = -EINVAL;
3389 goto out;
3390 }
3391
3392 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3393 out:
3394 kzfree(authkey);
3395 return ret;
3396 }
3397
3398 /*
3399 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3400 *
3401 * This option will get or set the active shared key to be used to build
3402 * the association shared key.
3403 */
3404 static int sctp_setsockopt_active_key(struct sock *sk,
3405 char __user *optval,
3406 unsigned int optlen)
3407 {
3408 struct net *net = sock_net(sk);
3409 struct sctp_authkeyid val;
3410 struct sctp_association *asoc;
3411
3412 if (!net->sctp.auth_enable)
3413 return -EACCES;
3414
3415 if (optlen != sizeof(struct sctp_authkeyid))
3416 return -EINVAL;
3417 if (copy_from_user(&val, optval, optlen))
3418 return -EFAULT;
3419
3420 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3421 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3422 return -EINVAL;
3423
3424 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3425 val.scact_keynumber);
3426 }
3427
3428 /*
3429 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3430 *
3431 * This set option will delete a shared secret key from use.
3432 */
3433 static int sctp_setsockopt_del_key(struct sock *sk,
3434 char __user *optval,
3435 unsigned int optlen)
3436 {
3437 struct net *net = sock_net(sk);
3438 struct sctp_authkeyid val;
3439 struct sctp_association *asoc;
3440
3441 if (!net->sctp.auth_enable)
3442 return -EACCES;
3443
3444 if (optlen != sizeof(struct sctp_authkeyid))
3445 return -EINVAL;
3446 if (copy_from_user(&val, optval, optlen))
3447 return -EFAULT;
3448
3449 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3450 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3451 return -EINVAL;
3452
3453 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3454 val.scact_keynumber);
3455
3456 }
3457
3458 /*
3459 * 8.1.23 SCTP_AUTO_ASCONF
3460 *
3461 * This option will enable or disable the use of the automatic generation of
3462 * ASCONF chunks to add and delete addresses to an existing association. Note
3463 * that this option has two caveats namely: a) it only affects sockets that
3464 * are bound to all addresses available to the SCTP stack, and b) the system
3465 * administrator may have an overriding control that turns the ASCONF feature
3466 * off no matter what setting the socket option may have.
3467 * This option expects an integer boolean flag, where a non-zero value turns on
3468 * the option, and a zero value turns off the option.
3469 * Note. In this implementation, socket operation overrides default parameter
3470 * being set by sysctl as well as FreeBSD implementation
3471 */
3472 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3473 unsigned int optlen)
3474 {
3475 int val;
3476 struct sctp_sock *sp = sctp_sk(sk);
3477
3478 if (optlen < sizeof(int))
3479 return -EINVAL;
3480 if (get_user(val, (int __user *)optval))
3481 return -EFAULT;
3482 if (!sctp_is_ep_boundall(sk) && val)
3483 return -EINVAL;
3484 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3485 return 0;
3486
3487 if (val == 0 && sp->do_auto_asconf) {
3488 list_del(&sp->auto_asconf_list);
3489 sp->do_auto_asconf = 0;
3490 } else if (val && !sp->do_auto_asconf) {
3491 list_add_tail(&sp->auto_asconf_list,
3492 &sock_net(sk)->sctp.auto_asconf_splist);
3493 sp->do_auto_asconf = 1;
3494 }
3495 return 0;
3496 }
3497
3498
3499 /*
3500 * SCTP_PEER_ADDR_THLDS
3501 *
3502 * This option allows us to alter the partially failed threshold for one or all
3503 * transports in an association. See Section 6.1 of:
3504 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3505 */
3506 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3507 char __user *optval,
3508 unsigned int optlen)
3509 {
3510 struct sctp_paddrthlds val;
3511 struct sctp_transport *trans;
3512 struct sctp_association *asoc;
3513
3514 if (optlen < sizeof(struct sctp_paddrthlds))
3515 return -EINVAL;
3516 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3517 sizeof(struct sctp_paddrthlds)))
3518 return -EFAULT;
3519
3520
3521 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3522 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3523 if (!asoc)
3524 return -ENOENT;
3525 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3526 transports) {
3527 if (val.spt_pathmaxrxt)
3528 trans->pathmaxrxt = val.spt_pathmaxrxt;
3529 trans->pf_retrans = val.spt_pathpfthld;
3530 }
3531
3532 if (val.spt_pathmaxrxt)
3533 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3534 asoc->pf_retrans = val.spt_pathpfthld;
3535 } else {
3536 trans = sctp_addr_id2transport(sk, &val.spt_address,
3537 val.spt_assoc_id);
3538 if (!trans)
3539 return -ENOENT;
3540
3541 if (val.spt_pathmaxrxt)
3542 trans->pathmaxrxt = val.spt_pathmaxrxt;
3543 trans->pf_retrans = val.spt_pathpfthld;
3544 }
3545
3546 return 0;
3547 }
3548
3549 /* API 6.2 setsockopt(), getsockopt()
3550 *
3551 * Applications use setsockopt() and getsockopt() to set or retrieve
3552 * socket options. Socket options are used to change the default
3553 * behavior of sockets calls. They are described in Section 7.
3554 *
3555 * The syntax is:
3556 *
3557 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3558 * int __user *optlen);
3559 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3560 * int optlen);
3561 *
3562 * sd - the socket descript.
3563 * level - set to IPPROTO_SCTP for all SCTP options.
3564 * optname - the option name.
3565 * optval - the buffer to store the value of the option.
3566 * optlen - the size of the buffer.
3567 */
3568 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3569 char __user *optval, unsigned int optlen)
3570 {
3571 int retval = 0;
3572
3573 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3574 sk, optname);
3575
3576 /* I can hardly begin to describe how wrong this is. This is
3577 * so broken as to be worse than useless. The API draft
3578 * REALLY is NOT helpful here... I am not convinced that the
3579 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3580 * are at all well-founded.
3581 */
3582 if (level != SOL_SCTP) {
3583 struct sctp_af *af = sctp_sk(sk)->pf->af;
3584 retval = af->setsockopt(sk, level, optname, optval, optlen);
3585 goto out_nounlock;
3586 }
3587
3588 sctp_lock_sock(sk);
3589
3590 switch (optname) {
3591 case SCTP_SOCKOPT_BINDX_ADD:
3592 /* 'optlen' is the size of the addresses buffer. */
3593 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3594 optlen, SCTP_BINDX_ADD_ADDR);
3595 break;
3596
3597 case SCTP_SOCKOPT_BINDX_REM:
3598 /* 'optlen' is the size of the addresses buffer. */
3599 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3600 optlen, SCTP_BINDX_REM_ADDR);
3601 break;
3602
3603 case SCTP_SOCKOPT_CONNECTX_OLD:
3604 /* 'optlen' is the size of the addresses buffer. */
3605 retval = sctp_setsockopt_connectx_old(sk,
3606 (struct sockaddr __user *)optval,
3607 optlen);
3608 break;
3609
3610 case SCTP_SOCKOPT_CONNECTX:
3611 /* 'optlen' is the size of the addresses buffer. */
3612 retval = sctp_setsockopt_connectx(sk,
3613 (struct sockaddr __user *)optval,
3614 optlen);
3615 break;
3616
3617 case SCTP_DISABLE_FRAGMENTS:
3618 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3619 break;
3620
3621 case SCTP_EVENTS:
3622 retval = sctp_setsockopt_events(sk, optval, optlen);
3623 break;
3624
3625 case SCTP_AUTOCLOSE:
3626 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3627 break;
3628
3629 case SCTP_PEER_ADDR_PARAMS:
3630 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3631 break;
3632
3633 case SCTP_DELAYED_SACK:
3634 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3635 break;
3636 case SCTP_PARTIAL_DELIVERY_POINT:
3637 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3638 break;
3639
3640 case SCTP_INITMSG:
3641 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3642 break;
3643 case SCTP_DEFAULT_SEND_PARAM:
3644 retval = sctp_setsockopt_default_send_param(sk, optval,
3645 optlen);
3646 break;
3647 case SCTP_PRIMARY_ADDR:
3648 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3649 break;
3650 case SCTP_SET_PEER_PRIMARY_ADDR:
3651 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3652 break;
3653 case SCTP_NODELAY:
3654 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3655 break;
3656 case SCTP_RTOINFO:
3657 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3658 break;
3659 case SCTP_ASSOCINFO:
3660 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3661 break;
3662 case SCTP_I_WANT_MAPPED_V4_ADDR:
3663 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3664 break;
3665 case SCTP_MAXSEG:
3666 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3667 break;
3668 case SCTP_ADAPTATION_LAYER:
3669 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3670 break;
3671 case SCTP_CONTEXT:
3672 retval = sctp_setsockopt_context(sk, optval, optlen);
3673 break;
3674 case SCTP_FRAGMENT_INTERLEAVE:
3675 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3676 break;
3677 case SCTP_MAX_BURST:
3678 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3679 break;
3680 case SCTP_AUTH_CHUNK:
3681 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3682 break;
3683 case SCTP_HMAC_IDENT:
3684 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3685 break;
3686 case SCTP_AUTH_KEY:
3687 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3688 break;
3689 case SCTP_AUTH_ACTIVE_KEY:
3690 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3691 break;
3692 case SCTP_AUTH_DELETE_KEY:
3693 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3694 break;
3695 case SCTP_AUTO_ASCONF:
3696 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3697 break;
3698 case SCTP_PEER_ADDR_THLDS:
3699 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3700 break;
3701 default:
3702 retval = -ENOPROTOOPT;
3703 break;
3704 }
3705
3706 sctp_release_sock(sk);
3707
3708 out_nounlock:
3709 return retval;
3710 }
3711
3712 /* API 3.1.6 connect() - UDP Style Syntax
3713 *
3714 * An application may use the connect() call in the UDP model to initiate an
3715 * association without sending data.
3716 *
3717 * The syntax is:
3718 *
3719 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3720 *
3721 * sd: the socket descriptor to have a new association added to.
3722 *
3723 * nam: the address structure (either struct sockaddr_in or struct
3724 * sockaddr_in6 defined in RFC2553 [7]).
3725 *
3726 * len: the size of the address.
3727 */
3728 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3729 int addr_len)
3730 {
3731 int err = 0;
3732 struct sctp_af *af;
3733
3734 sctp_lock_sock(sk);
3735
3736 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3737 __func__, sk, addr, addr_len);
3738
3739 /* Validate addr_len before calling common connect/connectx routine. */
3740 af = sctp_get_af_specific(addr->sa_family);
3741 if (!af || addr_len < af->sockaddr_len) {
3742 err = -EINVAL;
3743 } else {
3744 /* Pass correct addr len to common routine (so it knows there
3745 * is only one address being passed.
3746 */
3747 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3748 }
3749
3750 sctp_release_sock(sk);
3751 return err;
3752 }
3753
3754 /* FIXME: Write comments. */
3755 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3756 {
3757 return -EOPNOTSUPP; /* STUB */
3758 }
3759
3760 /* 4.1.4 accept() - TCP Style Syntax
3761 *
3762 * Applications use accept() call to remove an established SCTP
3763 * association from the accept queue of the endpoint. A new socket
3764 * descriptor will be returned from accept() to represent the newly
3765 * formed association.
3766 */
3767 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3768 {
3769 struct sctp_sock *sp;
3770 struct sctp_endpoint *ep;
3771 struct sock *newsk = NULL;
3772 struct sctp_association *asoc;
3773 long timeo;
3774 int error = 0;
3775
3776 sctp_lock_sock(sk);
3777
3778 sp = sctp_sk(sk);
3779 ep = sp->ep;
3780
3781 if (!sctp_style(sk, TCP)) {
3782 error = -EOPNOTSUPP;
3783 goto out;
3784 }
3785
3786 if (!sctp_sstate(sk, LISTENING)) {
3787 error = -EINVAL;
3788 goto out;
3789 }
3790
3791 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3792
3793 error = sctp_wait_for_accept(sk, timeo);
3794 if (error)
3795 goto out;
3796
3797 /* We treat the list of associations on the endpoint as the accept
3798 * queue and pick the first association on the list.
3799 */
3800 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3801
3802 newsk = sp->pf->create_accept_sk(sk, asoc);
3803 if (!newsk) {
3804 error = -ENOMEM;
3805 goto out;
3806 }
3807
3808 /* Populate the fields of the newsk from the oldsk and migrate the
3809 * asoc to the newsk.
3810 */
3811 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3812
3813 out:
3814 sctp_release_sock(sk);
3815 *err = error;
3816 return newsk;
3817 }
3818
3819 /* The SCTP ioctl handler. */
3820 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3821 {
3822 int rc = -ENOTCONN;
3823
3824 sctp_lock_sock(sk);
3825
3826 /*
3827 * SEQPACKET-style sockets in LISTENING state are valid, for
3828 * SCTP, so only discard TCP-style sockets in LISTENING state.
3829 */
3830 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3831 goto out;
3832
3833 switch (cmd) {
3834 case SIOCINQ: {
3835 struct sk_buff *skb;
3836 unsigned int amount = 0;
3837
3838 skb = skb_peek(&sk->sk_receive_queue);
3839 if (skb != NULL) {
3840 /*
3841 * We will only return the amount of this packet since
3842 * that is all that will be read.
3843 */
3844 amount = skb->len;
3845 }
3846 rc = put_user(amount, (int __user *)arg);
3847 break;
3848 }
3849 default:
3850 rc = -ENOIOCTLCMD;
3851 break;
3852 }
3853 out:
3854 sctp_release_sock(sk);
3855 return rc;
3856 }
3857
3858 /* This is the function which gets called during socket creation to
3859 * initialized the SCTP-specific portion of the sock.
3860 * The sock structure should already be zero-filled memory.
3861 */
3862 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3863 {
3864 struct net *net = sock_net(sk);
3865 struct sctp_endpoint *ep;
3866 struct sctp_sock *sp;
3867
3868 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3869
3870 sp = sctp_sk(sk);
3871
3872 /* Initialize the SCTP per socket area. */
3873 switch (sk->sk_type) {
3874 case SOCK_SEQPACKET:
3875 sp->type = SCTP_SOCKET_UDP;
3876 break;
3877 case SOCK_STREAM:
3878 sp->type = SCTP_SOCKET_TCP;
3879 break;
3880 default:
3881 return -ESOCKTNOSUPPORT;
3882 }
3883
3884 /* Initialize default send parameters. These parameters can be
3885 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3886 */
3887 sp->default_stream = 0;
3888 sp->default_ppid = 0;
3889 sp->default_flags = 0;
3890 sp->default_context = 0;
3891 sp->default_timetolive = 0;
3892
3893 sp->default_rcv_context = 0;
3894 sp->max_burst = net->sctp.max_burst;
3895
3896 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3897
3898 /* Initialize default setup parameters. These parameters
3899 * can be modified with the SCTP_INITMSG socket option or
3900 * overridden by the SCTP_INIT CMSG.
3901 */
3902 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3903 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3904 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
3905 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3906
3907 /* Initialize default RTO related parameters. These parameters can
3908 * be modified for with the SCTP_RTOINFO socket option.
3909 */
3910 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3911 sp->rtoinfo.srto_max = net->sctp.rto_max;
3912 sp->rtoinfo.srto_min = net->sctp.rto_min;
3913
3914 /* Initialize default association related parameters. These parameters
3915 * can be modified with the SCTP_ASSOCINFO socket option.
3916 */
3917 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3918 sp->assocparams.sasoc_number_peer_destinations = 0;
3919 sp->assocparams.sasoc_peer_rwnd = 0;
3920 sp->assocparams.sasoc_local_rwnd = 0;
3921 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3922
3923 /* Initialize default event subscriptions. By default, all the
3924 * options are off.
3925 */
3926 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3927
3928 /* Default Peer Address Parameters. These defaults can
3929 * be modified via SCTP_PEER_ADDR_PARAMS
3930 */
3931 sp->hbinterval = net->sctp.hb_interval;
3932 sp->pathmaxrxt = net->sctp.max_retrans_path;
3933 sp->pathmtu = 0; // allow default discovery
3934 sp->sackdelay = net->sctp.sack_timeout;
3935 sp->sackfreq = 2;
3936 sp->param_flags = SPP_HB_ENABLE |
3937 SPP_PMTUD_ENABLE |
3938 SPP_SACKDELAY_ENABLE;
3939
3940 /* If enabled no SCTP message fragmentation will be performed.
3941 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3942 */
3943 sp->disable_fragments = 0;
3944
3945 /* Enable Nagle algorithm by default. */
3946 sp->nodelay = 0;
3947
3948 /* Enable by default. */
3949 sp->v4mapped = 1;
3950
3951 /* Auto-close idle associations after the configured
3952 * number of seconds. A value of 0 disables this
3953 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3954 * for UDP-style sockets only.
3955 */
3956 sp->autoclose = 0;
3957
3958 /* User specified fragmentation limit. */
3959 sp->user_frag = 0;
3960
3961 sp->adaptation_ind = 0;
3962
3963 sp->pf = sctp_get_pf_specific(sk->sk_family);
3964
3965 /* Control variables for partial data delivery. */
3966 atomic_set(&sp->pd_mode, 0);
3967 skb_queue_head_init(&sp->pd_lobby);
3968 sp->frag_interleave = 0;
3969
3970 /* Create a per socket endpoint structure. Even if we
3971 * change the data structure relationships, this may still
3972 * be useful for storing pre-connect address information.
3973 */
3974 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3975 if (!ep)
3976 return -ENOMEM;
3977
3978 sp->ep = ep;
3979 sp->hmac = NULL;
3980
3981 SCTP_DBG_OBJCNT_INC(sock);
3982
3983 local_bh_disable();
3984 percpu_counter_inc(&sctp_sockets_allocated);
3985 sock_prot_inuse_add(net, sk->sk_prot, 1);
3986 if (net->sctp.default_auto_asconf) {
3987 list_add_tail(&sp->auto_asconf_list,
3988 &net->sctp.auto_asconf_splist);
3989 sp->do_auto_asconf = 1;
3990 } else
3991 sp->do_auto_asconf = 0;
3992 local_bh_enable();
3993
3994 return 0;
3995 }
3996
3997 /* Cleanup any SCTP per socket resources. */
3998 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3999 {
4000 struct sctp_sock *sp;
4001
4002 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
4003
4004 /* Release our hold on the endpoint. */
4005 sp = sctp_sk(sk);
4006 if (sp->do_auto_asconf) {
4007 sp->do_auto_asconf = 0;
4008 list_del(&sp->auto_asconf_list);
4009 }
4010 sctp_endpoint_free(sp->ep);
4011 local_bh_disable();
4012 percpu_counter_dec(&sctp_sockets_allocated);
4013 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4014 local_bh_enable();
4015 }
4016
4017 /* API 4.1.7 shutdown() - TCP Style Syntax
4018 * int shutdown(int socket, int how);
4019 *
4020 * sd - the socket descriptor of the association to be closed.
4021 * how - Specifies the type of shutdown. The values are
4022 * as follows:
4023 * SHUT_RD
4024 * Disables further receive operations. No SCTP
4025 * protocol action is taken.
4026 * SHUT_WR
4027 * Disables further send operations, and initiates
4028 * the SCTP shutdown sequence.
4029 * SHUT_RDWR
4030 * Disables further send and receive operations
4031 * and initiates the SCTP shutdown sequence.
4032 */
4033 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
4034 {
4035 struct net *net = sock_net(sk);
4036 struct sctp_endpoint *ep;
4037 struct sctp_association *asoc;
4038
4039 if (!sctp_style(sk, TCP))
4040 return;
4041
4042 if (how & SEND_SHUTDOWN) {
4043 ep = sctp_sk(sk)->ep;
4044 if (!list_empty(&ep->asocs)) {
4045 asoc = list_entry(ep->asocs.next,
4046 struct sctp_association, asocs);
4047 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4048 }
4049 }
4050 }
4051
4052 /* 7.2.1 Association Status (SCTP_STATUS)
4053
4054 * Applications can retrieve current status information about an
4055 * association, including association state, peer receiver window size,
4056 * number of unacked data chunks, and number of data chunks pending
4057 * receipt. This information is read-only.
4058 */
4059 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4060 char __user *optval,
4061 int __user *optlen)
4062 {
4063 struct sctp_status status;
4064 struct sctp_association *asoc = NULL;
4065 struct sctp_transport *transport;
4066 sctp_assoc_t associd;
4067 int retval = 0;
4068
4069 if (len < sizeof(status)) {
4070 retval = -EINVAL;
4071 goto out;
4072 }
4073
4074 len = sizeof(status);
4075 if (copy_from_user(&status, optval, len)) {
4076 retval = -EFAULT;
4077 goto out;
4078 }
4079
4080 associd = status.sstat_assoc_id;
4081 asoc = sctp_id2assoc(sk, associd);
4082 if (!asoc) {
4083 retval = -EINVAL;
4084 goto out;
4085 }
4086
4087 transport = asoc->peer.primary_path;
4088
4089 status.sstat_assoc_id = sctp_assoc2id(asoc);
4090 status.sstat_state = asoc->state;
4091 status.sstat_rwnd = asoc->peer.rwnd;
4092 status.sstat_unackdata = asoc->unack_data;
4093
4094 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4095 status.sstat_instrms = asoc->c.sinit_max_instreams;
4096 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4097 status.sstat_fragmentation_point = asoc->frag_point;
4098 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4099 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4100 transport->af_specific->sockaddr_len);
4101 /* Map ipv4 address into v4-mapped-on-v6 address. */
4102 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4103 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4104 status.sstat_primary.spinfo_state = transport->state;
4105 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4106 status.sstat_primary.spinfo_srtt = transport->srtt;
4107 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4108 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4109
4110 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4111 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4112
4113 if (put_user(len, optlen)) {
4114 retval = -EFAULT;
4115 goto out;
4116 }
4117
4118 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4119 len, status.sstat_state, status.sstat_rwnd,
4120 status.sstat_assoc_id);
4121
4122 if (copy_to_user(optval, &status, len)) {
4123 retval = -EFAULT;
4124 goto out;
4125 }
4126
4127 out:
4128 return retval;
4129 }
4130
4131
4132 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4133 *
4134 * Applications can retrieve information about a specific peer address
4135 * of an association, including its reachability state, congestion
4136 * window, and retransmission timer values. This information is
4137 * read-only.
4138 */
4139 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4140 char __user *optval,
4141 int __user *optlen)
4142 {
4143 struct sctp_paddrinfo pinfo;
4144 struct sctp_transport *transport;
4145 int retval = 0;
4146
4147 if (len < sizeof(pinfo)) {
4148 retval = -EINVAL;
4149 goto out;
4150 }
4151
4152 len = sizeof(pinfo);
4153 if (copy_from_user(&pinfo, optval, len)) {
4154 retval = -EFAULT;
4155 goto out;
4156 }
4157
4158 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4159 pinfo.spinfo_assoc_id);
4160 if (!transport)
4161 return -EINVAL;
4162
4163 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4164 pinfo.spinfo_state = transport->state;
4165 pinfo.spinfo_cwnd = transport->cwnd;
4166 pinfo.spinfo_srtt = transport->srtt;
4167 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4168 pinfo.spinfo_mtu = transport->pathmtu;
4169
4170 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4171 pinfo.spinfo_state = SCTP_ACTIVE;
4172
4173 if (put_user(len, optlen)) {
4174 retval = -EFAULT;
4175 goto out;
4176 }
4177
4178 if (copy_to_user(optval, &pinfo, len)) {
4179 retval = -EFAULT;
4180 goto out;
4181 }
4182
4183 out:
4184 return retval;
4185 }
4186
4187 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4188 *
4189 * This option is a on/off flag. If enabled no SCTP message
4190 * fragmentation will be performed. Instead if a message being sent
4191 * exceeds the current PMTU size, the message will NOT be sent and
4192 * instead a error will be indicated to the user.
4193 */
4194 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4195 char __user *optval, int __user *optlen)
4196 {
4197 int val;
4198
4199 if (len < sizeof(int))
4200 return -EINVAL;
4201
4202 len = sizeof(int);
4203 val = (sctp_sk(sk)->disable_fragments == 1);
4204 if (put_user(len, optlen))
4205 return -EFAULT;
4206 if (copy_to_user(optval, &val, len))
4207 return -EFAULT;
4208 return 0;
4209 }
4210
4211 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4212 *
4213 * This socket option is used to specify various notifications and
4214 * ancillary data the user wishes to receive.
4215 */
4216 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4217 int __user *optlen)
4218 {
4219 if (len <= 0)
4220 return -EINVAL;
4221 if (len > sizeof(struct sctp_event_subscribe))
4222 len = sizeof(struct sctp_event_subscribe);
4223 if (put_user(len, optlen))
4224 return -EFAULT;
4225 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4226 return -EFAULT;
4227 return 0;
4228 }
4229
4230 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4231 *
4232 * This socket option is applicable to the UDP-style socket only. When
4233 * set it will cause associations that are idle for more than the
4234 * specified number of seconds to automatically close. An association
4235 * being idle is defined an association that has NOT sent or received
4236 * user data. The special value of '0' indicates that no automatic
4237 * close of any associations should be performed. The option expects an
4238 * integer defining the number of seconds of idle time before an
4239 * association is closed.
4240 */
4241 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4242 {
4243 /* Applicable to UDP-style socket only */
4244 if (sctp_style(sk, TCP))
4245 return -EOPNOTSUPP;
4246 if (len < sizeof(int))
4247 return -EINVAL;
4248 len = sizeof(int);
4249 if (put_user(len, optlen))
4250 return -EFAULT;
4251 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4252 return -EFAULT;
4253 return 0;
4254 }
4255
4256 /* Helper routine to branch off an association to a new socket. */
4257 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4258 {
4259 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4260 struct socket *sock;
4261 struct sctp_af *af;
4262 int err = 0;
4263
4264 if (!asoc)
4265 return -EINVAL;
4266
4267 /* An association cannot be branched off from an already peeled-off
4268 * socket, nor is this supported for tcp style sockets.
4269 */
4270 if (!sctp_style(sk, UDP))
4271 return -EINVAL;
4272
4273 /* Create a new socket. */
4274 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4275 if (err < 0)
4276 return err;
4277
4278 sctp_copy_sock(sock->sk, sk, asoc);
4279
4280 /* Make peeled-off sockets more like 1-1 accepted sockets.
4281 * Set the daddr and initialize id to something more random
4282 */
4283 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4284 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4285
4286 /* Populate the fields of the newsk from the oldsk and migrate the
4287 * asoc to the newsk.
4288 */
4289 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4290
4291 *sockp = sock;
4292
4293 return err;
4294 }
4295 EXPORT_SYMBOL(sctp_do_peeloff);
4296
4297 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4298 {
4299 sctp_peeloff_arg_t peeloff;
4300 struct socket *newsock;
4301 struct file *newfile;
4302 int retval = 0;
4303
4304 if (len < sizeof(sctp_peeloff_arg_t))
4305 return -EINVAL;
4306 len = sizeof(sctp_peeloff_arg_t);
4307 if (copy_from_user(&peeloff, optval, len))
4308 return -EFAULT;
4309
4310 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4311 if (retval < 0)
4312 goto out;
4313
4314 /* Map the socket to an unused fd that can be returned to the user. */
4315 retval = get_unused_fd();
4316 if (retval < 0) {
4317 sock_release(newsock);
4318 goto out;
4319 }
4320
4321 newfile = sock_alloc_file(newsock, 0, NULL);
4322 if (unlikely(IS_ERR(newfile))) {
4323 put_unused_fd(retval);
4324 sock_release(newsock);
4325 return PTR_ERR(newfile);
4326 }
4327
4328 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4329 __func__, sk, newsock->sk, retval);
4330
4331 /* Return the fd mapped to the new socket. */
4332 if (put_user(len, optlen)) {
4333 fput(newfile);
4334 put_unused_fd(retval);
4335 return -EFAULT;
4336 }
4337 peeloff.sd = retval;
4338 if (copy_to_user(optval, &peeloff, len)) {
4339 fput(newfile);
4340 put_unused_fd(retval);
4341 return -EFAULT;
4342 }
4343 fd_install(retval, newfile);
4344 out:
4345 return retval;
4346 }
4347
4348 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4349 *
4350 * Applications can enable or disable heartbeats for any peer address of
4351 * an association, modify an address's heartbeat interval, force a
4352 * heartbeat to be sent immediately, and adjust the address's maximum
4353 * number of retransmissions sent before an address is considered
4354 * unreachable. The following structure is used to access and modify an
4355 * address's parameters:
4356 *
4357 * struct sctp_paddrparams {
4358 * sctp_assoc_t spp_assoc_id;
4359 * struct sockaddr_storage spp_address;
4360 * uint32_t spp_hbinterval;
4361 * uint16_t spp_pathmaxrxt;
4362 * uint32_t spp_pathmtu;
4363 * uint32_t spp_sackdelay;
4364 * uint32_t spp_flags;
4365 * };
4366 *
4367 * spp_assoc_id - (one-to-many style socket) This is filled in the
4368 * application, and identifies the association for
4369 * this query.
4370 * spp_address - This specifies which address is of interest.
4371 * spp_hbinterval - This contains the value of the heartbeat interval,
4372 * in milliseconds. If a value of zero
4373 * is present in this field then no changes are to
4374 * be made to this parameter.
4375 * spp_pathmaxrxt - This contains the maximum number of
4376 * retransmissions before this address shall be
4377 * considered unreachable. If a value of zero
4378 * is present in this field then no changes are to
4379 * be made to this parameter.
4380 * spp_pathmtu - When Path MTU discovery is disabled the value
4381 * specified here will be the "fixed" path mtu.
4382 * Note that if the spp_address field is empty
4383 * then all associations on this address will
4384 * have this fixed path mtu set upon them.
4385 *
4386 * spp_sackdelay - When delayed sack is enabled, this value specifies
4387 * the number of milliseconds that sacks will be delayed
4388 * for. This value will apply to all addresses of an
4389 * association if the spp_address field is empty. Note
4390 * also, that if delayed sack is enabled and this
4391 * value is set to 0, no change is made to the last
4392 * recorded delayed sack timer value.
4393 *
4394 * spp_flags - These flags are used to control various features
4395 * on an association. The flag field may contain
4396 * zero or more of the following options.
4397 *
4398 * SPP_HB_ENABLE - Enable heartbeats on the
4399 * specified address. Note that if the address
4400 * field is empty all addresses for the association
4401 * have heartbeats enabled upon them.
4402 *
4403 * SPP_HB_DISABLE - Disable heartbeats on the
4404 * speicifed address. Note that if the address
4405 * field is empty all addresses for the association
4406 * will have their heartbeats disabled. Note also
4407 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4408 * mutually exclusive, only one of these two should
4409 * be specified. Enabling both fields will have
4410 * undetermined results.
4411 *
4412 * SPP_HB_DEMAND - Request a user initiated heartbeat
4413 * to be made immediately.
4414 *
4415 * SPP_PMTUD_ENABLE - This field will enable PMTU
4416 * discovery upon the specified address. Note that
4417 * if the address feild is empty then all addresses
4418 * on the association are effected.
4419 *
4420 * SPP_PMTUD_DISABLE - This field will disable PMTU
4421 * discovery upon the specified address. Note that
4422 * if the address feild is empty then all addresses
4423 * on the association are effected. Not also that
4424 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4425 * exclusive. Enabling both will have undetermined
4426 * results.
4427 *
4428 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4429 * on delayed sack. The time specified in spp_sackdelay
4430 * is used to specify the sack delay for this address. Note
4431 * that if spp_address is empty then all addresses will
4432 * enable delayed sack and take on the sack delay
4433 * value specified in spp_sackdelay.
4434 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4435 * off delayed sack. If the spp_address field is blank then
4436 * delayed sack is disabled for the entire association. Note
4437 * also that this field is mutually exclusive to
4438 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4439 * results.
4440 */
4441 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4442 char __user *optval, int __user *optlen)
4443 {
4444 struct sctp_paddrparams params;
4445 struct sctp_transport *trans = NULL;
4446 struct sctp_association *asoc = NULL;
4447 struct sctp_sock *sp = sctp_sk(sk);
4448
4449 if (len < sizeof(struct sctp_paddrparams))
4450 return -EINVAL;
4451 len = sizeof(struct sctp_paddrparams);
4452 if (copy_from_user(&params, optval, len))
4453 return -EFAULT;
4454
4455 /* If an address other than INADDR_ANY is specified, and
4456 * no transport is found, then the request is invalid.
4457 */
4458 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4459 trans = sctp_addr_id2transport(sk, &params.spp_address,
4460 params.spp_assoc_id);
4461 if (!trans) {
4462 SCTP_DEBUG_PRINTK("Failed no transport\n");
4463 return -EINVAL;
4464 }
4465 }
4466
4467 /* Get association, if assoc_id != 0 and the socket is a one
4468 * to many style socket, and an association was not found, then
4469 * the id was invalid.
4470 */
4471 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4472 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4473 SCTP_DEBUG_PRINTK("Failed no association\n");
4474 return -EINVAL;
4475 }
4476
4477 if (trans) {
4478 /* Fetch transport values. */
4479 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4480 params.spp_pathmtu = trans->pathmtu;
4481 params.spp_pathmaxrxt = trans->pathmaxrxt;
4482 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4483
4484 /*draft-11 doesn't say what to return in spp_flags*/
4485 params.spp_flags = trans->param_flags;
4486 } else if (asoc) {
4487 /* Fetch association values. */
4488 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4489 params.spp_pathmtu = asoc->pathmtu;
4490 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4491 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4492
4493 /*draft-11 doesn't say what to return in spp_flags*/
4494 params.spp_flags = asoc->param_flags;
4495 } else {
4496 /* Fetch socket values. */
4497 params.spp_hbinterval = sp->hbinterval;
4498 params.spp_pathmtu = sp->pathmtu;
4499 params.spp_sackdelay = sp->sackdelay;
4500 params.spp_pathmaxrxt = sp->pathmaxrxt;
4501
4502 /*draft-11 doesn't say what to return in spp_flags*/
4503 params.spp_flags = sp->param_flags;
4504 }
4505
4506 if (copy_to_user(optval, &params, len))
4507 return -EFAULT;
4508
4509 if (put_user(len, optlen))
4510 return -EFAULT;
4511
4512 return 0;
4513 }
4514
4515 /*
4516 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4517 *
4518 * This option will effect the way delayed acks are performed. This
4519 * option allows you to get or set the delayed ack time, in
4520 * milliseconds. It also allows changing the delayed ack frequency.
4521 * Changing the frequency to 1 disables the delayed sack algorithm. If
4522 * the assoc_id is 0, then this sets or gets the endpoints default
4523 * values. If the assoc_id field is non-zero, then the set or get
4524 * effects the specified association for the one to many model (the
4525 * assoc_id field is ignored by the one to one model). Note that if
4526 * sack_delay or sack_freq are 0 when setting this option, then the
4527 * current values will remain unchanged.
4528 *
4529 * struct sctp_sack_info {
4530 * sctp_assoc_t sack_assoc_id;
4531 * uint32_t sack_delay;
4532 * uint32_t sack_freq;
4533 * };
4534 *
4535 * sack_assoc_id - This parameter, indicates which association the user
4536 * is performing an action upon. Note that if this field's value is
4537 * zero then the endpoints default value is changed (effecting future
4538 * associations only).
4539 *
4540 * sack_delay - This parameter contains the number of milliseconds that
4541 * the user is requesting the delayed ACK timer be set to. Note that
4542 * this value is defined in the standard to be between 200 and 500
4543 * milliseconds.
4544 *
4545 * sack_freq - This parameter contains the number of packets that must
4546 * be received before a sack is sent without waiting for the delay
4547 * timer to expire. The default value for this is 2, setting this
4548 * value to 1 will disable the delayed sack algorithm.
4549 */
4550 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4551 char __user *optval,
4552 int __user *optlen)
4553 {
4554 struct sctp_sack_info params;
4555 struct sctp_association *asoc = NULL;
4556 struct sctp_sock *sp = sctp_sk(sk);
4557
4558 if (len >= sizeof(struct sctp_sack_info)) {
4559 len = sizeof(struct sctp_sack_info);
4560
4561 if (copy_from_user(&params, optval, len))
4562 return -EFAULT;
4563 } else if (len == sizeof(struct sctp_assoc_value)) {
4564 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4565 pr_warn("Use struct sctp_sack_info instead\n");
4566 if (copy_from_user(&params, optval, len))
4567 return -EFAULT;
4568 } else
4569 return - EINVAL;
4570
4571 /* Get association, if sack_assoc_id != 0 and the socket is a one
4572 * to many style socket, and an association was not found, then
4573 * the id was invalid.
4574 */
4575 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4576 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4577 return -EINVAL;
4578
4579 if (asoc) {
4580 /* Fetch association values. */
4581 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4582 params.sack_delay = jiffies_to_msecs(
4583 asoc->sackdelay);
4584 params.sack_freq = asoc->sackfreq;
4585
4586 } else {
4587 params.sack_delay = 0;
4588 params.sack_freq = 1;
4589 }
4590 } else {
4591 /* Fetch socket values. */
4592 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4593 params.sack_delay = sp->sackdelay;
4594 params.sack_freq = sp->sackfreq;
4595 } else {
4596 params.sack_delay = 0;
4597 params.sack_freq = 1;
4598 }
4599 }
4600
4601 if (copy_to_user(optval, &params, len))
4602 return -EFAULT;
4603
4604 if (put_user(len, optlen))
4605 return -EFAULT;
4606
4607 return 0;
4608 }
4609
4610 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4611 *
4612 * Applications can specify protocol parameters for the default association
4613 * initialization. The option name argument to setsockopt() and getsockopt()
4614 * is SCTP_INITMSG.
4615 *
4616 * Setting initialization parameters is effective only on an unconnected
4617 * socket (for UDP-style sockets only future associations are effected
4618 * by the change). With TCP-style sockets, this option is inherited by
4619 * sockets derived from a listener socket.
4620 */
4621 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4622 {
4623 if (len < sizeof(struct sctp_initmsg))
4624 return -EINVAL;
4625 len = sizeof(struct sctp_initmsg);
4626 if (put_user(len, optlen))
4627 return -EFAULT;
4628 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4629 return -EFAULT;
4630 return 0;
4631 }
4632
4633
4634 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4635 char __user *optval, int __user *optlen)
4636 {
4637 struct sctp_association *asoc;
4638 int cnt = 0;
4639 struct sctp_getaddrs getaddrs;
4640 struct sctp_transport *from;
4641 void __user *to;
4642 union sctp_addr temp;
4643 struct sctp_sock *sp = sctp_sk(sk);
4644 int addrlen;
4645 size_t space_left;
4646 int bytes_copied;
4647
4648 if (len < sizeof(struct sctp_getaddrs))
4649 return -EINVAL;
4650
4651 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4652 return -EFAULT;
4653
4654 /* For UDP-style sockets, id specifies the association to query. */
4655 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4656 if (!asoc)
4657 return -EINVAL;
4658
4659 to = optval + offsetof(struct sctp_getaddrs,addrs);
4660 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4661
4662 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4663 transports) {
4664 memcpy(&temp, &from->ipaddr, sizeof(temp));
4665 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4666 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4667 if (space_left < addrlen)
4668 return -ENOMEM;
4669 if (copy_to_user(to, &temp, addrlen))
4670 return -EFAULT;
4671 to += addrlen;
4672 cnt++;
4673 space_left -= addrlen;
4674 }
4675
4676 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4677 return -EFAULT;
4678 bytes_copied = ((char __user *)to) - optval;
4679 if (put_user(bytes_copied, optlen))
4680 return -EFAULT;
4681
4682 return 0;
4683 }
4684
4685 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4686 size_t space_left, int *bytes_copied)
4687 {
4688 struct sctp_sockaddr_entry *addr;
4689 union sctp_addr temp;
4690 int cnt = 0;
4691 int addrlen;
4692 struct net *net = sock_net(sk);
4693
4694 rcu_read_lock();
4695 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4696 if (!addr->valid)
4697 continue;
4698
4699 if ((PF_INET == sk->sk_family) &&
4700 (AF_INET6 == addr->a.sa.sa_family))
4701 continue;
4702 if ((PF_INET6 == sk->sk_family) &&
4703 inet_v6_ipv6only(sk) &&
4704 (AF_INET == addr->a.sa.sa_family))
4705 continue;
4706 memcpy(&temp, &addr->a, sizeof(temp));
4707 if (!temp.v4.sin_port)
4708 temp.v4.sin_port = htons(port);
4709
4710 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4711 &temp);
4712 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4713 if (space_left < addrlen) {
4714 cnt = -ENOMEM;
4715 break;
4716 }
4717 memcpy(to, &temp, addrlen);
4718
4719 to += addrlen;
4720 cnt ++;
4721 space_left -= addrlen;
4722 *bytes_copied += addrlen;
4723 }
4724 rcu_read_unlock();
4725
4726 return cnt;
4727 }
4728
4729
4730 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4731 char __user *optval, int __user *optlen)
4732 {
4733 struct sctp_bind_addr *bp;
4734 struct sctp_association *asoc;
4735 int cnt = 0;
4736 struct sctp_getaddrs getaddrs;
4737 struct sctp_sockaddr_entry *addr;
4738 void __user *to;
4739 union sctp_addr temp;
4740 struct sctp_sock *sp = sctp_sk(sk);
4741 int addrlen;
4742 int err = 0;
4743 size_t space_left;
4744 int bytes_copied = 0;
4745 void *addrs;
4746 void *buf;
4747
4748 if (len < sizeof(struct sctp_getaddrs))
4749 return -EINVAL;
4750
4751 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4752 return -EFAULT;
4753
4754 /*
4755 * For UDP-style sockets, id specifies the association to query.
4756 * If the id field is set to the value '0' then the locally bound
4757 * addresses are returned without regard to any particular
4758 * association.
4759 */
4760 if (0 == getaddrs.assoc_id) {
4761 bp = &sctp_sk(sk)->ep->base.bind_addr;
4762 } else {
4763 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4764 if (!asoc)
4765 return -EINVAL;
4766 bp = &asoc->base.bind_addr;
4767 }
4768
4769 to = optval + offsetof(struct sctp_getaddrs,addrs);
4770 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4771
4772 addrs = kmalloc(space_left, GFP_KERNEL);
4773 if (!addrs)
4774 return -ENOMEM;
4775
4776 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4777 * addresses from the global local address list.
4778 */
4779 if (sctp_list_single_entry(&bp->address_list)) {
4780 addr = list_entry(bp->address_list.next,
4781 struct sctp_sockaddr_entry, list);
4782 if (sctp_is_any(sk, &addr->a)) {
4783 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4784 space_left, &bytes_copied);
4785 if (cnt < 0) {
4786 err = cnt;
4787 goto out;
4788 }
4789 goto copy_getaddrs;
4790 }
4791 }
4792
4793 buf = addrs;
4794 /* Protection on the bound address list is not needed since
4795 * in the socket option context we hold a socket lock and
4796 * thus the bound address list can't change.
4797 */
4798 list_for_each_entry(addr, &bp->address_list, list) {
4799 memcpy(&temp, &addr->a, sizeof(temp));
4800 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4801 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4802 if (space_left < addrlen) {
4803 err = -ENOMEM; /*fixme: right error?*/
4804 goto out;
4805 }
4806 memcpy(buf, &temp, addrlen);
4807 buf += addrlen;
4808 bytes_copied += addrlen;
4809 cnt ++;
4810 space_left -= addrlen;
4811 }
4812
4813 copy_getaddrs:
4814 if (copy_to_user(to, addrs, bytes_copied)) {
4815 err = -EFAULT;
4816 goto out;
4817 }
4818 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4819 err = -EFAULT;
4820 goto out;
4821 }
4822 if (put_user(bytes_copied, optlen))
4823 err = -EFAULT;
4824 out:
4825 kfree(addrs);
4826 return err;
4827 }
4828
4829 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4830 *
4831 * Requests that the local SCTP stack use the enclosed peer address as
4832 * the association primary. The enclosed address must be one of the
4833 * association peer's addresses.
4834 */
4835 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4836 char __user *optval, int __user *optlen)
4837 {
4838 struct sctp_prim prim;
4839 struct sctp_association *asoc;
4840 struct sctp_sock *sp = sctp_sk(sk);
4841
4842 if (len < sizeof(struct sctp_prim))
4843 return -EINVAL;
4844
4845 len = sizeof(struct sctp_prim);
4846
4847 if (copy_from_user(&prim, optval, len))
4848 return -EFAULT;
4849
4850 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4851 if (!asoc)
4852 return -EINVAL;
4853
4854 if (!asoc->peer.primary_path)
4855 return -ENOTCONN;
4856
4857 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4858 asoc->peer.primary_path->af_specific->sockaddr_len);
4859
4860 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4861 (union sctp_addr *)&prim.ssp_addr);
4862
4863 if (put_user(len, optlen))
4864 return -EFAULT;
4865 if (copy_to_user(optval, &prim, len))
4866 return -EFAULT;
4867
4868 return 0;
4869 }
4870
4871 /*
4872 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4873 *
4874 * Requests that the local endpoint set the specified Adaptation Layer
4875 * Indication parameter for all future INIT and INIT-ACK exchanges.
4876 */
4877 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4878 char __user *optval, int __user *optlen)
4879 {
4880 struct sctp_setadaptation adaptation;
4881
4882 if (len < sizeof(struct sctp_setadaptation))
4883 return -EINVAL;
4884
4885 len = sizeof(struct sctp_setadaptation);
4886
4887 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4888
4889 if (put_user(len, optlen))
4890 return -EFAULT;
4891 if (copy_to_user(optval, &adaptation, len))
4892 return -EFAULT;
4893
4894 return 0;
4895 }
4896
4897 /*
4898 *
4899 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4900 *
4901 * Applications that wish to use the sendto() system call may wish to
4902 * specify a default set of parameters that would normally be supplied
4903 * through the inclusion of ancillary data. This socket option allows
4904 * such an application to set the default sctp_sndrcvinfo structure.
4905
4906
4907 * The application that wishes to use this socket option simply passes
4908 * in to this call the sctp_sndrcvinfo structure defined in Section
4909 * 5.2.2) The input parameters accepted by this call include
4910 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4911 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4912 * to this call if the caller is using the UDP model.
4913 *
4914 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4915 */
4916 static int sctp_getsockopt_default_send_param(struct sock *sk,
4917 int len, char __user *optval,
4918 int __user *optlen)
4919 {
4920 struct sctp_sndrcvinfo info;
4921 struct sctp_association *asoc;
4922 struct sctp_sock *sp = sctp_sk(sk);
4923
4924 if (len < sizeof(struct sctp_sndrcvinfo))
4925 return -EINVAL;
4926
4927 len = sizeof(struct sctp_sndrcvinfo);
4928
4929 if (copy_from_user(&info, optval, len))
4930 return -EFAULT;
4931
4932 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4933 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4934 return -EINVAL;
4935
4936 if (asoc) {
4937 info.sinfo_stream = asoc->default_stream;
4938 info.sinfo_flags = asoc->default_flags;
4939 info.sinfo_ppid = asoc->default_ppid;
4940 info.sinfo_context = asoc->default_context;
4941 info.sinfo_timetolive = asoc->default_timetolive;
4942 } else {
4943 info.sinfo_stream = sp->default_stream;
4944 info.sinfo_flags = sp->default_flags;
4945 info.sinfo_ppid = sp->default_ppid;
4946 info.sinfo_context = sp->default_context;
4947 info.sinfo_timetolive = sp->default_timetolive;
4948 }
4949
4950 if (put_user(len, optlen))
4951 return -EFAULT;
4952 if (copy_to_user(optval, &info, len))
4953 return -EFAULT;
4954
4955 return 0;
4956 }
4957
4958 /*
4959 *
4960 * 7.1.5 SCTP_NODELAY
4961 *
4962 * Turn on/off any Nagle-like algorithm. This means that packets are
4963 * generally sent as soon as possible and no unnecessary delays are
4964 * introduced, at the cost of more packets in the network. Expects an
4965 * integer boolean flag.
4966 */
4967
4968 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4969 char __user *optval, int __user *optlen)
4970 {
4971 int val;
4972
4973 if (len < sizeof(int))
4974 return -EINVAL;
4975
4976 len = sizeof(int);
4977 val = (sctp_sk(sk)->nodelay == 1);
4978 if (put_user(len, optlen))
4979 return -EFAULT;
4980 if (copy_to_user(optval, &val, len))
4981 return -EFAULT;
4982 return 0;
4983 }
4984
4985 /*
4986 *
4987 * 7.1.1 SCTP_RTOINFO
4988 *
4989 * The protocol parameters used to initialize and bound retransmission
4990 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4991 * and modify these parameters.
4992 * All parameters are time values, in milliseconds. A value of 0, when
4993 * modifying the parameters, indicates that the current value should not
4994 * be changed.
4995 *
4996 */
4997 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4998 char __user *optval,
4999 int __user *optlen) {
5000 struct sctp_rtoinfo rtoinfo;
5001 struct sctp_association *asoc;
5002
5003 if (len < sizeof (struct sctp_rtoinfo))
5004 return -EINVAL;
5005
5006 len = sizeof(struct sctp_rtoinfo);
5007
5008 if (copy_from_user(&rtoinfo, optval, len))
5009 return -EFAULT;
5010
5011 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5012
5013 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5014 return -EINVAL;
5015
5016 /* Values corresponding to the specific association. */
5017 if (asoc) {
5018 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5019 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5020 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5021 } else {
5022 /* Values corresponding to the endpoint. */
5023 struct sctp_sock *sp = sctp_sk(sk);
5024
5025 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5026 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5027 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5028 }
5029
5030 if (put_user(len, optlen))
5031 return -EFAULT;
5032
5033 if (copy_to_user(optval, &rtoinfo, len))
5034 return -EFAULT;
5035
5036 return 0;
5037 }
5038
5039 /*
5040 *
5041 * 7.1.2 SCTP_ASSOCINFO
5042 *
5043 * This option is used to tune the maximum retransmission attempts
5044 * of the association.
5045 * Returns an error if the new association retransmission value is
5046 * greater than the sum of the retransmission value of the peer.
5047 * See [SCTP] for more information.
5048 *
5049 */
5050 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5051 char __user *optval,
5052 int __user *optlen)
5053 {
5054
5055 struct sctp_assocparams assocparams;
5056 struct sctp_association *asoc;
5057 struct list_head *pos;
5058 int cnt = 0;
5059
5060 if (len < sizeof (struct sctp_assocparams))
5061 return -EINVAL;
5062
5063 len = sizeof(struct sctp_assocparams);
5064
5065 if (copy_from_user(&assocparams, optval, len))
5066 return -EFAULT;
5067
5068 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5069
5070 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5071 return -EINVAL;
5072
5073 /* Values correspoinding to the specific association */
5074 if (asoc) {
5075 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5076 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5077 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5078 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5079 * 1000) +
5080 (asoc->cookie_life.tv_usec
5081 / 1000);
5082
5083 list_for_each(pos, &asoc->peer.transport_addr_list) {
5084 cnt ++;
5085 }
5086
5087 assocparams.sasoc_number_peer_destinations = cnt;
5088 } else {
5089 /* Values corresponding to the endpoint */
5090 struct sctp_sock *sp = sctp_sk(sk);
5091
5092 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5093 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5094 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5095 assocparams.sasoc_cookie_life =
5096 sp->assocparams.sasoc_cookie_life;
5097 assocparams.sasoc_number_peer_destinations =
5098 sp->assocparams.
5099 sasoc_number_peer_destinations;
5100 }
5101
5102 if (put_user(len, optlen))
5103 return -EFAULT;
5104
5105 if (copy_to_user(optval, &assocparams, len))
5106 return -EFAULT;
5107
5108 return 0;
5109 }
5110
5111 /*
5112 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5113 *
5114 * This socket option is a boolean flag which turns on or off mapped V4
5115 * addresses. If this option is turned on and the socket is type
5116 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5117 * If this option is turned off, then no mapping will be done of V4
5118 * addresses and a user will receive both PF_INET6 and PF_INET type
5119 * addresses on the socket.
5120 */
5121 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5122 char __user *optval, int __user *optlen)
5123 {
5124 int val;
5125 struct sctp_sock *sp = sctp_sk(sk);
5126
5127 if (len < sizeof(int))
5128 return -EINVAL;
5129
5130 len = sizeof(int);
5131 val = sp->v4mapped;
5132 if (put_user(len, optlen))
5133 return -EFAULT;
5134 if (copy_to_user(optval, &val, len))
5135 return -EFAULT;
5136
5137 return 0;
5138 }
5139
5140 /*
5141 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5142 * (chapter and verse is quoted at sctp_setsockopt_context())
5143 */
5144 static int sctp_getsockopt_context(struct sock *sk, int len,
5145 char __user *optval, int __user *optlen)
5146 {
5147 struct sctp_assoc_value params;
5148 struct sctp_sock *sp;
5149 struct sctp_association *asoc;
5150
5151 if (len < sizeof(struct sctp_assoc_value))
5152 return -EINVAL;
5153
5154 len = sizeof(struct sctp_assoc_value);
5155
5156 if (copy_from_user(&params, optval, len))
5157 return -EFAULT;
5158
5159 sp = sctp_sk(sk);
5160
5161 if (params.assoc_id != 0) {
5162 asoc = sctp_id2assoc(sk, params.assoc_id);
5163 if (!asoc)
5164 return -EINVAL;
5165 params.assoc_value = asoc->default_rcv_context;
5166 } else {
5167 params.assoc_value = sp->default_rcv_context;
5168 }
5169
5170 if (put_user(len, optlen))
5171 return -EFAULT;
5172 if (copy_to_user(optval, &params, len))
5173 return -EFAULT;
5174
5175 return 0;
5176 }
5177
5178 /*
5179 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5180 * This option will get or set the maximum size to put in any outgoing
5181 * SCTP DATA chunk. If a message is larger than this size it will be
5182 * fragmented by SCTP into the specified size. Note that the underlying
5183 * SCTP implementation may fragment into smaller sized chunks when the
5184 * PMTU of the underlying association is smaller than the value set by
5185 * the user. The default value for this option is '0' which indicates
5186 * the user is NOT limiting fragmentation and only the PMTU will effect
5187 * SCTP's choice of DATA chunk size. Note also that values set larger
5188 * than the maximum size of an IP datagram will effectively let SCTP
5189 * control fragmentation (i.e. the same as setting this option to 0).
5190 *
5191 * The following structure is used to access and modify this parameter:
5192 *
5193 * struct sctp_assoc_value {
5194 * sctp_assoc_t assoc_id;
5195 * uint32_t assoc_value;
5196 * };
5197 *
5198 * assoc_id: This parameter is ignored for one-to-one style sockets.
5199 * For one-to-many style sockets this parameter indicates which
5200 * association the user is performing an action upon. Note that if
5201 * this field's value is zero then the endpoints default value is
5202 * changed (effecting future associations only).
5203 * assoc_value: This parameter specifies the maximum size in bytes.
5204 */
5205 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5206 char __user *optval, int __user *optlen)
5207 {
5208 struct sctp_assoc_value params;
5209 struct sctp_association *asoc;
5210
5211 if (len == sizeof(int)) {
5212 pr_warn("Use of int in maxseg socket option deprecated\n");
5213 pr_warn("Use struct sctp_assoc_value instead\n");
5214 params.assoc_id = 0;
5215 } else if (len >= sizeof(struct sctp_assoc_value)) {
5216 len = sizeof(struct sctp_assoc_value);
5217 if (copy_from_user(&params, optval, sizeof(params)))
5218 return -EFAULT;
5219 } else
5220 return -EINVAL;
5221
5222 asoc = sctp_id2assoc(sk, params.assoc_id);
5223 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5224 return -EINVAL;
5225
5226 if (asoc)
5227 params.assoc_value = asoc->frag_point;
5228 else
5229 params.assoc_value = sctp_sk(sk)->user_frag;
5230
5231 if (put_user(len, optlen))
5232 return -EFAULT;
5233 if (len == sizeof(int)) {
5234 if (copy_to_user(optval, &params.assoc_value, len))
5235 return -EFAULT;
5236 } else {
5237 if (copy_to_user(optval, &params, len))
5238 return -EFAULT;
5239 }
5240
5241 return 0;
5242 }
5243
5244 /*
5245 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5246 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5247 */
5248 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5249 char __user *optval, int __user *optlen)
5250 {
5251 int val;
5252
5253 if (len < sizeof(int))
5254 return -EINVAL;
5255
5256 len = sizeof(int);
5257
5258 val = sctp_sk(sk)->frag_interleave;
5259 if (put_user(len, optlen))
5260 return -EFAULT;
5261 if (copy_to_user(optval, &val, len))
5262 return -EFAULT;
5263
5264 return 0;
5265 }
5266
5267 /*
5268 * 7.1.25. Set or Get the sctp partial delivery point
5269 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5270 */
5271 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5272 char __user *optval,
5273 int __user *optlen)
5274 {
5275 u32 val;
5276
5277 if (len < sizeof(u32))
5278 return -EINVAL;
5279
5280 len = sizeof(u32);
5281
5282 val = sctp_sk(sk)->pd_point;
5283 if (put_user(len, optlen))
5284 return -EFAULT;
5285 if (copy_to_user(optval, &val, len))
5286 return -EFAULT;
5287
5288 return 0;
5289 }
5290
5291 /*
5292 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5293 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5294 */
5295 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5296 char __user *optval,
5297 int __user *optlen)
5298 {
5299 struct sctp_assoc_value params;
5300 struct sctp_sock *sp;
5301 struct sctp_association *asoc;
5302
5303 if (len == sizeof(int)) {
5304 pr_warn("Use of int in max_burst socket option deprecated\n");
5305 pr_warn("Use struct sctp_assoc_value instead\n");
5306 params.assoc_id = 0;
5307 } else if (len >= sizeof(struct sctp_assoc_value)) {
5308 len = sizeof(struct sctp_assoc_value);
5309 if (copy_from_user(&params, optval, len))
5310 return -EFAULT;
5311 } else
5312 return -EINVAL;
5313
5314 sp = sctp_sk(sk);
5315
5316 if (params.assoc_id != 0) {
5317 asoc = sctp_id2assoc(sk, params.assoc_id);
5318 if (!asoc)
5319 return -EINVAL;
5320 params.assoc_value = asoc->max_burst;
5321 } else
5322 params.assoc_value = sp->max_burst;
5323
5324 if (len == sizeof(int)) {
5325 if (copy_to_user(optval, &params.assoc_value, len))
5326 return -EFAULT;
5327 } else {
5328 if (copy_to_user(optval, &params, len))
5329 return -EFAULT;
5330 }
5331
5332 return 0;
5333
5334 }
5335
5336 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5337 char __user *optval, int __user *optlen)
5338 {
5339 struct net *net = sock_net(sk);
5340 struct sctp_hmacalgo __user *p = (void __user *)optval;
5341 struct sctp_hmac_algo_param *hmacs;
5342 __u16 data_len = 0;
5343 u32 num_idents;
5344
5345 if (!net->sctp.auth_enable)
5346 return -EACCES;
5347
5348 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5349 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5350
5351 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5352 return -EINVAL;
5353
5354 len = sizeof(struct sctp_hmacalgo) + data_len;
5355 num_idents = data_len / sizeof(u16);
5356
5357 if (put_user(len, optlen))
5358 return -EFAULT;
5359 if (put_user(num_idents, &p->shmac_num_idents))
5360 return -EFAULT;
5361 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5362 return -EFAULT;
5363 return 0;
5364 }
5365
5366 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5367 char __user *optval, int __user *optlen)
5368 {
5369 struct net *net = sock_net(sk);
5370 struct sctp_authkeyid val;
5371 struct sctp_association *asoc;
5372
5373 if (!net->sctp.auth_enable)
5374 return -EACCES;
5375
5376 if (len < sizeof(struct sctp_authkeyid))
5377 return -EINVAL;
5378 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5379 return -EFAULT;
5380
5381 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5382 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5383 return -EINVAL;
5384
5385 if (asoc)
5386 val.scact_keynumber = asoc->active_key_id;
5387 else
5388 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5389
5390 len = sizeof(struct sctp_authkeyid);
5391 if (put_user(len, optlen))
5392 return -EFAULT;
5393 if (copy_to_user(optval, &val, len))
5394 return -EFAULT;
5395
5396 return 0;
5397 }
5398
5399 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5400 char __user *optval, int __user *optlen)
5401 {
5402 struct net *net = sock_net(sk);
5403 struct sctp_authchunks __user *p = (void __user *)optval;
5404 struct sctp_authchunks val;
5405 struct sctp_association *asoc;
5406 struct sctp_chunks_param *ch;
5407 u32 num_chunks = 0;
5408 char __user *to;
5409
5410 if (!net->sctp.auth_enable)
5411 return -EACCES;
5412
5413 if (len < sizeof(struct sctp_authchunks))
5414 return -EINVAL;
5415
5416 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5417 return -EFAULT;
5418
5419 to = p->gauth_chunks;
5420 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5421 if (!asoc)
5422 return -EINVAL;
5423
5424 ch = asoc->peer.peer_chunks;
5425 if (!ch)
5426 goto num;
5427
5428 /* See if the user provided enough room for all the data */
5429 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5430 if (len < num_chunks)
5431 return -EINVAL;
5432
5433 if (copy_to_user(to, ch->chunks, num_chunks))
5434 return -EFAULT;
5435 num:
5436 len = sizeof(struct sctp_authchunks) + num_chunks;
5437 if (put_user(len, optlen)) return -EFAULT;
5438 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5439 return -EFAULT;
5440 return 0;
5441 }
5442
5443 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5444 char __user *optval, int __user *optlen)
5445 {
5446 struct net *net = sock_net(sk);
5447 struct sctp_authchunks __user *p = (void __user *)optval;
5448 struct sctp_authchunks val;
5449 struct sctp_association *asoc;
5450 struct sctp_chunks_param *ch;
5451 u32 num_chunks = 0;
5452 char __user *to;
5453
5454 if (!net->sctp.auth_enable)
5455 return -EACCES;
5456
5457 if (len < sizeof(struct sctp_authchunks))
5458 return -EINVAL;
5459
5460 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5461 return -EFAULT;
5462
5463 to = p->gauth_chunks;
5464 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5465 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5466 return -EINVAL;
5467
5468 if (asoc)
5469 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5470 else
5471 ch = sctp_sk(sk)->ep->auth_chunk_list;
5472
5473 if (!ch)
5474 goto num;
5475
5476 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5477 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5478 return -EINVAL;
5479
5480 if (copy_to_user(to, ch->chunks, num_chunks))
5481 return -EFAULT;
5482 num:
5483 len = sizeof(struct sctp_authchunks) + num_chunks;
5484 if (put_user(len, optlen))
5485 return -EFAULT;
5486 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5487 return -EFAULT;
5488
5489 return 0;
5490 }
5491
5492 /*
5493 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5494 * This option gets the current number of associations that are attached
5495 * to a one-to-many style socket. The option value is an uint32_t.
5496 */
5497 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5498 char __user *optval, int __user *optlen)
5499 {
5500 struct sctp_sock *sp = sctp_sk(sk);
5501 struct sctp_association *asoc;
5502 u32 val = 0;
5503
5504 if (sctp_style(sk, TCP))
5505 return -EOPNOTSUPP;
5506
5507 if (len < sizeof(u32))
5508 return -EINVAL;
5509
5510 len = sizeof(u32);
5511
5512 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5513 val++;
5514 }
5515
5516 if (put_user(len, optlen))
5517 return -EFAULT;
5518 if (copy_to_user(optval, &val, len))
5519 return -EFAULT;
5520
5521 return 0;
5522 }
5523
5524 /*
5525 * 8.1.23 SCTP_AUTO_ASCONF
5526 * See the corresponding setsockopt entry as description
5527 */
5528 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5529 char __user *optval, int __user *optlen)
5530 {
5531 int val = 0;
5532
5533 if (len < sizeof(int))
5534 return -EINVAL;
5535
5536 len = sizeof(int);
5537 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5538 val = 1;
5539 if (put_user(len, optlen))
5540 return -EFAULT;
5541 if (copy_to_user(optval, &val, len))
5542 return -EFAULT;
5543 return 0;
5544 }
5545
5546 /*
5547 * 8.2.6. Get the Current Identifiers of Associations
5548 * (SCTP_GET_ASSOC_ID_LIST)
5549 *
5550 * This option gets the current list of SCTP association identifiers of
5551 * the SCTP associations handled by a one-to-many style socket.
5552 */
5553 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5554 char __user *optval, int __user *optlen)
5555 {
5556 struct sctp_sock *sp = sctp_sk(sk);
5557 struct sctp_association *asoc;
5558 struct sctp_assoc_ids *ids;
5559 u32 num = 0;
5560
5561 if (sctp_style(sk, TCP))
5562 return -EOPNOTSUPP;
5563
5564 if (len < sizeof(struct sctp_assoc_ids))
5565 return -EINVAL;
5566
5567 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5568 num++;
5569 }
5570
5571 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5572 return -EINVAL;
5573
5574 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5575
5576 ids = kmalloc(len, GFP_KERNEL);
5577 if (unlikely(!ids))
5578 return -ENOMEM;
5579
5580 ids->gaids_number_of_ids = num;
5581 num = 0;
5582 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5583 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5584 }
5585
5586 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5587 kfree(ids);
5588 return -EFAULT;
5589 }
5590
5591 kfree(ids);
5592 return 0;
5593 }
5594
5595 /*
5596 * SCTP_PEER_ADDR_THLDS
5597 *
5598 * This option allows us to fetch the partially failed threshold for one or all
5599 * transports in an association. See Section 6.1 of:
5600 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5601 */
5602 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5603 char __user *optval,
5604 int len,
5605 int __user *optlen)
5606 {
5607 struct sctp_paddrthlds val;
5608 struct sctp_transport *trans;
5609 struct sctp_association *asoc;
5610
5611 if (len < sizeof(struct sctp_paddrthlds))
5612 return -EINVAL;
5613 len = sizeof(struct sctp_paddrthlds);
5614 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5615 return -EFAULT;
5616
5617 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5618 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5619 if (!asoc)
5620 return -ENOENT;
5621
5622 val.spt_pathpfthld = asoc->pf_retrans;
5623 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5624 } else {
5625 trans = sctp_addr_id2transport(sk, &val.spt_address,
5626 val.spt_assoc_id);
5627 if (!trans)
5628 return -ENOENT;
5629
5630 val.spt_pathmaxrxt = trans->pathmaxrxt;
5631 val.spt_pathpfthld = trans->pf_retrans;
5632 }
5633
5634 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5635 return -EFAULT;
5636
5637 return 0;
5638 }
5639
5640 /*
5641 * SCTP_GET_ASSOC_STATS
5642 *
5643 * This option retrieves local per endpoint statistics. It is modeled
5644 * after OpenSolaris' implementation
5645 */
5646 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5647 char __user *optval,
5648 int __user *optlen)
5649 {
5650 struct sctp_assoc_stats sas;
5651 struct sctp_association *asoc = NULL;
5652
5653 /* User must provide at least the assoc id */
5654 if (len < sizeof(sctp_assoc_t))
5655 return -EINVAL;
5656
5657 /* Allow the struct to grow and fill in as much as possible */
5658 len = min_t(size_t, len, sizeof(sas));
5659
5660 if (copy_from_user(&sas, optval, len))
5661 return -EFAULT;
5662
5663 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5664 if (!asoc)
5665 return -EINVAL;
5666
5667 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5668 sas.sas_gapcnt = asoc->stats.gapcnt;
5669 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5670 sas.sas_osacks = asoc->stats.osacks;
5671 sas.sas_isacks = asoc->stats.isacks;
5672 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5673 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5674 sas.sas_oodchunks = asoc->stats.oodchunks;
5675 sas.sas_iodchunks = asoc->stats.iodchunks;
5676 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5677 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5678 sas.sas_idupchunks = asoc->stats.idupchunks;
5679 sas.sas_opackets = asoc->stats.opackets;
5680 sas.sas_ipackets = asoc->stats.ipackets;
5681
5682 /* New high max rto observed, will return 0 if not a single
5683 * RTO update took place. obs_rto_ipaddr will be bogus
5684 * in such a case
5685 */
5686 sas.sas_maxrto = asoc->stats.max_obs_rto;
5687 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5688 sizeof(struct sockaddr_storage));
5689
5690 /* Mark beginning of a new observation period */
5691 asoc->stats.max_obs_rto = asoc->rto_min;
5692
5693 if (put_user(len, optlen))
5694 return -EFAULT;
5695
5696 SCTP_DEBUG_PRINTK("sctp_getsockopt_assoc_stat(%d): %d\n",
5697 len, sas.sas_assoc_id);
5698
5699 if (copy_to_user(optval, &sas, len))
5700 return -EFAULT;
5701
5702 return 0;
5703 }
5704
5705 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5706 char __user *optval, int __user *optlen)
5707 {
5708 int retval = 0;
5709 int len;
5710
5711 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5712 sk, optname);
5713
5714 /* I can hardly begin to describe how wrong this is. This is
5715 * so broken as to be worse than useless. The API draft
5716 * REALLY is NOT helpful here... I am not convinced that the
5717 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5718 * are at all well-founded.
5719 */
5720 if (level != SOL_SCTP) {
5721 struct sctp_af *af = sctp_sk(sk)->pf->af;
5722
5723 retval = af->getsockopt(sk, level, optname, optval, optlen);
5724 return retval;
5725 }
5726
5727 if (get_user(len, optlen))
5728 return -EFAULT;
5729
5730 sctp_lock_sock(sk);
5731
5732 switch (optname) {
5733 case SCTP_STATUS:
5734 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5735 break;
5736 case SCTP_DISABLE_FRAGMENTS:
5737 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5738 optlen);
5739 break;
5740 case SCTP_EVENTS:
5741 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5742 break;
5743 case SCTP_AUTOCLOSE:
5744 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5745 break;
5746 case SCTP_SOCKOPT_PEELOFF:
5747 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5748 break;
5749 case SCTP_PEER_ADDR_PARAMS:
5750 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5751 optlen);
5752 break;
5753 case SCTP_DELAYED_SACK:
5754 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5755 optlen);
5756 break;
5757 case SCTP_INITMSG:
5758 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5759 break;
5760 case SCTP_GET_PEER_ADDRS:
5761 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5762 optlen);
5763 break;
5764 case SCTP_GET_LOCAL_ADDRS:
5765 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5766 optlen);
5767 break;
5768 case SCTP_SOCKOPT_CONNECTX3:
5769 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5770 break;
5771 case SCTP_DEFAULT_SEND_PARAM:
5772 retval = sctp_getsockopt_default_send_param(sk, len,
5773 optval, optlen);
5774 break;
5775 case SCTP_PRIMARY_ADDR:
5776 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5777 break;
5778 case SCTP_NODELAY:
5779 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5780 break;
5781 case SCTP_RTOINFO:
5782 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5783 break;
5784 case SCTP_ASSOCINFO:
5785 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5786 break;
5787 case SCTP_I_WANT_MAPPED_V4_ADDR:
5788 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5789 break;
5790 case SCTP_MAXSEG:
5791 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5792 break;
5793 case SCTP_GET_PEER_ADDR_INFO:
5794 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5795 optlen);
5796 break;
5797 case SCTP_ADAPTATION_LAYER:
5798 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5799 optlen);
5800 break;
5801 case SCTP_CONTEXT:
5802 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5803 break;
5804 case SCTP_FRAGMENT_INTERLEAVE:
5805 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5806 optlen);
5807 break;
5808 case SCTP_PARTIAL_DELIVERY_POINT:
5809 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5810 optlen);
5811 break;
5812 case SCTP_MAX_BURST:
5813 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5814 break;
5815 case SCTP_AUTH_KEY:
5816 case SCTP_AUTH_CHUNK:
5817 case SCTP_AUTH_DELETE_KEY:
5818 retval = -EOPNOTSUPP;
5819 break;
5820 case SCTP_HMAC_IDENT:
5821 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5822 break;
5823 case SCTP_AUTH_ACTIVE_KEY:
5824 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5825 break;
5826 case SCTP_PEER_AUTH_CHUNKS:
5827 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5828 optlen);
5829 break;
5830 case SCTP_LOCAL_AUTH_CHUNKS:
5831 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5832 optlen);
5833 break;
5834 case SCTP_GET_ASSOC_NUMBER:
5835 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5836 break;
5837 case SCTP_GET_ASSOC_ID_LIST:
5838 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5839 break;
5840 case SCTP_AUTO_ASCONF:
5841 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5842 break;
5843 case SCTP_PEER_ADDR_THLDS:
5844 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5845 break;
5846 case SCTP_GET_ASSOC_STATS:
5847 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5848 break;
5849 default:
5850 retval = -ENOPROTOOPT;
5851 break;
5852 }
5853
5854 sctp_release_sock(sk);
5855 return retval;
5856 }
5857
5858 static void sctp_hash(struct sock *sk)
5859 {
5860 /* STUB */
5861 }
5862
5863 static void sctp_unhash(struct sock *sk)
5864 {
5865 /* STUB */
5866 }
5867
5868 /* Check if port is acceptable. Possibly find first available port.
5869 *
5870 * The port hash table (contained in the 'global' SCTP protocol storage
5871 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5872 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5873 * list (the list number is the port number hashed out, so as you
5874 * would expect from a hash function, all the ports in a given list have
5875 * such a number that hashes out to the same list number; you were
5876 * expecting that, right?); so each list has a set of ports, with a
5877 * link to the socket (struct sock) that uses it, the port number and
5878 * a fastreuse flag (FIXME: NPI ipg).
5879 */
5880 static struct sctp_bind_bucket *sctp_bucket_create(
5881 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5882
5883 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5884 {
5885 struct sctp_bind_hashbucket *head; /* hash list */
5886 struct sctp_bind_bucket *pp;
5887 unsigned short snum;
5888 int ret;
5889
5890 snum = ntohs(addr->v4.sin_port);
5891
5892 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5893 sctp_local_bh_disable();
5894
5895 if (snum == 0) {
5896 /* Search for an available port. */
5897 int low, high, remaining, index;
5898 unsigned int rover;
5899
5900 inet_get_local_port_range(&low, &high);
5901 remaining = (high - low) + 1;
5902 rover = net_random() % remaining + low;
5903
5904 do {
5905 rover++;
5906 if ((rover < low) || (rover > high))
5907 rover = low;
5908 if (inet_is_reserved_local_port(rover))
5909 continue;
5910 index = sctp_phashfn(sock_net(sk), rover);
5911 head = &sctp_port_hashtable[index];
5912 sctp_spin_lock(&head->lock);
5913 sctp_for_each_hentry(pp, &head->chain)
5914 if ((pp->port == rover) &&
5915 net_eq(sock_net(sk), pp->net))
5916 goto next;
5917 break;
5918 next:
5919 sctp_spin_unlock(&head->lock);
5920 } while (--remaining > 0);
5921
5922 /* Exhausted local port range during search? */
5923 ret = 1;
5924 if (remaining <= 0)
5925 goto fail;
5926
5927 /* OK, here is the one we will use. HEAD (the port
5928 * hash table list entry) is non-NULL and we hold it's
5929 * mutex.
5930 */
5931 snum = rover;
5932 } else {
5933 /* We are given an specific port number; we verify
5934 * that it is not being used. If it is used, we will
5935 * exahust the search in the hash list corresponding
5936 * to the port number (snum) - we detect that with the
5937 * port iterator, pp being NULL.
5938 */
5939 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5940 sctp_spin_lock(&head->lock);
5941 sctp_for_each_hentry(pp, &head->chain) {
5942 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5943 goto pp_found;
5944 }
5945 }
5946 pp = NULL;
5947 goto pp_not_found;
5948 pp_found:
5949 if (!hlist_empty(&pp->owner)) {
5950 /* We had a port hash table hit - there is an
5951 * available port (pp != NULL) and it is being
5952 * used by other socket (pp->owner not empty); that other
5953 * socket is going to be sk2.
5954 */
5955 int reuse = sk->sk_reuse;
5956 struct sock *sk2;
5957
5958 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5959 if (pp->fastreuse && sk->sk_reuse &&
5960 sk->sk_state != SCTP_SS_LISTENING)
5961 goto success;
5962
5963 /* Run through the list of sockets bound to the port
5964 * (pp->port) [via the pointers bind_next and
5965 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5966 * we get the endpoint they describe and run through
5967 * the endpoint's list of IP (v4 or v6) addresses,
5968 * comparing each of the addresses with the address of
5969 * the socket sk. If we find a match, then that means
5970 * that this port/socket (sk) combination are already
5971 * in an endpoint.
5972 */
5973 sk_for_each_bound(sk2, &pp->owner) {
5974 struct sctp_endpoint *ep2;
5975 ep2 = sctp_sk(sk2)->ep;
5976
5977 if (sk == sk2 ||
5978 (reuse && sk2->sk_reuse &&
5979 sk2->sk_state != SCTP_SS_LISTENING))
5980 continue;
5981
5982 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5983 sctp_sk(sk2), sctp_sk(sk))) {
5984 ret = (long)sk2;
5985 goto fail_unlock;
5986 }
5987 }
5988 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5989 }
5990 pp_not_found:
5991 /* If there was a hash table miss, create a new port. */
5992 ret = 1;
5993 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5994 goto fail_unlock;
5995
5996 /* In either case (hit or miss), make sure fastreuse is 1 only
5997 * if sk->sk_reuse is too (that is, if the caller requested
5998 * SO_REUSEADDR on this socket -sk-).
5999 */
6000 if (hlist_empty(&pp->owner)) {
6001 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6002 pp->fastreuse = 1;
6003 else
6004 pp->fastreuse = 0;
6005 } else if (pp->fastreuse &&
6006 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6007 pp->fastreuse = 0;
6008
6009 /* We are set, so fill up all the data in the hash table
6010 * entry, tie the socket list information with the rest of the
6011 * sockets FIXME: Blurry, NPI (ipg).
6012 */
6013 success:
6014 if (!sctp_sk(sk)->bind_hash) {
6015 inet_sk(sk)->inet_num = snum;
6016 sk_add_bind_node(sk, &pp->owner);
6017 sctp_sk(sk)->bind_hash = pp;
6018 }
6019 ret = 0;
6020
6021 fail_unlock:
6022 sctp_spin_unlock(&head->lock);
6023
6024 fail:
6025 sctp_local_bh_enable();
6026 return ret;
6027 }
6028
6029 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6030 * port is requested.
6031 */
6032 static int sctp_get_port(struct sock *sk, unsigned short snum)
6033 {
6034 long ret;
6035 union sctp_addr addr;
6036 struct sctp_af *af = sctp_sk(sk)->pf->af;
6037
6038 /* Set up a dummy address struct from the sk. */
6039 af->from_sk(&addr, sk);
6040 addr.v4.sin_port = htons(snum);
6041
6042 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6043 ret = sctp_get_port_local(sk, &addr);
6044
6045 return ret ? 1 : 0;
6046 }
6047
6048 /*
6049 * Move a socket to LISTENING state.
6050 */
6051 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
6052 {
6053 struct sctp_sock *sp = sctp_sk(sk);
6054 struct sctp_endpoint *ep = sp->ep;
6055 struct crypto_hash *tfm = NULL;
6056 char alg[32];
6057
6058 /* Allocate HMAC for generating cookie. */
6059 if (!sp->hmac && sp->sctp_hmac_alg) {
6060 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6061 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6062 if (IS_ERR(tfm)) {
6063 net_info_ratelimited("failed to load transform for %s: %ld\n",
6064 sp->sctp_hmac_alg, PTR_ERR(tfm));
6065 return -ENOSYS;
6066 }
6067 sctp_sk(sk)->hmac = tfm;
6068 }
6069
6070 /*
6071 * If a bind() or sctp_bindx() is not called prior to a listen()
6072 * call that allows new associations to be accepted, the system
6073 * picks an ephemeral port and will choose an address set equivalent
6074 * to binding with a wildcard address.
6075 *
6076 * This is not currently spelled out in the SCTP sockets
6077 * extensions draft, but follows the practice as seen in TCP
6078 * sockets.
6079 *
6080 */
6081 sk->sk_state = SCTP_SS_LISTENING;
6082 if (!ep->base.bind_addr.port) {
6083 if (sctp_autobind(sk))
6084 return -EAGAIN;
6085 } else {
6086 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6087 sk->sk_state = SCTP_SS_CLOSED;
6088 return -EADDRINUSE;
6089 }
6090 }
6091
6092 sk->sk_max_ack_backlog = backlog;
6093 sctp_hash_endpoint(ep);
6094 return 0;
6095 }
6096
6097 /*
6098 * 4.1.3 / 5.1.3 listen()
6099 *
6100 * By default, new associations are not accepted for UDP style sockets.
6101 * An application uses listen() to mark a socket as being able to
6102 * accept new associations.
6103 *
6104 * On TCP style sockets, applications use listen() to ready the SCTP
6105 * endpoint for accepting inbound associations.
6106 *
6107 * On both types of endpoints a backlog of '0' disables listening.
6108 *
6109 * Move a socket to LISTENING state.
6110 */
6111 int sctp_inet_listen(struct socket *sock, int backlog)
6112 {
6113 struct sock *sk = sock->sk;
6114 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6115 int err = -EINVAL;
6116
6117 if (unlikely(backlog < 0))
6118 return err;
6119
6120 sctp_lock_sock(sk);
6121
6122 /* Peeled-off sockets are not allowed to listen(). */
6123 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6124 goto out;
6125
6126 if (sock->state != SS_UNCONNECTED)
6127 goto out;
6128
6129 /* If backlog is zero, disable listening. */
6130 if (!backlog) {
6131 if (sctp_sstate(sk, CLOSED))
6132 goto out;
6133
6134 err = 0;
6135 sctp_unhash_endpoint(ep);
6136 sk->sk_state = SCTP_SS_CLOSED;
6137 if (sk->sk_reuse)
6138 sctp_sk(sk)->bind_hash->fastreuse = 1;
6139 goto out;
6140 }
6141
6142 /* If we are already listening, just update the backlog */
6143 if (sctp_sstate(sk, LISTENING))
6144 sk->sk_max_ack_backlog = backlog;
6145 else {
6146 err = sctp_listen_start(sk, backlog);
6147 if (err)
6148 goto out;
6149 }
6150
6151 err = 0;
6152 out:
6153 sctp_release_sock(sk);
6154 return err;
6155 }
6156
6157 /*
6158 * This function is done by modeling the current datagram_poll() and the
6159 * tcp_poll(). Note that, based on these implementations, we don't
6160 * lock the socket in this function, even though it seems that,
6161 * ideally, locking or some other mechanisms can be used to ensure
6162 * the integrity of the counters (sndbuf and wmem_alloc) used
6163 * in this place. We assume that we don't need locks either until proven
6164 * otherwise.
6165 *
6166 * Another thing to note is that we include the Async I/O support
6167 * here, again, by modeling the current TCP/UDP code. We don't have
6168 * a good way to test with it yet.
6169 */
6170 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6171 {
6172 struct sock *sk = sock->sk;
6173 struct sctp_sock *sp = sctp_sk(sk);
6174 unsigned int mask;
6175
6176 poll_wait(file, sk_sleep(sk), wait);
6177
6178 /* A TCP-style listening socket becomes readable when the accept queue
6179 * is not empty.
6180 */
6181 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6182 return (!list_empty(&sp->ep->asocs)) ?
6183 (POLLIN | POLLRDNORM) : 0;
6184
6185 mask = 0;
6186
6187 /* Is there any exceptional events? */
6188 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6189 mask |= POLLERR |
6190 sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0;
6191 if (sk->sk_shutdown & RCV_SHUTDOWN)
6192 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6193 if (sk->sk_shutdown == SHUTDOWN_MASK)
6194 mask |= POLLHUP;
6195
6196 /* Is it readable? Reconsider this code with TCP-style support. */
6197 if (!skb_queue_empty(&sk->sk_receive_queue))
6198 mask |= POLLIN | POLLRDNORM;
6199
6200 /* The association is either gone or not ready. */
6201 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6202 return mask;
6203
6204 /* Is it writable? */
6205 if (sctp_writeable(sk)) {
6206 mask |= POLLOUT | POLLWRNORM;
6207 } else {
6208 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6209 /*
6210 * Since the socket is not locked, the buffer
6211 * might be made available after the writeable check and
6212 * before the bit is set. This could cause a lost I/O
6213 * signal. tcp_poll() has a race breaker for this race
6214 * condition. Based on their implementation, we put
6215 * in the following code to cover it as well.
6216 */
6217 if (sctp_writeable(sk))
6218 mask |= POLLOUT | POLLWRNORM;
6219 }
6220 return mask;
6221 }
6222
6223 /********************************************************************
6224 * 2nd Level Abstractions
6225 ********************************************************************/
6226
6227 static struct sctp_bind_bucket *sctp_bucket_create(
6228 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6229 {
6230 struct sctp_bind_bucket *pp;
6231
6232 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6233 if (pp) {
6234 SCTP_DBG_OBJCNT_INC(bind_bucket);
6235 pp->port = snum;
6236 pp->fastreuse = 0;
6237 INIT_HLIST_HEAD(&pp->owner);
6238 pp->net = net;
6239 hlist_add_head(&pp->node, &head->chain);
6240 }
6241 return pp;
6242 }
6243
6244 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6245 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6246 {
6247 if (pp && hlist_empty(&pp->owner)) {
6248 __hlist_del(&pp->node);
6249 kmem_cache_free(sctp_bucket_cachep, pp);
6250 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6251 }
6252 }
6253
6254 /* Release this socket's reference to a local port. */
6255 static inline void __sctp_put_port(struct sock *sk)
6256 {
6257 struct sctp_bind_hashbucket *head =
6258 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6259 inet_sk(sk)->inet_num)];
6260 struct sctp_bind_bucket *pp;
6261
6262 sctp_spin_lock(&head->lock);
6263 pp = sctp_sk(sk)->bind_hash;
6264 __sk_del_bind_node(sk);
6265 sctp_sk(sk)->bind_hash = NULL;
6266 inet_sk(sk)->inet_num = 0;
6267 sctp_bucket_destroy(pp);
6268 sctp_spin_unlock(&head->lock);
6269 }
6270
6271 void sctp_put_port(struct sock *sk)
6272 {
6273 sctp_local_bh_disable();
6274 __sctp_put_port(sk);
6275 sctp_local_bh_enable();
6276 }
6277
6278 /*
6279 * The system picks an ephemeral port and choose an address set equivalent
6280 * to binding with a wildcard address.
6281 * One of those addresses will be the primary address for the association.
6282 * This automatically enables the multihoming capability of SCTP.
6283 */
6284 static int sctp_autobind(struct sock *sk)
6285 {
6286 union sctp_addr autoaddr;
6287 struct sctp_af *af;
6288 __be16 port;
6289
6290 /* Initialize a local sockaddr structure to INADDR_ANY. */
6291 af = sctp_sk(sk)->pf->af;
6292
6293 port = htons(inet_sk(sk)->inet_num);
6294 af->inaddr_any(&autoaddr, port);
6295
6296 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6297 }
6298
6299 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6300 *
6301 * From RFC 2292
6302 * 4.2 The cmsghdr Structure *
6303 *
6304 * When ancillary data is sent or received, any number of ancillary data
6305 * objects can be specified by the msg_control and msg_controllen members of
6306 * the msghdr structure, because each object is preceded by
6307 * a cmsghdr structure defining the object's length (the cmsg_len member).
6308 * Historically Berkeley-derived implementations have passed only one object
6309 * at a time, but this API allows multiple objects to be
6310 * passed in a single call to sendmsg() or recvmsg(). The following example
6311 * shows two ancillary data objects in a control buffer.
6312 *
6313 * |<--------------------------- msg_controllen -------------------------->|
6314 * | |
6315 *
6316 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6317 *
6318 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6319 * | | |
6320 *
6321 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6322 *
6323 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6324 * | | | | |
6325 *
6326 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6327 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6328 *
6329 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6330 *
6331 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6332 * ^
6333 * |
6334 *
6335 * msg_control
6336 * points here
6337 */
6338 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6339 sctp_cmsgs_t *cmsgs)
6340 {
6341 struct cmsghdr *cmsg;
6342 struct msghdr *my_msg = (struct msghdr *)msg;
6343
6344 for (cmsg = CMSG_FIRSTHDR(msg);
6345 cmsg != NULL;
6346 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6347 if (!CMSG_OK(my_msg, cmsg))
6348 return -EINVAL;
6349
6350 /* Should we parse this header or ignore? */
6351 if (cmsg->cmsg_level != IPPROTO_SCTP)
6352 continue;
6353
6354 /* Strictly check lengths following example in SCM code. */
6355 switch (cmsg->cmsg_type) {
6356 case SCTP_INIT:
6357 /* SCTP Socket API Extension
6358 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6359 *
6360 * This cmsghdr structure provides information for
6361 * initializing new SCTP associations with sendmsg().
6362 * The SCTP_INITMSG socket option uses this same data
6363 * structure. This structure is not used for
6364 * recvmsg().
6365 *
6366 * cmsg_level cmsg_type cmsg_data[]
6367 * ------------ ------------ ----------------------
6368 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6369 */
6370 if (cmsg->cmsg_len !=
6371 CMSG_LEN(sizeof(struct sctp_initmsg)))
6372 return -EINVAL;
6373 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6374 break;
6375
6376 case SCTP_SNDRCV:
6377 /* SCTP Socket API Extension
6378 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6379 *
6380 * This cmsghdr structure specifies SCTP options for
6381 * sendmsg() and describes SCTP header information
6382 * about a received message through recvmsg().
6383 *
6384 * cmsg_level cmsg_type cmsg_data[]
6385 * ------------ ------------ ----------------------
6386 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6387 */
6388 if (cmsg->cmsg_len !=
6389 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6390 return -EINVAL;
6391
6392 cmsgs->info =
6393 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6394
6395 /* Minimally, validate the sinfo_flags. */
6396 if (cmsgs->info->sinfo_flags &
6397 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6398 SCTP_ABORT | SCTP_EOF))
6399 return -EINVAL;
6400 break;
6401
6402 default:
6403 return -EINVAL;
6404 }
6405 }
6406 return 0;
6407 }
6408
6409 /*
6410 * Wait for a packet..
6411 * Note: This function is the same function as in core/datagram.c
6412 * with a few modifications to make lksctp work.
6413 */
6414 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6415 {
6416 int error;
6417 DEFINE_WAIT(wait);
6418
6419 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6420
6421 /* Socket errors? */
6422 error = sock_error(sk);
6423 if (error)
6424 goto out;
6425
6426 if (!skb_queue_empty(&sk->sk_receive_queue))
6427 goto ready;
6428
6429 /* Socket shut down? */
6430 if (sk->sk_shutdown & RCV_SHUTDOWN)
6431 goto out;
6432
6433 /* Sequenced packets can come disconnected. If so we report the
6434 * problem.
6435 */
6436 error = -ENOTCONN;
6437
6438 /* Is there a good reason to think that we may receive some data? */
6439 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6440 goto out;
6441
6442 /* Handle signals. */
6443 if (signal_pending(current))
6444 goto interrupted;
6445
6446 /* Let another process have a go. Since we are going to sleep
6447 * anyway. Note: This may cause odd behaviors if the message
6448 * does not fit in the user's buffer, but this seems to be the
6449 * only way to honor MSG_DONTWAIT realistically.
6450 */
6451 sctp_release_sock(sk);
6452 *timeo_p = schedule_timeout(*timeo_p);
6453 sctp_lock_sock(sk);
6454
6455 ready:
6456 finish_wait(sk_sleep(sk), &wait);
6457 return 0;
6458
6459 interrupted:
6460 error = sock_intr_errno(*timeo_p);
6461
6462 out:
6463 finish_wait(sk_sleep(sk), &wait);
6464 *err = error;
6465 return error;
6466 }
6467
6468 /* Receive a datagram.
6469 * Note: This is pretty much the same routine as in core/datagram.c
6470 * with a few changes to make lksctp work.
6471 */
6472 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6473 int noblock, int *err)
6474 {
6475 int error;
6476 struct sk_buff *skb;
6477 long timeo;
6478
6479 timeo = sock_rcvtimeo(sk, noblock);
6480
6481 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6482 timeo, MAX_SCHEDULE_TIMEOUT);
6483
6484 do {
6485 /* Again only user level code calls this function,
6486 * so nothing interrupt level
6487 * will suddenly eat the receive_queue.
6488 *
6489 * Look at current nfs client by the way...
6490 * However, this function was correct in any case. 8)
6491 */
6492 if (flags & MSG_PEEK) {
6493 spin_lock_bh(&sk->sk_receive_queue.lock);
6494 skb = skb_peek(&sk->sk_receive_queue);
6495 if (skb)
6496 atomic_inc(&skb->users);
6497 spin_unlock_bh(&sk->sk_receive_queue.lock);
6498 } else {
6499 skb = skb_dequeue(&sk->sk_receive_queue);
6500 }
6501
6502 if (skb)
6503 return skb;
6504
6505 /* Caller is allowed not to check sk->sk_err before calling. */
6506 error = sock_error(sk);
6507 if (error)
6508 goto no_packet;
6509
6510 if (sk->sk_shutdown & RCV_SHUTDOWN)
6511 break;
6512
6513 /* User doesn't want to wait. */
6514 error = -EAGAIN;
6515 if (!timeo)
6516 goto no_packet;
6517 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6518
6519 return NULL;
6520
6521 no_packet:
6522 *err = error;
6523 return NULL;
6524 }
6525
6526 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6527 static void __sctp_write_space(struct sctp_association *asoc)
6528 {
6529 struct sock *sk = asoc->base.sk;
6530 struct socket *sock = sk->sk_socket;
6531
6532 if ((sctp_wspace(asoc) > 0) && sock) {
6533 if (waitqueue_active(&asoc->wait))
6534 wake_up_interruptible(&asoc->wait);
6535
6536 if (sctp_writeable(sk)) {
6537 wait_queue_head_t *wq = sk_sleep(sk);
6538
6539 if (wq && waitqueue_active(wq))
6540 wake_up_interruptible(wq);
6541
6542 /* Note that we try to include the Async I/O support
6543 * here by modeling from the current TCP/UDP code.
6544 * We have not tested with it yet.
6545 */
6546 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6547 sock_wake_async(sock,
6548 SOCK_WAKE_SPACE, POLL_OUT);
6549 }
6550 }
6551 }
6552
6553 /* Do accounting for the sndbuf space.
6554 * Decrement the used sndbuf space of the corresponding association by the
6555 * data size which was just transmitted(freed).
6556 */
6557 static void sctp_wfree(struct sk_buff *skb)
6558 {
6559 struct sctp_association *asoc;
6560 struct sctp_chunk *chunk;
6561 struct sock *sk;
6562
6563 /* Get the saved chunk pointer. */
6564 chunk = *((struct sctp_chunk **)(skb->cb));
6565 asoc = chunk->asoc;
6566 sk = asoc->base.sk;
6567 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6568 sizeof(struct sk_buff) +
6569 sizeof(struct sctp_chunk);
6570
6571 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6572
6573 /*
6574 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6575 */
6576 sk->sk_wmem_queued -= skb->truesize;
6577 sk_mem_uncharge(sk, skb->truesize);
6578
6579 sock_wfree(skb);
6580 __sctp_write_space(asoc);
6581
6582 sctp_association_put(asoc);
6583 }
6584
6585 /* Do accounting for the receive space on the socket.
6586 * Accounting for the association is done in ulpevent.c
6587 * We set this as a destructor for the cloned data skbs so that
6588 * accounting is done at the correct time.
6589 */
6590 void sctp_sock_rfree(struct sk_buff *skb)
6591 {
6592 struct sock *sk = skb->sk;
6593 struct sctp_ulpevent *event = sctp_skb2event(skb);
6594
6595 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6596
6597 /*
6598 * Mimic the behavior of sock_rfree
6599 */
6600 sk_mem_uncharge(sk, event->rmem_len);
6601 }
6602
6603
6604 /* Helper function to wait for space in the sndbuf. */
6605 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6606 size_t msg_len)
6607 {
6608 struct sock *sk = asoc->base.sk;
6609 int err = 0;
6610 long current_timeo = *timeo_p;
6611 DEFINE_WAIT(wait);
6612
6613 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6614 asoc, (long)(*timeo_p), msg_len);
6615
6616 /* Increment the association's refcnt. */
6617 sctp_association_hold(asoc);
6618
6619 /* Wait on the association specific sndbuf space. */
6620 for (;;) {
6621 prepare_to_wait_exclusive(&asoc->wait, &wait,
6622 TASK_INTERRUPTIBLE);
6623 if (!*timeo_p)
6624 goto do_nonblock;
6625 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6626 asoc->base.dead)
6627 goto do_error;
6628 if (signal_pending(current))
6629 goto do_interrupted;
6630 if (msg_len <= sctp_wspace(asoc))
6631 break;
6632
6633 /* Let another process have a go. Since we are going
6634 * to sleep anyway.
6635 */
6636 sctp_release_sock(sk);
6637 current_timeo = schedule_timeout(current_timeo);
6638 BUG_ON(sk != asoc->base.sk);
6639 sctp_lock_sock(sk);
6640
6641 *timeo_p = current_timeo;
6642 }
6643
6644 out:
6645 finish_wait(&asoc->wait, &wait);
6646
6647 /* Release the association's refcnt. */
6648 sctp_association_put(asoc);
6649
6650 return err;
6651
6652 do_error:
6653 err = -EPIPE;
6654 goto out;
6655
6656 do_interrupted:
6657 err = sock_intr_errno(*timeo_p);
6658 goto out;
6659
6660 do_nonblock:
6661 err = -EAGAIN;
6662 goto out;
6663 }
6664
6665 void sctp_data_ready(struct sock *sk, int len)
6666 {
6667 struct socket_wq *wq;
6668
6669 rcu_read_lock();
6670 wq = rcu_dereference(sk->sk_wq);
6671 if (wq_has_sleeper(wq))
6672 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6673 POLLRDNORM | POLLRDBAND);
6674 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6675 rcu_read_unlock();
6676 }
6677
6678 /* If socket sndbuf has changed, wake up all per association waiters. */
6679 void sctp_write_space(struct sock *sk)
6680 {
6681 struct sctp_association *asoc;
6682
6683 /* Wake up the tasks in each wait queue. */
6684 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6685 __sctp_write_space(asoc);
6686 }
6687 }
6688
6689 /* Is there any sndbuf space available on the socket?
6690 *
6691 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6692 * associations on the same socket. For a UDP-style socket with
6693 * multiple associations, it is possible for it to be "unwriteable"
6694 * prematurely. I assume that this is acceptable because
6695 * a premature "unwriteable" is better than an accidental "writeable" which
6696 * would cause an unwanted block under certain circumstances. For the 1-1
6697 * UDP-style sockets or TCP-style sockets, this code should work.
6698 * - Daisy
6699 */
6700 static int sctp_writeable(struct sock *sk)
6701 {
6702 int amt = 0;
6703
6704 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6705 if (amt < 0)
6706 amt = 0;
6707 return amt;
6708 }
6709
6710 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6711 * returns immediately with EINPROGRESS.
6712 */
6713 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6714 {
6715 struct sock *sk = asoc->base.sk;
6716 int err = 0;
6717 long current_timeo = *timeo_p;
6718 DEFINE_WAIT(wait);
6719
6720 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6721 (long)(*timeo_p));
6722
6723 /* Increment the association's refcnt. */
6724 sctp_association_hold(asoc);
6725
6726 for (;;) {
6727 prepare_to_wait_exclusive(&asoc->wait, &wait,
6728 TASK_INTERRUPTIBLE);
6729 if (!*timeo_p)
6730 goto do_nonblock;
6731 if (sk->sk_shutdown & RCV_SHUTDOWN)
6732 break;
6733 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6734 asoc->base.dead)
6735 goto do_error;
6736 if (signal_pending(current))
6737 goto do_interrupted;
6738
6739 if (sctp_state(asoc, ESTABLISHED))
6740 break;
6741
6742 /* Let another process have a go. Since we are going
6743 * to sleep anyway.
6744 */
6745 sctp_release_sock(sk);
6746 current_timeo = schedule_timeout(current_timeo);
6747 sctp_lock_sock(sk);
6748
6749 *timeo_p = current_timeo;
6750 }
6751
6752 out:
6753 finish_wait(&asoc->wait, &wait);
6754
6755 /* Release the association's refcnt. */
6756 sctp_association_put(asoc);
6757
6758 return err;
6759
6760 do_error:
6761 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6762 err = -ETIMEDOUT;
6763 else
6764 err = -ECONNREFUSED;
6765 goto out;
6766
6767 do_interrupted:
6768 err = sock_intr_errno(*timeo_p);
6769 goto out;
6770
6771 do_nonblock:
6772 err = -EINPROGRESS;
6773 goto out;
6774 }
6775
6776 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6777 {
6778 struct sctp_endpoint *ep;
6779 int err = 0;
6780 DEFINE_WAIT(wait);
6781
6782 ep = sctp_sk(sk)->ep;
6783
6784
6785 for (;;) {
6786 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6787 TASK_INTERRUPTIBLE);
6788
6789 if (list_empty(&ep->asocs)) {
6790 sctp_release_sock(sk);
6791 timeo = schedule_timeout(timeo);
6792 sctp_lock_sock(sk);
6793 }
6794
6795 err = -EINVAL;
6796 if (!sctp_sstate(sk, LISTENING))
6797 break;
6798
6799 err = 0;
6800 if (!list_empty(&ep->asocs))
6801 break;
6802
6803 err = sock_intr_errno(timeo);
6804 if (signal_pending(current))
6805 break;
6806
6807 err = -EAGAIN;
6808 if (!timeo)
6809 break;
6810 }
6811
6812 finish_wait(sk_sleep(sk), &wait);
6813
6814 return err;
6815 }
6816
6817 static void sctp_wait_for_close(struct sock *sk, long timeout)
6818 {
6819 DEFINE_WAIT(wait);
6820
6821 do {
6822 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6823 if (list_empty(&sctp_sk(sk)->ep->asocs))
6824 break;
6825 sctp_release_sock(sk);
6826 timeout = schedule_timeout(timeout);
6827 sctp_lock_sock(sk);
6828 } while (!signal_pending(current) && timeout);
6829
6830 finish_wait(sk_sleep(sk), &wait);
6831 }
6832
6833 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6834 {
6835 struct sk_buff *frag;
6836
6837 if (!skb->data_len)
6838 goto done;
6839
6840 /* Don't forget the fragments. */
6841 skb_walk_frags(skb, frag)
6842 sctp_skb_set_owner_r_frag(frag, sk);
6843
6844 done:
6845 sctp_skb_set_owner_r(skb, sk);
6846 }
6847
6848 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6849 struct sctp_association *asoc)
6850 {
6851 struct inet_sock *inet = inet_sk(sk);
6852 struct inet_sock *newinet;
6853
6854 newsk->sk_type = sk->sk_type;
6855 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6856 newsk->sk_flags = sk->sk_flags;
6857 newsk->sk_no_check = sk->sk_no_check;
6858 newsk->sk_reuse = sk->sk_reuse;
6859
6860 newsk->sk_shutdown = sk->sk_shutdown;
6861 newsk->sk_destruct = inet_sock_destruct;
6862 newsk->sk_family = sk->sk_family;
6863 newsk->sk_protocol = IPPROTO_SCTP;
6864 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6865 newsk->sk_sndbuf = sk->sk_sndbuf;
6866 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6867 newsk->sk_lingertime = sk->sk_lingertime;
6868 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6869 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6870
6871 newinet = inet_sk(newsk);
6872
6873 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6874 * getsockname() and getpeername()
6875 */
6876 newinet->inet_sport = inet->inet_sport;
6877 newinet->inet_saddr = inet->inet_saddr;
6878 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6879 newinet->inet_dport = htons(asoc->peer.port);
6880 newinet->pmtudisc = inet->pmtudisc;
6881 newinet->inet_id = asoc->next_tsn ^ jiffies;
6882
6883 newinet->uc_ttl = inet->uc_ttl;
6884 newinet->mc_loop = 1;
6885 newinet->mc_ttl = 1;
6886 newinet->mc_index = 0;
6887 newinet->mc_list = NULL;
6888 }
6889
6890 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6891 * and its messages to the newsk.
6892 */
6893 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6894 struct sctp_association *assoc,
6895 sctp_socket_type_t type)
6896 {
6897 struct sctp_sock *oldsp = sctp_sk(oldsk);
6898 struct sctp_sock *newsp = sctp_sk(newsk);
6899 struct sctp_bind_bucket *pp; /* hash list port iterator */
6900 struct sctp_endpoint *newep = newsp->ep;
6901 struct sk_buff *skb, *tmp;
6902 struct sctp_ulpevent *event;
6903 struct sctp_bind_hashbucket *head;
6904 struct list_head tmplist;
6905
6906 /* Migrate socket buffer sizes and all the socket level options to the
6907 * new socket.
6908 */
6909 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6910 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6911 /* Brute force copy old sctp opt. */
6912 if (oldsp->do_auto_asconf) {
6913 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6914 inet_sk_copy_descendant(newsk, oldsk);
6915 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6916 } else
6917 inet_sk_copy_descendant(newsk, oldsk);
6918
6919 /* Restore the ep value that was overwritten with the above structure
6920 * copy.
6921 */
6922 newsp->ep = newep;
6923 newsp->hmac = NULL;
6924
6925 /* Hook this new socket in to the bind_hash list. */
6926 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6927 inet_sk(oldsk)->inet_num)];
6928 sctp_local_bh_disable();
6929 sctp_spin_lock(&head->lock);
6930 pp = sctp_sk(oldsk)->bind_hash;
6931 sk_add_bind_node(newsk, &pp->owner);
6932 sctp_sk(newsk)->bind_hash = pp;
6933 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6934 sctp_spin_unlock(&head->lock);
6935 sctp_local_bh_enable();
6936
6937 /* Copy the bind_addr list from the original endpoint to the new
6938 * endpoint so that we can handle restarts properly
6939 */
6940 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6941 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6942
6943 /* Move any messages in the old socket's receive queue that are for the
6944 * peeled off association to the new socket's receive queue.
6945 */
6946 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6947 event = sctp_skb2event(skb);
6948 if (event->asoc == assoc) {
6949 __skb_unlink(skb, &oldsk->sk_receive_queue);
6950 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6951 sctp_skb_set_owner_r_frag(skb, newsk);
6952 }
6953 }
6954
6955 /* Clean up any messages pending delivery due to partial
6956 * delivery. Three cases:
6957 * 1) No partial deliver; no work.
6958 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6959 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6960 */
6961 skb_queue_head_init(&newsp->pd_lobby);
6962 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6963
6964 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6965 struct sk_buff_head *queue;
6966
6967 /* Decide which queue to move pd_lobby skbs to. */
6968 if (assoc->ulpq.pd_mode) {
6969 queue = &newsp->pd_lobby;
6970 } else
6971 queue = &newsk->sk_receive_queue;
6972
6973 /* Walk through the pd_lobby, looking for skbs that
6974 * need moved to the new socket.
6975 */
6976 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6977 event = sctp_skb2event(skb);
6978 if (event->asoc == assoc) {
6979 __skb_unlink(skb, &oldsp->pd_lobby);
6980 __skb_queue_tail(queue, skb);
6981 sctp_skb_set_owner_r_frag(skb, newsk);
6982 }
6983 }
6984
6985 /* Clear up any skbs waiting for the partial
6986 * delivery to finish.
6987 */
6988 if (assoc->ulpq.pd_mode)
6989 sctp_clear_pd(oldsk, NULL);
6990
6991 }
6992
6993 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6994 sctp_skb_set_owner_r_frag(skb, newsk);
6995
6996 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6997 sctp_skb_set_owner_r_frag(skb, newsk);
6998
6999 /* Set the type of socket to indicate that it is peeled off from the
7000 * original UDP-style socket or created with the accept() call on a
7001 * TCP-style socket..
7002 */
7003 newsp->type = type;
7004
7005 /* Mark the new socket "in-use" by the user so that any packets
7006 * that may arrive on the association after we've moved it are
7007 * queued to the backlog. This prevents a potential race between
7008 * backlog processing on the old socket and new-packet processing
7009 * on the new socket.
7010 *
7011 * The caller has just allocated newsk so we can guarantee that other
7012 * paths won't try to lock it and then oldsk.
7013 */
7014 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7015 sctp_assoc_migrate(assoc, newsk);
7016
7017 /* If the association on the newsk is already closed before accept()
7018 * is called, set RCV_SHUTDOWN flag.
7019 */
7020 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7021 newsk->sk_shutdown |= RCV_SHUTDOWN;
7022
7023 newsk->sk_state = SCTP_SS_ESTABLISHED;
7024 sctp_release_sock(newsk);
7025 }
7026
7027
7028 /* This proto struct describes the ULP interface for SCTP. */
7029 struct proto sctp_prot = {
7030 .name = "SCTP",
7031 .owner = THIS_MODULE,
7032 .close = sctp_close,
7033 .connect = sctp_connect,
7034 .disconnect = sctp_disconnect,
7035 .accept = sctp_accept,
7036 .ioctl = sctp_ioctl,
7037 .init = sctp_init_sock,
7038 .destroy = sctp_destroy_sock,
7039 .shutdown = sctp_shutdown,
7040 .setsockopt = sctp_setsockopt,
7041 .getsockopt = sctp_getsockopt,
7042 .sendmsg = sctp_sendmsg,
7043 .recvmsg = sctp_recvmsg,
7044 .bind = sctp_bind,
7045 .backlog_rcv = sctp_backlog_rcv,
7046 .hash = sctp_hash,
7047 .unhash = sctp_unhash,
7048 .get_port = sctp_get_port,
7049 .obj_size = sizeof(struct sctp_sock),
7050 .sysctl_mem = sysctl_sctp_mem,
7051 .sysctl_rmem = sysctl_sctp_rmem,
7052 .sysctl_wmem = sysctl_sctp_wmem,
7053 .memory_pressure = &sctp_memory_pressure,
7054 .enter_memory_pressure = sctp_enter_memory_pressure,
7055 .memory_allocated = &sctp_memory_allocated,
7056 .sockets_allocated = &sctp_sockets_allocated,
7057 };
7058
7059 #if IS_ENABLED(CONFIG_IPV6)
7060
7061 struct proto sctpv6_prot = {
7062 .name = "SCTPv6",
7063 .owner = THIS_MODULE,
7064 .close = sctp_close,
7065 .connect = sctp_connect,
7066 .disconnect = sctp_disconnect,
7067 .accept = sctp_accept,
7068 .ioctl = sctp_ioctl,
7069 .init = sctp_init_sock,
7070 .destroy = sctp_destroy_sock,
7071 .shutdown = sctp_shutdown,
7072 .setsockopt = sctp_setsockopt,
7073 .getsockopt = sctp_getsockopt,
7074 .sendmsg = sctp_sendmsg,
7075 .recvmsg = sctp_recvmsg,
7076 .bind = sctp_bind,
7077 .backlog_rcv = sctp_backlog_rcv,
7078 .hash = sctp_hash,
7079 .unhash = sctp_unhash,
7080 .get_port = sctp_get_port,
7081 .obj_size = sizeof(struct sctp6_sock),
7082 .sysctl_mem = sysctl_sctp_mem,
7083 .sysctl_rmem = sysctl_sctp_rmem,
7084 .sysctl_wmem = sysctl_sctp_wmem,
7085 .memory_pressure = &sctp_memory_pressure,
7086 .enter_memory_pressure = sctp_enter_memory_pressure,
7087 .memory_allocated = &sctp_memory_allocated,
7088 .sockets_allocated = &sctp_sockets_allocated,
7089 };
7090 #endif /* IS_ENABLED(CONFIG_IPV6) */