Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #include <linux/types.h>
61 #include <linux/kernel.h>
62 #include <linux/wait.h>
63 #include <linux/time.h>
64 #include <linux/ip.h>
65 #include <linux/capability.h>
66 #include <linux/fcntl.h>
67 #include <linux/poll.h>
68 #include <linux/init.h>
69 #include <linux/crypto.h>
70
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76
77 #include <linux/socket.h> /* for sa_family_t */
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* WARNING: Please do not remove the SCTP_STATIC attribute to
83 * any of the functions below as they are used to export functions
84 * used by a project regression testsuite.
85 */
86
87 /* Forward declarations for internal helper functions. */
88 static int sctp_writeable(struct sock *sk);
89 static void sctp_wfree(struct sk_buff *skb);
90 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
91 size_t msg_len);
92 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
93 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
94 static int sctp_wait_for_accept(struct sock *sk, long timeo);
95 static void sctp_wait_for_close(struct sock *sk, long timeo);
96 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
97 union sctp_addr *addr, int len);
98 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
99 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
102 static int sctp_send_asconf(struct sctp_association *asoc,
103 struct sctp_chunk *chunk);
104 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
105 static int sctp_autobind(struct sock *sk);
106 static void sctp_sock_migrate(struct sock *, struct sock *,
107 struct sctp_association *, sctp_socket_type_t);
108 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
109
110 extern struct kmem_cache *sctp_bucket_cachep;
111 extern int sysctl_sctp_mem[3];
112 extern int sysctl_sctp_rmem[3];
113 extern int sysctl_sctp_wmem[3];
114
115 static int sctp_memory_pressure;
116 static atomic_t sctp_memory_allocated;
117 struct percpu_counter sctp_sockets_allocated;
118
119 static void sctp_enter_memory_pressure(struct sock *sk)
120 {
121 sctp_memory_pressure = 1;
122 }
123
124
125 /* Get the sndbuf space available at the time on the association. */
126 static inline int sctp_wspace(struct sctp_association *asoc)
127 {
128 int amt;
129
130 if (asoc->ep->sndbuf_policy)
131 amt = asoc->sndbuf_used;
132 else
133 amt = sk_wmem_alloc_get(asoc->base.sk);
134
135 if (amt >= asoc->base.sk->sk_sndbuf) {
136 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
137 amt = 0;
138 else {
139 amt = sk_stream_wspace(asoc->base.sk);
140 if (amt < 0)
141 amt = 0;
142 }
143 } else {
144 amt = asoc->base.sk->sk_sndbuf - amt;
145 }
146 return amt;
147 }
148
149 /* Increment the used sndbuf space count of the corresponding association by
150 * the size of the outgoing data chunk.
151 * Also, set the skb destructor for sndbuf accounting later.
152 *
153 * Since it is always 1-1 between chunk and skb, and also a new skb is always
154 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
155 * destructor in the data chunk skb for the purpose of the sndbuf space
156 * tracking.
157 */
158 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
159 {
160 struct sctp_association *asoc = chunk->asoc;
161 struct sock *sk = asoc->base.sk;
162
163 /* The sndbuf space is tracked per association. */
164 sctp_association_hold(asoc);
165
166 skb_set_owner_w(chunk->skb, sk);
167
168 chunk->skb->destructor = sctp_wfree;
169 /* Save the chunk pointer in skb for sctp_wfree to use later. */
170 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
171
172 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
173 sizeof(struct sk_buff) +
174 sizeof(struct sctp_chunk);
175
176 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
177 sk->sk_wmem_queued += chunk->skb->truesize;
178 sk_mem_charge(sk, chunk->skb->truesize);
179 }
180
181 /* Verify that this is a valid address. */
182 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
183 int len)
184 {
185 struct sctp_af *af;
186
187 /* Verify basic sockaddr. */
188 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
189 if (!af)
190 return -EINVAL;
191
192 /* Is this a valid SCTP address? */
193 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
194 return -EINVAL;
195
196 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
197 return -EINVAL;
198
199 return 0;
200 }
201
202 /* Look up the association by its id. If this is not a UDP-style
203 * socket, the ID field is always ignored.
204 */
205 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
206 {
207 struct sctp_association *asoc = NULL;
208
209 /* If this is not a UDP-style socket, assoc id should be ignored. */
210 if (!sctp_style(sk, UDP)) {
211 /* Return NULL if the socket state is not ESTABLISHED. It
212 * could be a TCP-style listening socket or a socket which
213 * hasn't yet called connect() to establish an association.
214 */
215 if (!sctp_sstate(sk, ESTABLISHED))
216 return NULL;
217
218 /* Get the first and the only association from the list. */
219 if (!list_empty(&sctp_sk(sk)->ep->asocs))
220 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
221 struct sctp_association, asocs);
222 return asoc;
223 }
224
225 /* Otherwise this is a UDP-style socket. */
226 if (!id || (id == (sctp_assoc_t)-1))
227 return NULL;
228
229 spin_lock_bh(&sctp_assocs_id_lock);
230 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
231 spin_unlock_bh(&sctp_assocs_id_lock);
232
233 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
234 return NULL;
235
236 return asoc;
237 }
238
239 /* Look up the transport from an address and an assoc id. If both address and
240 * id are specified, the associations matching the address and the id should be
241 * the same.
242 */
243 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
244 struct sockaddr_storage *addr,
245 sctp_assoc_t id)
246 {
247 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
248 struct sctp_transport *transport;
249 union sctp_addr *laddr = (union sctp_addr *)addr;
250
251 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
252 laddr,
253 &transport);
254
255 if (!addr_asoc)
256 return NULL;
257
258 id_asoc = sctp_id2assoc(sk, id);
259 if (id_asoc && (id_asoc != addr_asoc))
260 return NULL;
261
262 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
263 (union sctp_addr *)addr);
264
265 return transport;
266 }
267
268 /* API 3.1.2 bind() - UDP Style Syntax
269 * The syntax of bind() is,
270 *
271 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
272 *
273 * sd - the socket descriptor returned by socket().
274 * addr - the address structure (struct sockaddr_in or struct
275 * sockaddr_in6 [RFC 2553]),
276 * addr_len - the size of the address structure.
277 */
278 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
279 {
280 int retval = 0;
281
282 sctp_lock_sock(sk);
283
284 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
285 sk, addr, addr_len);
286
287 /* Disallow binding twice. */
288 if (!sctp_sk(sk)->ep->base.bind_addr.port)
289 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
290 addr_len);
291 else
292 retval = -EINVAL;
293
294 sctp_release_sock(sk);
295
296 return retval;
297 }
298
299 static long sctp_get_port_local(struct sock *, union sctp_addr *);
300
301 /* Verify this is a valid sockaddr. */
302 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
303 union sctp_addr *addr, int len)
304 {
305 struct sctp_af *af;
306
307 /* Check minimum size. */
308 if (len < sizeof (struct sockaddr))
309 return NULL;
310
311 /* V4 mapped address are really of AF_INET family */
312 if (addr->sa.sa_family == AF_INET6 &&
313 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
314 if (!opt->pf->af_supported(AF_INET, opt))
315 return NULL;
316 } else {
317 /* Does this PF support this AF? */
318 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
319 return NULL;
320 }
321
322 /* If we get this far, af is valid. */
323 af = sctp_get_af_specific(addr->sa.sa_family);
324
325 if (len < af->sockaddr_len)
326 return NULL;
327
328 return af;
329 }
330
331 /* Bind a local address either to an endpoint or to an association. */
332 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
333 {
334 struct sctp_sock *sp = sctp_sk(sk);
335 struct sctp_endpoint *ep = sp->ep;
336 struct sctp_bind_addr *bp = &ep->base.bind_addr;
337 struct sctp_af *af;
338 unsigned short snum;
339 int ret = 0;
340
341 /* Common sockaddr verification. */
342 af = sctp_sockaddr_af(sp, addr, len);
343 if (!af) {
344 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
345 sk, addr, len);
346 return -EINVAL;
347 }
348
349 snum = ntohs(addr->v4.sin_port);
350
351 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
352 ", port: %d, new port: %d, len: %d)\n",
353 sk,
354 addr,
355 bp->port, snum,
356 len);
357
358 /* PF specific bind() address verification. */
359 if (!sp->pf->bind_verify(sp, addr))
360 return -EADDRNOTAVAIL;
361
362 /* We must either be unbound, or bind to the same port.
363 * It's OK to allow 0 ports if we are already bound.
364 * We'll just inhert an already bound port in this case
365 */
366 if (bp->port) {
367 if (!snum)
368 snum = bp->port;
369 else if (snum != bp->port) {
370 SCTP_DEBUG_PRINTK("sctp_do_bind:"
371 " New port %d does not match existing port "
372 "%d.\n", snum, bp->port);
373 return -EINVAL;
374 }
375 }
376
377 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
378 return -EACCES;
379
380 /* See if the address matches any of the addresses we may have
381 * already bound before checking against other endpoints.
382 */
383 if (sctp_bind_addr_match(bp, addr, sp))
384 return -EINVAL;
385
386 /* Make sure we are allowed to bind here.
387 * The function sctp_get_port_local() does duplicate address
388 * detection.
389 */
390 addr->v4.sin_port = htons(snum);
391 if ((ret = sctp_get_port_local(sk, addr))) {
392 return -EADDRINUSE;
393 }
394
395 /* Refresh ephemeral port. */
396 if (!bp->port)
397 bp->port = inet_sk(sk)->inet_num;
398
399 /* Add the address to the bind address list.
400 * Use GFP_ATOMIC since BHs will be disabled.
401 */
402 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
403
404 /* Copy back into socket for getsockname() use. */
405 if (!ret) {
406 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
407 af->to_sk_saddr(addr, sk);
408 }
409
410 return ret;
411 }
412
413 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
414 *
415 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
416 * at any one time. If a sender, after sending an ASCONF chunk, decides
417 * it needs to transfer another ASCONF Chunk, it MUST wait until the
418 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
419 * subsequent ASCONF. Note this restriction binds each side, so at any
420 * time two ASCONF may be in-transit on any given association (one sent
421 * from each endpoint).
422 */
423 static int sctp_send_asconf(struct sctp_association *asoc,
424 struct sctp_chunk *chunk)
425 {
426 int retval = 0;
427
428 /* If there is an outstanding ASCONF chunk, queue it for later
429 * transmission.
430 */
431 if (asoc->addip_last_asconf) {
432 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
433 goto out;
434 }
435
436 /* Hold the chunk until an ASCONF_ACK is received. */
437 sctp_chunk_hold(chunk);
438 retval = sctp_primitive_ASCONF(asoc, chunk);
439 if (retval)
440 sctp_chunk_free(chunk);
441 else
442 asoc->addip_last_asconf = chunk;
443
444 out:
445 return retval;
446 }
447
448 /* Add a list of addresses as bind addresses to local endpoint or
449 * association.
450 *
451 * Basically run through each address specified in the addrs/addrcnt
452 * array/length pair, determine if it is IPv6 or IPv4 and call
453 * sctp_do_bind() on it.
454 *
455 * If any of them fails, then the operation will be reversed and the
456 * ones that were added will be removed.
457 *
458 * Only sctp_setsockopt_bindx() is supposed to call this function.
459 */
460 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
461 {
462 int cnt;
463 int retval = 0;
464 void *addr_buf;
465 struct sockaddr *sa_addr;
466 struct sctp_af *af;
467
468 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
469 sk, addrs, addrcnt);
470
471 addr_buf = addrs;
472 for (cnt = 0; cnt < addrcnt; cnt++) {
473 /* The list may contain either IPv4 or IPv6 address;
474 * determine the address length for walking thru the list.
475 */
476 sa_addr = (struct sockaddr *)addr_buf;
477 af = sctp_get_af_specific(sa_addr->sa_family);
478 if (!af) {
479 retval = -EINVAL;
480 goto err_bindx_add;
481 }
482
483 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
484 af->sockaddr_len);
485
486 addr_buf += af->sockaddr_len;
487
488 err_bindx_add:
489 if (retval < 0) {
490 /* Failed. Cleanup the ones that have been added */
491 if (cnt > 0)
492 sctp_bindx_rem(sk, addrs, cnt);
493 return retval;
494 }
495 }
496
497 return retval;
498 }
499
500 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
501 * associations that are part of the endpoint indicating that a list of local
502 * addresses are added to the endpoint.
503 *
504 * If any of the addresses is already in the bind address list of the
505 * association, we do not send the chunk for that association. But it will not
506 * affect other associations.
507 *
508 * Only sctp_setsockopt_bindx() is supposed to call this function.
509 */
510 static int sctp_send_asconf_add_ip(struct sock *sk,
511 struct sockaddr *addrs,
512 int addrcnt)
513 {
514 struct sctp_sock *sp;
515 struct sctp_endpoint *ep;
516 struct sctp_association *asoc;
517 struct sctp_bind_addr *bp;
518 struct sctp_chunk *chunk;
519 struct sctp_sockaddr_entry *laddr;
520 union sctp_addr *addr;
521 union sctp_addr saveaddr;
522 void *addr_buf;
523 struct sctp_af *af;
524 struct list_head *p;
525 int i;
526 int retval = 0;
527
528 if (!sctp_addip_enable)
529 return retval;
530
531 sp = sctp_sk(sk);
532 ep = sp->ep;
533
534 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
535 __func__, sk, addrs, addrcnt);
536
537 list_for_each_entry(asoc, &ep->asocs, asocs) {
538
539 if (!asoc->peer.asconf_capable)
540 continue;
541
542 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
543 continue;
544
545 if (!sctp_state(asoc, ESTABLISHED))
546 continue;
547
548 /* Check if any address in the packed array of addresses is
549 * in the bind address list of the association. If so,
550 * do not send the asconf chunk to its peer, but continue with
551 * other associations.
552 */
553 addr_buf = addrs;
554 for (i = 0; i < addrcnt; i++) {
555 addr = (union sctp_addr *)addr_buf;
556 af = sctp_get_af_specific(addr->v4.sin_family);
557 if (!af) {
558 retval = -EINVAL;
559 goto out;
560 }
561
562 if (sctp_assoc_lookup_laddr(asoc, addr))
563 break;
564
565 addr_buf += af->sockaddr_len;
566 }
567 if (i < addrcnt)
568 continue;
569
570 /* Use the first valid address in bind addr list of
571 * association as Address Parameter of ASCONF CHUNK.
572 */
573 bp = &asoc->base.bind_addr;
574 p = bp->address_list.next;
575 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
576 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
577 addrcnt, SCTP_PARAM_ADD_IP);
578 if (!chunk) {
579 retval = -ENOMEM;
580 goto out;
581 }
582
583 retval = sctp_send_asconf(asoc, chunk);
584 if (retval)
585 goto out;
586
587 /* Add the new addresses to the bind address list with
588 * use_as_src set to 0.
589 */
590 addr_buf = addrs;
591 for (i = 0; i < addrcnt; i++) {
592 addr = (union sctp_addr *)addr_buf;
593 af = sctp_get_af_specific(addr->v4.sin_family);
594 memcpy(&saveaddr, addr, af->sockaddr_len);
595 retval = sctp_add_bind_addr(bp, &saveaddr,
596 SCTP_ADDR_NEW, GFP_ATOMIC);
597 addr_buf += af->sockaddr_len;
598 }
599 }
600
601 out:
602 return retval;
603 }
604
605 /* Remove a list of addresses from bind addresses list. Do not remove the
606 * last address.
607 *
608 * Basically run through each address specified in the addrs/addrcnt
609 * array/length pair, determine if it is IPv6 or IPv4 and call
610 * sctp_del_bind() on it.
611 *
612 * If any of them fails, then the operation will be reversed and the
613 * ones that were removed will be added back.
614 *
615 * At least one address has to be left; if only one address is
616 * available, the operation will return -EBUSY.
617 *
618 * Only sctp_setsockopt_bindx() is supposed to call this function.
619 */
620 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
621 {
622 struct sctp_sock *sp = sctp_sk(sk);
623 struct sctp_endpoint *ep = sp->ep;
624 int cnt;
625 struct sctp_bind_addr *bp = &ep->base.bind_addr;
626 int retval = 0;
627 void *addr_buf;
628 union sctp_addr *sa_addr;
629 struct sctp_af *af;
630
631 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
632 sk, addrs, addrcnt);
633
634 addr_buf = addrs;
635 for (cnt = 0; cnt < addrcnt; cnt++) {
636 /* If the bind address list is empty or if there is only one
637 * bind address, there is nothing more to be removed (we need
638 * at least one address here).
639 */
640 if (list_empty(&bp->address_list) ||
641 (sctp_list_single_entry(&bp->address_list))) {
642 retval = -EBUSY;
643 goto err_bindx_rem;
644 }
645
646 sa_addr = (union sctp_addr *)addr_buf;
647 af = sctp_get_af_specific(sa_addr->sa.sa_family);
648 if (!af) {
649 retval = -EINVAL;
650 goto err_bindx_rem;
651 }
652
653 if (!af->addr_valid(sa_addr, sp, NULL)) {
654 retval = -EADDRNOTAVAIL;
655 goto err_bindx_rem;
656 }
657
658 if (sa_addr->v4.sin_port != htons(bp->port)) {
659 retval = -EINVAL;
660 goto err_bindx_rem;
661 }
662
663 /* FIXME - There is probably a need to check if sk->sk_saddr and
664 * sk->sk_rcv_addr are currently set to one of the addresses to
665 * be removed. This is something which needs to be looked into
666 * when we are fixing the outstanding issues with multi-homing
667 * socket routing and failover schemes. Refer to comments in
668 * sctp_do_bind(). -daisy
669 */
670 retval = sctp_del_bind_addr(bp, sa_addr);
671
672 addr_buf += af->sockaddr_len;
673 err_bindx_rem:
674 if (retval < 0) {
675 /* Failed. Add the ones that has been removed back */
676 if (cnt > 0)
677 sctp_bindx_add(sk, addrs, cnt);
678 return retval;
679 }
680 }
681
682 return retval;
683 }
684
685 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
686 * the associations that are part of the endpoint indicating that a list of
687 * local addresses are removed from the endpoint.
688 *
689 * If any of the addresses is already in the bind address list of the
690 * association, we do not send the chunk for that association. But it will not
691 * affect other associations.
692 *
693 * Only sctp_setsockopt_bindx() is supposed to call this function.
694 */
695 static int sctp_send_asconf_del_ip(struct sock *sk,
696 struct sockaddr *addrs,
697 int addrcnt)
698 {
699 struct sctp_sock *sp;
700 struct sctp_endpoint *ep;
701 struct sctp_association *asoc;
702 struct sctp_transport *transport;
703 struct sctp_bind_addr *bp;
704 struct sctp_chunk *chunk;
705 union sctp_addr *laddr;
706 void *addr_buf;
707 struct sctp_af *af;
708 struct sctp_sockaddr_entry *saddr;
709 int i;
710 int retval = 0;
711
712 if (!sctp_addip_enable)
713 return retval;
714
715 sp = sctp_sk(sk);
716 ep = sp->ep;
717
718 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
719 __func__, sk, addrs, addrcnt);
720
721 list_for_each_entry(asoc, &ep->asocs, asocs) {
722
723 if (!asoc->peer.asconf_capable)
724 continue;
725
726 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
727 continue;
728
729 if (!sctp_state(asoc, ESTABLISHED))
730 continue;
731
732 /* Check if any address in the packed array of addresses is
733 * not present in the bind address list of the association.
734 * If so, do not send the asconf chunk to its peer, but
735 * continue with other associations.
736 */
737 addr_buf = addrs;
738 for (i = 0; i < addrcnt; i++) {
739 laddr = (union sctp_addr *)addr_buf;
740 af = sctp_get_af_specific(laddr->v4.sin_family);
741 if (!af) {
742 retval = -EINVAL;
743 goto out;
744 }
745
746 if (!sctp_assoc_lookup_laddr(asoc, laddr))
747 break;
748
749 addr_buf += af->sockaddr_len;
750 }
751 if (i < addrcnt)
752 continue;
753
754 /* Find one address in the association's bind address list
755 * that is not in the packed array of addresses. This is to
756 * make sure that we do not delete all the addresses in the
757 * association.
758 */
759 bp = &asoc->base.bind_addr;
760 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
761 addrcnt, sp);
762 if (!laddr)
763 continue;
764
765 /* We do not need RCU protection throughout this loop
766 * because this is done under a socket lock from the
767 * setsockopt call.
768 */
769 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
770 SCTP_PARAM_DEL_IP);
771 if (!chunk) {
772 retval = -ENOMEM;
773 goto out;
774 }
775
776 /* Reset use_as_src flag for the addresses in the bind address
777 * list that are to be deleted.
778 */
779 addr_buf = addrs;
780 for (i = 0; i < addrcnt; i++) {
781 laddr = (union sctp_addr *)addr_buf;
782 af = sctp_get_af_specific(laddr->v4.sin_family);
783 list_for_each_entry(saddr, &bp->address_list, list) {
784 if (sctp_cmp_addr_exact(&saddr->a, laddr))
785 saddr->state = SCTP_ADDR_DEL;
786 }
787 addr_buf += af->sockaddr_len;
788 }
789
790 /* Update the route and saddr entries for all the transports
791 * as some of the addresses in the bind address list are
792 * about to be deleted and cannot be used as source addresses.
793 */
794 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
795 transports) {
796 dst_release(transport->dst);
797 sctp_transport_route(transport, NULL,
798 sctp_sk(asoc->base.sk));
799 }
800
801 retval = sctp_send_asconf(asoc, chunk);
802 }
803 out:
804 return retval;
805 }
806
807 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
808 *
809 * API 8.1
810 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
811 * int flags);
812 *
813 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
814 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
815 * or IPv6 addresses.
816 *
817 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
818 * Section 3.1.2 for this usage.
819 *
820 * addrs is a pointer to an array of one or more socket addresses. Each
821 * address is contained in its appropriate structure (i.e. struct
822 * sockaddr_in or struct sockaddr_in6) the family of the address type
823 * must be used to distinguish the address length (note that this
824 * representation is termed a "packed array" of addresses). The caller
825 * specifies the number of addresses in the array with addrcnt.
826 *
827 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
828 * -1, and sets errno to the appropriate error code.
829 *
830 * For SCTP, the port given in each socket address must be the same, or
831 * sctp_bindx() will fail, setting errno to EINVAL.
832 *
833 * The flags parameter is formed from the bitwise OR of zero or more of
834 * the following currently defined flags:
835 *
836 * SCTP_BINDX_ADD_ADDR
837 *
838 * SCTP_BINDX_REM_ADDR
839 *
840 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
841 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
842 * addresses from the association. The two flags are mutually exclusive;
843 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
844 * not remove all addresses from an association; sctp_bindx() will
845 * reject such an attempt with EINVAL.
846 *
847 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
848 * additional addresses with an endpoint after calling bind(). Or use
849 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
850 * socket is associated with so that no new association accepted will be
851 * associated with those addresses. If the endpoint supports dynamic
852 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
853 * endpoint to send the appropriate message to the peer to change the
854 * peers address lists.
855 *
856 * Adding and removing addresses from a connected association is
857 * optional functionality. Implementations that do not support this
858 * functionality should return EOPNOTSUPP.
859 *
860 * Basically do nothing but copying the addresses from user to kernel
861 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
862 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
863 * from userspace.
864 *
865 * We don't use copy_from_user() for optimization: we first do the
866 * sanity checks (buffer size -fast- and access check-healthy
867 * pointer); if all of those succeed, then we can alloc the memory
868 * (expensive operation) needed to copy the data to kernel. Then we do
869 * the copying without checking the user space area
870 * (__copy_from_user()).
871 *
872 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
873 * it.
874 *
875 * sk The sk of the socket
876 * addrs The pointer to the addresses in user land
877 * addrssize Size of the addrs buffer
878 * op Operation to perform (add or remove, see the flags of
879 * sctp_bindx)
880 *
881 * Returns 0 if ok, <0 errno code on error.
882 */
883 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
884 struct sockaddr __user *addrs,
885 int addrs_size, int op)
886 {
887 struct sockaddr *kaddrs;
888 int err;
889 int addrcnt = 0;
890 int walk_size = 0;
891 struct sockaddr *sa_addr;
892 void *addr_buf;
893 struct sctp_af *af;
894
895 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
896 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
897
898 if (unlikely(addrs_size <= 0))
899 return -EINVAL;
900
901 /* Check the user passed a healthy pointer. */
902 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
903 return -EFAULT;
904
905 /* Alloc space for the address array in kernel memory. */
906 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
907 if (unlikely(!kaddrs))
908 return -ENOMEM;
909
910 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
911 kfree(kaddrs);
912 return -EFAULT;
913 }
914
915 /* Walk through the addrs buffer and count the number of addresses. */
916 addr_buf = kaddrs;
917 while (walk_size < addrs_size) {
918 sa_addr = (struct sockaddr *)addr_buf;
919 af = sctp_get_af_specific(sa_addr->sa_family);
920
921 /* If the address family is not supported or if this address
922 * causes the address buffer to overflow return EINVAL.
923 */
924 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
925 kfree(kaddrs);
926 return -EINVAL;
927 }
928 addrcnt++;
929 addr_buf += af->sockaddr_len;
930 walk_size += af->sockaddr_len;
931 }
932
933 /* Do the work. */
934 switch (op) {
935 case SCTP_BINDX_ADD_ADDR:
936 err = sctp_bindx_add(sk, kaddrs, addrcnt);
937 if (err)
938 goto out;
939 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
940 break;
941
942 case SCTP_BINDX_REM_ADDR:
943 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
944 if (err)
945 goto out;
946 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
947 break;
948
949 default:
950 err = -EINVAL;
951 break;
952 }
953
954 out:
955 kfree(kaddrs);
956
957 return err;
958 }
959
960 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
961 *
962 * Common routine for handling connect() and sctp_connectx().
963 * Connect will come in with just a single address.
964 */
965 static int __sctp_connect(struct sock* sk,
966 struct sockaddr *kaddrs,
967 int addrs_size,
968 sctp_assoc_t *assoc_id)
969 {
970 struct sctp_sock *sp;
971 struct sctp_endpoint *ep;
972 struct sctp_association *asoc = NULL;
973 struct sctp_association *asoc2;
974 struct sctp_transport *transport;
975 union sctp_addr to;
976 struct sctp_af *af;
977 sctp_scope_t scope;
978 long timeo;
979 int err = 0;
980 int addrcnt = 0;
981 int walk_size = 0;
982 union sctp_addr *sa_addr = NULL;
983 void *addr_buf;
984 unsigned short port;
985 unsigned int f_flags = 0;
986
987 sp = sctp_sk(sk);
988 ep = sp->ep;
989
990 /* connect() cannot be done on a socket that is already in ESTABLISHED
991 * state - UDP-style peeled off socket or a TCP-style socket that
992 * is already connected.
993 * It cannot be done even on a TCP-style listening socket.
994 */
995 if (sctp_sstate(sk, ESTABLISHED) ||
996 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
997 err = -EISCONN;
998 goto out_free;
999 }
1000
1001 /* Walk through the addrs buffer and count the number of addresses. */
1002 addr_buf = kaddrs;
1003 while (walk_size < addrs_size) {
1004 sa_addr = (union sctp_addr *)addr_buf;
1005 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1006 port = ntohs(sa_addr->v4.sin_port);
1007
1008 /* If the address family is not supported or if this address
1009 * causes the address buffer to overflow return EINVAL.
1010 */
1011 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1012 err = -EINVAL;
1013 goto out_free;
1014 }
1015
1016 /* Save current address so we can work with it */
1017 memcpy(&to, sa_addr, af->sockaddr_len);
1018
1019 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1020 if (err)
1021 goto out_free;
1022
1023 /* Make sure the destination port is correctly set
1024 * in all addresses.
1025 */
1026 if (asoc && asoc->peer.port && asoc->peer.port != port)
1027 goto out_free;
1028
1029
1030 /* Check if there already is a matching association on the
1031 * endpoint (other than the one created here).
1032 */
1033 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1034 if (asoc2 && asoc2 != asoc) {
1035 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1036 err = -EISCONN;
1037 else
1038 err = -EALREADY;
1039 goto out_free;
1040 }
1041
1042 /* If we could not find a matching association on the endpoint,
1043 * make sure that there is no peeled-off association matching
1044 * the peer address even on another socket.
1045 */
1046 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1047 err = -EADDRNOTAVAIL;
1048 goto out_free;
1049 }
1050
1051 if (!asoc) {
1052 /* If a bind() or sctp_bindx() is not called prior to
1053 * an sctp_connectx() call, the system picks an
1054 * ephemeral port and will choose an address set
1055 * equivalent to binding with a wildcard address.
1056 */
1057 if (!ep->base.bind_addr.port) {
1058 if (sctp_autobind(sk)) {
1059 err = -EAGAIN;
1060 goto out_free;
1061 }
1062 } else {
1063 /*
1064 * If an unprivileged user inherits a 1-many
1065 * style socket with open associations on a
1066 * privileged port, it MAY be permitted to
1067 * accept new associations, but it SHOULD NOT
1068 * be permitted to open new associations.
1069 */
1070 if (ep->base.bind_addr.port < PROT_SOCK &&
1071 !capable(CAP_NET_BIND_SERVICE)) {
1072 err = -EACCES;
1073 goto out_free;
1074 }
1075 }
1076
1077 scope = sctp_scope(&to);
1078 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1079 if (!asoc) {
1080 err = -ENOMEM;
1081 goto out_free;
1082 }
1083
1084 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1085 GFP_KERNEL);
1086 if (err < 0) {
1087 goto out_free;
1088 }
1089
1090 }
1091
1092 /* Prime the peer's transport structures. */
1093 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1094 SCTP_UNKNOWN);
1095 if (!transport) {
1096 err = -ENOMEM;
1097 goto out_free;
1098 }
1099
1100 addrcnt++;
1101 addr_buf += af->sockaddr_len;
1102 walk_size += af->sockaddr_len;
1103 }
1104
1105 /* In case the user of sctp_connectx() wants an association
1106 * id back, assign one now.
1107 */
1108 if (assoc_id) {
1109 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1110 if (err < 0)
1111 goto out_free;
1112 }
1113
1114 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1115 if (err < 0) {
1116 goto out_free;
1117 }
1118
1119 /* Initialize sk's dport and daddr for getpeername() */
1120 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1121 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1122 af->to_sk_daddr(sa_addr, sk);
1123 sk->sk_err = 0;
1124
1125 /* in-kernel sockets don't generally have a file allocated to them
1126 * if all they do is call sock_create_kern().
1127 */
1128 if (sk->sk_socket->file)
1129 f_flags = sk->sk_socket->file->f_flags;
1130
1131 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1132
1133 err = sctp_wait_for_connect(asoc, &timeo);
1134 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1135 *assoc_id = asoc->assoc_id;
1136
1137 /* Don't free association on exit. */
1138 asoc = NULL;
1139
1140 out_free:
1141
1142 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1143 " kaddrs: %p err: %d\n",
1144 asoc, kaddrs, err);
1145 if (asoc)
1146 sctp_association_free(asoc);
1147 return err;
1148 }
1149
1150 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1151 *
1152 * API 8.9
1153 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1154 * sctp_assoc_t *asoc);
1155 *
1156 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1157 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1158 * or IPv6 addresses.
1159 *
1160 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1161 * Section 3.1.2 for this usage.
1162 *
1163 * addrs is a pointer to an array of one or more socket addresses. Each
1164 * address is contained in its appropriate structure (i.e. struct
1165 * sockaddr_in or struct sockaddr_in6) the family of the address type
1166 * must be used to distengish the address length (note that this
1167 * representation is termed a "packed array" of addresses). The caller
1168 * specifies the number of addresses in the array with addrcnt.
1169 *
1170 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1171 * the association id of the new association. On failure, sctp_connectx()
1172 * returns -1, and sets errno to the appropriate error code. The assoc_id
1173 * is not touched by the kernel.
1174 *
1175 * For SCTP, the port given in each socket address must be the same, or
1176 * sctp_connectx() will fail, setting errno to EINVAL.
1177 *
1178 * An application can use sctp_connectx to initiate an association with
1179 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1180 * allows a caller to specify multiple addresses at which a peer can be
1181 * reached. The way the SCTP stack uses the list of addresses to set up
1182 * the association is implementation dependant. This function only
1183 * specifies that the stack will try to make use of all the addresses in
1184 * the list when needed.
1185 *
1186 * Note that the list of addresses passed in is only used for setting up
1187 * the association. It does not necessarily equal the set of addresses
1188 * the peer uses for the resulting association. If the caller wants to
1189 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1190 * retrieve them after the association has been set up.
1191 *
1192 * Basically do nothing but copying the addresses from user to kernel
1193 * land and invoking either sctp_connectx(). This is used for tunneling
1194 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1195 *
1196 * We don't use copy_from_user() for optimization: we first do the
1197 * sanity checks (buffer size -fast- and access check-healthy
1198 * pointer); if all of those succeed, then we can alloc the memory
1199 * (expensive operation) needed to copy the data to kernel. Then we do
1200 * the copying without checking the user space area
1201 * (__copy_from_user()).
1202 *
1203 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1204 * it.
1205 *
1206 * sk The sk of the socket
1207 * addrs The pointer to the addresses in user land
1208 * addrssize Size of the addrs buffer
1209 *
1210 * Returns >=0 if ok, <0 errno code on error.
1211 */
1212 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1213 struct sockaddr __user *addrs,
1214 int addrs_size,
1215 sctp_assoc_t *assoc_id)
1216 {
1217 int err = 0;
1218 struct sockaddr *kaddrs;
1219
1220 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1221 __func__, sk, addrs, addrs_size);
1222
1223 if (unlikely(addrs_size <= 0))
1224 return -EINVAL;
1225
1226 /* Check the user passed a healthy pointer. */
1227 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1228 return -EFAULT;
1229
1230 /* Alloc space for the address array in kernel memory. */
1231 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1232 if (unlikely(!kaddrs))
1233 return -ENOMEM;
1234
1235 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1236 err = -EFAULT;
1237 } else {
1238 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1239 }
1240
1241 kfree(kaddrs);
1242
1243 return err;
1244 }
1245
1246 /*
1247 * This is an older interface. It's kept for backward compatibility
1248 * to the option that doesn't provide association id.
1249 */
1250 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1251 struct sockaddr __user *addrs,
1252 int addrs_size)
1253 {
1254 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1255 }
1256
1257 /*
1258 * New interface for the API. The since the API is done with a socket
1259 * option, to make it simple we feed back the association id is as a return
1260 * indication to the call. Error is always negative and association id is
1261 * always positive.
1262 */
1263 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1264 struct sockaddr __user *addrs,
1265 int addrs_size)
1266 {
1267 sctp_assoc_t assoc_id = 0;
1268 int err = 0;
1269
1270 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1271
1272 if (err)
1273 return err;
1274 else
1275 return assoc_id;
1276 }
1277
1278 /*
1279 * New (hopefully final) interface for the API.
1280 * We use the sctp_getaddrs_old structure so that use-space library
1281 * can avoid any unnecessary allocations. The only defferent part
1282 * is that we store the actual length of the address buffer into the
1283 * addrs_num structure member. That way we can re-use the existing
1284 * code.
1285 */
1286 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1287 char __user *optval,
1288 int __user *optlen)
1289 {
1290 struct sctp_getaddrs_old param;
1291 sctp_assoc_t assoc_id = 0;
1292 int err = 0;
1293
1294 if (len < sizeof(param))
1295 return -EINVAL;
1296
1297 if (copy_from_user(&param, optval, sizeof(param)))
1298 return -EFAULT;
1299
1300 err = __sctp_setsockopt_connectx(sk,
1301 (struct sockaddr __user *)param.addrs,
1302 param.addr_num, &assoc_id);
1303
1304 if (err == 0 || err == -EINPROGRESS) {
1305 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1306 return -EFAULT;
1307 if (put_user(sizeof(assoc_id), optlen))
1308 return -EFAULT;
1309 }
1310
1311 return err;
1312 }
1313
1314 /* API 3.1.4 close() - UDP Style Syntax
1315 * Applications use close() to perform graceful shutdown (as described in
1316 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1317 * by a UDP-style socket.
1318 *
1319 * The syntax is
1320 *
1321 * ret = close(int sd);
1322 *
1323 * sd - the socket descriptor of the associations to be closed.
1324 *
1325 * To gracefully shutdown a specific association represented by the
1326 * UDP-style socket, an application should use the sendmsg() call,
1327 * passing no user data, but including the appropriate flag in the
1328 * ancillary data (see Section xxxx).
1329 *
1330 * If sd in the close() call is a branched-off socket representing only
1331 * one association, the shutdown is performed on that association only.
1332 *
1333 * 4.1.6 close() - TCP Style Syntax
1334 *
1335 * Applications use close() to gracefully close down an association.
1336 *
1337 * The syntax is:
1338 *
1339 * int close(int sd);
1340 *
1341 * sd - the socket descriptor of the association to be closed.
1342 *
1343 * After an application calls close() on a socket descriptor, no further
1344 * socket operations will succeed on that descriptor.
1345 *
1346 * API 7.1.4 SO_LINGER
1347 *
1348 * An application using the TCP-style socket can use this option to
1349 * perform the SCTP ABORT primitive. The linger option structure is:
1350 *
1351 * struct linger {
1352 * int l_onoff; // option on/off
1353 * int l_linger; // linger time
1354 * };
1355 *
1356 * To enable the option, set l_onoff to 1. If the l_linger value is set
1357 * to 0, calling close() is the same as the ABORT primitive. If the
1358 * value is set to a negative value, the setsockopt() call will return
1359 * an error. If the value is set to a positive value linger_time, the
1360 * close() can be blocked for at most linger_time ms. If the graceful
1361 * shutdown phase does not finish during this period, close() will
1362 * return but the graceful shutdown phase continues in the system.
1363 */
1364 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1365 {
1366 struct sctp_endpoint *ep;
1367 struct sctp_association *asoc;
1368 struct list_head *pos, *temp;
1369
1370 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1371
1372 sctp_lock_sock(sk);
1373 sk->sk_shutdown = SHUTDOWN_MASK;
1374 sk->sk_state = SCTP_SS_CLOSING;
1375
1376 ep = sctp_sk(sk)->ep;
1377
1378 /* Walk all associations on an endpoint. */
1379 list_for_each_safe(pos, temp, &ep->asocs) {
1380 asoc = list_entry(pos, struct sctp_association, asocs);
1381
1382 if (sctp_style(sk, TCP)) {
1383 /* A closed association can still be in the list if
1384 * it belongs to a TCP-style listening socket that is
1385 * not yet accepted. If so, free it. If not, send an
1386 * ABORT or SHUTDOWN based on the linger options.
1387 */
1388 if (sctp_state(asoc, CLOSED)) {
1389 sctp_unhash_established(asoc);
1390 sctp_association_free(asoc);
1391 continue;
1392 }
1393 }
1394
1395 if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1396 struct sctp_chunk *chunk;
1397
1398 chunk = sctp_make_abort_user(asoc, NULL, 0);
1399 if (chunk)
1400 sctp_primitive_ABORT(asoc, chunk);
1401 } else
1402 sctp_primitive_SHUTDOWN(asoc, NULL);
1403 }
1404
1405 /* Clean up any skbs sitting on the receive queue. */
1406 sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1407 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1408
1409 /* On a TCP-style socket, block for at most linger_time if set. */
1410 if (sctp_style(sk, TCP) && timeout)
1411 sctp_wait_for_close(sk, timeout);
1412
1413 /* This will run the backlog queue. */
1414 sctp_release_sock(sk);
1415
1416 /* Supposedly, no process has access to the socket, but
1417 * the net layers still may.
1418 */
1419 sctp_local_bh_disable();
1420 sctp_bh_lock_sock(sk);
1421
1422 /* Hold the sock, since sk_common_release() will put sock_put()
1423 * and we have just a little more cleanup.
1424 */
1425 sock_hold(sk);
1426 sk_common_release(sk);
1427
1428 sctp_bh_unlock_sock(sk);
1429 sctp_local_bh_enable();
1430
1431 sock_put(sk);
1432
1433 SCTP_DBG_OBJCNT_DEC(sock);
1434 }
1435
1436 /* Handle EPIPE error. */
1437 static int sctp_error(struct sock *sk, int flags, int err)
1438 {
1439 if (err == -EPIPE)
1440 err = sock_error(sk) ? : -EPIPE;
1441 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1442 send_sig(SIGPIPE, current, 0);
1443 return err;
1444 }
1445
1446 /* API 3.1.3 sendmsg() - UDP Style Syntax
1447 *
1448 * An application uses sendmsg() and recvmsg() calls to transmit data to
1449 * and receive data from its peer.
1450 *
1451 * ssize_t sendmsg(int socket, const struct msghdr *message,
1452 * int flags);
1453 *
1454 * socket - the socket descriptor of the endpoint.
1455 * message - pointer to the msghdr structure which contains a single
1456 * user message and possibly some ancillary data.
1457 *
1458 * See Section 5 for complete description of the data
1459 * structures.
1460 *
1461 * flags - flags sent or received with the user message, see Section
1462 * 5 for complete description of the flags.
1463 *
1464 * Note: This function could use a rewrite especially when explicit
1465 * connect support comes in.
1466 */
1467 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1468
1469 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1470
1471 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1472 struct msghdr *msg, size_t msg_len)
1473 {
1474 struct sctp_sock *sp;
1475 struct sctp_endpoint *ep;
1476 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1477 struct sctp_transport *transport, *chunk_tp;
1478 struct sctp_chunk *chunk;
1479 union sctp_addr to;
1480 struct sockaddr *msg_name = NULL;
1481 struct sctp_sndrcvinfo default_sinfo = { 0 };
1482 struct sctp_sndrcvinfo *sinfo;
1483 struct sctp_initmsg *sinit;
1484 sctp_assoc_t associd = 0;
1485 sctp_cmsgs_t cmsgs = { NULL };
1486 int err;
1487 sctp_scope_t scope;
1488 long timeo;
1489 __u16 sinfo_flags = 0;
1490 struct sctp_datamsg *datamsg;
1491 int msg_flags = msg->msg_flags;
1492
1493 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1494 sk, msg, msg_len);
1495
1496 err = 0;
1497 sp = sctp_sk(sk);
1498 ep = sp->ep;
1499
1500 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1501
1502 /* We cannot send a message over a TCP-style listening socket. */
1503 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1504 err = -EPIPE;
1505 goto out_nounlock;
1506 }
1507
1508 /* Parse out the SCTP CMSGs. */
1509 err = sctp_msghdr_parse(msg, &cmsgs);
1510
1511 if (err) {
1512 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1513 goto out_nounlock;
1514 }
1515
1516 /* Fetch the destination address for this packet. This
1517 * address only selects the association--it is not necessarily
1518 * the address we will send to.
1519 * For a peeled-off socket, msg_name is ignored.
1520 */
1521 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1522 int msg_namelen = msg->msg_namelen;
1523
1524 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1525 msg_namelen);
1526 if (err)
1527 return err;
1528
1529 if (msg_namelen > sizeof(to))
1530 msg_namelen = sizeof(to);
1531 memcpy(&to, msg->msg_name, msg_namelen);
1532 msg_name = msg->msg_name;
1533 }
1534
1535 sinfo = cmsgs.info;
1536 sinit = cmsgs.init;
1537
1538 /* Did the user specify SNDRCVINFO? */
1539 if (sinfo) {
1540 sinfo_flags = sinfo->sinfo_flags;
1541 associd = sinfo->sinfo_assoc_id;
1542 }
1543
1544 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1545 msg_len, sinfo_flags);
1546
1547 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1548 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1549 err = -EINVAL;
1550 goto out_nounlock;
1551 }
1552
1553 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1554 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1555 * If SCTP_ABORT is set, the message length could be non zero with
1556 * the msg_iov set to the user abort reason.
1557 */
1558 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1559 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1560 err = -EINVAL;
1561 goto out_nounlock;
1562 }
1563
1564 /* If SCTP_ADDR_OVER is set, there must be an address
1565 * specified in msg_name.
1566 */
1567 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1568 err = -EINVAL;
1569 goto out_nounlock;
1570 }
1571
1572 transport = NULL;
1573
1574 SCTP_DEBUG_PRINTK("About to look up association.\n");
1575
1576 sctp_lock_sock(sk);
1577
1578 /* If a msg_name has been specified, assume this is to be used. */
1579 if (msg_name) {
1580 /* Look for a matching association on the endpoint. */
1581 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1582 if (!asoc) {
1583 /* If we could not find a matching association on the
1584 * endpoint, make sure that it is not a TCP-style
1585 * socket that already has an association or there is
1586 * no peeled-off association on another socket.
1587 */
1588 if ((sctp_style(sk, TCP) &&
1589 sctp_sstate(sk, ESTABLISHED)) ||
1590 sctp_endpoint_is_peeled_off(ep, &to)) {
1591 err = -EADDRNOTAVAIL;
1592 goto out_unlock;
1593 }
1594 }
1595 } else {
1596 asoc = sctp_id2assoc(sk, associd);
1597 if (!asoc) {
1598 err = -EPIPE;
1599 goto out_unlock;
1600 }
1601 }
1602
1603 if (asoc) {
1604 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1605
1606 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1607 * socket that has an association in CLOSED state. This can
1608 * happen when an accepted socket has an association that is
1609 * already CLOSED.
1610 */
1611 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1612 err = -EPIPE;
1613 goto out_unlock;
1614 }
1615
1616 if (sinfo_flags & SCTP_EOF) {
1617 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1618 asoc);
1619 sctp_primitive_SHUTDOWN(asoc, NULL);
1620 err = 0;
1621 goto out_unlock;
1622 }
1623 if (sinfo_flags & SCTP_ABORT) {
1624
1625 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1626 if (!chunk) {
1627 err = -ENOMEM;
1628 goto out_unlock;
1629 }
1630
1631 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1632 sctp_primitive_ABORT(asoc, chunk);
1633 err = 0;
1634 goto out_unlock;
1635 }
1636 }
1637
1638 /* Do we need to create the association? */
1639 if (!asoc) {
1640 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1641
1642 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1643 err = -EINVAL;
1644 goto out_unlock;
1645 }
1646
1647 /* Check for invalid stream against the stream counts,
1648 * either the default or the user specified stream counts.
1649 */
1650 if (sinfo) {
1651 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1652 /* Check against the defaults. */
1653 if (sinfo->sinfo_stream >=
1654 sp->initmsg.sinit_num_ostreams) {
1655 err = -EINVAL;
1656 goto out_unlock;
1657 }
1658 } else {
1659 /* Check against the requested. */
1660 if (sinfo->sinfo_stream >=
1661 sinit->sinit_num_ostreams) {
1662 err = -EINVAL;
1663 goto out_unlock;
1664 }
1665 }
1666 }
1667
1668 /*
1669 * API 3.1.2 bind() - UDP Style Syntax
1670 * If a bind() or sctp_bindx() is not called prior to a
1671 * sendmsg() call that initiates a new association, the
1672 * system picks an ephemeral port and will choose an address
1673 * set equivalent to binding with a wildcard address.
1674 */
1675 if (!ep->base.bind_addr.port) {
1676 if (sctp_autobind(sk)) {
1677 err = -EAGAIN;
1678 goto out_unlock;
1679 }
1680 } else {
1681 /*
1682 * If an unprivileged user inherits a one-to-many
1683 * style socket with open associations on a privileged
1684 * port, it MAY be permitted to accept new associations,
1685 * but it SHOULD NOT be permitted to open new
1686 * associations.
1687 */
1688 if (ep->base.bind_addr.port < PROT_SOCK &&
1689 !capable(CAP_NET_BIND_SERVICE)) {
1690 err = -EACCES;
1691 goto out_unlock;
1692 }
1693 }
1694
1695 scope = sctp_scope(&to);
1696 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1697 if (!new_asoc) {
1698 err = -ENOMEM;
1699 goto out_unlock;
1700 }
1701 asoc = new_asoc;
1702 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1703 if (err < 0) {
1704 err = -ENOMEM;
1705 goto out_free;
1706 }
1707
1708 /* If the SCTP_INIT ancillary data is specified, set all
1709 * the association init values accordingly.
1710 */
1711 if (sinit) {
1712 if (sinit->sinit_num_ostreams) {
1713 asoc->c.sinit_num_ostreams =
1714 sinit->sinit_num_ostreams;
1715 }
1716 if (sinit->sinit_max_instreams) {
1717 asoc->c.sinit_max_instreams =
1718 sinit->sinit_max_instreams;
1719 }
1720 if (sinit->sinit_max_attempts) {
1721 asoc->max_init_attempts
1722 = sinit->sinit_max_attempts;
1723 }
1724 if (sinit->sinit_max_init_timeo) {
1725 asoc->max_init_timeo =
1726 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1727 }
1728 }
1729
1730 /* Prime the peer's transport structures. */
1731 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1732 if (!transport) {
1733 err = -ENOMEM;
1734 goto out_free;
1735 }
1736 }
1737
1738 /* ASSERT: we have a valid association at this point. */
1739 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1740
1741 if (!sinfo) {
1742 /* If the user didn't specify SNDRCVINFO, make up one with
1743 * some defaults.
1744 */
1745 default_sinfo.sinfo_stream = asoc->default_stream;
1746 default_sinfo.sinfo_flags = asoc->default_flags;
1747 default_sinfo.sinfo_ppid = asoc->default_ppid;
1748 default_sinfo.sinfo_context = asoc->default_context;
1749 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1750 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1751 sinfo = &default_sinfo;
1752 }
1753
1754 /* API 7.1.7, the sndbuf size per association bounds the
1755 * maximum size of data that can be sent in a single send call.
1756 */
1757 if (msg_len > sk->sk_sndbuf) {
1758 err = -EMSGSIZE;
1759 goto out_free;
1760 }
1761
1762 if (asoc->pmtu_pending)
1763 sctp_assoc_pending_pmtu(asoc);
1764
1765 /* If fragmentation is disabled and the message length exceeds the
1766 * association fragmentation point, return EMSGSIZE. The I-D
1767 * does not specify what this error is, but this looks like
1768 * a great fit.
1769 */
1770 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1771 err = -EMSGSIZE;
1772 goto out_free;
1773 }
1774
1775 if (sinfo) {
1776 /* Check for invalid stream. */
1777 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1778 err = -EINVAL;
1779 goto out_free;
1780 }
1781 }
1782
1783 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1784 if (!sctp_wspace(asoc)) {
1785 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1786 if (err)
1787 goto out_free;
1788 }
1789
1790 /* If an address is passed with the sendto/sendmsg call, it is used
1791 * to override the primary destination address in the TCP model, or
1792 * when SCTP_ADDR_OVER flag is set in the UDP model.
1793 */
1794 if ((sctp_style(sk, TCP) && msg_name) ||
1795 (sinfo_flags & SCTP_ADDR_OVER)) {
1796 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1797 if (!chunk_tp) {
1798 err = -EINVAL;
1799 goto out_free;
1800 }
1801 } else
1802 chunk_tp = NULL;
1803
1804 /* Auto-connect, if we aren't connected already. */
1805 if (sctp_state(asoc, CLOSED)) {
1806 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1807 if (err < 0)
1808 goto out_free;
1809 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1810 }
1811
1812 /* Break the message into multiple chunks of maximum size. */
1813 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1814 if (!datamsg) {
1815 err = -ENOMEM;
1816 goto out_free;
1817 }
1818
1819 /* Now send the (possibly) fragmented message. */
1820 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1821 sctp_chunk_hold(chunk);
1822
1823 /* Do accounting for the write space. */
1824 sctp_set_owner_w(chunk);
1825
1826 chunk->transport = chunk_tp;
1827 }
1828
1829 /* Send it to the lower layers. Note: all chunks
1830 * must either fail or succeed. The lower layer
1831 * works that way today. Keep it that way or this
1832 * breaks.
1833 */
1834 err = sctp_primitive_SEND(asoc, datamsg);
1835 /* Did the lower layer accept the chunk? */
1836 if (err)
1837 sctp_datamsg_free(datamsg);
1838 else
1839 sctp_datamsg_put(datamsg);
1840
1841 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1842
1843 if (err)
1844 goto out_free;
1845 else
1846 err = msg_len;
1847
1848 /* If we are already past ASSOCIATE, the lower
1849 * layers are responsible for association cleanup.
1850 */
1851 goto out_unlock;
1852
1853 out_free:
1854 if (new_asoc)
1855 sctp_association_free(asoc);
1856 out_unlock:
1857 sctp_release_sock(sk);
1858
1859 out_nounlock:
1860 return sctp_error(sk, msg_flags, err);
1861
1862 #if 0
1863 do_sock_err:
1864 if (msg_len)
1865 err = msg_len;
1866 else
1867 err = sock_error(sk);
1868 goto out;
1869
1870 do_interrupted:
1871 if (msg_len)
1872 err = msg_len;
1873 goto out;
1874 #endif /* 0 */
1875 }
1876
1877 /* This is an extended version of skb_pull() that removes the data from the
1878 * start of a skb even when data is spread across the list of skb's in the
1879 * frag_list. len specifies the total amount of data that needs to be removed.
1880 * when 'len' bytes could be removed from the skb, it returns 0.
1881 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1882 * could not be removed.
1883 */
1884 static int sctp_skb_pull(struct sk_buff *skb, int len)
1885 {
1886 struct sk_buff *list;
1887 int skb_len = skb_headlen(skb);
1888 int rlen;
1889
1890 if (len <= skb_len) {
1891 __skb_pull(skb, len);
1892 return 0;
1893 }
1894 len -= skb_len;
1895 __skb_pull(skb, skb_len);
1896
1897 skb_walk_frags(skb, list) {
1898 rlen = sctp_skb_pull(list, len);
1899 skb->len -= (len-rlen);
1900 skb->data_len -= (len-rlen);
1901
1902 if (!rlen)
1903 return 0;
1904
1905 len = rlen;
1906 }
1907
1908 return len;
1909 }
1910
1911 /* API 3.1.3 recvmsg() - UDP Style Syntax
1912 *
1913 * ssize_t recvmsg(int socket, struct msghdr *message,
1914 * int flags);
1915 *
1916 * socket - the socket descriptor of the endpoint.
1917 * message - pointer to the msghdr structure which contains a single
1918 * user message and possibly some ancillary data.
1919 *
1920 * See Section 5 for complete description of the data
1921 * structures.
1922 *
1923 * flags - flags sent or received with the user message, see Section
1924 * 5 for complete description of the flags.
1925 */
1926 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1927
1928 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1929 struct msghdr *msg, size_t len, int noblock,
1930 int flags, int *addr_len)
1931 {
1932 struct sctp_ulpevent *event = NULL;
1933 struct sctp_sock *sp = sctp_sk(sk);
1934 struct sk_buff *skb;
1935 int copied;
1936 int err = 0;
1937 int skb_len;
1938
1939 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1940 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1941 "len", len, "knoblauch", noblock,
1942 "flags", flags, "addr_len", addr_len);
1943
1944 sctp_lock_sock(sk);
1945
1946 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1947 err = -ENOTCONN;
1948 goto out;
1949 }
1950
1951 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1952 if (!skb)
1953 goto out;
1954
1955 /* Get the total length of the skb including any skb's in the
1956 * frag_list.
1957 */
1958 skb_len = skb->len;
1959
1960 copied = skb_len;
1961 if (copied > len)
1962 copied = len;
1963
1964 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1965
1966 event = sctp_skb2event(skb);
1967
1968 if (err)
1969 goto out_free;
1970
1971 sock_recv_ts_and_drops(msg, sk, skb);
1972 if (sctp_ulpevent_is_notification(event)) {
1973 msg->msg_flags |= MSG_NOTIFICATION;
1974 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1975 } else {
1976 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1977 }
1978
1979 /* Check if we allow SCTP_SNDRCVINFO. */
1980 if (sp->subscribe.sctp_data_io_event)
1981 sctp_ulpevent_read_sndrcvinfo(event, msg);
1982 #if 0
1983 /* FIXME: we should be calling IP/IPv6 layers. */
1984 if (sk->sk_protinfo.af_inet.cmsg_flags)
1985 ip_cmsg_recv(msg, skb);
1986 #endif
1987
1988 err = copied;
1989
1990 /* If skb's length exceeds the user's buffer, update the skb and
1991 * push it back to the receive_queue so that the next call to
1992 * recvmsg() will return the remaining data. Don't set MSG_EOR.
1993 */
1994 if (skb_len > copied) {
1995 msg->msg_flags &= ~MSG_EOR;
1996 if (flags & MSG_PEEK)
1997 goto out_free;
1998 sctp_skb_pull(skb, copied);
1999 skb_queue_head(&sk->sk_receive_queue, skb);
2000
2001 /* When only partial message is copied to the user, increase
2002 * rwnd by that amount. If all the data in the skb is read,
2003 * rwnd is updated when the event is freed.
2004 */
2005 if (!sctp_ulpevent_is_notification(event))
2006 sctp_assoc_rwnd_increase(event->asoc, copied);
2007 goto out;
2008 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2009 (event->msg_flags & MSG_EOR))
2010 msg->msg_flags |= MSG_EOR;
2011 else
2012 msg->msg_flags &= ~MSG_EOR;
2013
2014 out_free:
2015 if (flags & MSG_PEEK) {
2016 /* Release the skb reference acquired after peeking the skb in
2017 * sctp_skb_recv_datagram().
2018 */
2019 kfree_skb(skb);
2020 } else {
2021 /* Free the event which includes releasing the reference to
2022 * the owner of the skb, freeing the skb and updating the
2023 * rwnd.
2024 */
2025 sctp_ulpevent_free(event);
2026 }
2027 out:
2028 sctp_release_sock(sk);
2029 return err;
2030 }
2031
2032 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2033 *
2034 * This option is a on/off flag. If enabled no SCTP message
2035 * fragmentation will be performed. Instead if a message being sent
2036 * exceeds the current PMTU size, the message will NOT be sent and
2037 * instead a error will be indicated to the user.
2038 */
2039 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2040 char __user *optval,
2041 unsigned int optlen)
2042 {
2043 int val;
2044
2045 if (optlen < sizeof(int))
2046 return -EINVAL;
2047
2048 if (get_user(val, (int __user *)optval))
2049 return -EFAULT;
2050
2051 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2052
2053 return 0;
2054 }
2055
2056 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2057 unsigned int optlen)
2058 {
2059 if (optlen > sizeof(struct sctp_event_subscribe))
2060 return -EINVAL;
2061 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2062 return -EFAULT;
2063 return 0;
2064 }
2065
2066 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2067 *
2068 * This socket option is applicable to the UDP-style socket only. When
2069 * set it will cause associations that are idle for more than the
2070 * specified number of seconds to automatically close. An association
2071 * being idle is defined an association that has NOT sent or received
2072 * user data. The special value of '0' indicates that no automatic
2073 * close of any associations should be performed. The option expects an
2074 * integer defining the number of seconds of idle time before an
2075 * association is closed.
2076 */
2077 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2078 unsigned int optlen)
2079 {
2080 struct sctp_sock *sp = sctp_sk(sk);
2081
2082 /* Applicable to UDP-style socket only */
2083 if (sctp_style(sk, TCP))
2084 return -EOPNOTSUPP;
2085 if (optlen != sizeof(int))
2086 return -EINVAL;
2087 if (copy_from_user(&sp->autoclose, optval, optlen))
2088 return -EFAULT;
2089 /* make sure it won't exceed MAX_SCHEDULE_TIMEOUT */
2090 sp->autoclose = min_t(long, sp->autoclose, MAX_SCHEDULE_TIMEOUT / HZ);
2091
2092 return 0;
2093 }
2094
2095 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2096 *
2097 * Applications can enable or disable heartbeats for any peer address of
2098 * an association, modify an address's heartbeat interval, force a
2099 * heartbeat to be sent immediately, and adjust the address's maximum
2100 * number of retransmissions sent before an address is considered
2101 * unreachable. The following structure is used to access and modify an
2102 * address's parameters:
2103 *
2104 * struct sctp_paddrparams {
2105 * sctp_assoc_t spp_assoc_id;
2106 * struct sockaddr_storage spp_address;
2107 * uint32_t spp_hbinterval;
2108 * uint16_t spp_pathmaxrxt;
2109 * uint32_t spp_pathmtu;
2110 * uint32_t spp_sackdelay;
2111 * uint32_t spp_flags;
2112 * };
2113 *
2114 * spp_assoc_id - (one-to-many style socket) This is filled in the
2115 * application, and identifies the association for
2116 * this query.
2117 * spp_address - This specifies which address is of interest.
2118 * spp_hbinterval - This contains the value of the heartbeat interval,
2119 * in milliseconds. If a value of zero
2120 * is present in this field then no changes are to
2121 * be made to this parameter.
2122 * spp_pathmaxrxt - This contains the maximum number of
2123 * retransmissions before this address shall be
2124 * considered unreachable. If a value of zero
2125 * is present in this field then no changes are to
2126 * be made to this parameter.
2127 * spp_pathmtu - When Path MTU discovery is disabled the value
2128 * specified here will be the "fixed" path mtu.
2129 * Note that if the spp_address field is empty
2130 * then all associations on this address will
2131 * have this fixed path mtu set upon them.
2132 *
2133 * spp_sackdelay - When delayed sack is enabled, this value specifies
2134 * the number of milliseconds that sacks will be delayed
2135 * for. This value will apply to all addresses of an
2136 * association if the spp_address field is empty. Note
2137 * also, that if delayed sack is enabled and this
2138 * value is set to 0, no change is made to the last
2139 * recorded delayed sack timer value.
2140 *
2141 * spp_flags - These flags are used to control various features
2142 * on an association. The flag field may contain
2143 * zero or more of the following options.
2144 *
2145 * SPP_HB_ENABLE - Enable heartbeats on the
2146 * specified address. Note that if the address
2147 * field is empty all addresses for the association
2148 * have heartbeats enabled upon them.
2149 *
2150 * SPP_HB_DISABLE - Disable heartbeats on the
2151 * speicifed address. Note that if the address
2152 * field is empty all addresses for the association
2153 * will have their heartbeats disabled. Note also
2154 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2155 * mutually exclusive, only one of these two should
2156 * be specified. Enabling both fields will have
2157 * undetermined results.
2158 *
2159 * SPP_HB_DEMAND - Request a user initiated heartbeat
2160 * to be made immediately.
2161 *
2162 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2163 * heartbeat delayis to be set to the value of 0
2164 * milliseconds.
2165 *
2166 * SPP_PMTUD_ENABLE - This field will enable PMTU
2167 * discovery upon the specified address. Note that
2168 * if the address feild is empty then all addresses
2169 * on the association are effected.
2170 *
2171 * SPP_PMTUD_DISABLE - This field will disable PMTU
2172 * discovery upon the specified address. Note that
2173 * if the address feild is empty then all addresses
2174 * on the association are effected. Not also that
2175 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2176 * exclusive. Enabling both will have undetermined
2177 * results.
2178 *
2179 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2180 * on delayed sack. The time specified in spp_sackdelay
2181 * is used to specify the sack delay for this address. Note
2182 * that if spp_address is empty then all addresses will
2183 * enable delayed sack and take on the sack delay
2184 * value specified in spp_sackdelay.
2185 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2186 * off delayed sack. If the spp_address field is blank then
2187 * delayed sack is disabled for the entire association. Note
2188 * also that this field is mutually exclusive to
2189 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2190 * results.
2191 */
2192 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2193 struct sctp_transport *trans,
2194 struct sctp_association *asoc,
2195 struct sctp_sock *sp,
2196 int hb_change,
2197 int pmtud_change,
2198 int sackdelay_change)
2199 {
2200 int error;
2201
2202 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2203 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2204 if (error)
2205 return error;
2206 }
2207
2208 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2209 * this field is ignored. Note also that a value of zero indicates
2210 * the current setting should be left unchanged.
2211 */
2212 if (params->spp_flags & SPP_HB_ENABLE) {
2213
2214 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2215 * set. This lets us use 0 value when this flag
2216 * is set.
2217 */
2218 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2219 params->spp_hbinterval = 0;
2220
2221 if (params->spp_hbinterval ||
2222 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2223 if (trans) {
2224 trans->hbinterval =
2225 msecs_to_jiffies(params->spp_hbinterval);
2226 } else if (asoc) {
2227 asoc->hbinterval =
2228 msecs_to_jiffies(params->spp_hbinterval);
2229 } else {
2230 sp->hbinterval = params->spp_hbinterval;
2231 }
2232 }
2233 }
2234
2235 if (hb_change) {
2236 if (trans) {
2237 trans->param_flags =
2238 (trans->param_flags & ~SPP_HB) | hb_change;
2239 } else if (asoc) {
2240 asoc->param_flags =
2241 (asoc->param_flags & ~SPP_HB) | hb_change;
2242 } else {
2243 sp->param_flags =
2244 (sp->param_flags & ~SPP_HB) | hb_change;
2245 }
2246 }
2247
2248 /* When Path MTU discovery is disabled the value specified here will
2249 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2250 * include the flag SPP_PMTUD_DISABLE for this field to have any
2251 * effect).
2252 */
2253 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2254 if (trans) {
2255 trans->pathmtu = params->spp_pathmtu;
2256 sctp_assoc_sync_pmtu(asoc);
2257 } else if (asoc) {
2258 asoc->pathmtu = params->spp_pathmtu;
2259 sctp_frag_point(asoc, params->spp_pathmtu);
2260 } else {
2261 sp->pathmtu = params->spp_pathmtu;
2262 }
2263 }
2264
2265 if (pmtud_change) {
2266 if (trans) {
2267 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2268 (params->spp_flags & SPP_PMTUD_ENABLE);
2269 trans->param_flags =
2270 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2271 if (update) {
2272 sctp_transport_pmtu(trans);
2273 sctp_assoc_sync_pmtu(asoc);
2274 }
2275 } else if (asoc) {
2276 asoc->param_flags =
2277 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2278 } else {
2279 sp->param_flags =
2280 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2281 }
2282 }
2283
2284 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2285 * value of this field is ignored. Note also that a value of zero
2286 * indicates the current setting should be left unchanged.
2287 */
2288 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2289 if (trans) {
2290 trans->sackdelay =
2291 msecs_to_jiffies(params->spp_sackdelay);
2292 } else if (asoc) {
2293 asoc->sackdelay =
2294 msecs_to_jiffies(params->spp_sackdelay);
2295 } else {
2296 sp->sackdelay = params->spp_sackdelay;
2297 }
2298 }
2299
2300 if (sackdelay_change) {
2301 if (trans) {
2302 trans->param_flags =
2303 (trans->param_flags & ~SPP_SACKDELAY) |
2304 sackdelay_change;
2305 } else if (asoc) {
2306 asoc->param_flags =
2307 (asoc->param_flags & ~SPP_SACKDELAY) |
2308 sackdelay_change;
2309 } else {
2310 sp->param_flags =
2311 (sp->param_flags & ~SPP_SACKDELAY) |
2312 sackdelay_change;
2313 }
2314 }
2315
2316 /* Note that a value of zero indicates the current setting should be
2317 left unchanged.
2318 */
2319 if (params->spp_pathmaxrxt) {
2320 if (trans) {
2321 trans->pathmaxrxt = params->spp_pathmaxrxt;
2322 } else if (asoc) {
2323 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2324 } else {
2325 sp->pathmaxrxt = params->spp_pathmaxrxt;
2326 }
2327 }
2328
2329 return 0;
2330 }
2331
2332 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2333 char __user *optval,
2334 unsigned int optlen)
2335 {
2336 struct sctp_paddrparams params;
2337 struct sctp_transport *trans = NULL;
2338 struct sctp_association *asoc = NULL;
2339 struct sctp_sock *sp = sctp_sk(sk);
2340 int error;
2341 int hb_change, pmtud_change, sackdelay_change;
2342
2343 if (optlen != sizeof(struct sctp_paddrparams))
2344 return - EINVAL;
2345
2346 if (copy_from_user(&params, optval, optlen))
2347 return -EFAULT;
2348
2349 /* Validate flags and value parameters. */
2350 hb_change = params.spp_flags & SPP_HB;
2351 pmtud_change = params.spp_flags & SPP_PMTUD;
2352 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2353
2354 if (hb_change == SPP_HB ||
2355 pmtud_change == SPP_PMTUD ||
2356 sackdelay_change == SPP_SACKDELAY ||
2357 params.spp_sackdelay > 500 ||
2358 (params.spp_pathmtu &&
2359 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2360 return -EINVAL;
2361
2362 /* If an address other than INADDR_ANY is specified, and
2363 * no transport is found, then the request is invalid.
2364 */
2365 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2366 trans = sctp_addr_id2transport(sk, &params.spp_address,
2367 params.spp_assoc_id);
2368 if (!trans)
2369 return -EINVAL;
2370 }
2371
2372 /* Get association, if assoc_id != 0 and the socket is a one
2373 * to many style socket, and an association was not found, then
2374 * the id was invalid.
2375 */
2376 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2377 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2378 return -EINVAL;
2379
2380 /* Heartbeat demand can only be sent on a transport or
2381 * association, but not a socket.
2382 */
2383 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2384 return -EINVAL;
2385
2386 /* Process parameters. */
2387 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2388 hb_change, pmtud_change,
2389 sackdelay_change);
2390
2391 if (error)
2392 return error;
2393
2394 /* If changes are for association, also apply parameters to each
2395 * transport.
2396 */
2397 if (!trans && asoc) {
2398 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2399 transports) {
2400 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2401 hb_change, pmtud_change,
2402 sackdelay_change);
2403 }
2404 }
2405
2406 return 0;
2407 }
2408
2409 /*
2410 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2411 *
2412 * This option will effect the way delayed acks are performed. This
2413 * option allows you to get or set the delayed ack time, in
2414 * milliseconds. It also allows changing the delayed ack frequency.
2415 * Changing the frequency to 1 disables the delayed sack algorithm. If
2416 * the assoc_id is 0, then this sets or gets the endpoints default
2417 * values. If the assoc_id field is non-zero, then the set or get
2418 * effects the specified association for the one to many model (the
2419 * assoc_id field is ignored by the one to one model). Note that if
2420 * sack_delay or sack_freq are 0 when setting this option, then the
2421 * current values will remain unchanged.
2422 *
2423 * struct sctp_sack_info {
2424 * sctp_assoc_t sack_assoc_id;
2425 * uint32_t sack_delay;
2426 * uint32_t sack_freq;
2427 * };
2428 *
2429 * sack_assoc_id - This parameter, indicates which association the user
2430 * is performing an action upon. Note that if this field's value is
2431 * zero then the endpoints default value is changed (effecting future
2432 * associations only).
2433 *
2434 * sack_delay - This parameter contains the number of milliseconds that
2435 * the user is requesting the delayed ACK timer be set to. Note that
2436 * this value is defined in the standard to be between 200 and 500
2437 * milliseconds.
2438 *
2439 * sack_freq - This parameter contains the number of packets that must
2440 * be received before a sack is sent without waiting for the delay
2441 * timer to expire. The default value for this is 2, setting this
2442 * value to 1 will disable the delayed sack algorithm.
2443 */
2444
2445 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2446 char __user *optval, unsigned int optlen)
2447 {
2448 struct sctp_sack_info params;
2449 struct sctp_transport *trans = NULL;
2450 struct sctp_association *asoc = NULL;
2451 struct sctp_sock *sp = sctp_sk(sk);
2452
2453 if (optlen == sizeof(struct sctp_sack_info)) {
2454 if (copy_from_user(&params, optval, optlen))
2455 return -EFAULT;
2456
2457 if (params.sack_delay == 0 && params.sack_freq == 0)
2458 return 0;
2459 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2460 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value "
2461 "in delayed_ack socket option deprecated\n");
2462 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n");
2463 if (copy_from_user(&params, optval, optlen))
2464 return -EFAULT;
2465
2466 if (params.sack_delay == 0)
2467 params.sack_freq = 1;
2468 else
2469 params.sack_freq = 0;
2470 } else
2471 return - EINVAL;
2472
2473 /* Validate value parameter. */
2474 if (params.sack_delay > 500)
2475 return -EINVAL;
2476
2477 /* Get association, if sack_assoc_id != 0 and the socket is a one
2478 * to many style socket, and an association was not found, then
2479 * the id was invalid.
2480 */
2481 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2482 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2483 return -EINVAL;
2484
2485 if (params.sack_delay) {
2486 if (asoc) {
2487 asoc->sackdelay =
2488 msecs_to_jiffies(params.sack_delay);
2489 asoc->param_flags =
2490 (asoc->param_flags & ~SPP_SACKDELAY) |
2491 SPP_SACKDELAY_ENABLE;
2492 } else {
2493 sp->sackdelay = params.sack_delay;
2494 sp->param_flags =
2495 (sp->param_flags & ~SPP_SACKDELAY) |
2496 SPP_SACKDELAY_ENABLE;
2497 }
2498 }
2499
2500 if (params.sack_freq == 1) {
2501 if (asoc) {
2502 asoc->param_flags =
2503 (asoc->param_flags & ~SPP_SACKDELAY) |
2504 SPP_SACKDELAY_DISABLE;
2505 } else {
2506 sp->param_flags =
2507 (sp->param_flags & ~SPP_SACKDELAY) |
2508 SPP_SACKDELAY_DISABLE;
2509 }
2510 } else if (params.sack_freq > 1) {
2511 if (asoc) {
2512 asoc->sackfreq = params.sack_freq;
2513 asoc->param_flags =
2514 (asoc->param_flags & ~SPP_SACKDELAY) |
2515 SPP_SACKDELAY_ENABLE;
2516 } else {
2517 sp->sackfreq = params.sack_freq;
2518 sp->param_flags =
2519 (sp->param_flags & ~SPP_SACKDELAY) |
2520 SPP_SACKDELAY_ENABLE;
2521 }
2522 }
2523
2524 /* If change is for association, also apply to each transport. */
2525 if (asoc) {
2526 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2527 transports) {
2528 if (params.sack_delay) {
2529 trans->sackdelay =
2530 msecs_to_jiffies(params.sack_delay);
2531 trans->param_flags =
2532 (trans->param_flags & ~SPP_SACKDELAY) |
2533 SPP_SACKDELAY_ENABLE;
2534 }
2535 if (params.sack_freq == 1) {
2536 trans->param_flags =
2537 (trans->param_flags & ~SPP_SACKDELAY) |
2538 SPP_SACKDELAY_DISABLE;
2539 } else if (params.sack_freq > 1) {
2540 trans->sackfreq = params.sack_freq;
2541 trans->param_flags =
2542 (trans->param_flags & ~SPP_SACKDELAY) |
2543 SPP_SACKDELAY_ENABLE;
2544 }
2545 }
2546 }
2547
2548 return 0;
2549 }
2550
2551 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2552 *
2553 * Applications can specify protocol parameters for the default association
2554 * initialization. The option name argument to setsockopt() and getsockopt()
2555 * is SCTP_INITMSG.
2556 *
2557 * Setting initialization parameters is effective only on an unconnected
2558 * socket (for UDP-style sockets only future associations are effected
2559 * by the change). With TCP-style sockets, this option is inherited by
2560 * sockets derived from a listener socket.
2561 */
2562 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2563 {
2564 struct sctp_initmsg sinit;
2565 struct sctp_sock *sp = sctp_sk(sk);
2566
2567 if (optlen != sizeof(struct sctp_initmsg))
2568 return -EINVAL;
2569 if (copy_from_user(&sinit, optval, optlen))
2570 return -EFAULT;
2571
2572 if (sinit.sinit_num_ostreams)
2573 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2574 if (sinit.sinit_max_instreams)
2575 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2576 if (sinit.sinit_max_attempts)
2577 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2578 if (sinit.sinit_max_init_timeo)
2579 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2580
2581 return 0;
2582 }
2583
2584 /*
2585 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2586 *
2587 * Applications that wish to use the sendto() system call may wish to
2588 * specify a default set of parameters that would normally be supplied
2589 * through the inclusion of ancillary data. This socket option allows
2590 * such an application to set the default sctp_sndrcvinfo structure.
2591 * The application that wishes to use this socket option simply passes
2592 * in to this call the sctp_sndrcvinfo structure defined in Section
2593 * 5.2.2) The input parameters accepted by this call include
2594 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2595 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2596 * to this call if the caller is using the UDP model.
2597 */
2598 static int sctp_setsockopt_default_send_param(struct sock *sk,
2599 char __user *optval,
2600 unsigned int optlen)
2601 {
2602 struct sctp_sndrcvinfo info;
2603 struct sctp_association *asoc;
2604 struct sctp_sock *sp = sctp_sk(sk);
2605
2606 if (optlen != sizeof(struct sctp_sndrcvinfo))
2607 return -EINVAL;
2608 if (copy_from_user(&info, optval, optlen))
2609 return -EFAULT;
2610
2611 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2612 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2613 return -EINVAL;
2614
2615 if (asoc) {
2616 asoc->default_stream = info.sinfo_stream;
2617 asoc->default_flags = info.sinfo_flags;
2618 asoc->default_ppid = info.sinfo_ppid;
2619 asoc->default_context = info.sinfo_context;
2620 asoc->default_timetolive = info.sinfo_timetolive;
2621 } else {
2622 sp->default_stream = info.sinfo_stream;
2623 sp->default_flags = info.sinfo_flags;
2624 sp->default_ppid = info.sinfo_ppid;
2625 sp->default_context = info.sinfo_context;
2626 sp->default_timetolive = info.sinfo_timetolive;
2627 }
2628
2629 return 0;
2630 }
2631
2632 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2633 *
2634 * Requests that the local SCTP stack use the enclosed peer address as
2635 * the association primary. The enclosed address must be one of the
2636 * association peer's addresses.
2637 */
2638 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2639 unsigned int optlen)
2640 {
2641 struct sctp_prim prim;
2642 struct sctp_transport *trans;
2643
2644 if (optlen != sizeof(struct sctp_prim))
2645 return -EINVAL;
2646
2647 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2648 return -EFAULT;
2649
2650 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2651 if (!trans)
2652 return -EINVAL;
2653
2654 sctp_assoc_set_primary(trans->asoc, trans);
2655
2656 return 0;
2657 }
2658
2659 /*
2660 * 7.1.5 SCTP_NODELAY
2661 *
2662 * Turn on/off any Nagle-like algorithm. This means that packets are
2663 * generally sent as soon as possible and no unnecessary delays are
2664 * introduced, at the cost of more packets in the network. Expects an
2665 * integer boolean flag.
2666 */
2667 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2668 unsigned int optlen)
2669 {
2670 int val;
2671
2672 if (optlen < sizeof(int))
2673 return -EINVAL;
2674 if (get_user(val, (int __user *)optval))
2675 return -EFAULT;
2676
2677 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2678 return 0;
2679 }
2680
2681 /*
2682 *
2683 * 7.1.1 SCTP_RTOINFO
2684 *
2685 * The protocol parameters used to initialize and bound retransmission
2686 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2687 * and modify these parameters.
2688 * All parameters are time values, in milliseconds. A value of 0, when
2689 * modifying the parameters, indicates that the current value should not
2690 * be changed.
2691 *
2692 */
2693 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2694 {
2695 struct sctp_rtoinfo rtoinfo;
2696 struct sctp_association *asoc;
2697
2698 if (optlen != sizeof (struct sctp_rtoinfo))
2699 return -EINVAL;
2700
2701 if (copy_from_user(&rtoinfo, optval, optlen))
2702 return -EFAULT;
2703
2704 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2705
2706 /* Set the values to the specific association */
2707 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2708 return -EINVAL;
2709
2710 if (asoc) {
2711 if (rtoinfo.srto_initial != 0)
2712 asoc->rto_initial =
2713 msecs_to_jiffies(rtoinfo.srto_initial);
2714 if (rtoinfo.srto_max != 0)
2715 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2716 if (rtoinfo.srto_min != 0)
2717 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2718 } else {
2719 /* If there is no association or the association-id = 0
2720 * set the values to the endpoint.
2721 */
2722 struct sctp_sock *sp = sctp_sk(sk);
2723
2724 if (rtoinfo.srto_initial != 0)
2725 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2726 if (rtoinfo.srto_max != 0)
2727 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2728 if (rtoinfo.srto_min != 0)
2729 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2730 }
2731
2732 return 0;
2733 }
2734
2735 /*
2736 *
2737 * 7.1.2 SCTP_ASSOCINFO
2738 *
2739 * This option is used to tune the maximum retransmission attempts
2740 * of the association.
2741 * Returns an error if the new association retransmission value is
2742 * greater than the sum of the retransmission value of the peer.
2743 * See [SCTP] for more information.
2744 *
2745 */
2746 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2747 {
2748
2749 struct sctp_assocparams assocparams;
2750 struct sctp_association *asoc;
2751
2752 if (optlen != sizeof(struct sctp_assocparams))
2753 return -EINVAL;
2754 if (copy_from_user(&assocparams, optval, optlen))
2755 return -EFAULT;
2756
2757 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2758
2759 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2760 return -EINVAL;
2761
2762 /* Set the values to the specific association */
2763 if (asoc) {
2764 if (assocparams.sasoc_asocmaxrxt != 0) {
2765 __u32 path_sum = 0;
2766 int paths = 0;
2767 struct sctp_transport *peer_addr;
2768
2769 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2770 transports) {
2771 path_sum += peer_addr->pathmaxrxt;
2772 paths++;
2773 }
2774
2775 /* Only validate asocmaxrxt if we have more than
2776 * one path/transport. We do this because path
2777 * retransmissions are only counted when we have more
2778 * then one path.
2779 */
2780 if (paths > 1 &&
2781 assocparams.sasoc_asocmaxrxt > path_sum)
2782 return -EINVAL;
2783
2784 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2785 }
2786
2787 if (assocparams.sasoc_cookie_life != 0) {
2788 asoc->cookie_life.tv_sec =
2789 assocparams.sasoc_cookie_life / 1000;
2790 asoc->cookie_life.tv_usec =
2791 (assocparams.sasoc_cookie_life % 1000)
2792 * 1000;
2793 }
2794 } else {
2795 /* Set the values to the endpoint */
2796 struct sctp_sock *sp = sctp_sk(sk);
2797
2798 if (assocparams.sasoc_asocmaxrxt != 0)
2799 sp->assocparams.sasoc_asocmaxrxt =
2800 assocparams.sasoc_asocmaxrxt;
2801 if (assocparams.sasoc_cookie_life != 0)
2802 sp->assocparams.sasoc_cookie_life =
2803 assocparams.sasoc_cookie_life;
2804 }
2805 return 0;
2806 }
2807
2808 /*
2809 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2810 *
2811 * This socket option is a boolean flag which turns on or off mapped V4
2812 * addresses. If this option is turned on and the socket is type
2813 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2814 * If this option is turned off, then no mapping will be done of V4
2815 * addresses and a user will receive both PF_INET6 and PF_INET type
2816 * addresses on the socket.
2817 */
2818 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2819 {
2820 int val;
2821 struct sctp_sock *sp = sctp_sk(sk);
2822
2823 if (optlen < sizeof(int))
2824 return -EINVAL;
2825 if (get_user(val, (int __user *)optval))
2826 return -EFAULT;
2827 if (val)
2828 sp->v4mapped = 1;
2829 else
2830 sp->v4mapped = 0;
2831
2832 return 0;
2833 }
2834
2835 /*
2836 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2837 * This option will get or set the maximum size to put in any outgoing
2838 * SCTP DATA chunk. If a message is larger than this size it will be
2839 * fragmented by SCTP into the specified size. Note that the underlying
2840 * SCTP implementation may fragment into smaller sized chunks when the
2841 * PMTU of the underlying association is smaller than the value set by
2842 * the user. The default value for this option is '0' which indicates
2843 * the user is NOT limiting fragmentation and only the PMTU will effect
2844 * SCTP's choice of DATA chunk size. Note also that values set larger
2845 * than the maximum size of an IP datagram will effectively let SCTP
2846 * control fragmentation (i.e. the same as setting this option to 0).
2847 *
2848 * The following structure is used to access and modify this parameter:
2849 *
2850 * struct sctp_assoc_value {
2851 * sctp_assoc_t assoc_id;
2852 * uint32_t assoc_value;
2853 * };
2854 *
2855 * assoc_id: This parameter is ignored for one-to-one style sockets.
2856 * For one-to-many style sockets this parameter indicates which
2857 * association the user is performing an action upon. Note that if
2858 * this field's value is zero then the endpoints default value is
2859 * changed (effecting future associations only).
2860 * assoc_value: This parameter specifies the maximum size in bytes.
2861 */
2862 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2863 {
2864 struct sctp_assoc_value params;
2865 struct sctp_association *asoc;
2866 struct sctp_sock *sp = sctp_sk(sk);
2867 int val;
2868
2869 if (optlen == sizeof(int)) {
2870 printk(KERN_WARNING
2871 "SCTP: Use of int in maxseg socket option deprecated\n");
2872 printk(KERN_WARNING
2873 "SCTP: Use struct sctp_assoc_value instead\n");
2874 if (copy_from_user(&val, optval, optlen))
2875 return -EFAULT;
2876 params.assoc_id = 0;
2877 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2878 if (copy_from_user(&params, optval, optlen))
2879 return -EFAULT;
2880 val = params.assoc_value;
2881 } else
2882 return -EINVAL;
2883
2884 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2885 return -EINVAL;
2886
2887 asoc = sctp_id2assoc(sk, params.assoc_id);
2888 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2889 return -EINVAL;
2890
2891 if (asoc) {
2892 if (val == 0) {
2893 val = asoc->pathmtu;
2894 val -= sp->pf->af->net_header_len;
2895 val -= sizeof(struct sctphdr) +
2896 sizeof(struct sctp_data_chunk);
2897 }
2898 asoc->user_frag = val;
2899 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2900 } else {
2901 sp->user_frag = val;
2902 }
2903
2904 return 0;
2905 }
2906
2907
2908 /*
2909 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2910 *
2911 * Requests that the peer mark the enclosed address as the association
2912 * primary. The enclosed address must be one of the association's
2913 * locally bound addresses. The following structure is used to make a
2914 * set primary request:
2915 */
2916 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2917 unsigned int optlen)
2918 {
2919 struct sctp_sock *sp;
2920 struct sctp_endpoint *ep;
2921 struct sctp_association *asoc = NULL;
2922 struct sctp_setpeerprim prim;
2923 struct sctp_chunk *chunk;
2924 int err;
2925
2926 sp = sctp_sk(sk);
2927 ep = sp->ep;
2928
2929 if (!sctp_addip_enable)
2930 return -EPERM;
2931
2932 if (optlen != sizeof(struct sctp_setpeerprim))
2933 return -EINVAL;
2934
2935 if (copy_from_user(&prim, optval, optlen))
2936 return -EFAULT;
2937
2938 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2939 if (!asoc)
2940 return -EINVAL;
2941
2942 if (!asoc->peer.asconf_capable)
2943 return -EPERM;
2944
2945 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2946 return -EPERM;
2947
2948 if (!sctp_state(asoc, ESTABLISHED))
2949 return -ENOTCONN;
2950
2951 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2952 return -EADDRNOTAVAIL;
2953
2954 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2955 chunk = sctp_make_asconf_set_prim(asoc,
2956 (union sctp_addr *)&prim.sspp_addr);
2957 if (!chunk)
2958 return -ENOMEM;
2959
2960 err = sctp_send_asconf(asoc, chunk);
2961
2962 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
2963
2964 return err;
2965 }
2966
2967 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
2968 unsigned int optlen)
2969 {
2970 struct sctp_setadaptation adaptation;
2971
2972 if (optlen != sizeof(struct sctp_setadaptation))
2973 return -EINVAL;
2974 if (copy_from_user(&adaptation, optval, optlen))
2975 return -EFAULT;
2976
2977 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
2978
2979 return 0;
2980 }
2981
2982 /*
2983 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
2984 *
2985 * The context field in the sctp_sndrcvinfo structure is normally only
2986 * used when a failed message is retrieved holding the value that was
2987 * sent down on the actual send call. This option allows the setting of
2988 * a default context on an association basis that will be received on
2989 * reading messages from the peer. This is especially helpful in the
2990 * one-2-many model for an application to keep some reference to an
2991 * internal state machine that is processing messages on the
2992 * association. Note that the setting of this value only effects
2993 * received messages from the peer and does not effect the value that is
2994 * saved with outbound messages.
2995 */
2996 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
2997 unsigned int optlen)
2998 {
2999 struct sctp_assoc_value params;
3000 struct sctp_sock *sp;
3001 struct sctp_association *asoc;
3002
3003 if (optlen != sizeof(struct sctp_assoc_value))
3004 return -EINVAL;
3005 if (copy_from_user(&params, optval, optlen))
3006 return -EFAULT;
3007
3008 sp = sctp_sk(sk);
3009
3010 if (params.assoc_id != 0) {
3011 asoc = sctp_id2assoc(sk, params.assoc_id);
3012 if (!asoc)
3013 return -EINVAL;
3014 asoc->default_rcv_context = params.assoc_value;
3015 } else {
3016 sp->default_rcv_context = params.assoc_value;
3017 }
3018
3019 return 0;
3020 }
3021
3022 /*
3023 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3024 *
3025 * This options will at a minimum specify if the implementation is doing
3026 * fragmented interleave. Fragmented interleave, for a one to many
3027 * socket, is when subsequent calls to receive a message may return
3028 * parts of messages from different associations. Some implementations
3029 * may allow you to turn this value on or off. If so, when turned off,
3030 * no fragment interleave will occur (which will cause a head of line
3031 * blocking amongst multiple associations sharing the same one to many
3032 * socket). When this option is turned on, then each receive call may
3033 * come from a different association (thus the user must receive data
3034 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3035 * association each receive belongs to.
3036 *
3037 * This option takes a boolean value. A non-zero value indicates that
3038 * fragmented interleave is on. A value of zero indicates that
3039 * fragmented interleave is off.
3040 *
3041 * Note that it is important that an implementation that allows this
3042 * option to be turned on, have it off by default. Otherwise an unaware
3043 * application using the one to many model may become confused and act
3044 * incorrectly.
3045 */
3046 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3047 char __user *optval,
3048 unsigned int optlen)
3049 {
3050 int val;
3051
3052 if (optlen != sizeof(int))
3053 return -EINVAL;
3054 if (get_user(val, (int __user *)optval))
3055 return -EFAULT;
3056
3057 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3064 * (SCTP_PARTIAL_DELIVERY_POINT)
3065 *
3066 * This option will set or get the SCTP partial delivery point. This
3067 * point is the size of a message where the partial delivery API will be
3068 * invoked to help free up rwnd space for the peer. Setting this to a
3069 * lower value will cause partial deliveries to happen more often. The
3070 * calls argument is an integer that sets or gets the partial delivery
3071 * point. Note also that the call will fail if the user attempts to set
3072 * this value larger than the socket receive buffer size.
3073 *
3074 * Note that any single message having a length smaller than or equal to
3075 * the SCTP partial delivery point will be delivered in one single read
3076 * call as long as the user provided buffer is large enough to hold the
3077 * message.
3078 */
3079 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3080 char __user *optval,
3081 unsigned int optlen)
3082 {
3083 u32 val;
3084
3085 if (optlen != sizeof(u32))
3086 return -EINVAL;
3087 if (get_user(val, (int __user *)optval))
3088 return -EFAULT;
3089
3090 /* Note: We double the receive buffer from what the user sets
3091 * it to be, also initial rwnd is based on rcvbuf/2.
3092 */
3093 if (val > (sk->sk_rcvbuf >> 1))
3094 return -EINVAL;
3095
3096 sctp_sk(sk)->pd_point = val;
3097
3098 return 0; /* is this the right error code? */
3099 }
3100
3101 /*
3102 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3103 *
3104 * This option will allow a user to change the maximum burst of packets
3105 * that can be emitted by this association. Note that the default value
3106 * is 4, and some implementations may restrict this setting so that it
3107 * can only be lowered.
3108 *
3109 * NOTE: This text doesn't seem right. Do this on a socket basis with
3110 * future associations inheriting the socket value.
3111 */
3112 static int sctp_setsockopt_maxburst(struct sock *sk,
3113 char __user *optval,
3114 unsigned int optlen)
3115 {
3116 struct sctp_assoc_value params;
3117 struct sctp_sock *sp;
3118 struct sctp_association *asoc;
3119 int val;
3120 int assoc_id = 0;
3121
3122 if (optlen == sizeof(int)) {
3123 printk(KERN_WARNING
3124 "SCTP: Use of int in max_burst socket option deprecated\n");
3125 printk(KERN_WARNING
3126 "SCTP: Use struct sctp_assoc_value instead\n");
3127 if (copy_from_user(&val, optval, optlen))
3128 return -EFAULT;
3129 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3130 if (copy_from_user(&params, optval, optlen))
3131 return -EFAULT;
3132 val = params.assoc_value;
3133 assoc_id = params.assoc_id;
3134 } else
3135 return -EINVAL;
3136
3137 sp = sctp_sk(sk);
3138
3139 if (assoc_id != 0) {
3140 asoc = sctp_id2assoc(sk, assoc_id);
3141 if (!asoc)
3142 return -EINVAL;
3143 asoc->max_burst = val;
3144 } else
3145 sp->max_burst = val;
3146
3147 return 0;
3148 }
3149
3150 /*
3151 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3152 *
3153 * This set option adds a chunk type that the user is requesting to be
3154 * received only in an authenticated way. Changes to the list of chunks
3155 * will only effect future associations on the socket.
3156 */
3157 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3158 char __user *optval,
3159 unsigned int optlen)
3160 {
3161 struct sctp_authchunk val;
3162
3163 if (!sctp_auth_enable)
3164 return -EACCES;
3165
3166 if (optlen != sizeof(struct sctp_authchunk))
3167 return -EINVAL;
3168 if (copy_from_user(&val, optval, optlen))
3169 return -EFAULT;
3170
3171 switch (val.sauth_chunk) {
3172 case SCTP_CID_INIT:
3173 case SCTP_CID_INIT_ACK:
3174 case SCTP_CID_SHUTDOWN_COMPLETE:
3175 case SCTP_CID_AUTH:
3176 return -EINVAL;
3177 }
3178
3179 /* add this chunk id to the endpoint */
3180 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3181 }
3182
3183 /*
3184 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3185 *
3186 * This option gets or sets the list of HMAC algorithms that the local
3187 * endpoint requires the peer to use.
3188 */
3189 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3190 char __user *optval,
3191 unsigned int optlen)
3192 {
3193 struct sctp_hmacalgo *hmacs;
3194 u32 idents;
3195 int err;
3196
3197 if (!sctp_auth_enable)
3198 return -EACCES;
3199
3200 if (optlen < sizeof(struct sctp_hmacalgo))
3201 return -EINVAL;
3202
3203 hmacs = kmalloc(optlen, GFP_KERNEL);
3204 if (!hmacs)
3205 return -ENOMEM;
3206
3207 if (copy_from_user(hmacs, optval, optlen)) {
3208 err = -EFAULT;
3209 goto out;
3210 }
3211
3212 idents = hmacs->shmac_num_idents;
3213 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3214 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3215 err = -EINVAL;
3216 goto out;
3217 }
3218
3219 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3220 out:
3221 kfree(hmacs);
3222 return err;
3223 }
3224
3225 /*
3226 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3227 *
3228 * This option will set a shared secret key which is used to build an
3229 * association shared key.
3230 */
3231 static int sctp_setsockopt_auth_key(struct sock *sk,
3232 char __user *optval,
3233 unsigned int optlen)
3234 {
3235 struct sctp_authkey *authkey;
3236 struct sctp_association *asoc;
3237 int ret;
3238
3239 if (!sctp_auth_enable)
3240 return -EACCES;
3241
3242 if (optlen <= sizeof(struct sctp_authkey))
3243 return -EINVAL;
3244
3245 authkey = kmalloc(optlen, GFP_KERNEL);
3246 if (!authkey)
3247 return -ENOMEM;
3248
3249 if (copy_from_user(authkey, optval, optlen)) {
3250 ret = -EFAULT;
3251 goto out;
3252 }
3253
3254 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3255 ret = -EINVAL;
3256 goto out;
3257 }
3258
3259 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3260 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3261 ret = -EINVAL;
3262 goto out;
3263 }
3264
3265 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3266 out:
3267 kfree(authkey);
3268 return ret;
3269 }
3270
3271 /*
3272 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3273 *
3274 * This option will get or set the active shared key to be used to build
3275 * the association shared key.
3276 */
3277 static int sctp_setsockopt_active_key(struct sock *sk,
3278 char __user *optval,
3279 unsigned int optlen)
3280 {
3281 struct sctp_authkeyid val;
3282 struct sctp_association *asoc;
3283
3284 if (!sctp_auth_enable)
3285 return -EACCES;
3286
3287 if (optlen != sizeof(struct sctp_authkeyid))
3288 return -EINVAL;
3289 if (copy_from_user(&val, optval, optlen))
3290 return -EFAULT;
3291
3292 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3293 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3294 return -EINVAL;
3295
3296 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3297 val.scact_keynumber);
3298 }
3299
3300 /*
3301 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3302 *
3303 * This set option will delete a shared secret key from use.
3304 */
3305 static int sctp_setsockopt_del_key(struct sock *sk,
3306 char __user *optval,
3307 unsigned int optlen)
3308 {
3309 struct sctp_authkeyid val;
3310 struct sctp_association *asoc;
3311
3312 if (!sctp_auth_enable)
3313 return -EACCES;
3314
3315 if (optlen != sizeof(struct sctp_authkeyid))
3316 return -EINVAL;
3317 if (copy_from_user(&val, optval, optlen))
3318 return -EFAULT;
3319
3320 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3321 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3322 return -EINVAL;
3323
3324 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3325 val.scact_keynumber);
3326
3327 }
3328
3329
3330 /* API 6.2 setsockopt(), getsockopt()
3331 *
3332 * Applications use setsockopt() and getsockopt() to set or retrieve
3333 * socket options. Socket options are used to change the default
3334 * behavior of sockets calls. They are described in Section 7.
3335 *
3336 * The syntax is:
3337 *
3338 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3339 * int __user *optlen);
3340 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3341 * int optlen);
3342 *
3343 * sd - the socket descript.
3344 * level - set to IPPROTO_SCTP for all SCTP options.
3345 * optname - the option name.
3346 * optval - the buffer to store the value of the option.
3347 * optlen - the size of the buffer.
3348 */
3349 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3350 char __user *optval, unsigned int optlen)
3351 {
3352 int retval = 0;
3353
3354 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3355 sk, optname);
3356
3357 /* I can hardly begin to describe how wrong this is. This is
3358 * so broken as to be worse than useless. The API draft
3359 * REALLY is NOT helpful here... I am not convinced that the
3360 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3361 * are at all well-founded.
3362 */
3363 if (level != SOL_SCTP) {
3364 struct sctp_af *af = sctp_sk(sk)->pf->af;
3365 retval = af->setsockopt(sk, level, optname, optval, optlen);
3366 goto out_nounlock;
3367 }
3368
3369 sctp_lock_sock(sk);
3370
3371 switch (optname) {
3372 case SCTP_SOCKOPT_BINDX_ADD:
3373 /* 'optlen' is the size of the addresses buffer. */
3374 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3375 optlen, SCTP_BINDX_ADD_ADDR);
3376 break;
3377
3378 case SCTP_SOCKOPT_BINDX_REM:
3379 /* 'optlen' is the size of the addresses buffer. */
3380 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3381 optlen, SCTP_BINDX_REM_ADDR);
3382 break;
3383
3384 case SCTP_SOCKOPT_CONNECTX_OLD:
3385 /* 'optlen' is the size of the addresses buffer. */
3386 retval = sctp_setsockopt_connectx_old(sk,
3387 (struct sockaddr __user *)optval,
3388 optlen);
3389 break;
3390
3391 case SCTP_SOCKOPT_CONNECTX:
3392 /* 'optlen' is the size of the addresses buffer. */
3393 retval = sctp_setsockopt_connectx(sk,
3394 (struct sockaddr __user *)optval,
3395 optlen);
3396 break;
3397
3398 case SCTP_DISABLE_FRAGMENTS:
3399 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3400 break;
3401
3402 case SCTP_EVENTS:
3403 retval = sctp_setsockopt_events(sk, optval, optlen);
3404 break;
3405
3406 case SCTP_AUTOCLOSE:
3407 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3408 break;
3409
3410 case SCTP_PEER_ADDR_PARAMS:
3411 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3412 break;
3413
3414 case SCTP_DELAYED_ACK:
3415 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3416 break;
3417 case SCTP_PARTIAL_DELIVERY_POINT:
3418 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3419 break;
3420
3421 case SCTP_INITMSG:
3422 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3423 break;
3424 case SCTP_DEFAULT_SEND_PARAM:
3425 retval = sctp_setsockopt_default_send_param(sk, optval,
3426 optlen);
3427 break;
3428 case SCTP_PRIMARY_ADDR:
3429 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3430 break;
3431 case SCTP_SET_PEER_PRIMARY_ADDR:
3432 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3433 break;
3434 case SCTP_NODELAY:
3435 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3436 break;
3437 case SCTP_RTOINFO:
3438 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3439 break;
3440 case SCTP_ASSOCINFO:
3441 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3442 break;
3443 case SCTP_I_WANT_MAPPED_V4_ADDR:
3444 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3445 break;
3446 case SCTP_MAXSEG:
3447 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3448 break;
3449 case SCTP_ADAPTATION_LAYER:
3450 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3451 break;
3452 case SCTP_CONTEXT:
3453 retval = sctp_setsockopt_context(sk, optval, optlen);
3454 break;
3455 case SCTP_FRAGMENT_INTERLEAVE:
3456 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3457 break;
3458 case SCTP_MAX_BURST:
3459 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3460 break;
3461 case SCTP_AUTH_CHUNK:
3462 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3463 break;
3464 case SCTP_HMAC_IDENT:
3465 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3466 break;
3467 case SCTP_AUTH_KEY:
3468 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3469 break;
3470 case SCTP_AUTH_ACTIVE_KEY:
3471 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3472 break;
3473 case SCTP_AUTH_DELETE_KEY:
3474 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3475 break;
3476 default:
3477 retval = -ENOPROTOOPT;
3478 break;
3479 }
3480
3481 sctp_release_sock(sk);
3482
3483 out_nounlock:
3484 return retval;
3485 }
3486
3487 /* API 3.1.6 connect() - UDP Style Syntax
3488 *
3489 * An application may use the connect() call in the UDP model to initiate an
3490 * association without sending data.
3491 *
3492 * The syntax is:
3493 *
3494 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3495 *
3496 * sd: the socket descriptor to have a new association added to.
3497 *
3498 * nam: the address structure (either struct sockaddr_in or struct
3499 * sockaddr_in6 defined in RFC2553 [7]).
3500 *
3501 * len: the size of the address.
3502 */
3503 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3504 int addr_len)
3505 {
3506 int err = 0;
3507 struct sctp_af *af;
3508
3509 sctp_lock_sock(sk);
3510
3511 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3512 __func__, sk, addr, addr_len);
3513
3514 /* Validate addr_len before calling common connect/connectx routine. */
3515 af = sctp_get_af_specific(addr->sa_family);
3516 if (!af || addr_len < af->sockaddr_len) {
3517 err = -EINVAL;
3518 } else {
3519 /* Pass correct addr len to common routine (so it knows there
3520 * is only one address being passed.
3521 */
3522 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3523 }
3524
3525 sctp_release_sock(sk);
3526 return err;
3527 }
3528
3529 /* FIXME: Write comments. */
3530 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3531 {
3532 return -EOPNOTSUPP; /* STUB */
3533 }
3534
3535 /* 4.1.4 accept() - TCP Style Syntax
3536 *
3537 * Applications use accept() call to remove an established SCTP
3538 * association from the accept queue of the endpoint. A new socket
3539 * descriptor will be returned from accept() to represent the newly
3540 * formed association.
3541 */
3542 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3543 {
3544 struct sctp_sock *sp;
3545 struct sctp_endpoint *ep;
3546 struct sock *newsk = NULL;
3547 struct sctp_association *asoc;
3548 long timeo;
3549 int error = 0;
3550
3551 sctp_lock_sock(sk);
3552
3553 sp = sctp_sk(sk);
3554 ep = sp->ep;
3555
3556 if (!sctp_style(sk, TCP)) {
3557 error = -EOPNOTSUPP;
3558 goto out;
3559 }
3560
3561 if (!sctp_sstate(sk, LISTENING)) {
3562 error = -EINVAL;
3563 goto out;
3564 }
3565
3566 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3567
3568 error = sctp_wait_for_accept(sk, timeo);
3569 if (error)
3570 goto out;
3571
3572 /* We treat the list of associations on the endpoint as the accept
3573 * queue and pick the first association on the list.
3574 */
3575 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3576
3577 newsk = sp->pf->create_accept_sk(sk, asoc);
3578 if (!newsk) {
3579 error = -ENOMEM;
3580 goto out;
3581 }
3582
3583 /* Populate the fields of the newsk from the oldsk and migrate the
3584 * asoc to the newsk.
3585 */
3586 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3587
3588 out:
3589 sctp_release_sock(sk);
3590 *err = error;
3591 return newsk;
3592 }
3593
3594 /* The SCTP ioctl handler. */
3595 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3596 {
3597 return -ENOIOCTLCMD;
3598 }
3599
3600 /* This is the function which gets called during socket creation to
3601 * initialized the SCTP-specific portion of the sock.
3602 * The sock structure should already be zero-filled memory.
3603 */
3604 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3605 {
3606 struct sctp_endpoint *ep;
3607 struct sctp_sock *sp;
3608
3609 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3610
3611 sp = sctp_sk(sk);
3612
3613 /* Initialize the SCTP per socket area. */
3614 switch (sk->sk_type) {
3615 case SOCK_SEQPACKET:
3616 sp->type = SCTP_SOCKET_UDP;
3617 break;
3618 case SOCK_STREAM:
3619 sp->type = SCTP_SOCKET_TCP;
3620 break;
3621 default:
3622 return -ESOCKTNOSUPPORT;
3623 }
3624
3625 /* Initialize default send parameters. These parameters can be
3626 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3627 */
3628 sp->default_stream = 0;
3629 sp->default_ppid = 0;
3630 sp->default_flags = 0;
3631 sp->default_context = 0;
3632 sp->default_timetolive = 0;
3633
3634 sp->default_rcv_context = 0;
3635 sp->max_burst = sctp_max_burst;
3636
3637 /* Initialize default setup parameters. These parameters
3638 * can be modified with the SCTP_INITMSG socket option or
3639 * overridden by the SCTP_INIT CMSG.
3640 */
3641 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3642 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3643 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3644 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3645
3646 /* Initialize default RTO related parameters. These parameters can
3647 * be modified for with the SCTP_RTOINFO socket option.
3648 */
3649 sp->rtoinfo.srto_initial = sctp_rto_initial;
3650 sp->rtoinfo.srto_max = sctp_rto_max;
3651 sp->rtoinfo.srto_min = sctp_rto_min;
3652
3653 /* Initialize default association related parameters. These parameters
3654 * can be modified with the SCTP_ASSOCINFO socket option.
3655 */
3656 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3657 sp->assocparams.sasoc_number_peer_destinations = 0;
3658 sp->assocparams.sasoc_peer_rwnd = 0;
3659 sp->assocparams.sasoc_local_rwnd = 0;
3660 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3661
3662 /* Initialize default event subscriptions. By default, all the
3663 * options are off.
3664 */
3665 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3666
3667 /* Default Peer Address Parameters. These defaults can
3668 * be modified via SCTP_PEER_ADDR_PARAMS
3669 */
3670 sp->hbinterval = sctp_hb_interval;
3671 sp->pathmaxrxt = sctp_max_retrans_path;
3672 sp->pathmtu = 0; // allow default discovery
3673 sp->sackdelay = sctp_sack_timeout;
3674 sp->sackfreq = 2;
3675 sp->param_flags = SPP_HB_ENABLE |
3676 SPP_PMTUD_ENABLE |
3677 SPP_SACKDELAY_ENABLE;
3678
3679 /* If enabled no SCTP message fragmentation will be performed.
3680 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3681 */
3682 sp->disable_fragments = 0;
3683
3684 /* Enable Nagle algorithm by default. */
3685 sp->nodelay = 0;
3686
3687 /* Enable by default. */
3688 sp->v4mapped = 1;
3689
3690 /* Auto-close idle associations after the configured
3691 * number of seconds. A value of 0 disables this
3692 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3693 * for UDP-style sockets only.
3694 */
3695 sp->autoclose = 0;
3696
3697 /* User specified fragmentation limit. */
3698 sp->user_frag = 0;
3699
3700 sp->adaptation_ind = 0;
3701
3702 sp->pf = sctp_get_pf_specific(sk->sk_family);
3703
3704 /* Control variables for partial data delivery. */
3705 atomic_set(&sp->pd_mode, 0);
3706 skb_queue_head_init(&sp->pd_lobby);
3707 sp->frag_interleave = 0;
3708
3709 /* Create a per socket endpoint structure. Even if we
3710 * change the data structure relationships, this may still
3711 * be useful for storing pre-connect address information.
3712 */
3713 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3714 if (!ep)
3715 return -ENOMEM;
3716
3717 sp->ep = ep;
3718 sp->hmac = NULL;
3719
3720 SCTP_DBG_OBJCNT_INC(sock);
3721 percpu_counter_inc(&sctp_sockets_allocated);
3722
3723 /* Set socket backlog limit. */
3724 sk->sk_backlog.limit = sysctl_sctp_rmem[1];
3725
3726 local_bh_disable();
3727 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3728 local_bh_enable();
3729
3730 return 0;
3731 }
3732
3733 /* Cleanup any SCTP per socket resources. */
3734 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3735 {
3736 struct sctp_endpoint *ep;
3737
3738 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3739
3740 /* Release our hold on the endpoint. */
3741 ep = sctp_sk(sk)->ep;
3742 sctp_endpoint_free(ep);
3743 percpu_counter_dec(&sctp_sockets_allocated);
3744 local_bh_disable();
3745 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3746 local_bh_enable();
3747 }
3748
3749 /* API 4.1.7 shutdown() - TCP Style Syntax
3750 * int shutdown(int socket, int how);
3751 *
3752 * sd - the socket descriptor of the association to be closed.
3753 * how - Specifies the type of shutdown. The values are
3754 * as follows:
3755 * SHUT_RD
3756 * Disables further receive operations. No SCTP
3757 * protocol action is taken.
3758 * SHUT_WR
3759 * Disables further send operations, and initiates
3760 * the SCTP shutdown sequence.
3761 * SHUT_RDWR
3762 * Disables further send and receive operations
3763 * and initiates the SCTP shutdown sequence.
3764 */
3765 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3766 {
3767 struct sctp_endpoint *ep;
3768 struct sctp_association *asoc;
3769
3770 if (!sctp_style(sk, TCP))
3771 return;
3772
3773 if (how & SEND_SHUTDOWN) {
3774 ep = sctp_sk(sk)->ep;
3775 if (!list_empty(&ep->asocs)) {
3776 asoc = list_entry(ep->asocs.next,
3777 struct sctp_association, asocs);
3778 sctp_primitive_SHUTDOWN(asoc, NULL);
3779 }
3780 }
3781 }
3782
3783 /* 7.2.1 Association Status (SCTP_STATUS)
3784
3785 * Applications can retrieve current status information about an
3786 * association, including association state, peer receiver window size,
3787 * number of unacked data chunks, and number of data chunks pending
3788 * receipt. This information is read-only.
3789 */
3790 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3791 char __user *optval,
3792 int __user *optlen)
3793 {
3794 struct sctp_status status;
3795 struct sctp_association *asoc = NULL;
3796 struct sctp_transport *transport;
3797 sctp_assoc_t associd;
3798 int retval = 0;
3799
3800 if (len < sizeof(status)) {
3801 retval = -EINVAL;
3802 goto out;
3803 }
3804
3805 len = sizeof(status);
3806 if (copy_from_user(&status, optval, len)) {
3807 retval = -EFAULT;
3808 goto out;
3809 }
3810
3811 associd = status.sstat_assoc_id;
3812 asoc = sctp_id2assoc(sk, associd);
3813 if (!asoc) {
3814 retval = -EINVAL;
3815 goto out;
3816 }
3817
3818 transport = asoc->peer.primary_path;
3819
3820 status.sstat_assoc_id = sctp_assoc2id(asoc);
3821 status.sstat_state = asoc->state;
3822 status.sstat_rwnd = asoc->peer.rwnd;
3823 status.sstat_unackdata = asoc->unack_data;
3824
3825 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3826 status.sstat_instrms = asoc->c.sinit_max_instreams;
3827 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3828 status.sstat_fragmentation_point = asoc->frag_point;
3829 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3830 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3831 transport->af_specific->sockaddr_len);
3832 /* Map ipv4 address into v4-mapped-on-v6 address. */
3833 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3834 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3835 status.sstat_primary.spinfo_state = transport->state;
3836 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3837 status.sstat_primary.spinfo_srtt = transport->srtt;
3838 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3839 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3840
3841 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3842 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3843
3844 if (put_user(len, optlen)) {
3845 retval = -EFAULT;
3846 goto out;
3847 }
3848
3849 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3850 len, status.sstat_state, status.sstat_rwnd,
3851 status.sstat_assoc_id);
3852
3853 if (copy_to_user(optval, &status, len)) {
3854 retval = -EFAULT;
3855 goto out;
3856 }
3857
3858 out:
3859 return (retval);
3860 }
3861
3862
3863 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3864 *
3865 * Applications can retrieve information about a specific peer address
3866 * of an association, including its reachability state, congestion
3867 * window, and retransmission timer values. This information is
3868 * read-only.
3869 */
3870 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3871 char __user *optval,
3872 int __user *optlen)
3873 {
3874 struct sctp_paddrinfo pinfo;
3875 struct sctp_transport *transport;
3876 int retval = 0;
3877
3878 if (len < sizeof(pinfo)) {
3879 retval = -EINVAL;
3880 goto out;
3881 }
3882
3883 len = sizeof(pinfo);
3884 if (copy_from_user(&pinfo, optval, len)) {
3885 retval = -EFAULT;
3886 goto out;
3887 }
3888
3889 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3890 pinfo.spinfo_assoc_id);
3891 if (!transport)
3892 return -EINVAL;
3893
3894 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3895 pinfo.spinfo_state = transport->state;
3896 pinfo.spinfo_cwnd = transport->cwnd;
3897 pinfo.spinfo_srtt = transport->srtt;
3898 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3899 pinfo.spinfo_mtu = transport->pathmtu;
3900
3901 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3902 pinfo.spinfo_state = SCTP_ACTIVE;
3903
3904 if (put_user(len, optlen)) {
3905 retval = -EFAULT;
3906 goto out;
3907 }
3908
3909 if (copy_to_user(optval, &pinfo, len)) {
3910 retval = -EFAULT;
3911 goto out;
3912 }
3913
3914 out:
3915 return (retval);
3916 }
3917
3918 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3919 *
3920 * This option is a on/off flag. If enabled no SCTP message
3921 * fragmentation will be performed. Instead if a message being sent
3922 * exceeds the current PMTU size, the message will NOT be sent and
3923 * instead a error will be indicated to the user.
3924 */
3925 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3926 char __user *optval, int __user *optlen)
3927 {
3928 int val;
3929
3930 if (len < sizeof(int))
3931 return -EINVAL;
3932
3933 len = sizeof(int);
3934 val = (sctp_sk(sk)->disable_fragments == 1);
3935 if (put_user(len, optlen))
3936 return -EFAULT;
3937 if (copy_to_user(optval, &val, len))
3938 return -EFAULT;
3939 return 0;
3940 }
3941
3942 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
3943 *
3944 * This socket option is used to specify various notifications and
3945 * ancillary data the user wishes to receive.
3946 */
3947 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
3948 int __user *optlen)
3949 {
3950 if (len < sizeof(struct sctp_event_subscribe))
3951 return -EINVAL;
3952 len = sizeof(struct sctp_event_subscribe);
3953 if (put_user(len, optlen))
3954 return -EFAULT;
3955 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
3956 return -EFAULT;
3957 return 0;
3958 }
3959
3960 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
3961 *
3962 * This socket option is applicable to the UDP-style socket only. When
3963 * set it will cause associations that are idle for more than the
3964 * specified number of seconds to automatically close. An association
3965 * being idle is defined an association that has NOT sent or received
3966 * user data. The special value of '0' indicates that no automatic
3967 * close of any associations should be performed. The option expects an
3968 * integer defining the number of seconds of idle time before an
3969 * association is closed.
3970 */
3971 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
3972 {
3973 /* Applicable to UDP-style socket only */
3974 if (sctp_style(sk, TCP))
3975 return -EOPNOTSUPP;
3976 if (len < sizeof(int))
3977 return -EINVAL;
3978 len = sizeof(int);
3979 if (put_user(len, optlen))
3980 return -EFAULT;
3981 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
3982 return -EFAULT;
3983 return 0;
3984 }
3985
3986 /* Helper routine to branch off an association to a new socket. */
3987 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
3988 struct socket **sockp)
3989 {
3990 struct sock *sk = asoc->base.sk;
3991 struct socket *sock;
3992 struct sctp_af *af;
3993 int err = 0;
3994
3995 /* An association cannot be branched off from an already peeled-off
3996 * socket, nor is this supported for tcp style sockets.
3997 */
3998 if (!sctp_style(sk, UDP))
3999 return -EINVAL;
4000
4001 /* Create a new socket. */
4002 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4003 if (err < 0)
4004 return err;
4005
4006 sctp_copy_sock(sock->sk, sk, asoc);
4007
4008 /* Make peeled-off sockets more like 1-1 accepted sockets.
4009 * Set the daddr and initialize id to something more random
4010 */
4011 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4012 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4013
4014 /* Populate the fields of the newsk from the oldsk and migrate the
4015 * asoc to the newsk.
4016 */
4017 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4018
4019 *sockp = sock;
4020
4021 return err;
4022 }
4023
4024 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4025 {
4026 sctp_peeloff_arg_t peeloff;
4027 struct socket *newsock;
4028 int retval = 0;
4029 struct sctp_association *asoc;
4030
4031 if (len < sizeof(sctp_peeloff_arg_t))
4032 return -EINVAL;
4033 len = sizeof(sctp_peeloff_arg_t);
4034 if (copy_from_user(&peeloff, optval, len))
4035 return -EFAULT;
4036
4037 asoc = sctp_id2assoc(sk, peeloff.associd);
4038 if (!asoc) {
4039 retval = -EINVAL;
4040 goto out;
4041 }
4042
4043 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4044
4045 retval = sctp_do_peeloff(asoc, &newsock);
4046 if (retval < 0)
4047 goto out;
4048
4049 /* Map the socket to an unused fd that can be returned to the user. */
4050 retval = sock_map_fd(newsock, 0);
4051 if (retval < 0) {
4052 sock_release(newsock);
4053 goto out;
4054 }
4055
4056 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4057 __func__, sk, asoc, newsock->sk, retval);
4058
4059 /* Return the fd mapped to the new socket. */
4060 peeloff.sd = retval;
4061 if (put_user(len, optlen))
4062 return -EFAULT;
4063 if (copy_to_user(optval, &peeloff, len))
4064 retval = -EFAULT;
4065
4066 out:
4067 return retval;
4068 }
4069
4070 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4071 *
4072 * Applications can enable or disable heartbeats for any peer address of
4073 * an association, modify an address's heartbeat interval, force a
4074 * heartbeat to be sent immediately, and adjust the address's maximum
4075 * number of retransmissions sent before an address is considered
4076 * unreachable. The following structure is used to access and modify an
4077 * address's parameters:
4078 *
4079 * struct sctp_paddrparams {
4080 * sctp_assoc_t spp_assoc_id;
4081 * struct sockaddr_storage spp_address;
4082 * uint32_t spp_hbinterval;
4083 * uint16_t spp_pathmaxrxt;
4084 * uint32_t spp_pathmtu;
4085 * uint32_t spp_sackdelay;
4086 * uint32_t spp_flags;
4087 * };
4088 *
4089 * spp_assoc_id - (one-to-many style socket) This is filled in the
4090 * application, and identifies the association for
4091 * this query.
4092 * spp_address - This specifies which address is of interest.
4093 * spp_hbinterval - This contains the value of the heartbeat interval,
4094 * in milliseconds. If a value of zero
4095 * is present in this field then no changes are to
4096 * be made to this parameter.
4097 * spp_pathmaxrxt - This contains the maximum number of
4098 * retransmissions before this address shall be
4099 * considered unreachable. If a value of zero
4100 * is present in this field then no changes are to
4101 * be made to this parameter.
4102 * spp_pathmtu - When Path MTU discovery is disabled the value
4103 * specified here will be the "fixed" path mtu.
4104 * Note that if the spp_address field is empty
4105 * then all associations on this address will
4106 * have this fixed path mtu set upon them.
4107 *
4108 * spp_sackdelay - When delayed sack is enabled, this value specifies
4109 * the number of milliseconds that sacks will be delayed
4110 * for. This value will apply to all addresses of an
4111 * association if the spp_address field is empty. Note
4112 * also, that if delayed sack is enabled and this
4113 * value is set to 0, no change is made to the last
4114 * recorded delayed sack timer value.
4115 *
4116 * spp_flags - These flags are used to control various features
4117 * on an association. The flag field may contain
4118 * zero or more of the following options.
4119 *
4120 * SPP_HB_ENABLE - Enable heartbeats on the
4121 * specified address. Note that if the address
4122 * field is empty all addresses for the association
4123 * have heartbeats enabled upon them.
4124 *
4125 * SPP_HB_DISABLE - Disable heartbeats on the
4126 * speicifed address. Note that if the address
4127 * field is empty all addresses for the association
4128 * will have their heartbeats disabled. Note also
4129 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4130 * mutually exclusive, only one of these two should
4131 * be specified. Enabling both fields will have
4132 * undetermined results.
4133 *
4134 * SPP_HB_DEMAND - Request a user initiated heartbeat
4135 * to be made immediately.
4136 *
4137 * SPP_PMTUD_ENABLE - This field will enable PMTU
4138 * discovery upon the specified address. Note that
4139 * if the address feild is empty then all addresses
4140 * on the association are effected.
4141 *
4142 * SPP_PMTUD_DISABLE - This field will disable PMTU
4143 * discovery upon the specified address. Note that
4144 * if the address feild is empty then all addresses
4145 * on the association are effected. Not also that
4146 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4147 * exclusive. Enabling both will have undetermined
4148 * results.
4149 *
4150 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4151 * on delayed sack. The time specified in spp_sackdelay
4152 * is used to specify the sack delay for this address. Note
4153 * that if spp_address is empty then all addresses will
4154 * enable delayed sack and take on the sack delay
4155 * value specified in spp_sackdelay.
4156 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4157 * off delayed sack. If the spp_address field is blank then
4158 * delayed sack is disabled for the entire association. Note
4159 * also that this field is mutually exclusive to
4160 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4161 * results.
4162 */
4163 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4164 char __user *optval, int __user *optlen)
4165 {
4166 struct sctp_paddrparams params;
4167 struct sctp_transport *trans = NULL;
4168 struct sctp_association *asoc = NULL;
4169 struct sctp_sock *sp = sctp_sk(sk);
4170
4171 if (len < sizeof(struct sctp_paddrparams))
4172 return -EINVAL;
4173 len = sizeof(struct sctp_paddrparams);
4174 if (copy_from_user(&params, optval, len))
4175 return -EFAULT;
4176
4177 /* If an address other than INADDR_ANY is specified, and
4178 * no transport is found, then the request is invalid.
4179 */
4180 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4181 trans = sctp_addr_id2transport(sk, &params.spp_address,
4182 params.spp_assoc_id);
4183 if (!trans) {
4184 SCTP_DEBUG_PRINTK("Failed no transport\n");
4185 return -EINVAL;
4186 }
4187 }
4188
4189 /* Get association, if assoc_id != 0 and the socket is a one
4190 * to many style socket, and an association was not found, then
4191 * the id was invalid.
4192 */
4193 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4194 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4195 SCTP_DEBUG_PRINTK("Failed no association\n");
4196 return -EINVAL;
4197 }
4198
4199 if (trans) {
4200 /* Fetch transport values. */
4201 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4202 params.spp_pathmtu = trans->pathmtu;
4203 params.spp_pathmaxrxt = trans->pathmaxrxt;
4204 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4205
4206 /*draft-11 doesn't say what to return in spp_flags*/
4207 params.spp_flags = trans->param_flags;
4208 } else if (asoc) {
4209 /* Fetch association values. */
4210 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4211 params.spp_pathmtu = asoc->pathmtu;
4212 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4213 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4214
4215 /*draft-11 doesn't say what to return in spp_flags*/
4216 params.spp_flags = asoc->param_flags;
4217 } else {
4218 /* Fetch socket values. */
4219 params.spp_hbinterval = sp->hbinterval;
4220 params.spp_pathmtu = sp->pathmtu;
4221 params.spp_sackdelay = sp->sackdelay;
4222 params.spp_pathmaxrxt = sp->pathmaxrxt;
4223
4224 /*draft-11 doesn't say what to return in spp_flags*/
4225 params.spp_flags = sp->param_flags;
4226 }
4227
4228 if (copy_to_user(optval, &params, len))
4229 return -EFAULT;
4230
4231 if (put_user(len, optlen))
4232 return -EFAULT;
4233
4234 return 0;
4235 }
4236
4237 /*
4238 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4239 *
4240 * This option will effect the way delayed acks are performed. This
4241 * option allows you to get or set the delayed ack time, in
4242 * milliseconds. It also allows changing the delayed ack frequency.
4243 * Changing the frequency to 1 disables the delayed sack algorithm. If
4244 * the assoc_id is 0, then this sets or gets the endpoints default
4245 * values. If the assoc_id field is non-zero, then the set or get
4246 * effects the specified association for the one to many model (the
4247 * assoc_id field is ignored by the one to one model). Note that if
4248 * sack_delay or sack_freq are 0 when setting this option, then the
4249 * current values will remain unchanged.
4250 *
4251 * struct sctp_sack_info {
4252 * sctp_assoc_t sack_assoc_id;
4253 * uint32_t sack_delay;
4254 * uint32_t sack_freq;
4255 * };
4256 *
4257 * sack_assoc_id - This parameter, indicates which association the user
4258 * is performing an action upon. Note that if this field's value is
4259 * zero then the endpoints default value is changed (effecting future
4260 * associations only).
4261 *
4262 * sack_delay - This parameter contains the number of milliseconds that
4263 * the user is requesting the delayed ACK timer be set to. Note that
4264 * this value is defined in the standard to be between 200 and 500
4265 * milliseconds.
4266 *
4267 * sack_freq - This parameter contains the number of packets that must
4268 * be received before a sack is sent without waiting for the delay
4269 * timer to expire. The default value for this is 2, setting this
4270 * value to 1 will disable the delayed sack algorithm.
4271 */
4272 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4273 char __user *optval,
4274 int __user *optlen)
4275 {
4276 struct sctp_sack_info params;
4277 struct sctp_association *asoc = NULL;
4278 struct sctp_sock *sp = sctp_sk(sk);
4279
4280 if (len >= sizeof(struct sctp_sack_info)) {
4281 len = sizeof(struct sctp_sack_info);
4282
4283 if (copy_from_user(&params, optval, len))
4284 return -EFAULT;
4285 } else if (len == sizeof(struct sctp_assoc_value)) {
4286 printk(KERN_WARNING "SCTP: Use of struct sctp_assoc_value "
4287 "in delayed_ack socket option deprecated\n");
4288 printk(KERN_WARNING "SCTP: Use struct sctp_sack_info instead\n");
4289 if (copy_from_user(&params, optval, len))
4290 return -EFAULT;
4291 } else
4292 return - EINVAL;
4293
4294 /* Get association, if sack_assoc_id != 0 and the socket is a one
4295 * to many style socket, and an association was not found, then
4296 * the id was invalid.
4297 */
4298 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4299 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4300 return -EINVAL;
4301
4302 if (asoc) {
4303 /* Fetch association values. */
4304 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4305 params.sack_delay = jiffies_to_msecs(
4306 asoc->sackdelay);
4307 params.sack_freq = asoc->sackfreq;
4308
4309 } else {
4310 params.sack_delay = 0;
4311 params.sack_freq = 1;
4312 }
4313 } else {
4314 /* Fetch socket values. */
4315 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4316 params.sack_delay = sp->sackdelay;
4317 params.sack_freq = sp->sackfreq;
4318 } else {
4319 params.sack_delay = 0;
4320 params.sack_freq = 1;
4321 }
4322 }
4323
4324 if (copy_to_user(optval, &params, len))
4325 return -EFAULT;
4326
4327 if (put_user(len, optlen))
4328 return -EFAULT;
4329
4330 return 0;
4331 }
4332
4333 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4334 *
4335 * Applications can specify protocol parameters for the default association
4336 * initialization. The option name argument to setsockopt() and getsockopt()
4337 * is SCTP_INITMSG.
4338 *
4339 * Setting initialization parameters is effective only on an unconnected
4340 * socket (for UDP-style sockets only future associations are effected
4341 * by the change). With TCP-style sockets, this option is inherited by
4342 * sockets derived from a listener socket.
4343 */
4344 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4345 {
4346 if (len < sizeof(struct sctp_initmsg))
4347 return -EINVAL;
4348 len = sizeof(struct sctp_initmsg);
4349 if (put_user(len, optlen))
4350 return -EFAULT;
4351 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4352 return -EFAULT;
4353 return 0;
4354 }
4355
4356
4357 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4358 char __user *optval, int __user *optlen)
4359 {
4360 struct sctp_association *asoc;
4361 int cnt = 0;
4362 struct sctp_getaddrs getaddrs;
4363 struct sctp_transport *from;
4364 void __user *to;
4365 union sctp_addr temp;
4366 struct sctp_sock *sp = sctp_sk(sk);
4367 int addrlen;
4368 size_t space_left;
4369 int bytes_copied;
4370
4371 if (len < sizeof(struct sctp_getaddrs))
4372 return -EINVAL;
4373
4374 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4375 return -EFAULT;
4376
4377 /* For UDP-style sockets, id specifies the association to query. */
4378 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4379 if (!asoc)
4380 return -EINVAL;
4381
4382 to = optval + offsetof(struct sctp_getaddrs,addrs);
4383 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4384
4385 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4386 transports) {
4387 memcpy(&temp, &from->ipaddr, sizeof(temp));
4388 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4389 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len;
4390 if (space_left < addrlen)
4391 return -ENOMEM;
4392 if (copy_to_user(to, &temp, addrlen))
4393 return -EFAULT;
4394 to += addrlen;
4395 cnt++;
4396 space_left -= addrlen;
4397 }
4398
4399 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4400 return -EFAULT;
4401 bytes_copied = ((char __user *)to) - optval;
4402 if (put_user(bytes_copied, optlen))
4403 return -EFAULT;
4404
4405 return 0;
4406 }
4407
4408 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4409 size_t space_left, int *bytes_copied)
4410 {
4411 struct sctp_sockaddr_entry *addr;
4412 union sctp_addr temp;
4413 int cnt = 0;
4414 int addrlen;
4415
4416 rcu_read_lock();
4417 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4418 if (!addr->valid)
4419 continue;
4420
4421 if ((PF_INET == sk->sk_family) &&
4422 (AF_INET6 == addr->a.sa.sa_family))
4423 continue;
4424 if ((PF_INET6 == sk->sk_family) &&
4425 inet_v6_ipv6only(sk) &&
4426 (AF_INET == addr->a.sa.sa_family))
4427 continue;
4428 memcpy(&temp, &addr->a, sizeof(temp));
4429 if (!temp.v4.sin_port)
4430 temp.v4.sin_port = htons(port);
4431
4432 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4433 &temp);
4434 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4435 if (space_left < addrlen) {
4436 cnt = -ENOMEM;
4437 break;
4438 }
4439 memcpy(to, &temp, addrlen);
4440
4441 to += addrlen;
4442 cnt ++;
4443 space_left -= addrlen;
4444 *bytes_copied += addrlen;
4445 }
4446 rcu_read_unlock();
4447
4448 return cnt;
4449 }
4450
4451
4452 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4453 char __user *optval, int __user *optlen)
4454 {
4455 struct sctp_bind_addr *bp;
4456 struct sctp_association *asoc;
4457 int cnt = 0;
4458 struct sctp_getaddrs getaddrs;
4459 struct sctp_sockaddr_entry *addr;
4460 void __user *to;
4461 union sctp_addr temp;
4462 struct sctp_sock *sp = sctp_sk(sk);
4463 int addrlen;
4464 int err = 0;
4465 size_t space_left;
4466 int bytes_copied = 0;
4467 void *addrs;
4468 void *buf;
4469
4470 if (len < sizeof(struct sctp_getaddrs))
4471 return -EINVAL;
4472
4473 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4474 return -EFAULT;
4475
4476 /*
4477 * For UDP-style sockets, id specifies the association to query.
4478 * If the id field is set to the value '0' then the locally bound
4479 * addresses are returned without regard to any particular
4480 * association.
4481 */
4482 if (0 == getaddrs.assoc_id) {
4483 bp = &sctp_sk(sk)->ep->base.bind_addr;
4484 } else {
4485 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4486 if (!asoc)
4487 return -EINVAL;
4488 bp = &asoc->base.bind_addr;
4489 }
4490
4491 to = optval + offsetof(struct sctp_getaddrs,addrs);
4492 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4493
4494 addrs = kmalloc(space_left, GFP_KERNEL);
4495 if (!addrs)
4496 return -ENOMEM;
4497
4498 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4499 * addresses from the global local address list.
4500 */
4501 if (sctp_list_single_entry(&bp->address_list)) {
4502 addr = list_entry(bp->address_list.next,
4503 struct sctp_sockaddr_entry, list);
4504 if (sctp_is_any(sk, &addr->a)) {
4505 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4506 space_left, &bytes_copied);
4507 if (cnt < 0) {
4508 err = cnt;
4509 goto out;
4510 }
4511 goto copy_getaddrs;
4512 }
4513 }
4514
4515 buf = addrs;
4516 /* Protection on the bound address list is not needed since
4517 * in the socket option context we hold a socket lock and
4518 * thus the bound address list can't change.
4519 */
4520 list_for_each_entry(addr, &bp->address_list, list) {
4521 memcpy(&temp, &addr->a, sizeof(temp));
4522 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4523 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4524 if (space_left < addrlen) {
4525 err = -ENOMEM; /*fixme: right error?*/
4526 goto out;
4527 }
4528 memcpy(buf, &temp, addrlen);
4529 buf += addrlen;
4530 bytes_copied += addrlen;
4531 cnt ++;
4532 space_left -= addrlen;
4533 }
4534
4535 copy_getaddrs:
4536 if (copy_to_user(to, addrs, bytes_copied)) {
4537 err = -EFAULT;
4538 goto out;
4539 }
4540 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4541 err = -EFAULT;
4542 goto out;
4543 }
4544 if (put_user(bytes_copied, optlen))
4545 err = -EFAULT;
4546 out:
4547 kfree(addrs);
4548 return err;
4549 }
4550
4551 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4552 *
4553 * Requests that the local SCTP stack use the enclosed peer address as
4554 * the association primary. The enclosed address must be one of the
4555 * association peer's addresses.
4556 */
4557 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4558 char __user *optval, int __user *optlen)
4559 {
4560 struct sctp_prim prim;
4561 struct sctp_association *asoc;
4562 struct sctp_sock *sp = sctp_sk(sk);
4563
4564 if (len < sizeof(struct sctp_prim))
4565 return -EINVAL;
4566
4567 len = sizeof(struct sctp_prim);
4568
4569 if (copy_from_user(&prim, optval, len))
4570 return -EFAULT;
4571
4572 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4573 if (!asoc)
4574 return -EINVAL;
4575
4576 if (!asoc->peer.primary_path)
4577 return -ENOTCONN;
4578
4579 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4580 asoc->peer.primary_path->af_specific->sockaddr_len);
4581
4582 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4583 (union sctp_addr *)&prim.ssp_addr);
4584
4585 if (put_user(len, optlen))
4586 return -EFAULT;
4587 if (copy_to_user(optval, &prim, len))
4588 return -EFAULT;
4589
4590 return 0;
4591 }
4592
4593 /*
4594 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4595 *
4596 * Requests that the local endpoint set the specified Adaptation Layer
4597 * Indication parameter for all future INIT and INIT-ACK exchanges.
4598 */
4599 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4600 char __user *optval, int __user *optlen)
4601 {
4602 struct sctp_setadaptation adaptation;
4603
4604 if (len < sizeof(struct sctp_setadaptation))
4605 return -EINVAL;
4606
4607 len = sizeof(struct sctp_setadaptation);
4608
4609 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4610
4611 if (put_user(len, optlen))
4612 return -EFAULT;
4613 if (copy_to_user(optval, &adaptation, len))
4614 return -EFAULT;
4615
4616 return 0;
4617 }
4618
4619 /*
4620 *
4621 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4622 *
4623 * Applications that wish to use the sendto() system call may wish to
4624 * specify a default set of parameters that would normally be supplied
4625 * through the inclusion of ancillary data. This socket option allows
4626 * such an application to set the default sctp_sndrcvinfo structure.
4627
4628
4629 * The application that wishes to use this socket option simply passes
4630 * in to this call the sctp_sndrcvinfo structure defined in Section
4631 * 5.2.2) The input parameters accepted by this call include
4632 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4633 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4634 * to this call if the caller is using the UDP model.
4635 *
4636 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4637 */
4638 static int sctp_getsockopt_default_send_param(struct sock *sk,
4639 int len, char __user *optval,
4640 int __user *optlen)
4641 {
4642 struct sctp_sndrcvinfo info;
4643 struct sctp_association *asoc;
4644 struct sctp_sock *sp = sctp_sk(sk);
4645
4646 if (len < sizeof(struct sctp_sndrcvinfo))
4647 return -EINVAL;
4648
4649 len = sizeof(struct sctp_sndrcvinfo);
4650
4651 if (copy_from_user(&info, optval, len))
4652 return -EFAULT;
4653
4654 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4655 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4656 return -EINVAL;
4657
4658 if (asoc) {
4659 info.sinfo_stream = asoc->default_stream;
4660 info.sinfo_flags = asoc->default_flags;
4661 info.sinfo_ppid = asoc->default_ppid;
4662 info.sinfo_context = asoc->default_context;
4663 info.sinfo_timetolive = asoc->default_timetolive;
4664 } else {
4665 info.sinfo_stream = sp->default_stream;
4666 info.sinfo_flags = sp->default_flags;
4667 info.sinfo_ppid = sp->default_ppid;
4668 info.sinfo_context = sp->default_context;
4669 info.sinfo_timetolive = sp->default_timetolive;
4670 }
4671
4672 if (put_user(len, optlen))
4673 return -EFAULT;
4674 if (copy_to_user(optval, &info, len))
4675 return -EFAULT;
4676
4677 return 0;
4678 }
4679
4680 /*
4681 *
4682 * 7.1.5 SCTP_NODELAY
4683 *
4684 * Turn on/off any Nagle-like algorithm. This means that packets are
4685 * generally sent as soon as possible and no unnecessary delays are
4686 * introduced, at the cost of more packets in the network. Expects an
4687 * integer boolean flag.
4688 */
4689
4690 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4691 char __user *optval, int __user *optlen)
4692 {
4693 int val;
4694
4695 if (len < sizeof(int))
4696 return -EINVAL;
4697
4698 len = sizeof(int);
4699 val = (sctp_sk(sk)->nodelay == 1);
4700 if (put_user(len, optlen))
4701 return -EFAULT;
4702 if (copy_to_user(optval, &val, len))
4703 return -EFAULT;
4704 return 0;
4705 }
4706
4707 /*
4708 *
4709 * 7.1.1 SCTP_RTOINFO
4710 *
4711 * The protocol parameters used to initialize and bound retransmission
4712 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4713 * and modify these parameters.
4714 * All parameters are time values, in milliseconds. A value of 0, when
4715 * modifying the parameters, indicates that the current value should not
4716 * be changed.
4717 *
4718 */
4719 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4720 char __user *optval,
4721 int __user *optlen) {
4722 struct sctp_rtoinfo rtoinfo;
4723 struct sctp_association *asoc;
4724
4725 if (len < sizeof (struct sctp_rtoinfo))
4726 return -EINVAL;
4727
4728 len = sizeof(struct sctp_rtoinfo);
4729
4730 if (copy_from_user(&rtoinfo, optval, len))
4731 return -EFAULT;
4732
4733 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4734
4735 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4736 return -EINVAL;
4737
4738 /* Values corresponding to the specific association. */
4739 if (asoc) {
4740 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4741 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4742 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4743 } else {
4744 /* Values corresponding to the endpoint. */
4745 struct sctp_sock *sp = sctp_sk(sk);
4746
4747 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4748 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4749 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4750 }
4751
4752 if (put_user(len, optlen))
4753 return -EFAULT;
4754
4755 if (copy_to_user(optval, &rtoinfo, len))
4756 return -EFAULT;
4757
4758 return 0;
4759 }
4760
4761 /*
4762 *
4763 * 7.1.2 SCTP_ASSOCINFO
4764 *
4765 * This option is used to tune the maximum retransmission attempts
4766 * of the association.
4767 * Returns an error if the new association retransmission value is
4768 * greater than the sum of the retransmission value of the peer.
4769 * See [SCTP] for more information.
4770 *
4771 */
4772 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4773 char __user *optval,
4774 int __user *optlen)
4775 {
4776
4777 struct sctp_assocparams assocparams;
4778 struct sctp_association *asoc;
4779 struct list_head *pos;
4780 int cnt = 0;
4781
4782 if (len < sizeof (struct sctp_assocparams))
4783 return -EINVAL;
4784
4785 len = sizeof(struct sctp_assocparams);
4786
4787 if (copy_from_user(&assocparams, optval, len))
4788 return -EFAULT;
4789
4790 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4791
4792 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4793 return -EINVAL;
4794
4795 /* Values correspoinding to the specific association */
4796 if (asoc) {
4797 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4798 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4799 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4800 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4801 * 1000) +
4802 (asoc->cookie_life.tv_usec
4803 / 1000);
4804
4805 list_for_each(pos, &asoc->peer.transport_addr_list) {
4806 cnt ++;
4807 }
4808
4809 assocparams.sasoc_number_peer_destinations = cnt;
4810 } else {
4811 /* Values corresponding to the endpoint */
4812 struct sctp_sock *sp = sctp_sk(sk);
4813
4814 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4815 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4816 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4817 assocparams.sasoc_cookie_life =
4818 sp->assocparams.sasoc_cookie_life;
4819 assocparams.sasoc_number_peer_destinations =
4820 sp->assocparams.
4821 sasoc_number_peer_destinations;
4822 }
4823
4824 if (put_user(len, optlen))
4825 return -EFAULT;
4826
4827 if (copy_to_user(optval, &assocparams, len))
4828 return -EFAULT;
4829
4830 return 0;
4831 }
4832
4833 /*
4834 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4835 *
4836 * This socket option is a boolean flag which turns on or off mapped V4
4837 * addresses. If this option is turned on and the socket is type
4838 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4839 * If this option is turned off, then no mapping will be done of V4
4840 * addresses and a user will receive both PF_INET6 and PF_INET type
4841 * addresses on the socket.
4842 */
4843 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4844 char __user *optval, int __user *optlen)
4845 {
4846 int val;
4847 struct sctp_sock *sp = sctp_sk(sk);
4848
4849 if (len < sizeof(int))
4850 return -EINVAL;
4851
4852 len = sizeof(int);
4853 val = sp->v4mapped;
4854 if (put_user(len, optlen))
4855 return -EFAULT;
4856 if (copy_to_user(optval, &val, len))
4857 return -EFAULT;
4858
4859 return 0;
4860 }
4861
4862 /*
4863 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4864 * (chapter and verse is quoted at sctp_setsockopt_context())
4865 */
4866 static int sctp_getsockopt_context(struct sock *sk, int len,
4867 char __user *optval, int __user *optlen)
4868 {
4869 struct sctp_assoc_value params;
4870 struct sctp_sock *sp;
4871 struct sctp_association *asoc;
4872
4873 if (len < sizeof(struct sctp_assoc_value))
4874 return -EINVAL;
4875
4876 len = sizeof(struct sctp_assoc_value);
4877
4878 if (copy_from_user(&params, optval, len))
4879 return -EFAULT;
4880
4881 sp = sctp_sk(sk);
4882
4883 if (params.assoc_id != 0) {
4884 asoc = sctp_id2assoc(sk, params.assoc_id);
4885 if (!asoc)
4886 return -EINVAL;
4887 params.assoc_value = asoc->default_rcv_context;
4888 } else {
4889 params.assoc_value = sp->default_rcv_context;
4890 }
4891
4892 if (put_user(len, optlen))
4893 return -EFAULT;
4894 if (copy_to_user(optval, &params, len))
4895 return -EFAULT;
4896
4897 return 0;
4898 }
4899
4900 /*
4901 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
4902 * This option will get or set the maximum size to put in any outgoing
4903 * SCTP DATA chunk. If a message is larger than this size it will be
4904 * fragmented by SCTP into the specified size. Note that the underlying
4905 * SCTP implementation may fragment into smaller sized chunks when the
4906 * PMTU of the underlying association is smaller than the value set by
4907 * the user. The default value for this option is '0' which indicates
4908 * the user is NOT limiting fragmentation and only the PMTU will effect
4909 * SCTP's choice of DATA chunk size. Note also that values set larger
4910 * than the maximum size of an IP datagram will effectively let SCTP
4911 * control fragmentation (i.e. the same as setting this option to 0).
4912 *
4913 * The following structure is used to access and modify this parameter:
4914 *
4915 * struct sctp_assoc_value {
4916 * sctp_assoc_t assoc_id;
4917 * uint32_t assoc_value;
4918 * };
4919 *
4920 * assoc_id: This parameter is ignored for one-to-one style sockets.
4921 * For one-to-many style sockets this parameter indicates which
4922 * association the user is performing an action upon. Note that if
4923 * this field's value is zero then the endpoints default value is
4924 * changed (effecting future associations only).
4925 * assoc_value: This parameter specifies the maximum size in bytes.
4926 */
4927 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4928 char __user *optval, int __user *optlen)
4929 {
4930 struct sctp_assoc_value params;
4931 struct sctp_association *asoc;
4932
4933 if (len == sizeof(int)) {
4934 printk(KERN_WARNING
4935 "SCTP: Use of int in maxseg socket option deprecated\n");
4936 printk(KERN_WARNING
4937 "SCTP: Use struct sctp_assoc_value instead\n");
4938 params.assoc_id = 0;
4939 } else if (len >= sizeof(struct sctp_assoc_value)) {
4940 len = sizeof(struct sctp_assoc_value);
4941 if (copy_from_user(&params, optval, sizeof(params)))
4942 return -EFAULT;
4943 } else
4944 return -EINVAL;
4945
4946 asoc = sctp_id2assoc(sk, params.assoc_id);
4947 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
4948 return -EINVAL;
4949
4950 if (asoc)
4951 params.assoc_value = asoc->frag_point;
4952 else
4953 params.assoc_value = sctp_sk(sk)->user_frag;
4954
4955 if (put_user(len, optlen))
4956 return -EFAULT;
4957 if (len == sizeof(int)) {
4958 if (copy_to_user(optval, &params.assoc_value, len))
4959 return -EFAULT;
4960 } else {
4961 if (copy_to_user(optval, &params, len))
4962 return -EFAULT;
4963 }
4964
4965 return 0;
4966 }
4967
4968 /*
4969 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
4970 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
4971 */
4972 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
4973 char __user *optval, int __user *optlen)
4974 {
4975 int val;
4976
4977 if (len < sizeof(int))
4978 return -EINVAL;
4979
4980 len = sizeof(int);
4981
4982 val = sctp_sk(sk)->frag_interleave;
4983 if (put_user(len, optlen))
4984 return -EFAULT;
4985 if (copy_to_user(optval, &val, len))
4986 return -EFAULT;
4987
4988 return 0;
4989 }
4990
4991 /*
4992 * 7.1.25. Set or Get the sctp partial delivery point
4993 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
4994 */
4995 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
4996 char __user *optval,
4997 int __user *optlen)
4998 {
4999 u32 val;
5000
5001 if (len < sizeof(u32))
5002 return -EINVAL;
5003
5004 len = sizeof(u32);
5005
5006 val = sctp_sk(sk)->pd_point;
5007 if (put_user(len, optlen))
5008 return -EFAULT;
5009 if (copy_to_user(optval, &val, len))
5010 return -EFAULT;
5011
5012 return -ENOTSUPP;
5013 }
5014
5015 /*
5016 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5017 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5018 */
5019 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5020 char __user *optval,
5021 int __user *optlen)
5022 {
5023 struct sctp_assoc_value params;
5024 struct sctp_sock *sp;
5025 struct sctp_association *asoc;
5026
5027 if (len == sizeof(int)) {
5028 printk(KERN_WARNING
5029 "SCTP: Use of int in max_burst socket option deprecated\n");
5030 printk(KERN_WARNING
5031 "SCTP: Use struct sctp_assoc_value instead\n");
5032 params.assoc_id = 0;
5033 } else if (len >= sizeof(struct sctp_assoc_value)) {
5034 len = sizeof(struct sctp_assoc_value);
5035 if (copy_from_user(&params, optval, len))
5036 return -EFAULT;
5037 } else
5038 return -EINVAL;
5039
5040 sp = sctp_sk(sk);
5041
5042 if (params.assoc_id != 0) {
5043 asoc = sctp_id2assoc(sk, params.assoc_id);
5044 if (!asoc)
5045 return -EINVAL;
5046 params.assoc_value = asoc->max_burst;
5047 } else
5048 params.assoc_value = sp->max_burst;
5049
5050 if (len == sizeof(int)) {
5051 if (copy_to_user(optval, &params.assoc_value, len))
5052 return -EFAULT;
5053 } else {
5054 if (copy_to_user(optval, &params, len))
5055 return -EFAULT;
5056 }
5057
5058 return 0;
5059
5060 }
5061
5062 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5063 char __user *optval, int __user *optlen)
5064 {
5065 struct sctp_hmacalgo __user *p = (void __user *)optval;
5066 struct sctp_hmac_algo_param *hmacs;
5067 __u16 data_len = 0;
5068 u32 num_idents;
5069
5070 if (!sctp_auth_enable)
5071 return -EACCES;
5072
5073 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5074 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5075
5076 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5077 return -EINVAL;
5078
5079 len = sizeof(struct sctp_hmacalgo) + data_len;
5080 num_idents = data_len / sizeof(u16);
5081
5082 if (put_user(len, optlen))
5083 return -EFAULT;
5084 if (put_user(num_idents, &p->shmac_num_idents))
5085 return -EFAULT;
5086 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5087 return -EFAULT;
5088 return 0;
5089 }
5090
5091 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5092 char __user *optval, int __user *optlen)
5093 {
5094 struct sctp_authkeyid val;
5095 struct sctp_association *asoc;
5096
5097 if (!sctp_auth_enable)
5098 return -EACCES;
5099
5100 if (len < sizeof(struct sctp_authkeyid))
5101 return -EINVAL;
5102 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5103 return -EFAULT;
5104
5105 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5106 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5107 return -EINVAL;
5108
5109 if (asoc)
5110 val.scact_keynumber = asoc->active_key_id;
5111 else
5112 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5113
5114 len = sizeof(struct sctp_authkeyid);
5115 if (put_user(len, optlen))
5116 return -EFAULT;
5117 if (copy_to_user(optval, &val, len))
5118 return -EFAULT;
5119
5120 return 0;
5121 }
5122
5123 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5124 char __user *optval, int __user *optlen)
5125 {
5126 struct sctp_authchunks __user *p = (void __user *)optval;
5127 struct sctp_authchunks val;
5128 struct sctp_association *asoc;
5129 struct sctp_chunks_param *ch;
5130 u32 num_chunks = 0;
5131 char __user *to;
5132
5133 if (!sctp_auth_enable)
5134 return -EACCES;
5135
5136 if (len < sizeof(struct sctp_authchunks))
5137 return -EINVAL;
5138
5139 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5140 return -EFAULT;
5141
5142 to = p->gauth_chunks;
5143 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5144 if (!asoc)
5145 return -EINVAL;
5146
5147 ch = asoc->peer.peer_chunks;
5148 if (!ch)
5149 goto num;
5150
5151 /* See if the user provided enough room for all the data */
5152 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5153 if (len < num_chunks)
5154 return -EINVAL;
5155
5156 if (copy_to_user(to, ch->chunks, num_chunks))
5157 return -EFAULT;
5158 num:
5159 len = sizeof(struct sctp_authchunks) + num_chunks;
5160 if (put_user(len, optlen)) return -EFAULT;
5161 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5162 return -EFAULT;
5163 return 0;
5164 }
5165
5166 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5167 char __user *optval, int __user *optlen)
5168 {
5169 struct sctp_authchunks __user *p = (void __user *)optval;
5170 struct sctp_authchunks val;
5171 struct sctp_association *asoc;
5172 struct sctp_chunks_param *ch;
5173 u32 num_chunks = 0;
5174 char __user *to;
5175
5176 if (!sctp_auth_enable)
5177 return -EACCES;
5178
5179 if (len < sizeof(struct sctp_authchunks))
5180 return -EINVAL;
5181
5182 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5183 return -EFAULT;
5184
5185 to = p->gauth_chunks;
5186 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5187 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5188 return -EINVAL;
5189
5190 if (asoc)
5191 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5192 else
5193 ch = sctp_sk(sk)->ep->auth_chunk_list;
5194
5195 if (!ch)
5196 goto num;
5197
5198 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5199 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5200 return -EINVAL;
5201
5202 if (copy_to_user(to, ch->chunks, num_chunks))
5203 return -EFAULT;
5204 num:
5205 len = sizeof(struct sctp_authchunks) + num_chunks;
5206 if (put_user(len, optlen))
5207 return -EFAULT;
5208 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5209 return -EFAULT;
5210
5211 return 0;
5212 }
5213
5214 /*
5215 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5216 * This option gets the current number of associations that are attached
5217 * to a one-to-many style socket. The option value is an uint32_t.
5218 */
5219 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5220 char __user *optval, int __user *optlen)
5221 {
5222 struct sctp_sock *sp = sctp_sk(sk);
5223 struct sctp_association *asoc;
5224 u32 val = 0;
5225
5226 if (sctp_style(sk, TCP))
5227 return -EOPNOTSUPP;
5228
5229 if (len < sizeof(u32))
5230 return -EINVAL;
5231
5232 len = sizeof(u32);
5233
5234 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5235 val++;
5236 }
5237
5238 if (put_user(len, optlen))
5239 return -EFAULT;
5240 if (copy_to_user(optval, &val, len))
5241 return -EFAULT;
5242
5243 return 0;
5244 }
5245
5246 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5247 char __user *optval, int __user *optlen)
5248 {
5249 int retval = 0;
5250 int len;
5251
5252 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5253 sk, optname);
5254
5255 /* I can hardly begin to describe how wrong this is. This is
5256 * so broken as to be worse than useless. The API draft
5257 * REALLY is NOT helpful here... I am not convinced that the
5258 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5259 * are at all well-founded.
5260 */
5261 if (level != SOL_SCTP) {
5262 struct sctp_af *af = sctp_sk(sk)->pf->af;
5263
5264 retval = af->getsockopt(sk, level, optname, optval, optlen);
5265 return retval;
5266 }
5267
5268 if (get_user(len, optlen))
5269 return -EFAULT;
5270
5271 sctp_lock_sock(sk);
5272
5273 switch (optname) {
5274 case SCTP_STATUS:
5275 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5276 break;
5277 case SCTP_DISABLE_FRAGMENTS:
5278 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5279 optlen);
5280 break;
5281 case SCTP_EVENTS:
5282 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5283 break;
5284 case SCTP_AUTOCLOSE:
5285 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5286 break;
5287 case SCTP_SOCKOPT_PEELOFF:
5288 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5289 break;
5290 case SCTP_PEER_ADDR_PARAMS:
5291 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5292 optlen);
5293 break;
5294 case SCTP_DELAYED_ACK:
5295 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5296 optlen);
5297 break;
5298 case SCTP_INITMSG:
5299 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5300 break;
5301 case SCTP_GET_PEER_ADDRS:
5302 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5303 optlen);
5304 break;
5305 case SCTP_GET_LOCAL_ADDRS:
5306 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5307 optlen);
5308 break;
5309 case SCTP_SOCKOPT_CONNECTX3:
5310 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5311 break;
5312 case SCTP_DEFAULT_SEND_PARAM:
5313 retval = sctp_getsockopt_default_send_param(sk, len,
5314 optval, optlen);
5315 break;
5316 case SCTP_PRIMARY_ADDR:
5317 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5318 break;
5319 case SCTP_NODELAY:
5320 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5321 break;
5322 case SCTP_RTOINFO:
5323 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5324 break;
5325 case SCTP_ASSOCINFO:
5326 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5327 break;
5328 case SCTP_I_WANT_MAPPED_V4_ADDR:
5329 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5330 break;
5331 case SCTP_MAXSEG:
5332 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5333 break;
5334 case SCTP_GET_PEER_ADDR_INFO:
5335 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5336 optlen);
5337 break;
5338 case SCTP_ADAPTATION_LAYER:
5339 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5340 optlen);
5341 break;
5342 case SCTP_CONTEXT:
5343 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5344 break;
5345 case SCTP_FRAGMENT_INTERLEAVE:
5346 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5347 optlen);
5348 break;
5349 case SCTP_PARTIAL_DELIVERY_POINT:
5350 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5351 optlen);
5352 break;
5353 case SCTP_MAX_BURST:
5354 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5355 break;
5356 case SCTP_AUTH_KEY:
5357 case SCTP_AUTH_CHUNK:
5358 case SCTP_AUTH_DELETE_KEY:
5359 retval = -EOPNOTSUPP;
5360 break;
5361 case SCTP_HMAC_IDENT:
5362 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5363 break;
5364 case SCTP_AUTH_ACTIVE_KEY:
5365 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5366 break;
5367 case SCTP_PEER_AUTH_CHUNKS:
5368 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5369 optlen);
5370 break;
5371 case SCTP_LOCAL_AUTH_CHUNKS:
5372 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5373 optlen);
5374 break;
5375 case SCTP_GET_ASSOC_NUMBER:
5376 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5377 break;
5378 default:
5379 retval = -ENOPROTOOPT;
5380 break;
5381 }
5382
5383 sctp_release_sock(sk);
5384 return retval;
5385 }
5386
5387 static void sctp_hash(struct sock *sk)
5388 {
5389 /* STUB */
5390 }
5391
5392 static void sctp_unhash(struct sock *sk)
5393 {
5394 /* STUB */
5395 }
5396
5397 /* Check if port is acceptable. Possibly find first available port.
5398 *
5399 * The port hash table (contained in the 'global' SCTP protocol storage
5400 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5401 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5402 * list (the list number is the port number hashed out, so as you
5403 * would expect from a hash function, all the ports in a given list have
5404 * such a number that hashes out to the same list number; you were
5405 * expecting that, right?); so each list has a set of ports, with a
5406 * link to the socket (struct sock) that uses it, the port number and
5407 * a fastreuse flag (FIXME: NPI ipg).
5408 */
5409 static struct sctp_bind_bucket *sctp_bucket_create(
5410 struct sctp_bind_hashbucket *head, unsigned short snum);
5411
5412 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5413 {
5414 struct sctp_bind_hashbucket *head; /* hash list */
5415 struct sctp_bind_bucket *pp; /* hash list port iterator */
5416 struct hlist_node *node;
5417 unsigned short snum;
5418 int ret;
5419
5420 snum = ntohs(addr->v4.sin_port);
5421
5422 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5423 sctp_local_bh_disable();
5424
5425 if (snum == 0) {
5426 /* Search for an available port. */
5427 int low, high, remaining, index;
5428 unsigned int rover;
5429
5430 inet_get_local_port_range(&low, &high);
5431 remaining = (high - low) + 1;
5432 rover = net_random() % remaining + low;
5433
5434 do {
5435 rover++;
5436 if ((rover < low) || (rover > high))
5437 rover = low;
5438 index = sctp_phashfn(rover);
5439 head = &sctp_port_hashtable[index];
5440 sctp_spin_lock(&head->lock);
5441 sctp_for_each_hentry(pp, node, &head->chain)
5442 if (pp->port == rover)
5443 goto next;
5444 break;
5445 next:
5446 sctp_spin_unlock(&head->lock);
5447 } while (--remaining > 0);
5448
5449 /* Exhausted local port range during search? */
5450 ret = 1;
5451 if (remaining <= 0)
5452 goto fail;
5453
5454 /* OK, here is the one we will use. HEAD (the port
5455 * hash table list entry) is non-NULL and we hold it's
5456 * mutex.
5457 */
5458 snum = rover;
5459 } else {
5460 /* We are given an specific port number; we verify
5461 * that it is not being used. If it is used, we will
5462 * exahust the search in the hash list corresponding
5463 * to the port number (snum) - we detect that with the
5464 * port iterator, pp being NULL.
5465 */
5466 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5467 sctp_spin_lock(&head->lock);
5468 sctp_for_each_hentry(pp, node, &head->chain) {
5469 if (pp->port == snum)
5470 goto pp_found;
5471 }
5472 }
5473 pp = NULL;
5474 goto pp_not_found;
5475 pp_found:
5476 if (!hlist_empty(&pp->owner)) {
5477 /* We had a port hash table hit - there is an
5478 * available port (pp != NULL) and it is being
5479 * used by other socket (pp->owner not empty); that other
5480 * socket is going to be sk2.
5481 */
5482 int reuse = sk->sk_reuse;
5483 struct sock *sk2;
5484 struct hlist_node *node;
5485
5486 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5487 if (pp->fastreuse && sk->sk_reuse &&
5488 sk->sk_state != SCTP_SS_LISTENING)
5489 goto success;
5490
5491 /* Run through the list of sockets bound to the port
5492 * (pp->port) [via the pointers bind_next and
5493 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5494 * we get the endpoint they describe and run through
5495 * the endpoint's list of IP (v4 or v6) addresses,
5496 * comparing each of the addresses with the address of
5497 * the socket sk. If we find a match, then that means
5498 * that this port/socket (sk) combination are already
5499 * in an endpoint.
5500 */
5501 sk_for_each_bound(sk2, node, &pp->owner) {
5502 struct sctp_endpoint *ep2;
5503 ep2 = sctp_sk(sk2)->ep;
5504
5505 if (sk == sk2 ||
5506 (reuse && sk2->sk_reuse &&
5507 sk2->sk_state != SCTP_SS_LISTENING))
5508 continue;
5509
5510 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5511 sctp_sk(sk2), sctp_sk(sk))) {
5512 ret = (long)sk2;
5513 goto fail_unlock;
5514 }
5515 }
5516 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5517 }
5518 pp_not_found:
5519 /* If there was a hash table miss, create a new port. */
5520 ret = 1;
5521 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5522 goto fail_unlock;
5523
5524 /* In either case (hit or miss), make sure fastreuse is 1 only
5525 * if sk->sk_reuse is too (that is, if the caller requested
5526 * SO_REUSEADDR on this socket -sk-).
5527 */
5528 if (hlist_empty(&pp->owner)) {
5529 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5530 pp->fastreuse = 1;
5531 else
5532 pp->fastreuse = 0;
5533 } else if (pp->fastreuse &&
5534 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5535 pp->fastreuse = 0;
5536
5537 /* We are set, so fill up all the data in the hash table
5538 * entry, tie the socket list information with the rest of the
5539 * sockets FIXME: Blurry, NPI (ipg).
5540 */
5541 success:
5542 if (!sctp_sk(sk)->bind_hash) {
5543 inet_sk(sk)->inet_num = snum;
5544 sk_add_bind_node(sk, &pp->owner);
5545 sctp_sk(sk)->bind_hash = pp;
5546 }
5547 ret = 0;
5548
5549 fail_unlock:
5550 sctp_spin_unlock(&head->lock);
5551
5552 fail:
5553 sctp_local_bh_enable();
5554 return ret;
5555 }
5556
5557 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5558 * port is requested.
5559 */
5560 static int sctp_get_port(struct sock *sk, unsigned short snum)
5561 {
5562 long ret;
5563 union sctp_addr addr;
5564 struct sctp_af *af = sctp_sk(sk)->pf->af;
5565
5566 /* Set up a dummy address struct from the sk. */
5567 af->from_sk(&addr, sk);
5568 addr.v4.sin_port = htons(snum);
5569
5570 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5571 ret = sctp_get_port_local(sk, &addr);
5572
5573 return (ret ? 1 : 0);
5574 }
5575
5576 /*
5577 * Move a socket to LISTENING state.
5578 */
5579 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5580 {
5581 struct sctp_sock *sp = sctp_sk(sk);
5582 struct sctp_endpoint *ep = sp->ep;
5583 struct crypto_hash *tfm = NULL;
5584
5585 /* Allocate HMAC for generating cookie. */
5586 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5587 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5588 if (IS_ERR(tfm)) {
5589 if (net_ratelimit()) {
5590 printk(KERN_INFO
5591 "SCTP: failed to load transform for %s: %ld\n",
5592 sctp_hmac_alg, PTR_ERR(tfm));
5593 }
5594 return -ENOSYS;
5595 }
5596 sctp_sk(sk)->hmac = tfm;
5597 }
5598
5599 /*
5600 * If a bind() or sctp_bindx() is not called prior to a listen()
5601 * call that allows new associations to be accepted, the system
5602 * picks an ephemeral port and will choose an address set equivalent
5603 * to binding with a wildcard address.
5604 *
5605 * This is not currently spelled out in the SCTP sockets
5606 * extensions draft, but follows the practice as seen in TCP
5607 * sockets.
5608 *
5609 */
5610 sk->sk_state = SCTP_SS_LISTENING;
5611 if (!ep->base.bind_addr.port) {
5612 if (sctp_autobind(sk))
5613 return -EAGAIN;
5614 } else {
5615 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5616 sk->sk_state = SCTP_SS_CLOSED;
5617 return -EADDRINUSE;
5618 }
5619 }
5620
5621 sk->sk_max_ack_backlog = backlog;
5622 sctp_hash_endpoint(ep);
5623 return 0;
5624 }
5625
5626 /*
5627 * 4.1.3 / 5.1.3 listen()
5628 *
5629 * By default, new associations are not accepted for UDP style sockets.
5630 * An application uses listen() to mark a socket as being able to
5631 * accept new associations.
5632 *
5633 * On TCP style sockets, applications use listen() to ready the SCTP
5634 * endpoint for accepting inbound associations.
5635 *
5636 * On both types of endpoints a backlog of '0' disables listening.
5637 *
5638 * Move a socket to LISTENING state.
5639 */
5640 int sctp_inet_listen(struct socket *sock, int backlog)
5641 {
5642 struct sock *sk = sock->sk;
5643 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5644 int err = -EINVAL;
5645
5646 if (unlikely(backlog < 0))
5647 return err;
5648
5649 sctp_lock_sock(sk);
5650
5651 /* Peeled-off sockets are not allowed to listen(). */
5652 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5653 goto out;
5654
5655 if (sock->state != SS_UNCONNECTED)
5656 goto out;
5657
5658 /* If backlog is zero, disable listening. */
5659 if (!backlog) {
5660 if (sctp_sstate(sk, CLOSED))
5661 goto out;
5662
5663 err = 0;
5664 sctp_unhash_endpoint(ep);
5665 sk->sk_state = SCTP_SS_CLOSED;
5666 if (sk->sk_reuse)
5667 sctp_sk(sk)->bind_hash->fastreuse = 1;
5668 goto out;
5669 }
5670
5671 /* If we are already listening, just update the backlog */
5672 if (sctp_sstate(sk, LISTENING))
5673 sk->sk_max_ack_backlog = backlog;
5674 else {
5675 err = sctp_listen_start(sk, backlog);
5676 if (err)
5677 goto out;
5678 }
5679
5680 err = 0;
5681 out:
5682 sctp_release_sock(sk);
5683 return err;
5684 }
5685
5686 /*
5687 * This function is done by modeling the current datagram_poll() and the
5688 * tcp_poll(). Note that, based on these implementations, we don't
5689 * lock the socket in this function, even though it seems that,
5690 * ideally, locking or some other mechanisms can be used to ensure
5691 * the integrity of the counters (sndbuf and wmem_alloc) used
5692 * in this place. We assume that we don't need locks either until proven
5693 * otherwise.
5694 *
5695 * Another thing to note is that we include the Async I/O support
5696 * here, again, by modeling the current TCP/UDP code. We don't have
5697 * a good way to test with it yet.
5698 */
5699 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5700 {
5701 struct sock *sk = sock->sk;
5702 struct sctp_sock *sp = sctp_sk(sk);
5703 unsigned int mask;
5704
5705 poll_wait(file, sk->sk_sleep, wait);
5706
5707 /* A TCP-style listening socket becomes readable when the accept queue
5708 * is not empty.
5709 */
5710 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5711 return (!list_empty(&sp->ep->asocs)) ?
5712 (POLLIN | POLLRDNORM) : 0;
5713
5714 mask = 0;
5715
5716 /* Is there any exceptional events? */
5717 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5718 mask |= POLLERR;
5719 if (sk->sk_shutdown & RCV_SHUTDOWN)
5720 mask |= POLLRDHUP;
5721 if (sk->sk_shutdown == SHUTDOWN_MASK)
5722 mask |= POLLHUP;
5723
5724 /* Is it readable? Reconsider this code with TCP-style support. */
5725 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5726 (sk->sk_shutdown & RCV_SHUTDOWN))
5727 mask |= POLLIN | POLLRDNORM;
5728
5729 /* The association is either gone or not ready. */
5730 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5731 return mask;
5732
5733 /* Is it writable? */
5734 if (sctp_writeable(sk)) {
5735 mask |= POLLOUT | POLLWRNORM;
5736 } else {
5737 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5738 /*
5739 * Since the socket is not locked, the buffer
5740 * might be made available after the writeable check and
5741 * before the bit is set. This could cause a lost I/O
5742 * signal. tcp_poll() has a race breaker for this race
5743 * condition. Based on their implementation, we put
5744 * in the following code to cover it as well.
5745 */
5746 if (sctp_writeable(sk))
5747 mask |= POLLOUT | POLLWRNORM;
5748 }
5749 return mask;
5750 }
5751
5752 /********************************************************************
5753 * 2nd Level Abstractions
5754 ********************************************************************/
5755
5756 static struct sctp_bind_bucket *sctp_bucket_create(
5757 struct sctp_bind_hashbucket *head, unsigned short snum)
5758 {
5759 struct sctp_bind_bucket *pp;
5760
5761 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5762 if (pp) {
5763 SCTP_DBG_OBJCNT_INC(bind_bucket);
5764 pp->port = snum;
5765 pp->fastreuse = 0;
5766 INIT_HLIST_HEAD(&pp->owner);
5767 hlist_add_head(&pp->node, &head->chain);
5768 }
5769 return pp;
5770 }
5771
5772 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5773 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5774 {
5775 if (pp && hlist_empty(&pp->owner)) {
5776 __hlist_del(&pp->node);
5777 kmem_cache_free(sctp_bucket_cachep, pp);
5778 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5779 }
5780 }
5781
5782 /* Release this socket's reference to a local port. */
5783 static inline void __sctp_put_port(struct sock *sk)
5784 {
5785 struct sctp_bind_hashbucket *head =
5786 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
5787 struct sctp_bind_bucket *pp;
5788
5789 sctp_spin_lock(&head->lock);
5790 pp = sctp_sk(sk)->bind_hash;
5791 __sk_del_bind_node(sk);
5792 sctp_sk(sk)->bind_hash = NULL;
5793 inet_sk(sk)->inet_num = 0;
5794 sctp_bucket_destroy(pp);
5795 sctp_spin_unlock(&head->lock);
5796 }
5797
5798 void sctp_put_port(struct sock *sk)
5799 {
5800 sctp_local_bh_disable();
5801 __sctp_put_port(sk);
5802 sctp_local_bh_enable();
5803 }
5804
5805 /*
5806 * The system picks an ephemeral port and choose an address set equivalent
5807 * to binding with a wildcard address.
5808 * One of those addresses will be the primary address for the association.
5809 * This automatically enables the multihoming capability of SCTP.
5810 */
5811 static int sctp_autobind(struct sock *sk)
5812 {
5813 union sctp_addr autoaddr;
5814 struct sctp_af *af;
5815 __be16 port;
5816
5817 /* Initialize a local sockaddr structure to INADDR_ANY. */
5818 af = sctp_sk(sk)->pf->af;
5819
5820 port = htons(inet_sk(sk)->inet_num);
5821 af->inaddr_any(&autoaddr, port);
5822
5823 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5824 }
5825
5826 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5827 *
5828 * From RFC 2292
5829 * 4.2 The cmsghdr Structure *
5830 *
5831 * When ancillary data is sent or received, any number of ancillary data
5832 * objects can be specified by the msg_control and msg_controllen members of
5833 * the msghdr structure, because each object is preceded by
5834 * a cmsghdr structure defining the object's length (the cmsg_len member).
5835 * Historically Berkeley-derived implementations have passed only one object
5836 * at a time, but this API allows multiple objects to be
5837 * passed in a single call to sendmsg() or recvmsg(). The following example
5838 * shows two ancillary data objects in a control buffer.
5839 *
5840 * |<--------------------------- msg_controllen -------------------------->|
5841 * | |
5842 *
5843 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5844 *
5845 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5846 * | | |
5847 *
5848 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5849 *
5850 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5851 * | | | | |
5852 *
5853 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5854 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5855 *
5856 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5857 *
5858 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5859 * ^
5860 * |
5861 *
5862 * msg_control
5863 * points here
5864 */
5865 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5866 sctp_cmsgs_t *cmsgs)
5867 {
5868 struct cmsghdr *cmsg;
5869 struct msghdr *my_msg = (struct msghdr *)msg;
5870
5871 for (cmsg = CMSG_FIRSTHDR(msg);
5872 cmsg != NULL;
5873 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5874 if (!CMSG_OK(my_msg, cmsg))
5875 return -EINVAL;
5876
5877 /* Should we parse this header or ignore? */
5878 if (cmsg->cmsg_level != IPPROTO_SCTP)
5879 continue;
5880
5881 /* Strictly check lengths following example in SCM code. */
5882 switch (cmsg->cmsg_type) {
5883 case SCTP_INIT:
5884 /* SCTP Socket API Extension
5885 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5886 *
5887 * This cmsghdr structure provides information for
5888 * initializing new SCTP associations with sendmsg().
5889 * The SCTP_INITMSG socket option uses this same data
5890 * structure. This structure is not used for
5891 * recvmsg().
5892 *
5893 * cmsg_level cmsg_type cmsg_data[]
5894 * ------------ ------------ ----------------------
5895 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
5896 */
5897 if (cmsg->cmsg_len !=
5898 CMSG_LEN(sizeof(struct sctp_initmsg)))
5899 return -EINVAL;
5900 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
5901 break;
5902
5903 case SCTP_SNDRCV:
5904 /* SCTP Socket API Extension
5905 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
5906 *
5907 * This cmsghdr structure specifies SCTP options for
5908 * sendmsg() and describes SCTP header information
5909 * about a received message through recvmsg().
5910 *
5911 * cmsg_level cmsg_type cmsg_data[]
5912 * ------------ ------------ ----------------------
5913 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
5914 */
5915 if (cmsg->cmsg_len !=
5916 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
5917 return -EINVAL;
5918
5919 cmsgs->info =
5920 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
5921
5922 /* Minimally, validate the sinfo_flags. */
5923 if (cmsgs->info->sinfo_flags &
5924 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
5925 SCTP_ABORT | SCTP_EOF))
5926 return -EINVAL;
5927 break;
5928
5929 default:
5930 return -EINVAL;
5931 }
5932 }
5933 return 0;
5934 }
5935
5936 /*
5937 * Wait for a packet..
5938 * Note: This function is the same function as in core/datagram.c
5939 * with a few modifications to make lksctp work.
5940 */
5941 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
5942 {
5943 int error;
5944 DEFINE_WAIT(wait);
5945
5946 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
5947
5948 /* Socket errors? */
5949 error = sock_error(sk);
5950 if (error)
5951 goto out;
5952
5953 if (!skb_queue_empty(&sk->sk_receive_queue))
5954 goto ready;
5955
5956 /* Socket shut down? */
5957 if (sk->sk_shutdown & RCV_SHUTDOWN)
5958 goto out;
5959
5960 /* Sequenced packets can come disconnected. If so we report the
5961 * problem.
5962 */
5963 error = -ENOTCONN;
5964
5965 /* Is there a good reason to think that we may receive some data? */
5966 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
5967 goto out;
5968
5969 /* Handle signals. */
5970 if (signal_pending(current))
5971 goto interrupted;
5972
5973 /* Let another process have a go. Since we are going to sleep
5974 * anyway. Note: This may cause odd behaviors if the message
5975 * does not fit in the user's buffer, but this seems to be the
5976 * only way to honor MSG_DONTWAIT realistically.
5977 */
5978 sctp_release_sock(sk);
5979 *timeo_p = schedule_timeout(*timeo_p);
5980 sctp_lock_sock(sk);
5981
5982 ready:
5983 finish_wait(sk->sk_sleep, &wait);
5984 return 0;
5985
5986 interrupted:
5987 error = sock_intr_errno(*timeo_p);
5988
5989 out:
5990 finish_wait(sk->sk_sleep, &wait);
5991 *err = error;
5992 return error;
5993 }
5994
5995 /* Receive a datagram.
5996 * Note: This is pretty much the same routine as in core/datagram.c
5997 * with a few changes to make lksctp work.
5998 */
5999 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6000 int noblock, int *err)
6001 {
6002 int error;
6003 struct sk_buff *skb;
6004 long timeo;
6005
6006 timeo = sock_rcvtimeo(sk, noblock);
6007
6008 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6009 timeo, MAX_SCHEDULE_TIMEOUT);
6010
6011 do {
6012 /* Again only user level code calls this function,
6013 * so nothing interrupt level
6014 * will suddenly eat the receive_queue.
6015 *
6016 * Look at current nfs client by the way...
6017 * However, this function was corrent in any case. 8)
6018 */
6019 if (flags & MSG_PEEK) {
6020 spin_lock_bh(&sk->sk_receive_queue.lock);
6021 skb = skb_peek(&sk->sk_receive_queue);
6022 if (skb)
6023 atomic_inc(&skb->users);
6024 spin_unlock_bh(&sk->sk_receive_queue.lock);
6025 } else {
6026 skb = skb_dequeue(&sk->sk_receive_queue);
6027 }
6028
6029 if (skb)
6030 return skb;
6031
6032 /* Caller is allowed not to check sk->sk_err before calling. */
6033 error = sock_error(sk);
6034 if (error)
6035 goto no_packet;
6036
6037 if (sk->sk_shutdown & RCV_SHUTDOWN)
6038 break;
6039
6040 /* User doesn't want to wait. */
6041 error = -EAGAIN;
6042 if (!timeo)
6043 goto no_packet;
6044 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6045
6046 return NULL;
6047
6048 no_packet:
6049 *err = error;
6050 return NULL;
6051 }
6052
6053 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6054 static void __sctp_write_space(struct sctp_association *asoc)
6055 {
6056 struct sock *sk = asoc->base.sk;
6057 struct socket *sock = sk->sk_socket;
6058
6059 if ((sctp_wspace(asoc) > 0) && sock) {
6060 if (waitqueue_active(&asoc->wait))
6061 wake_up_interruptible(&asoc->wait);
6062
6063 if (sctp_writeable(sk)) {
6064 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
6065 wake_up_interruptible(sk->sk_sleep);
6066
6067 /* Note that we try to include the Async I/O support
6068 * here by modeling from the current TCP/UDP code.
6069 * We have not tested with it yet.
6070 */
6071 if (sock->fasync_list &&
6072 !(sk->sk_shutdown & SEND_SHUTDOWN))
6073 sock_wake_async(sock,
6074 SOCK_WAKE_SPACE, POLL_OUT);
6075 }
6076 }
6077 }
6078
6079 /* Do accounting for the sndbuf space.
6080 * Decrement the used sndbuf space of the corresponding association by the
6081 * data size which was just transmitted(freed).
6082 */
6083 static void sctp_wfree(struct sk_buff *skb)
6084 {
6085 struct sctp_association *asoc;
6086 struct sctp_chunk *chunk;
6087 struct sock *sk;
6088
6089 /* Get the saved chunk pointer. */
6090 chunk = *((struct sctp_chunk **)(skb->cb));
6091 asoc = chunk->asoc;
6092 sk = asoc->base.sk;
6093 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6094 sizeof(struct sk_buff) +
6095 sizeof(struct sctp_chunk);
6096
6097 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6098
6099 /*
6100 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6101 */
6102 sk->sk_wmem_queued -= skb->truesize;
6103 sk_mem_uncharge(sk, skb->truesize);
6104
6105 sock_wfree(skb);
6106 __sctp_write_space(asoc);
6107
6108 sctp_association_put(asoc);
6109 }
6110
6111 /* Do accounting for the receive space on the socket.
6112 * Accounting for the association is done in ulpevent.c
6113 * We set this as a destructor for the cloned data skbs so that
6114 * accounting is done at the correct time.
6115 */
6116 void sctp_sock_rfree(struct sk_buff *skb)
6117 {
6118 struct sock *sk = skb->sk;
6119 struct sctp_ulpevent *event = sctp_skb2event(skb);
6120
6121 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6122
6123 /*
6124 * Mimic the behavior of sock_rfree
6125 */
6126 sk_mem_uncharge(sk, event->rmem_len);
6127 }
6128
6129
6130 /* Helper function to wait for space in the sndbuf. */
6131 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6132 size_t msg_len)
6133 {
6134 struct sock *sk = asoc->base.sk;
6135 int err = 0;
6136 long current_timeo = *timeo_p;
6137 DEFINE_WAIT(wait);
6138
6139 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6140 asoc, (long)(*timeo_p), msg_len);
6141
6142 /* Increment the association's refcnt. */
6143 sctp_association_hold(asoc);
6144
6145 /* Wait on the association specific sndbuf space. */
6146 for (;;) {
6147 prepare_to_wait_exclusive(&asoc->wait, &wait,
6148 TASK_INTERRUPTIBLE);
6149 if (!*timeo_p)
6150 goto do_nonblock;
6151 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6152 asoc->base.dead)
6153 goto do_error;
6154 if (signal_pending(current))
6155 goto do_interrupted;
6156 if (msg_len <= sctp_wspace(asoc))
6157 break;
6158
6159 /* Let another process have a go. Since we are going
6160 * to sleep anyway.
6161 */
6162 sctp_release_sock(sk);
6163 current_timeo = schedule_timeout(current_timeo);
6164 BUG_ON(sk != asoc->base.sk);
6165 sctp_lock_sock(sk);
6166
6167 *timeo_p = current_timeo;
6168 }
6169
6170 out:
6171 finish_wait(&asoc->wait, &wait);
6172
6173 /* Release the association's refcnt. */
6174 sctp_association_put(asoc);
6175
6176 return err;
6177
6178 do_error:
6179 err = -EPIPE;
6180 goto out;
6181
6182 do_interrupted:
6183 err = sock_intr_errno(*timeo_p);
6184 goto out;
6185
6186 do_nonblock:
6187 err = -EAGAIN;
6188 goto out;
6189 }
6190
6191 /* If socket sndbuf has changed, wake up all per association waiters. */
6192 void sctp_write_space(struct sock *sk)
6193 {
6194 struct sctp_association *asoc;
6195
6196 /* Wake up the tasks in each wait queue. */
6197 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6198 __sctp_write_space(asoc);
6199 }
6200 }
6201
6202 /* Is there any sndbuf space available on the socket?
6203 *
6204 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6205 * associations on the same socket. For a UDP-style socket with
6206 * multiple associations, it is possible for it to be "unwriteable"
6207 * prematurely. I assume that this is acceptable because
6208 * a premature "unwriteable" is better than an accidental "writeable" which
6209 * would cause an unwanted block under certain circumstances. For the 1-1
6210 * UDP-style sockets or TCP-style sockets, this code should work.
6211 * - Daisy
6212 */
6213 static int sctp_writeable(struct sock *sk)
6214 {
6215 int amt = 0;
6216
6217 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6218 if (amt < 0)
6219 amt = 0;
6220 return amt;
6221 }
6222
6223 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6224 * returns immediately with EINPROGRESS.
6225 */
6226 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6227 {
6228 struct sock *sk = asoc->base.sk;
6229 int err = 0;
6230 long current_timeo = *timeo_p;
6231 DEFINE_WAIT(wait);
6232
6233 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6234 (long)(*timeo_p));
6235
6236 /* Increment the association's refcnt. */
6237 sctp_association_hold(asoc);
6238
6239 for (;;) {
6240 prepare_to_wait_exclusive(&asoc->wait, &wait,
6241 TASK_INTERRUPTIBLE);
6242 if (!*timeo_p)
6243 goto do_nonblock;
6244 if (sk->sk_shutdown & RCV_SHUTDOWN)
6245 break;
6246 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6247 asoc->base.dead)
6248 goto do_error;
6249 if (signal_pending(current))
6250 goto do_interrupted;
6251
6252 if (sctp_state(asoc, ESTABLISHED))
6253 break;
6254
6255 /* Let another process have a go. Since we are going
6256 * to sleep anyway.
6257 */
6258 sctp_release_sock(sk);
6259 current_timeo = schedule_timeout(current_timeo);
6260 sctp_lock_sock(sk);
6261
6262 *timeo_p = current_timeo;
6263 }
6264
6265 out:
6266 finish_wait(&asoc->wait, &wait);
6267
6268 /* Release the association's refcnt. */
6269 sctp_association_put(asoc);
6270
6271 return err;
6272
6273 do_error:
6274 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6275 err = -ETIMEDOUT;
6276 else
6277 err = -ECONNREFUSED;
6278 goto out;
6279
6280 do_interrupted:
6281 err = sock_intr_errno(*timeo_p);
6282 goto out;
6283
6284 do_nonblock:
6285 err = -EINPROGRESS;
6286 goto out;
6287 }
6288
6289 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6290 {
6291 struct sctp_endpoint *ep;
6292 int err = 0;
6293 DEFINE_WAIT(wait);
6294
6295 ep = sctp_sk(sk)->ep;
6296
6297
6298 for (;;) {
6299 prepare_to_wait_exclusive(sk->sk_sleep, &wait,
6300 TASK_INTERRUPTIBLE);
6301
6302 if (list_empty(&ep->asocs)) {
6303 sctp_release_sock(sk);
6304 timeo = schedule_timeout(timeo);
6305 sctp_lock_sock(sk);
6306 }
6307
6308 err = -EINVAL;
6309 if (!sctp_sstate(sk, LISTENING))
6310 break;
6311
6312 err = 0;
6313 if (!list_empty(&ep->asocs))
6314 break;
6315
6316 err = sock_intr_errno(timeo);
6317 if (signal_pending(current))
6318 break;
6319
6320 err = -EAGAIN;
6321 if (!timeo)
6322 break;
6323 }
6324
6325 finish_wait(sk->sk_sleep, &wait);
6326
6327 return err;
6328 }
6329
6330 static void sctp_wait_for_close(struct sock *sk, long timeout)
6331 {
6332 DEFINE_WAIT(wait);
6333
6334 do {
6335 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
6336 if (list_empty(&sctp_sk(sk)->ep->asocs))
6337 break;
6338 sctp_release_sock(sk);
6339 timeout = schedule_timeout(timeout);
6340 sctp_lock_sock(sk);
6341 } while (!signal_pending(current) && timeout);
6342
6343 finish_wait(sk->sk_sleep, &wait);
6344 }
6345
6346 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6347 {
6348 struct sk_buff *frag;
6349
6350 if (!skb->data_len)
6351 goto done;
6352
6353 /* Don't forget the fragments. */
6354 skb_walk_frags(skb, frag)
6355 sctp_skb_set_owner_r_frag(frag, sk);
6356
6357 done:
6358 sctp_skb_set_owner_r(skb, sk);
6359 }
6360
6361 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6362 struct sctp_association *asoc)
6363 {
6364 struct inet_sock *inet = inet_sk(sk);
6365 struct inet_sock *newinet;
6366
6367 newsk->sk_type = sk->sk_type;
6368 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6369 newsk->sk_flags = sk->sk_flags;
6370 newsk->sk_no_check = sk->sk_no_check;
6371 newsk->sk_reuse = sk->sk_reuse;
6372
6373 newsk->sk_shutdown = sk->sk_shutdown;
6374 newsk->sk_destruct = inet_sock_destruct;
6375 newsk->sk_family = sk->sk_family;
6376 newsk->sk_protocol = IPPROTO_SCTP;
6377 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6378 newsk->sk_sndbuf = sk->sk_sndbuf;
6379 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6380 newsk->sk_lingertime = sk->sk_lingertime;
6381 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6382 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6383
6384 newinet = inet_sk(newsk);
6385
6386 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6387 * getsockname() and getpeername()
6388 */
6389 newinet->inet_sport = inet->inet_sport;
6390 newinet->inet_saddr = inet->inet_saddr;
6391 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6392 newinet->inet_dport = htons(asoc->peer.port);
6393 newinet->pmtudisc = inet->pmtudisc;
6394 newinet->inet_id = asoc->next_tsn ^ jiffies;
6395
6396 newinet->uc_ttl = inet->uc_ttl;
6397 newinet->mc_loop = 1;
6398 newinet->mc_ttl = 1;
6399 newinet->mc_index = 0;
6400 newinet->mc_list = NULL;
6401 }
6402
6403 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6404 * and its messages to the newsk.
6405 */
6406 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6407 struct sctp_association *assoc,
6408 sctp_socket_type_t type)
6409 {
6410 struct sctp_sock *oldsp = sctp_sk(oldsk);
6411 struct sctp_sock *newsp = sctp_sk(newsk);
6412 struct sctp_bind_bucket *pp; /* hash list port iterator */
6413 struct sctp_endpoint *newep = newsp->ep;
6414 struct sk_buff *skb, *tmp;
6415 struct sctp_ulpevent *event;
6416 struct sctp_bind_hashbucket *head;
6417
6418 /* Migrate socket buffer sizes and all the socket level options to the
6419 * new socket.
6420 */
6421 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6422 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6423 /* Brute force copy old sctp opt. */
6424 inet_sk_copy_descendant(newsk, oldsk);
6425
6426 /* Restore the ep value that was overwritten with the above structure
6427 * copy.
6428 */
6429 newsp->ep = newep;
6430 newsp->hmac = NULL;
6431
6432 /* Hook this new socket in to the bind_hash list. */
6433 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6434 sctp_local_bh_disable();
6435 sctp_spin_lock(&head->lock);
6436 pp = sctp_sk(oldsk)->bind_hash;
6437 sk_add_bind_node(newsk, &pp->owner);
6438 sctp_sk(newsk)->bind_hash = pp;
6439 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6440 sctp_spin_unlock(&head->lock);
6441 sctp_local_bh_enable();
6442
6443 /* Copy the bind_addr list from the original endpoint to the new
6444 * endpoint so that we can handle restarts properly
6445 */
6446 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6447 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6448
6449 /* Move any messages in the old socket's receive queue that are for the
6450 * peeled off association to the new socket's receive queue.
6451 */
6452 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6453 event = sctp_skb2event(skb);
6454 if (event->asoc == assoc) {
6455 __skb_unlink(skb, &oldsk->sk_receive_queue);
6456 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6457 sctp_skb_set_owner_r_frag(skb, newsk);
6458 }
6459 }
6460
6461 /* Clean up any messages pending delivery due to partial
6462 * delivery. Three cases:
6463 * 1) No partial deliver; no work.
6464 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6465 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6466 */
6467 skb_queue_head_init(&newsp->pd_lobby);
6468 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6469
6470 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6471 struct sk_buff_head *queue;
6472
6473 /* Decide which queue to move pd_lobby skbs to. */
6474 if (assoc->ulpq.pd_mode) {
6475 queue = &newsp->pd_lobby;
6476 } else
6477 queue = &newsk->sk_receive_queue;
6478
6479 /* Walk through the pd_lobby, looking for skbs that
6480 * need moved to the new socket.
6481 */
6482 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6483 event = sctp_skb2event(skb);
6484 if (event->asoc == assoc) {
6485 __skb_unlink(skb, &oldsp->pd_lobby);
6486 __skb_queue_tail(queue, skb);
6487 sctp_skb_set_owner_r_frag(skb, newsk);
6488 }
6489 }
6490
6491 /* Clear up any skbs waiting for the partial
6492 * delivery to finish.
6493 */
6494 if (assoc->ulpq.pd_mode)
6495 sctp_clear_pd(oldsk, NULL);
6496
6497 }
6498
6499 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6500 sctp_skb_set_owner_r_frag(skb, newsk);
6501
6502 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6503 sctp_skb_set_owner_r_frag(skb, newsk);
6504
6505 /* Set the type of socket to indicate that it is peeled off from the
6506 * original UDP-style socket or created with the accept() call on a
6507 * TCP-style socket..
6508 */
6509 newsp->type = type;
6510
6511 /* Mark the new socket "in-use" by the user so that any packets
6512 * that may arrive on the association after we've moved it are
6513 * queued to the backlog. This prevents a potential race between
6514 * backlog processing on the old socket and new-packet processing
6515 * on the new socket.
6516 *
6517 * The caller has just allocated newsk so we can guarantee that other
6518 * paths won't try to lock it and then oldsk.
6519 */
6520 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6521 sctp_assoc_migrate(assoc, newsk);
6522
6523 /* If the association on the newsk is already closed before accept()
6524 * is called, set RCV_SHUTDOWN flag.
6525 */
6526 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6527 newsk->sk_shutdown |= RCV_SHUTDOWN;
6528
6529 newsk->sk_state = SCTP_SS_ESTABLISHED;
6530 sctp_release_sock(newsk);
6531 }
6532
6533
6534 /* This proto struct describes the ULP interface for SCTP. */
6535 struct proto sctp_prot = {
6536 .name = "SCTP",
6537 .owner = THIS_MODULE,
6538 .close = sctp_close,
6539 .connect = sctp_connect,
6540 .disconnect = sctp_disconnect,
6541 .accept = sctp_accept,
6542 .ioctl = sctp_ioctl,
6543 .init = sctp_init_sock,
6544 .destroy = sctp_destroy_sock,
6545 .shutdown = sctp_shutdown,
6546 .setsockopt = sctp_setsockopt,
6547 .getsockopt = sctp_getsockopt,
6548 .sendmsg = sctp_sendmsg,
6549 .recvmsg = sctp_recvmsg,
6550 .bind = sctp_bind,
6551 .backlog_rcv = sctp_backlog_rcv,
6552 .hash = sctp_hash,
6553 .unhash = sctp_unhash,
6554 .get_port = sctp_get_port,
6555 .obj_size = sizeof(struct sctp_sock),
6556 .sysctl_mem = sysctl_sctp_mem,
6557 .sysctl_rmem = sysctl_sctp_rmem,
6558 .sysctl_wmem = sysctl_sctp_wmem,
6559 .memory_pressure = &sctp_memory_pressure,
6560 .enter_memory_pressure = sctp_enter_memory_pressure,
6561 .memory_allocated = &sctp_memory_allocated,
6562 .sockets_allocated = &sctp_sockets_allocated,
6563 };
6564
6565 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6566
6567 struct proto sctpv6_prot = {
6568 .name = "SCTPv6",
6569 .owner = THIS_MODULE,
6570 .close = sctp_close,
6571 .connect = sctp_connect,
6572 .disconnect = sctp_disconnect,
6573 .accept = sctp_accept,
6574 .ioctl = sctp_ioctl,
6575 .init = sctp_init_sock,
6576 .destroy = sctp_destroy_sock,
6577 .shutdown = sctp_shutdown,
6578 .setsockopt = sctp_setsockopt,
6579 .getsockopt = sctp_getsockopt,
6580 .sendmsg = sctp_sendmsg,
6581 .recvmsg = sctp_recvmsg,
6582 .bind = sctp_bind,
6583 .backlog_rcv = sctp_backlog_rcv,
6584 .hash = sctp_hash,
6585 .unhash = sctp_unhash,
6586 .get_port = sctp_get_port,
6587 .obj_size = sizeof(struct sctp6_sock),
6588 .sysctl_mem = sysctl_sctp_mem,
6589 .sysctl_rmem = sysctl_sctp_rmem,
6590 .sysctl_wmem = sysctl_sctp_wmem,
6591 .memory_pressure = &sctp_memory_pressure,
6592 .enter_memory_pressure = sctp_enter_memory_pressure,
6593 .memory_allocated = &sctp_memory_allocated,
6594 .sockets_allocated = &sctp_sockets_allocated,
6595 };
6596 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */