Merge branch 'x86-reboot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
79
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <linux/export.h>
82 #include <net/sock.h>
83 #include <net/sctp/sctp.h>
84 #include <net/sctp/sm.h>
85
86 /* WARNING: Please do not remove the SCTP_STATIC attribute to
87 * any of the functions below as they are used to export functions
88 * used by a project regression testsuite.
89 */
90
91 /* Forward declarations for internal helper functions. */
92 static int sctp_writeable(struct sock *sk);
93 static void sctp_wfree(struct sk_buff *skb);
94 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
95 size_t msg_len);
96 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
97 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
98 static int sctp_wait_for_accept(struct sock *sk, long timeo);
99 static void sctp_wait_for_close(struct sock *sk, long timeo);
100 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
101 union sctp_addr *addr, int len);
102 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
103 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf(struct sctp_association *asoc,
107 struct sctp_chunk *chunk);
108 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
109 static int sctp_autobind(struct sock *sk);
110 static void sctp_sock_migrate(struct sock *, struct sock *,
111 struct sctp_association *, sctp_socket_type_t);
112 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
113
114 extern struct kmem_cache *sctp_bucket_cachep;
115 extern long sysctl_sctp_mem[3];
116 extern int sysctl_sctp_rmem[3];
117 extern int sysctl_sctp_wmem[3];
118
119 static int sctp_memory_pressure;
120 static atomic_long_t sctp_memory_allocated;
121 struct percpu_counter sctp_sockets_allocated;
122
123 static void sctp_enter_memory_pressure(struct sock *sk)
124 {
125 sctp_memory_pressure = 1;
126 }
127
128
129 /* Get the sndbuf space available at the time on the association. */
130 static inline int sctp_wspace(struct sctp_association *asoc)
131 {
132 int amt;
133
134 if (asoc->ep->sndbuf_policy)
135 amt = asoc->sndbuf_used;
136 else
137 amt = sk_wmem_alloc_get(asoc->base.sk);
138
139 if (amt >= asoc->base.sk->sk_sndbuf) {
140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
141 amt = 0;
142 else {
143 amt = sk_stream_wspace(asoc->base.sk);
144 if (amt < 0)
145 amt = 0;
146 }
147 } else {
148 amt = asoc->base.sk->sk_sndbuf - amt;
149 }
150 return amt;
151 }
152
153 /* Increment the used sndbuf space count of the corresponding association by
154 * the size of the outgoing data chunk.
155 * Also, set the skb destructor for sndbuf accounting later.
156 *
157 * Since it is always 1-1 between chunk and skb, and also a new skb is always
158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
159 * destructor in the data chunk skb for the purpose of the sndbuf space
160 * tracking.
161 */
162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 {
164 struct sctp_association *asoc = chunk->asoc;
165 struct sock *sk = asoc->base.sk;
166
167 /* The sndbuf space is tracked per association. */
168 sctp_association_hold(asoc);
169
170 skb_set_owner_w(chunk->skb, sk);
171
172 chunk->skb->destructor = sctp_wfree;
173 /* Save the chunk pointer in skb for sctp_wfree to use later. */
174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175
176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
177 sizeof(struct sk_buff) +
178 sizeof(struct sctp_chunk);
179
180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
181 sk->sk_wmem_queued += chunk->skb->truesize;
182 sk_mem_charge(sk, chunk->skb->truesize);
183 }
184
185 /* Verify that this is a valid address. */
186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
187 int len)
188 {
189 struct sctp_af *af;
190
191 /* Verify basic sockaddr. */
192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
193 if (!af)
194 return -EINVAL;
195
196 /* Is this a valid SCTP address? */
197 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
198 return -EINVAL;
199
200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
201 return -EINVAL;
202
203 return 0;
204 }
205
206 /* Look up the association by its id. If this is not a UDP-style
207 * socket, the ID field is always ignored.
208 */
209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 {
211 struct sctp_association *asoc = NULL;
212
213 /* If this is not a UDP-style socket, assoc id should be ignored. */
214 if (!sctp_style(sk, UDP)) {
215 /* Return NULL if the socket state is not ESTABLISHED. It
216 * could be a TCP-style listening socket or a socket which
217 * hasn't yet called connect() to establish an association.
218 */
219 if (!sctp_sstate(sk, ESTABLISHED))
220 return NULL;
221
222 /* Get the first and the only association from the list. */
223 if (!list_empty(&sctp_sk(sk)->ep->asocs))
224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
225 struct sctp_association, asocs);
226 return asoc;
227 }
228
229 /* Otherwise this is a UDP-style socket. */
230 if (!id || (id == (sctp_assoc_t)-1))
231 return NULL;
232
233 spin_lock_bh(&sctp_assocs_id_lock);
234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
235 spin_unlock_bh(&sctp_assocs_id_lock);
236
237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
238 return NULL;
239
240 return asoc;
241 }
242
243 /* Look up the transport from an address and an assoc id. If both address and
244 * id are specified, the associations matching the address and the id should be
245 * the same.
246 */
247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
248 struct sockaddr_storage *addr,
249 sctp_assoc_t id)
250 {
251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
252 struct sctp_transport *transport;
253 union sctp_addr *laddr = (union sctp_addr *)addr;
254
255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
256 laddr,
257 &transport);
258
259 if (!addr_asoc)
260 return NULL;
261
262 id_asoc = sctp_id2assoc(sk, id);
263 if (id_asoc && (id_asoc != addr_asoc))
264 return NULL;
265
266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
267 (union sctp_addr *)addr);
268
269 return transport;
270 }
271
272 /* API 3.1.2 bind() - UDP Style Syntax
273 * The syntax of bind() is,
274 *
275 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
276 *
277 * sd - the socket descriptor returned by socket().
278 * addr - the address structure (struct sockaddr_in or struct
279 * sockaddr_in6 [RFC 2553]),
280 * addr_len - the size of the address structure.
281 */
282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 {
284 int retval = 0;
285
286 sctp_lock_sock(sk);
287
288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
289 sk, addr, addr_len);
290
291 /* Disallow binding twice. */
292 if (!sctp_sk(sk)->ep->base.bind_addr.port)
293 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
294 addr_len);
295 else
296 retval = -EINVAL;
297
298 sctp_release_sock(sk);
299
300 return retval;
301 }
302
303 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304
305 /* Verify this is a valid sockaddr. */
306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
307 union sctp_addr *addr, int len)
308 {
309 struct sctp_af *af;
310
311 /* Check minimum size. */
312 if (len < sizeof (struct sockaddr))
313 return NULL;
314
315 /* V4 mapped address are really of AF_INET family */
316 if (addr->sa.sa_family == AF_INET6 &&
317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
318 if (!opt->pf->af_supported(AF_INET, opt))
319 return NULL;
320 } else {
321 /* Does this PF support this AF? */
322 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 return NULL;
324 }
325
326 /* If we get this far, af is valid. */
327 af = sctp_get_af_specific(addr->sa.sa_family);
328
329 if (len < af->sockaddr_len)
330 return NULL;
331
332 return af;
333 }
334
335 /* Bind a local address either to an endpoint or to an association. */
336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 {
338 struct sctp_sock *sp = sctp_sk(sk);
339 struct sctp_endpoint *ep = sp->ep;
340 struct sctp_bind_addr *bp = &ep->base.bind_addr;
341 struct sctp_af *af;
342 unsigned short snum;
343 int ret = 0;
344
345 /* Common sockaddr verification. */
346 af = sctp_sockaddr_af(sp, addr, len);
347 if (!af) {
348 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
349 sk, addr, len);
350 return -EINVAL;
351 }
352
353 snum = ntohs(addr->v4.sin_port);
354
355 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
356 ", port: %d, new port: %d, len: %d)\n",
357 sk,
358 addr,
359 bp->port, snum,
360 len);
361
362 /* PF specific bind() address verification. */
363 if (!sp->pf->bind_verify(sp, addr))
364 return -EADDRNOTAVAIL;
365
366 /* We must either be unbound, or bind to the same port.
367 * It's OK to allow 0 ports if we are already bound.
368 * We'll just inhert an already bound port in this case
369 */
370 if (bp->port) {
371 if (!snum)
372 snum = bp->port;
373 else if (snum != bp->port) {
374 SCTP_DEBUG_PRINTK("sctp_do_bind:"
375 " New port %d does not match existing port "
376 "%d.\n", snum, bp->port);
377 return -EINVAL;
378 }
379 }
380
381 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
382 return -EACCES;
383
384 /* See if the address matches any of the addresses we may have
385 * already bound before checking against other endpoints.
386 */
387 if (sctp_bind_addr_match(bp, addr, sp))
388 return -EINVAL;
389
390 /* Make sure we are allowed to bind here.
391 * The function sctp_get_port_local() does duplicate address
392 * detection.
393 */
394 addr->v4.sin_port = htons(snum);
395 if ((ret = sctp_get_port_local(sk, addr))) {
396 return -EADDRINUSE;
397 }
398
399 /* Refresh ephemeral port. */
400 if (!bp->port)
401 bp->port = inet_sk(sk)->inet_num;
402
403 /* Add the address to the bind address list.
404 * Use GFP_ATOMIC since BHs will be disabled.
405 */
406 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
407
408 /* Copy back into socket for getsockname() use. */
409 if (!ret) {
410 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
411 af->to_sk_saddr(addr, sk);
412 }
413
414 return ret;
415 }
416
417 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
418 *
419 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
420 * at any one time. If a sender, after sending an ASCONF chunk, decides
421 * it needs to transfer another ASCONF Chunk, it MUST wait until the
422 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
423 * subsequent ASCONF. Note this restriction binds each side, so at any
424 * time two ASCONF may be in-transit on any given association (one sent
425 * from each endpoint).
426 */
427 static int sctp_send_asconf(struct sctp_association *asoc,
428 struct sctp_chunk *chunk)
429 {
430 int retval = 0;
431
432 /* If there is an outstanding ASCONF chunk, queue it for later
433 * transmission.
434 */
435 if (asoc->addip_last_asconf) {
436 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
437 goto out;
438 }
439
440 /* Hold the chunk until an ASCONF_ACK is received. */
441 sctp_chunk_hold(chunk);
442 retval = sctp_primitive_ASCONF(asoc, chunk);
443 if (retval)
444 sctp_chunk_free(chunk);
445 else
446 asoc->addip_last_asconf = chunk;
447
448 out:
449 return retval;
450 }
451
452 /* Add a list of addresses as bind addresses to local endpoint or
453 * association.
454 *
455 * Basically run through each address specified in the addrs/addrcnt
456 * array/length pair, determine if it is IPv6 or IPv4 and call
457 * sctp_do_bind() on it.
458 *
459 * If any of them fails, then the operation will be reversed and the
460 * ones that were added will be removed.
461 *
462 * Only sctp_setsockopt_bindx() is supposed to call this function.
463 */
464 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
465 {
466 int cnt;
467 int retval = 0;
468 void *addr_buf;
469 struct sockaddr *sa_addr;
470 struct sctp_af *af;
471
472 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
473 sk, addrs, addrcnt);
474
475 addr_buf = addrs;
476 for (cnt = 0; cnt < addrcnt; cnt++) {
477 /* The list may contain either IPv4 or IPv6 address;
478 * determine the address length for walking thru the list.
479 */
480 sa_addr = addr_buf;
481 af = sctp_get_af_specific(sa_addr->sa_family);
482 if (!af) {
483 retval = -EINVAL;
484 goto err_bindx_add;
485 }
486
487 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
488 af->sockaddr_len);
489
490 addr_buf += af->sockaddr_len;
491
492 err_bindx_add:
493 if (retval < 0) {
494 /* Failed. Cleanup the ones that have been added */
495 if (cnt > 0)
496 sctp_bindx_rem(sk, addrs, cnt);
497 return retval;
498 }
499 }
500
501 return retval;
502 }
503
504 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
505 * associations that are part of the endpoint indicating that a list of local
506 * addresses are added to the endpoint.
507 *
508 * If any of the addresses is already in the bind address list of the
509 * association, we do not send the chunk for that association. But it will not
510 * affect other associations.
511 *
512 * Only sctp_setsockopt_bindx() is supposed to call this function.
513 */
514 static int sctp_send_asconf_add_ip(struct sock *sk,
515 struct sockaddr *addrs,
516 int addrcnt)
517 {
518 struct sctp_sock *sp;
519 struct sctp_endpoint *ep;
520 struct sctp_association *asoc;
521 struct sctp_bind_addr *bp;
522 struct sctp_chunk *chunk;
523 struct sctp_sockaddr_entry *laddr;
524 union sctp_addr *addr;
525 union sctp_addr saveaddr;
526 void *addr_buf;
527 struct sctp_af *af;
528 struct list_head *p;
529 int i;
530 int retval = 0;
531
532 if (!sctp_addip_enable)
533 return retval;
534
535 sp = sctp_sk(sk);
536 ep = sp->ep;
537
538 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
539 __func__, sk, addrs, addrcnt);
540
541 list_for_each_entry(asoc, &ep->asocs, asocs) {
542
543 if (!asoc->peer.asconf_capable)
544 continue;
545
546 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
547 continue;
548
549 if (!sctp_state(asoc, ESTABLISHED))
550 continue;
551
552 /* Check if any address in the packed array of addresses is
553 * in the bind address list of the association. If so,
554 * do not send the asconf chunk to its peer, but continue with
555 * other associations.
556 */
557 addr_buf = addrs;
558 for (i = 0; i < addrcnt; i++) {
559 addr = addr_buf;
560 af = sctp_get_af_specific(addr->v4.sin_family);
561 if (!af) {
562 retval = -EINVAL;
563 goto out;
564 }
565
566 if (sctp_assoc_lookup_laddr(asoc, addr))
567 break;
568
569 addr_buf += af->sockaddr_len;
570 }
571 if (i < addrcnt)
572 continue;
573
574 /* Use the first valid address in bind addr list of
575 * association as Address Parameter of ASCONF CHUNK.
576 */
577 bp = &asoc->base.bind_addr;
578 p = bp->address_list.next;
579 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
580 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
581 addrcnt, SCTP_PARAM_ADD_IP);
582 if (!chunk) {
583 retval = -ENOMEM;
584 goto out;
585 }
586
587 /* Add the new addresses to the bind address list with
588 * use_as_src set to 0.
589 */
590 addr_buf = addrs;
591 for (i = 0; i < addrcnt; i++) {
592 addr = addr_buf;
593 af = sctp_get_af_specific(addr->v4.sin_family);
594 memcpy(&saveaddr, addr, af->sockaddr_len);
595 retval = sctp_add_bind_addr(bp, &saveaddr,
596 SCTP_ADDR_NEW, GFP_ATOMIC);
597 addr_buf += af->sockaddr_len;
598 }
599 if (asoc->src_out_of_asoc_ok) {
600 struct sctp_transport *trans;
601
602 list_for_each_entry(trans,
603 &asoc->peer.transport_addr_list, transports) {
604 /* Clear the source and route cache */
605 dst_release(trans->dst);
606 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
607 2*asoc->pathmtu, 4380));
608 trans->ssthresh = asoc->peer.i.a_rwnd;
609 trans->rto = asoc->rto_initial;
610 trans->rtt = trans->srtt = trans->rttvar = 0;
611 sctp_transport_route(trans, NULL,
612 sctp_sk(asoc->base.sk));
613 }
614 }
615 retval = sctp_send_asconf(asoc, chunk);
616 }
617
618 out:
619 return retval;
620 }
621
622 /* Remove a list of addresses from bind addresses list. Do not remove the
623 * last address.
624 *
625 * Basically run through each address specified in the addrs/addrcnt
626 * array/length pair, determine if it is IPv6 or IPv4 and call
627 * sctp_del_bind() on it.
628 *
629 * If any of them fails, then the operation will be reversed and the
630 * ones that were removed will be added back.
631 *
632 * At least one address has to be left; if only one address is
633 * available, the operation will return -EBUSY.
634 *
635 * Only sctp_setsockopt_bindx() is supposed to call this function.
636 */
637 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
638 {
639 struct sctp_sock *sp = sctp_sk(sk);
640 struct sctp_endpoint *ep = sp->ep;
641 int cnt;
642 struct sctp_bind_addr *bp = &ep->base.bind_addr;
643 int retval = 0;
644 void *addr_buf;
645 union sctp_addr *sa_addr;
646 struct sctp_af *af;
647
648 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
649 sk, addrs, addrcnt);
650
651 addr_buf = addrs;
652 for (cnt = 0; cnt < addrcnt; cnt++) {
653 /* If the bind address list is empty or if there is only one
654 * bind address, there is nothing more to be removed (we need
655 * at least one address here).
656 */
657 if (list_empty(&bp->address_list) ||
658 (sctp_list_single_entry(&bp->address_list))) {
659 retval = -EBUSY;
660 goto err_bindx_rem;
661 }
662
663 sa_addr = addr_buf;
664 af = sctp_get_af_specific(sa_addr->sa.sa_family);
665 if (!af) {
666 retval = -EINVAL;
667 goto err_bindx_rem;
668 }
669
670 if (!af->addr_valid(sa_addr, sp, NULL)) {
671 retval = -EADDRNOTAVAIL;
672 goto err_bindx_rem;
673 }
674
675 if (sa_addr->v4.sin_port &&
676 sa_addr->v4.sin_port != htons(bp->port)) {
677 retval = -EINVAL;
678 goto err_bindx_rem;
679 }
680
681 if (!sa_addr->v4.sin_port)
682 sa_addr->v4.sin_port = htons(bp->port);
683
684 /* FIXME - There is probably a need to check if sk->sk_saddr and
685 * sk->sk_rcv_addr are currently set to one of the addresses to
686 * be removed. This is something which needs to be looked into
687 * when we are fixing the outstanding issues with multi-homing
688 * socket routing and failover schemes. Refer to comments in
689 * sctp_do_bind(). -daisy
690 */
691 retval = sctp_del_bind_addr(bp, sa_addr);
692
693 addr_buf += af->sockaddr_len;
694 err_bindx_rem:
695 if (retval < 0) {
696 /* Failed. Add the ones that has been removed back */
697 if (cnt > 0)
698 sctp_bindx_add(sk, addrs, cnt);
699 return retval;
700 }
701 }
702
703 return retval;
704 }
705
706 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
707 * the associations that are part of the endpoint indicating that a list of
708 * local addresses are removed from the endpoint.
709 *
710 * If any of the addresses is already in the bind address list of the
711 * association, we do not send the chunk for that association. But it will not
712 * affect other associations.
713 *
714 * Only sctp_setsockopt_bindx() is supposed to call this function.
715 */
716 static int sctp_send_asconf_del_ip(struct sock *sk,
717 struct sockaddr *addrs,
718 int addrcnt)
719 {
720 struct sctp_sock *sp;
721 struct sctp_endpoint *ep;
722 struct sctp_association *asoc;
723 struct sctp_transport *transport;
724 struct sctp_bind_addr *bp;
725 struct sctp_chunk *chunk;
726 union sctp_addr *laddr;
727 void *addr_buf;
728 struct sctp_af *af;
729 struct sctp_sockaddr_entry *saddr;
730 int i;
731 int retval = 0;
732 int stored = 0;
733
734 chunk = NULL;
735 if (!sctp_addip_enable)
736 return retval;
737
738 sp = sctp_sk(sk);
739 ep = sp->ep;
740
741 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
742 __func__, sk, addrs, addrcnt);
743
744 list_for_each_entry(asoc, &ep->asocs, asocs) {
745
746 if (!asoc->peer.asconf_capable)
747 continue;
748
749 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
750 continue;
751
752 if (!sctp_state(asoc, ESTABLISHED))
753 continue;
754
755 /* Check if any address in the packed array of addresses is
756 * not present in the bind address list of the association.
757 * If so, do not send the asconf chunk to its peer, but
758 * continue with other associations.
759 */
760 addr_buf = addrs;
761 for (i = 0; i < addrcnt; i++) {
762 laddr = addr_buf;
763 af = sctp_get_af_specific(laddr->v4.sin_family);
764 if (!af) {
765 retval = -EINVAL;
766 goto out;
767 }
768
769 if (!sctp_assoc_lookup_laddr(asoc, laddr))
770 break;
771
772 addr_buf += af->sockaddr_len;
773 }
774 if (i < addrcnt)
775 continue;
776
777 /* Find one address in the association's bind address list
778 * that is not in the packed array of addresses. This is to
779 * make sure that we do not delete all the addresses in the
780 * association.
781 */
782 bp = &asoc->base.bind_addr;
783 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
784 addrcnt, sp);
785 if ((laddr == NULL) && (addrcnt == 1)) {
786 if (asoc->asconf_addr_del_pending)
787 continue;
788 asoc->asconf_addr_del_pending =
789 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
790 if (asoc->asconf_addr_del_pending == NULL) {
791 retval = -ENOMEM;
792 goto out;
793 }
794 asoc->asconf_addr_del_pending->sa.sa_family =
795 addrs->sa_family;
796 asoc->asconf_addr_del_pending->v4.sin_port =
797 htons(bp->port);
798 if (addrs->sa_family == AF_INET) {
799 struct sockaddr_in *sin;
800
801 sin = (struct sockaddr_in *)addrs;
802 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
803 } else if (addrs->sa_family == AF_INET6) {
804 struct sockaddr_in6 *sin6;
805
806 sin6 = (struct sockaddr_in6 *)addrs;
807 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
808 }
809 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
810 " at %p\n", asoc, asoc->asconf_addr_del_pending,
811 asoc->asconf_addr_del_pending);
812 asoc->src_out_of_asoc_ok = 1;
813 stored = 1;
814 goto skip_mkasconf;
815 }
816
817 /* We do not need RCU protection throughout this loop
818 * because this is done under a socket lock from the
819 * setsockopt call.
820 */
821 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
822 SCTP_PARAM_DEL_IP);
823 if (!chunk) {
824 retval = -ENOMEM;
825 goto out;
826 }
827
828 skip_mkasconf:
829 /* Reset use_as_src flag for the addresses in the bind address
830 * list that are to be deleted.
831 */
832 addr_buf = addrs;
833 for (i = 0; i < addrcnt; i++) {
834 laddr = addr_buf;
835 af = sctp_get_af_specific(laddr->v4.sin_family);
836 list_for_each_entry(saddr, &bp->address_list, list) {
837 if (sctp_cmp_addr_exact(&saddr->a, laddr))
838 saddr->state = SCTP_ADDR_DEL;
839 }
840 addr_buf += af->sockaddr_len;
841 }
842
843 /* Update the route and saddr entries for all the transports
844 * as some of the addresses in the bind address list are
845 * about to be deleted and cannot be used as source addresses.
846 */
847 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
848 transports) {
849 dst_release(transport->dst);
850 sctp_transport_route(transport, NULL,
851 sctp_sk(asoc->base.sk));
852 }
853
854 if (stored)
855 /* We don't need to transmit ASCONF */
856 continue;
857 retval = sctp_send_asconf(asoc, chunk);
858 }
859 out:
860 return retval;
861 }
862
863 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
864 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
865 {
866 struct sock *sk = sctp_opt2sk(sp);
867 union sctp_addr *addr;
868 struct sctp_af *af;
869
870 /* It is safe to write port space in caller. */
871 addr = &addrw->a;
872 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
873 af = sctp_get_af_specific(addr->sa.sa_family);
874 if (!af)
875 return -EINVAL;
876 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
877 return -EINVAL;
878
879 if (addrw->state == SCTP_ADDR_NEW)
880 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
881 else
882 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
883 }
884
885 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
886 *
887 * API 8.1
888 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
889 * int flags);
890 *
891 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
892 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
893 * or IPv6 addresses.
894 *
895 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
896 * Section 3.1.2 for this usage.
897 *
898 * addrs is a pointer to an array of one or more socket addresses. Each
899 * address is contained in its appropriate structure (i.e. struct
900 * sockaddr_in or struct sockaddr_in6) the family of the address type
901 * must be used to distinguish the address length (note that this
902 * representation is termed a "packed array" of addresses). The caller
903 * specifies the number of addresses in the array with addrcnt.
904 *
905 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
906 * -1, and sets errno to the appropriate error code.
907 *
908 * For SCTP, the port given in each socket address must be the same, or
909 * sctp_bindx() will fail, setting errno to EINVAL.
910 *
911 * The flags parameter is formed from the bitwise OR of zero or more of
912 * the following currently defined flags:
913 *
914 * SCTP_BINDX_ADD_ADDR
915 *
916 * SCTP_BINDX_REM_ADDR
917 *
918 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
919 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
920 * addresses from the association. The two flags are mutually exclusive;
921 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
922 * not remove all addresses from an association; sctp_bindx() will
923 * reject such an attempt with EINVAL.
924 *
925 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
926 * additional addresses with an endpoint after calling bind(). Or use
927 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
928 * socket is associated with so that no new association accepted will be
929 * associated with those addresses. If the endpoint supports dynamic
930 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
931 * endpoint to send the appropriate message to the peer to change the
932 * peers address lists.
933 *
934 * Adding and removing addresses from a connected association is
935 * optional functionality. Implementations that do not support this
936 * functionality should return EOPNOTSUPP.
937 *
938 * Basically do nothing but copying the addresses from user to kernel
939 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
940 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
941 * from userspace.
942 *
943 * We don't use copy_from_user() for optimization: we first do the
944 * sanity checks (buffer size -fast- and access check-healthy
945 * pointer); if all of those succeed, then we can alloc the memory
946 * (expensive operation) needed to copy the data to kernel. Then we do
947 * the copying without checking the user space area
948 * (__copy_from_user()).
949 *
950 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
951 * it.
952 *
953 * sk The sk of the socket
954 * addrs The pointer to the addresses in user land
955 * addrssize Size of the addrs buffer
956 * op Operation to perform (add or remove, see the flags of
957 * sctp_bindx)
958 *
959 * Returns 0 if ok, <0 errno code on error.
960 */
961 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
962 struct sockaddr __user *addrs,
963 int addrs_size, int op)
964 {
965 struct sockaddr *kaddrs;
966 int err;
967 int addrcnt = 0;
968 int walk_size = 0;
969 struct sockaddr *sa_addr;
970 void *addr_buf;
971 struct sctp_af *af;
972
973 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
974 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
975
976 if (unlikely(addrs_size <= 0))
977 return -EINVAL;
978
979 /* Check the user passed a healthy pointer. */
980 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
981 return -EFAULT;
982
983 /* Alloc space for the address array in kernel memory. */
984 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
985 if (unlikely(!kaddrs))
986 return -ENOMEM;
987
988 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
989 kfree(kaddrs);
990 return -EFAULT;
991 }
992
993 /* Walk through the addrs buffer and count the number of addresses. */
994 addr_buf = kaddrs;
995 while (walk_size < addrs_size) {
996 if (walk_size + sizeof(sa_family_t) > addrs_size) {
997 kfree(kaddrs);
998 return -EINVAL;
999 }
1000
1001 sa_addr = addr_buf;
1002 af = sctp_get_af_specific(sa_addr->sa_family);
1003
1004 /* If the address family is not supported or if this address
1005 * causes the address buffer to overflow return EINVAL.
1006 */
1007 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1008 kfree(kaddrs);
1009 return -EINVAL;
1010 }
1011 addrcnt++;
1012 addr_buf += af->sockaddr_len;
1013 walk_size += af->sockaddr_len;
1014 }
1015
1016 /* Do the work. */
1017 switch (op) {
1018 case SCTP_BINDX_ADD_ADDR:
1019 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1020 if (err)
1021 goto out;
1022 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1023 break;
1024
1025 case SCTP_BINDX_REM_ADDR:
1026 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1027 if (err)
1028 goto out;
1029 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1030 break;
1031
1032 default:
1033 err = -EINVAL;
1034 break;
1035 }
1036
1037 out:
1038 kfree(kaddrs);
1039
1040 return err;
1041 }
1042
1043 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1044 *
1045 * Common routine for handling connect() and sctp_connectx().
1046 * Connect will come in with just a single address.
1047 */
1048 static int __sctp_connect(struct sock* sk,
1049 struct sockaddr *kaddrs,
1050 int addrs_size,
1051 sctp_assoc_t *assoc_id)
1052 {
1053 struct sctp_sock *sp;
1054 struct sctp_endpoint *ep;
1055 struct sctp_association *asoc = NULL;
1056 struct sctp_association *asoc2;
1057 struct sctp_transport *transport;
1058 union sctp_addr to;
1059 struct sctp_af *af;
1060 sctp_scope_t scope;
1061 long timeo;
1062 int err = 0;
1063 int addrcnt = 0;
1064 int walk_size = 0;
1065 union sctp_addr *sa_addr = NULL;
1066 void *addr_buf;
1067 unsigned short port;
1068 unsigned int f_flags = 0;
1069
1070 sp = sctp_sk(sk);
1071 ep = sp->ep;
1072
1073 /* connect() cannot be done on a socket that is already in ESTABLISHED
1074 * state - UDP-style peeled off socket or a TCP-style socket that
1075 * is already connected.
1076 * It cannot be done even on a TCP-style listening socket.
1077 */
1078 if (sctp_sstate(sk, ESTABLISHED) ||
1079 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1080 err = -EISCONN;
1081 goto out_free;
1082 }
1083
1084 /* Walk through the addrs buffer and count the number of addresses. */
1085 addr_buf = kaddrs;
1086 while (walk_size < addrs_size) {
1087 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1088 err = -EINVAL;
1089 goto out_free;
1090 }
1091
1092 sa_addr = addr_buf;
1093 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1094
1095 /* If the address family is not supported or if this address
1096 * causes the address buffer to overflow return EINVAL.
1097 */
1098 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1099 err = -EINVAL;
1100 goto out_free;
1101 }
1102
1103 port = ntohs(sa_addr->v4.sin_port);
1104
1105 /* Save current address so we can work with it */
1106 memcpy(&to, sa_addr, af->sockaddr_len);
1107
1108 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1109 if (err)
1110 goto out_free;
1111
1112 /* Make sure the destination port is correctly set
1113 * in all addresses.
1114 */
1115 if (asoc && asoc->peer.port && asoc->peer.port != port)
1116 goto out_free;
1117
1118
1119 /* Check if there already is a matching association on the
1120 * endpoint (other than the one created here).
1121 */
1122 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1123 if (asoc2 && asoc2 != asoc) {
1124 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1125 err = -EISCONN;
1126 else
1127 err = -EALREADY;
1128 goto out_free;
1129 }
1130
1131 /* If we could not find a matching association on the endpoint,
1132 * make sure that there is no peeled-off association matching
1133 * the peer address even on another socket.
1134 */
1135 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1136 err = -EADDRNOTAVAIL;
1137 goto out_free;
1138 }
1139
1140 if (!asoc) {
1141 /* If a bind() or sctp_bindx() is not called prior to
1142 * an sctp_connectx() call, the system picks an
1143 * ephemeral port and will choose an address set
1144 * equivalent to binding with a wildcard address.
1145 */
1146 if (!ep->base.bind_addr.port) {
1147 if (sctp_autobind(sk)) {
1148 err = -EAGAIN;
1149 goto out_free;
1150 }
1151 } else {
1152 /*
1153 * If an unprivileged user inherits a 1-many
1154 * style socket with open associations on a
1155 * privileged port, it MAY be permitted to
1156 * accept new associations, but it SHOULD NOT
1157 * be permitted to open new associations.
1158 */
1159 if (ep->base.bind_addr.port < PROT_SOCK &&
1160 !capable(CAP_NET_BIND_SERVICE)) {
1161 err = -EACCES;
1162 goto out_free;
1163 }
1164 }
1165
1166 scope = sctp_scope(&to);
1167 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1168 if (!asoc) {
1169 err = -ENOMEM;
1170 goto out_free;
1171 }
1172
1173 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1174 GFP_KERNEL);
1175 if (err < 0) {
1176 goto out_free;
1177 }
1178
1179 }
1180
1181 /* Prime the peer's transport structures. */
1182 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1183 SCTP_UNKNOWN);
1184 if (!transport) {
1185 err = -ENOMEM;
1186 goto out_free;
1187 }
1188
1189 addrcnt++;
1190 addr_buf += af->sockaddr_len;
1191 walk_size += af->sockaddr_len;
1192 }
1193
1194 /* In case the user of sctp_connectx() wants an association
1195 * id back, assign one now.
1196 */
1197 if (assoc_id) {
1198 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1199 if (err < 0)
1200 goto out_free;
1201 }
1202
1203 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1204 if (err < 0) {
1205 goto out_free;
1206 }
1207
1208 /* Initialize sk's dport and daddr for getpeername() */
1209 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1210 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1211 af->to_sk_daddr(sa_addr, sk);
1212 sk->sk_err = 0;
1213
1214 /* in-kernel sockets don't generally have a file allocated to them
1215 * if all they do is call sock_create_kern().
1216 */
1217 if (sk->sk_socket->file)
1218 f_flags = sk->sk_socket->file->f_flags;
1219
1220 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1221
1222 err = sctp_wait_for_connect(asoc, &timeo);
1223 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1224 *assoc_id = asoc->assoc_id;
1225
1226 /* Don't free association on exit. */
1227 asoc = NULL;
1228
1229 out_free:
1230
1231 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1232 " kaddrs: %p err: %d\n",
1233 asoc, kaddrs, err);
1234 if (asoc) {
1235 /* sctp_primitive_ASSOCIATE may have added this association
1236 * To the hash table, try to unhash it, just in case, its a noop
1237 * if it wasn't hashed so we're safe
1238 */
1239 sctp_unhash_established(asoc);
1240 sctp_association_free(asoc);
1241 }
1242 return err;
1243 }
1244
1245 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1246 *
1247 * API 8.9
1248 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1249 * sctp_assoc_t *asoc);
1250 *
1251 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1252 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1253 * or IPv6 addresses.
1254 *
1255 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1256 * Section 3.1.2 for this usage.
1257 *
1258 * addrs is a pointer to an array of one or more socket addresses. Each
1259 * address is contained in its appropriate structure (i.e. struct
1260 * sockaddr_in or struct sockaddr_in6) the family of the address type
1261 * must be used to distengish the address length (note that this
1262 * representation is termed a "packed array" of addresses). The caller
1263 * specifies the number of addresses in the array with addrcnt.
1264 *
1265 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1266 * the association id of the new association. On failure, sctp_connectx()
1267 * returns -1, and sets errno to the appropriate error code. The assoc_id
1268 * is not touched by the kernel.
1269 *
1270 * For SCTP, the port given in each socket address must be the same, or
1271 * sctp_connectx() will fail, setting errno to EINVAL.
1272 *
1273 * An application can use sctp_connectx to initiate an association with
1274 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1275 * allows a caller to specify multiple addresses at which a peer can be
1276 * reached. The way the SCTP stack uses the list of addresses to set up
1277 * the association is implementation dependent. This function only
1278 * specifies that the stack will try to make use of all the addresses in
1279 * the list when needed.
1280 *
1281 * Note that the list of addresses passed in is only used for setting up
1282 * the association. It does not necessarily equal the set of addresses
1283 * the peer uses for the resulting association. If the caller wants to
1284 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1285 * retrieve them after the association has been set up.
1286 *
1287 * Basically do nothing but copying the addresses from user to kernel
1288 * land and invoking either sctp_connectx(). This is used for tunneling
1289 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1290 *
1291 * We don't use copy_from_user() for optimization: we first do the
1292 * sanity checks (buffer size -fast- and access check-healthy
1293 * pointer); if all of those succeed, then we can alloc the memory
1294 * (expensive operation) needed to copy the data to kernel. Then we do
1295 * the copying without checking the user space area
1296 * (__copy_from_user()).
1297 *
1298 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1299 * it.
1300 *
1301 * sk The sk of the socket
1302 * addrs The pointer to the addresses in user land
1303 * addrssize Size of the addrs buffer
1304 *
1305 * Returns >=0 if ok, <0 errno code on error.
1306 */
1307 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1308 struct sockaddr __user *addrs,
1309 int addrs_size,
1310 sctp_assoc_t *assoc_id)
1311 {
1312 int err = 0;
1313 struct sockaddr *kaddrs;
1314
1315 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1316 __func__, sk, addrs, addrs_size);
1317
1318 if (unlikely(addrs_size <= 0))
1319 return -EINVAL;
1320
1321 /* Check the user passed a healthy pointer. */
1322 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1323 return -EFAULT;
1324
1325 /* Alloc space for the address array in kernel memory. */
1326 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1327 if (unlikely(!kaddrs))
1328 return -ENOMEM;
1329
1330 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1331 err = -EFAULT;
1332 } else {
1333 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1334 }
1335
1336 kfree(kaddrs);
1337
1338 return err;
1339 }
1340
1341 /*
1342 * This is an older interface. It's kept for backward compatibility
1343 * to the option that doesn't provide association id.
1344 */
1345 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1346 struct sockaddr __user *addrs,
1347 int addrs_size)
1348 {
1349 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1350 }
1351
1352 /*
1353 * New interface for the API. The since the API is done with a socket
1354 * option, to make it simple we feed back the association id is as a return
1355 * indication to the call. Error is always negative and association id is
1356 * always positive.
1357 */
1358 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1359 struct sockaddr __user *addrs,
1360 int addrs_size)
1361 {
1362 sctp_assoc_t assoc_id = 0;
1363 int err = 0;
1364
1365 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1366
1367 if (err)
1368 return err;
1369 else
1370 return assoc_id;
1371 }
1372
1373 /*
1374 * New (hopefully final) interface for the API.
1375 * We use the sctp_getaddrs_old structure so that use-space library
1376 * can avoid any unnecessary allocations. The only defferent part
1377 * is that we store the actual length of the address buffer into the
1378 * addrs_num structure member. That way we can re-use the existing
1379 * code.
1380 */
1381 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1382 char __user *optval,
1383 int __user *optlen)
1384 {
1385 struct sctp_getaddrs_old param;
1386 sctp_assoc_t assoc_id = 0;
1387 int err = 0;
1388
1389 if (len < sizeof(param))
1390 return -EINVAL;
1391
1392 if (copy_from_user(&param, optval, sizeof(param)))
1393 return -EFAULT;
1394
1395 err = __sctp_setsockopt_connectx(sk,
1396 (struct sockaddr __user *)param.addrs,
1397 param.addr_num, &assoc_id);
1398
1399 if (err == 0 || err == -EINPROGRESS) {
1400 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1401 return -EFAULT;
1402 if (put_user(sizeof(assoc_id), optlen))
1403 return -EFAULT;
1404 }
1405
1406 return err;
1407 }
1408
1409 /* API 3.1.4 close() - UDP Style Syntax
1410 * Applications use close() to perform graceful shutdown (as described in
1411 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1412 * by a UDP-style socket.
1413 *
1414 * The syntax is
1415 *
1416 * ret = close(int sd);
1417 *
1418 * sd - the socket descriptor of the associations to be closed.
1419 *
1420 * To gracefully shutdown a specific association represented by the
1421 * UDP-style socket, an application should use the sendmsg() call,
1422 * passing no user data, but including the appropriate flag in the
1423 * ancillary data (see Section xxxx).
1424 *
1425 * If sd in the close() call is a branched-off socket representing only
1426 * one association, the shutdown is performed on that association only.
1427 *
1428 * 4.1.6 close() - TCP Style Syntax
1429 *
1430 * Applications use close() to gracefully close down an association.
1431 *
1432 * The syntax is:
1433 *
1434 * int close(int sd);
1435 *
1436 * sd - the socket descriptor of the association to be closed.
1437 *
1438 * After an application calls close() on a socket descriptor, no further
1439 * socket operations will succeed on that descriptor.
1440 *
1441 * API 7.1.4 SO_LINGER
1442 *
1443 * An application using the TCP-style socket can use this option to
1444 * perform the SCTP ABORT primitive. The linger option structure is:
1445 *
1446 * struct linger {
1447 * int l_onoff; // option on/off
1448 * int l_linger; // linger time
1449 * };
1450 *
1451 * To enable the option, set l_onoff to 1. If the l_linger value is set
1452 * to 0, calling close() is the same as the ABORT primitive. If the
1453 * value is set to a negative value, the setsockopt() call will return
1454 * an error. If the value is set to a positive value linger_time, the
1455 * close() can be blocked for at most linger_time ms. If the graceful
1456 * shutdown phase does not finish during this period, close() will
1457 * return but the graceful shutdown phase continues in the system.
1458 */
1459 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1460 {
1461 struct sctp_endpoint *ep;
1462 struct sctp_association *asoc;
1463 struct list_head *pos, *temp;
1464 unsigned int data_was_unread;
1465
1466 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1467
1468 sctp_lock_sock(sk);
1469 sk->sk_shutdown = SHUTDOWN_MASK;
1470 sk->sk_state = SCTP_SS_CLOSING;
1471
1472 ep = sctp_sk(sk)->ep;
1473
1474 /* Clean up any skbs sitting on the receive queue. */
1475 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1476 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1477
1478 /* Walk all associations on an endpoint. */
1479 list_for_each_safe(pos, temp, &ep->asocs) {
1480 asoc = list_entry(pos, struct sctp_association, asocs);
1481
1482 if (sctp_style(sk, TCP)) {
1483 /* A closed association can still be in the list if
1484 * it belongs to a TCP-style listening socket that is
1485 * not yet accepted. If so, free it. If not, send an
1486 * ABORT or SHUTDOWN based on the linger options.
1487 */
1488 if (sctp_state(asoc, CLOSED)) {
1489 sctp_unhash_established(asoc);
1490 sctp_association_free(asoc);
1491 continue;
1492 }
1493 }
1494
1495 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1496 !skb_queue_empty(&asoc->ulpq.reasm) ||
1497 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1498 struct sctp_chunk *chunk;
1499
1500 chunk = sctp_make_abort_user(asoc, NULL, 0);
1501 if (chunk)
1502 sctp_primitive_ABORT(asoc, chunk);
1503 } else
1504 sctp_primitive_SHUTDOWN(asoc, NULL);
1505 }
1506
1507 /* On a TCP-style socket, block for at most linger_time if set. */
1508 if (sctp_style(sk, TCP) && timeout)
1509 sctp_wait_for_close(sk, timeout);
1510
1511 /* This will run the backlog queue. */
1512 sctp_release_sock(sk);
1513
1514 /* Supposedly, no process has access to the socket, but
1515 * the net layers still may.
1516 */
1517 sctp_local_bh_disable();
1518 sctp_bh_lock_sock(sk);
1519
1520 /* Hold the sock, since sk_common_release() will put sock_put()
1521 * and we have just a little more cleanup.
1522 */
1523 sock_hold(sk);
1524 sk_common_release(sk);
1525
1526 sctp_bh_unlock_sock(sk);
1527 sctp_local_bh_enable();
1528
1529 sock_put(sk);
1530
1531 SCTP_DBG_OBJCNT_DEC(sock);
1532 }
1533
1534 /* Handle EPIPE error. */
1535 static int sctp_error(struct sock *sk, int flags, int err)
1536 {
1537 if (err == -EPIPE)
1538 err = sock_error(sk) ? : -EPIPE;
1539 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1540 send_sig(SIGPIPE, current, 0);
1541 return err;
1542 }
1543
1544 /* API 3.1.3 sendmsg() - UDP Style Syntax
1545 *
1546 * An application uses sendmsg() and recvmsg() calls to transmit data to
1547 * and receive data from its peer.
1548 *
1549 * ssize_t sendmsg(int socket, const struct msghdr *message,
1550 * int flags);
1551 *
1552 * socket - the socket descriptor of the endpoint.
1553 * message - pointer to the msghdr structure which contains a single
1554 * user message and possibly some ancillary data.
1555 *
1556 * See Section 5 for complete description of the data
1557 * structures.
1558 *
1559 * flags - flags sent or received with the user message, see Section
1560 * 5 for complete description of the flags.
1561 *
1562 * Note: This function could use a rewrite especially when explicit
1563 * connect support comes in.
1564 */
1565 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1566
1567 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1568
1569 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1570 struct msghdr *msg, size_t msg_len)
1571 {
1572 struct sctp_sock *sp;
1573 struct sctp_endpoint *ep;
1574 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1575 struct sctp_transport *transport, *chunk_tp;
1576 struct sctp_chunk *chunk;
1577 union sctp_addr to;
1578 struct sockaddr *msg_name = NULL;
1579 struct sctp_sndrcvinfo default_sinfo;
1580 struct sctp_sndrcvinfo *sinfo;
1581 struct sctp_initmsg *sinit;
1582 sctp_assoc_t associd = 0;
1583 sctp_cmsgs_t cmsgs = { NULL };
1584 int err;
1585 sctp_scope_t scope;
1586 long timeo;
1587 __u16 sinfo_flags = 0;
1588 struct sctp_datamsg *datamsg;
1589 int msg_flags = msg->msg_flags;
1590
1591 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1592 sk, msg, msg_len);
1593
1594 err = 0;
1595 sp = sctp_sk(sk);
1596 ep = sp->ep;
1597
1598 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1599
1600 /* We cannot send a message over a TCP-style listening socket. */
1601 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1602 err = -EPIPE;
1603 goto out_nounlock;
1604 }
1605
1606 /* Parse out the SCTP CMSGs. */
1607 err = sctp_msghdr_parse(msg, &cmsgs);
1608
1609 if (err) {
1610 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1611 goto out_nounlock;
1612 }
1613
1614 /* Fetch the destination address for this packet. This
1615 * address only selects the association--it is not necessarily
1616 * the address we will send to.
1617 * For a peeled-off socket, msg_name is ignored.
1618 */
1619 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1620 int msg_namelen = msg->msg_namelen;
1621
1622 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1623 msg_namelen);
1624 if (err)
1625 return err;
1626
1627 if (msg_namelen > sizeof(to))
1628 msg_namelen = sizeof(to);
1629 memcpy(&to, msg->msg_name, msg_namelen);
1630 msg_name = msg->msg_name;
1631 }
1632
1633 sinfo = cmsgs.info;
1634 sinit = cmsgs.init;
1635
1636 /* Did the user specify SNDRCVINFO? */
1637 if (sinfo) {
1638 sinfo_flags = sinfo->sinfo_flags;
1639 associd = sinfo->sinfo_assoc_id;
1640 }
1641
1642 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1643 msg_len, sinfo_flags);
1644
1645 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1646 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1647 err = -EINVAL;
1648 goto out_nounlock;
1649 }
1650
1651 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1652 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1653 * If SCTP_ABORT is set, the message length could be non zero with
1654 * the msg_iov set to the user abort reason.
1655 */
1656 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1657 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1658 err = -EINVAL;
1659 goto out_nounlock;
1660 }
1661
1662 /* If SCTP_ADDR_OVER is set, there must be an address
1663 * specified in msg_name.
1664 */
1665 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1666 err = -EINVAL;
1667 goto out_nounlock;
1668 }
1669
1670 transport = NULL;
1671
1672 SCTP_DEBUG_PRINTK("About to look up association.\n");
1673
1674 sctp_lock_sock(sk);
1675
1676 /* If a msg_name has been specified, assume this is to be used. */
1677 if (msg_name) {
1678 /* Look for a matching association on the endpoint. */
1679 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1680 if (!asoc) {
1681 /* If we could not find a matching association on the
1682 * endpoint, make sure that it is not a TCP-style
1683 * socket that already has an association or there is
1684 * no peeled-off association on another socket.
1685 */
1686 if ((sctp_style(sk, TCP) &&
1687 sctp_sstate(sk, ESTABLISHED)) ||
1688 sctp_endpoint_is_peeled_off(ep, &to)) {
1689 err = -EADDRNOTAVAIL;
1690 goto out_unlock;
1691 }
1692 }
1693 } else {
1694 asoc = sctp_id2assoc(sk, associd);
1695 if (!asoc) {
1696 err = -EPIPE;
1697 goto out_unlock;
1698 }
1699 }
1700
1701 if (asoc) {
1702 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1703
1704 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1705 * socket that has an association in CLOSED state. This can
1706 * happen when an accepted socket has an association that is
1707 * already CLOSED.
1708 */
1709 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1710 err = -EPIPE;
1711 goto out_unlock;
1712 }
1713
1714 if (sinfo_flags & SCTP_EOF) {
1715 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1716 asoc);
1717 sctp_primitive_SHUTDOWN(asoc, NULL);
1718 err = 0;
1719 goto out_unlock;
1720 }
1721 if (sinfo_flags & SCTP_ABORT) {
1722
1723 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1724 if (!chunk) {
1725 err = -ENOMEM;
1726 goto out_unlock;
1727 }
1728
1729 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1730 sctp_primitive_ABORT(asoc, chunk);
1731 err = 0;
1732 goto out_unlock;
1733 }
1734 }
1735
1736 /* Do we need to create the association? */
1737 if (!asoc) {
1738 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1739
1740 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1741 err = -EINVAL;
1742 goto out_unlock;
1743 }
1744
1745 /* Check for invalid stream against the stream counts,
1746 * either the default or the user specified stream counts.
1747 */
1748 if (sinfo) {
1749 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1750 /* Check against the defaults. */
1751 if (sinfo->sinfo_stream >=
1752 sp->initmsg.sinit_num_ostreams) {
1753 err = -EINVAL;
1754 goto out_unlock;
1755 }
1756 } else {
1757 /* Check against the requested. */
1758 if (sinfo->sinfo_stream >=
1759 sinit->sinit_num_ostreams) {
1760 err = -EINVAL;
1761 goto out_unlock;
1762 }
1763 }
1764 }
1765
1766 /*
1767 * API 3.1.2 bind() - UDP Style Syntax
1768 * If a bind() or sctp_bindx() is not called prior to a
1769 * sendmsg() call that initiates a new association, the
1770 * system picks an ephemeral port and will choose an address
1771 * set equivalent to binding with a wildcard address.
1772 */
1773 if (!ep->base.bind_addr.port) {
1774 if (sctp_autobind(sk)) {
1775 err = -EAGAIN;
1776 goto out_unlock;
1777 }
1778 } else {
1779 /*
1780 * If an unprivileged user inherits a one-to-many
1781 * style socket with open associations on a privileged
1782 * port, it MAY be permitted to accept new associations,
1783 * but it SHOULD NOT be permitted to open new
1784 * associations.
1785 */
1786 if (ep->base.bind_addr.port < PROT_SOCK &&
1787 !capable(CAP_NET_BIND_SERVICE)) {
1788 err = -EACCES;
1789 goto out_unlock;
1790 }
1791 }
1792
1793 scope = sctp_scope(&to);
1794 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1795 if (!new_asoc) {
1796 err = -ENOMEM;
1797 goto out_unlock;
1798 }
1799 asoc = new_asoc;
1800 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1801 if (err < 0) {
1802 err = -ENOMEM;
1803 goto out_free;
1804 }
1805
1806 /* If the SCTP_INIT ancillary data is specified, set all
1807 * the association init values accordingly.
1808 */
1809 if (sinit) {
1810 if (sinit->sinit_num_ostreams) {
1811 asoc->c.sinit_num_ostreams =
1812 sinit->sinit_num_ostreams;
1813 }
1814 if (sinit->sinit_max_instreams) {
1815 asoc->c.sinit_max_instreams =
1816 sinit->sinit_max_instreams;
1817 }
1818 if (sinit->sinit_max_attempts) {
1819 asoc->max_init_attempts
1820 = sinit->sinit_max_attempts;
1821 }
1822 if (sinit->sinit_max_init_timeo) {
1823 asoc->max_init_timeo =
1824 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1825 }
1826 }
1827
1828 /* Prime the peer's transport structures. */
1829 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1830 if (!transport) {
1831 err = -ENOMEM;
1832 goto out_free;
1833 }
1834 }
1835
1836 /* ASSERT: we have a valid association at this point. */
1837 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1838
1839 if (!sinfo) {
1840 /* If the user didn't specify SNDRCVINFO, make up one with
1841 * some defaults.
1842 */
1843 memset(&default_sinfo, 0, sizeof(default_sinfo));
1844 default_sinfo.sinfo_stream = asoc->default_stream;
1845 default_sinfo.sinfo_flags = asoc->default_flags;
1846 default_sinfo.sinfo_ppid = asoc->default_ppid;
1847 default_sinfo.sinfo_context = asoc->default_context;
1848 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1849 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1850 sinfo = &default_sinfo;
1851 }
1852
1853 /* API 7.1.7, the sndbuf size per association bounds the
1854 * maximum size of data that can be sent in a single send call.
1855 */
1856 if (msg_len > sk->sk_sndbuf) {
1857 err = -EMSGSIZE;
1858 goto out_free;
1859 }
1860
1861 if (asoc->pmtu_pending)
1862 sctp_assoc_pending_pmtu(asoc);
1863
1864 /* If fragmentation is disabled and the message length exceeds the
1865 * association fragmentation point, return EMSGSIZE. The I-D
1866 * does not specify what this error is, but this looks like
1867 * a great fit.
1868 */
1869 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1870 err = -EMSGSIZE;
1871 goto out_free;
1872 }
1873
1874 /* Check for invalid stream. */
1875 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1876 err = -EINVAL;
1877 goto out_free;
1878 }
1879
1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 if (!sctp_wspace(asoc)) {
1882 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1883 if (err)
1884 goto out_free;
1885 }
1886
1887 /* If an address is passed with the sendto/sendmsg call, it is used
1888 * to override the primary destination address in the TCP model, or
1889 * when SCTP_ADDR_OVER flag is set in the UDP model.
1890 */
1891 if ((sctp_style(sk, TCP) && msg_name) ||
1892 (sinfo_flags & SCTP_ADDR_OVER)) {
1893 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1894 if (!chunk_tp) {
1895 err = -EINVAL;
1896 goto out_free;
1897 }
1898 } else
1899 chunk_tp = NULL;
1900
1901 /* Auto-connect, if we aren't connected already. */
1902 if (sctp_state(asoc, CLOSED)) {
1903 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1904 if (err < 0)
1905 goto out_free;
1906 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1907 }
1908
1909 /* Break the message into multiple chunks of maximum size. */
1910 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1911 if (!datamsg) {
1912 err = -ENOMEM;
1913 goto out_free;
1914 }
1915
1916 /* Now send the (possibly) fragmented message. */
1917 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1918 sctp_chunk_hold(chunk);
1919
1920 /* Do accounting for the write space. */
1921 sctp_set_owner_w(chunk);
1922
1923 chunk->transport = chunk_tp;
1924 }
1925
1926 /* Send it to the lower layers. Note: all chunks
1927 * must either fail or succeed. The lower layer
1928 * works that way today. Keep it that way or this
1929 * breaks.
1930 */
1931 err = sctp_primitive_SEND(asoc, datamsg);
1932 /* Did the lower layer accept the chunk? */
1933 if (err)
1934 sctp_datamsg_free(datamsg);
1935 else
1936 sctp_datamsg_put(datamsg);
1937
1938 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1939
1940 if (err)
1941 goto out_free;
1942 else
1943 err = msg_len;
1944
1945 /* If we are already past ASSOCIATE, the lower
1946 * layers are responsible for association cleanup.
1947 */
1948 goto out_unlock;
1949
1950 out_free:
1951 if (new_asoc) {
1952 sctp_unhash_established(asoc);
1953 sctp_association_free(asoc);
1954 }
1955 out_unlock:
1956 sctp_release_sock(sk);
1957
1958 out_nounlock:
1959 return sctp_error(sk, msg_flags, err);
1960
1961 #if 0
1962 do_sock_err:
1963 if (msg_len)
1964 err = msg_len;
1965 else
1966 err = sock_error(sk);
1967 goto out;
1968
1969 do_interrupted:
1970 if (msg_len)
1971 err = msg_len;
1972 goto out;
1973 #endif /* 0 */
1974 }
1975
1976 /* This is an extended version of skb_pull() that removes the data from the
1977 * start of a skb even when data is spread across the list of skb's in the
1978 * frag_list. len specifies the total amount of data that needs to be removed.
1979 * when 'len' bytes could be removed from the skb, it returns 0.
1980 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1981 * could not be removed.
1982 */
1983 static int sctp_skb_pull(struct sk_buff *skb, int len)
1984 {
1985 struct sk_buff *list;
1986 int skb_len = skb_headlen(skb);
1987 int rlen;
1988
1989 if (len <= skb_len) {
1990 __skb_pull(skb, len);
1991 return 0;
1992 }
1993 len -= skb_len;
1994 __skb_pull(skb, skb_len);
1995
1996 skb_walk_frags(skb, list) {
1997 rlen = sctp_skb_pull(list, len);
1998 skb->len -= (len-rlen);
1999 skb->data_len -= (len-rlen);
2000
2001 if (!rlen)
2002 return 0;
2003
2004 len = rlen;
2005 }
2006
2007 return len;
2008 }
2009
2010 /* API 3.1.3 recvmsg() - UDP Style Syntax
2011 *
2012 * ssize_t recvmsg(int socket, struct msghdr *message,
2013 * int flags);
2014 *
2015 * socket - the socket descriptor of the endpoint.
2016 * message - pointer to the msghdr structure which contains a single
2017 * user message and possibly some ancillary data.
2018 *
2019 * See Section 5 for complete description of the data
2020 * structures.
2021 *
2022 * flags - flags sent or received with the user message, see Section
2023 * 5 for complete description of the flags.
2024 */
2025 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2026
2027 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2028 struct msghdr *msg, size_t len, int noblock,
2029 int flags, int *addr_len)
2030 {
2031 struct sctp_ulpevent *event = NULL;
2032 struct sctp_sock *sp = sctp_sk(sk);
2033 struct sk_buff *skb;
2034 int copied;
2035 int err = 0;
2036 int skb_len;
2037
2038 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2039 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2040 "len", len, "knoblauch", noblock,
2041 "flags", flags, "addr_len", addr_len);
2042
2043 sctp_lock_sock(sk);
2044
2045 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2046 err = -ENOTCONN;
2047 goto out;
2048 }
2049
2050 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2051 if (!skb)
2052 goto out;
2053
2054 /* Get the total length of the skb including any skb's in the
2055 * frag_list.
2056 */
2057 skb_len = skb->len;
2058
2059 copied = skb_len;
2060 if (copied > len)
2061 copied = len;
2062
2063 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2064
2065 event = sctp_skb2event(skb);
2066
2067 if (err)
2068 goto out_free;
2069
2070 sock_recv_ts_and_drops(msg, sk, skb);
2071 if (sctp_ulpevent_is_notification(event)) {
2072 msg->msg_flags |= MSG_NOTIFICATION;
2073 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2074 } else {
2075 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2076 }
2077
2078 /* Check if we allow SCTP_SNDRCVINFO. */
2079 if (sp->subscribe.sctp_data_io_event)
2080 sctp_ulpevent_read_sndrcvinfo(event, msg);
2081 #if 0
2082 /* FIXME: we should be calling IP/IPv6 layers. */
2083 if (sk->sk_protinfo.af_inet.cmsg_flags)
2084 ip_cmsg_recv(msg, skb);
2085 #endif
2086
2087 err = copied;
2088
2089 /* If skb's length exceeds the user's buffer, update the skb and
2090 * push it back to the receive_queue so that the next call to
2091 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2092 */
2093 if (skb_len > copied) {
2094 msg->msg_flags &= ~MSG_EOR;
2095 if (flags & MSG_PEEK)
2096 goto out_free;
2097 sctp_skb_pull(skb, copied);
2098 skb_queue_head(&sk->sk_receive_queue, skb);
2099
2100 /* When only partial message is copied to the user, increase
2101 * rwnd by that amount. If all the data in the skb is read,
2102 * rwnd is updated when the event is freed.
2103 */
2104 if (!sctp_ulpevent_is_notification(event))
2105 sctp_assoc_rwnd_increase(event->asoc, copied);
2106 goto out;
2107 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2108 (event->msg_flags & MSG_EOR))
2109 msg->msg_flags |= MSG_EOR;
2110 else
2111 msg->msg_flags &= ~MSG_EOR;
2112
2113 out_free:
2114 if (flags & MSG_PEEK) {
2115 /* Release the skb reference acquired after peeking the skb in
2116 * sctp_skb_recv_datagram().
2117 */
2118 kfree_skb(skb);
2119 } else {
2120 /* Free the event which includes releasing the reference to
2121 * the owner of the skb, freeing the skb and updating the
2122 * rwnd.
2123 */
2124 sctp_ulpevent_free(event);
2125 }
2126 out:
2127 sctp_release_sock(sk);
2128 return err;
2129 }
2130
2131 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2132 *
2133 * This option is a on/off flag. If enabled no SCTP message
2134 * fragmentation will be performed. Instead if a message being sent
2135 * exceeds the current PMTU size, the message will NOT be sent and
2136 * instead a error will be indicated to the user.
2137 */
2138 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2139 char __user *optval,
2140 unsigned int optlen)
2141 {
2142 int val;
2143
2144 if (optlen < sizeof(int))
2145 return -EINVAL;
2146
2147 if (get_user(val, (int __user *)optval))
2148 return -EFAULT;
2149
2150 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2151
2152 return 0;
2153 }
2154
2155 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2156 unsigned int optlen)
2157 {
2158 struct sctp_association *asoc;
2159 struct sctp_ulpevent *event;
2160
2161 if (optlen > sizeof(struct sctp_event_subscribe))
2162 return -EINVAL;
2163 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2164 return -EFAULT;
2165
2166 /*
2167 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2168 * if there is no data to be sent or retransmit, the stack will
2169 * immediately send up this notification.
2170 */
2171 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2172 &sctp_sk(sk)->subscribe)) {
2173 asoc = sctp_id2assoc(sk, 0);
2174
2175 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2176 event = sctp_ulpevent_make_sender_dry_event(asoc,
2177 GFP_ATOMIC);
2178 if (!event)
2179 return -ENOMEM;
2180
2181 sctp_ulpq_tail_event(&asoc->ulpq, event);
2182 }
2183 }
2184
2185 return 0;
2186 }
2187
2188 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2189 *
2190 * This socket option is applicable to the UDP-style socket only. When
2191 * set it will cause associations that are idle for more than the
2192 * specified number of seconds to automatically close. An association
2193 * being idle is defined an association that has NOT sent or received
2194 * user data. The special value of '0' indicates that no automatic
2195 * close of any associations should be performed. The option expects an
2196 * integer defining the number of seconds of idle time before an
2197 * association is closed.
2198 */
2199 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2200 unsigned int optlen)
2201 {
2202 struct sctp_sock *sp = sctp_sk(sk);
2203
2204 /* Applicable to UDP-style socket only */
2205 if (sctp_style(sk, TCP))
2206 return -EOPNOTSUPP;
2207 if (optlen != sizeof(int))
2208 return -EINVAL;
2209 if (copy_from_user(&sp->autoclose, optval, optlen))
2210 return -EFAULT;
2211
2212 return 0;
2213 }
2214
2215 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2216 *
2217 * Applications can enable or disable heartbeats for any peer address of
2218 * an association, modify an address's heartbeat interval, force a
2219 * heartbeat to be sent immediately, and adjust the address's maximum
2220 * number of retransmissions sent before an address is considered
2221 * unreachable. The following structure is used to access and modify an
2222 * address's parameters:
2223 *
2224 * struct sctp_paddrparams {
2225 * sctp_assoc_t spp_assoc_id;
2226 * struct sockaddr_storage spp_address;
2227 * uint32_t spp_hbinterval;
2228 * uint16_t spp_pathmaxrxt;
2229 * uint32_t spp_pathmtu;
2230 * uint32_t spp_sackdelay;
2231 * uint32_t spp_flags;
2232 * };
2233 *
2234 * spp_assoc_id - (one-to-many style socket) This is filled in the
2235 * application, and identifies the association for
2236 * this query.
2237 * spp_address - This specifies which address is of interest.
2238 * spp_hbinterval - This contains the value of the heartbeat interval,
2239 * in milliseconds. If a value of zero
2240 * is present in this field then no changes are to
2241 * be made to this parameter.
2242 * spp_pathmaxrxt - This contains the maximum number of
2243 * retransmissions before this address shall be
2244 * considered unreachable. If a value of zero
2245 * is present in this field then no changes are to
2246 * be made to this parameter.
2247 * spp_pathmtu - When Path MTU discovery is disabled the value
2248 * specified here will be the "fixed" path mtu.
2249 * Note that if the spp_address field is empty
2250 * then all associations on this address will
2251 * have this fixed path mtu set upon them.
2252 *
2253 * spp_sackdelay - When delayed sack is enabled, this value specifies
2254 * the number of milliseconds that sacks will be delayed
2255 * for. This value will apply to all addresses of an
2256 * association if the spp_address field is empty. Note
2257 * also, that if delayed sack is enabled and this
2258 * value is set to 0, no change is made to the last
2259 * recorded delayed sack timer value.
2260 *
2261 * spp_flags - These flags are used to control various features
2262 * on an association. The flag field may contain
2263 * zero or more of the following options.
2264 *
2265 * SPP_HB_ENABLE - Enable heartbeats on the
2266 * specified address. Note that if the address
2267 * field is empty all addresses for the association
2268 * have heartbeats enabled upon them.
2269 *
2270 * SPP_HB_DISABLE - Disable heartbeats on the
2271 * speicifed address. Note that if the address
2272 * field is empty all addresses for the association
2273 * will have their heartbeats disabled. Note also
2274 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2275 * mutually exclusive, only one of these two should
2276 * be specified. Enabling both fields will have
2277 * undetermined results.
2278 *
2279 * SPP_HB_DEMAND - Request a user initiated heartbeat
2280 * to be made immediately.
2281 *
2282 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2283 * heartbeat delayis to be set to the value of 0
2284 * milliseconds.
2285 *
2286 * SPP_PMTUD_ENABLE - This field will enable PMTU
2287 * discovery upon the specified address. Note that
2288 * if the address feild is empty then all addresses
2289 * on the association are effected.
2290 *
2291 * SPP_PMTUD_DISABLE - This field will disable PMTU
2292 * discovery upon the specified address. Note that
2293 * if the address feild is empty then all addresses
2294 * on the association are effected. Not also that
2295 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2296 * exclusive. Enabling both will have undetermined
2297 * results.
2298 *
2299 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2300 * on delayed sack. The time specified in spp_sackdelay
2301 * is used to specify the sack delay for this address. Note
2302 * that if spp_address is empty then all addresses will
2303 * enable delayed sack and take on the sack delay
2304 * value specified in spp_sackdelay.
2305 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2306 * off delayed sack. If the spp_address field is blank then
2307 * delayed sack is disabled for the entire association. Note
2308 * also that this field is mutually exclusive to
2309 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2310 * results.
2311 */
2312 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2313 struct sctp_transport *trans,
2314 struct sctp_association *asoc,
2315 struct sctp_sock *sp,
2316 int hb_change,
2317 int pmtud_change,
2318 int sackdelay_change)
2319 {
2320 int error;
2321
2322 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2323 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2324 if (error)
2325 return error;
2326 }
2327
2328 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2329 * this field is ignored. Note also that a value of zero indicates
2330 * the current setting should be left unchanged.
2331 */
2332 if (params->spp_flags & SPP_HB_ENABLE) {
2333
2334 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2335 * set. This lets us use 0 value when this flag
2336 * is set.
2337 */
2338 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2339 params->spp_hbinterval = 0;
2340
2341 if (params->spp_hbinterval ||
2342 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2343 if (trans) {
2344 trans->hbinterval =
2345 msecs_to_jiffies(params->spp_hbinterval);
2346 } else if (asoc) {
2347 asoc->hbinterval =
2348 msecs_to_jiffies(params->spp_hbinterval);
2349 } else {
2350 sp->hbinterval = params->spp_hbinterval;
2351 }
2352 }
2353 }
2354
2355 if (hb_change) {
2356 if (trans) {
2357 trans->param_flags =
2358 (trans->param_flags & ~SPP_HB) | hb_change;
2359 } else if (asoc) {
2360 asoc->param_flags =
2361 (asoc->param_flags & ~SPP_HB) | hb_change;
2362 } else {
2363 sp->param_flags =
2364 (sp->param_flags & ~SPP_HB) | hb_change;
2365 }
2366 }
2367
2368 /* When Path MTU discovery is disabled the value specified here will
2369 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2370 * include the flag SPP_PMTUD_DISABLE for this field to have any
2371 * effect).
2372 */
2373 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2374 if (trans) {
2375 trans->pathmtu = params->spp_pathmtu;
2376 sctp_assoc_sync_pmtu(asoc);
2377 } else if (asoc) {
2378 asoc->pathmtu = params->spp_pathmtu;
2379 sctp_frag_point(asoc, params->spp_pathmtu);
2380 } else {
2381 sp->pathmtu = params->spp_pathmtu;
2382 }
2383 }
2384
2385 if (pmtud_change) {
2386 if (trans) {
2387 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2388 (params->spp_flags & SPP_PMTUD_ENABLE);
2389 trans->param_flags =
2390 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2391 if (update) {
2392 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2393 sctp_assoc_sync_pmtu(asoc);
2394 }
2395 } else if (asoc) {
2396 asoc->param_flags =
2397 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2398 } else {
2399 sp->param_flags =
2400 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2401 }
2402 }
2403
2404 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2405 * value of this field is ignored. Note also that a value of zero
2406 * indicates the current setting should be left unchanged.
2407 */
2408 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2409 if (trans) {
2410 trans->sackdelay =
2411 msecs_to_jiffies(params->spp_sackdelay);
2412 } else if (asoc) {
2413 asoc->sackdelay =
2414 msecs_to_jiffies(params->spp_sackdelay);
2415 } else {
2416 sp->sackdelay = params->spp_sackdelay;
2417 }
2418 }
2419
2420 if (sackdelay_change) {
2421 if (trans) {
2422 trans->param_flags =
2423 (trans->param_flags & ~SPP_SACKDELAY) |
2424 sackdelay_change;
2425 } else if (asoc) {
2426 asoc->param_flags =
2427 (asoc->param_flags & ~SPP_SACKDELAY) |
2428 sackdelay_change;
2429 } else {
2430 sp->param_flags =
2431 (sp->param_flags & ~SPP_SACKDELAY) |
2432 sackdelay_change;
2433 }
2434 }
2435
2436 /* Note that a value of zero indicates the current setting should be
2437 left unchanged.
2438 */
2439 if (params->spp_pathmaxrxt) {
2440 if (trans) {
2441 trans->pathmaxrxt = params->spp_pathmaxrxt;
2442 } else if (asoc) {
2443 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2444 } else {
2445 sp->pathmaxrxt = params->spp_pathmaxrxt;
2446 }
2447 }
2448
2449 return 0;
2450 }
2451
2452 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2453 char __user *optval,
2454 unsigned int optlen)
2455 {
2456 struct sctp_paddrparams params;
2457 struct sctp_transport *trans = NULL;
2458 struct sctp_association *asoc = NULL;
2459 struct sctp_sock *sp = sctp_sk(sk);
2460 int error;
2461 int hb_change, pmtud_change, sackdelay_change;
2462
2463 if (optlen != sizeof(struct sctp_paddrparams))
2464 return - EINVAL;
2465
2466 if (copy_from_user(&params, optval, optlen))
2467 return -EFAULT;
2468
2469 /* Validate flags and value parameters. */
2470 hb_change = params.spp_flags & SPP_HB;
2471 pmtud_change = params.spp_flags & SPP_PMTUD;
2472 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2473
2474 if (hb_change == SPP_HB ||
2475 pmtud_change == SPP_PMTUD ||
2476 sackdelay_change == SPP_SACKDELAY ||
2477 params.spp_sackdelay > 500 ||
2478 (params.spp_pathmtu &&
2479 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2480 return -EINVAL;
2481
2482 /* If an address other than INADDR_ANY is specified, and
2483 * no transport is found, then the request is invalid.
2484 */
2485 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2486 trans = sctp_addr_id2transport(sk, &params.spp_address,
2487 params.spp_assoc_id);
2488 if (!trans)
2489 return -EINVAL;
2490 }
2491
2492 /* Get association, if assoc_id != 0 and the socket is a one
2493 * to many style socket, and an association was not found, then
2494 * the id was invalid.
2495 */
2496 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2497 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2498 return -EINVAL;
2499
2500 /* Heartbeat demand can only be sent on a transport or
2501 * association, but not a socket.
2502 */
2503 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2504 return -EINVAL;
2505
2506 /* Process parameters. */
2507 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2508 hb_change, pmtud_change,
2509 sackdelay_change);
2510
2511 if (error)
2512 return error;
2513
2514 /* If changes are for association, also apply parameters to each
2515 * transport.
2516 */
2517 if (!trans && asoc) {
2518 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2519 transports) {
2520 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2521 hb_change, pmtud_change,
2522 sackdelay_change);
2523 }
2524 }
2525
2526 return 0;
2527 }
2528
2529 /*
2530 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2531 *
2532 * This option will effect the way delayed acks are performed. This
2533 * option allows you to get or set the delayed ack time, in
2534 * milliseconds. It also allows changing the delayed ack frequency.
2535 * Changing the frequency to 1 disables the delayed sack algorithm. If
2536 * the assoc_id is 0, then this sets or gets the endpoints default
2537 * values. If the assoc_id field is non-zero, then the set or get
2538 * effects the specified association for the one to many model (the
2539 * assoc_id field is ignored by the one to one model). Note that if
2540 * sack_delay or sack_freq are 0 when setting this option, then the
2541 * current values will remain unchanged.
2542 *
2543 * struct sctp_sack_info {
2544 * sctp_assoc_t sack_assoc_id;
2545 * uint32_t sack_delay;
2546 * uint32_t sack_freq;
2547 * };
2548 *
2549 * sack_assoc_id - This parameter, indicates which association the user
2550 * is performing an action upon. Note that if this field's value is
2551 * zero then the endpoints default value is changed (effecting future
2552 * associations only).
2553 *
2554 * sack_delay - This parameter contains the number of milliseconds that
2555 * the user is requesting the delayed ACK timer be set to. Note that
2556 * this value is defined in the standard to be between 200 and 500
2557 * milliseconds.
2558 *
2559 * sack_freq - This parameter contains the number of packets that must
2560 * be received before a sack is sent without waiting for the delay
2561 * timer to expire. The default value for this is 2, setting this
2562 * value to 1 will disable the delayed sack algorithm.
2563 */
2564
2565 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2566 char __user *optval, unsigned int optlen)
2567 {
2568 struct sctp_sack_info params;
2569 struct sctp_transport *trans = NULL;
2570 struct sctp_association *asoc = NULL;
2571 struct sctp_sock *sp = sctp_sk(sk);
2572
2573 if (optlen == sizeof(struct sctp_sack_info)) {
2574 if (copy_from_user(&params, optval, optlen))
2575 return -EFAULT;
2576
2577 if (params.sack_delay == 0 && params.sack_freq == 0)
2578 return 0;
2579 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2580 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2581 pr_warn("Use struct sctp_sack_info instead\n");
2582 if (copy_from_user(&params, optval, optlen))
2583 return -EFAULT;
2584
2585 if (params.sack_delay == 0)
2586 params.sack_freq = 1;
2587 else
2588 params.sack_freq = 0;
2589 } else
2590 return - EINVAL;
2591
2592 /* Validate value parameter. */
2593 if (params.sack_delay > 500)
2594 return -EINVAL;
2595
2596 /* Get association, if sack_assoc_id != 0 and the socket is a one
2597 * to many style socket, and an association was not found, then
2598 * the id was invalid.
2599 */
2600 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2601 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2602 return -EINVAL;
2603
2604 if (params.sack_delay) {
2605 if (asoc) {
2606 asoc->sackdelay =
2607 msecs_to_jiffies(params.sack_delay);
2608 asoc->param_flags =
2609 (asoc->param_flags & ~SPP_SACKDELAY) |
2610 SPP_SACKDELAY_ENABLE;
2611 } else {
2612 sp->sackdelay = params.sack_delay;
2613 sp->param_flags =
2614 (sp->param_flags & ~SPP_SACKDELAY) |
2615 SPP_SACKDELAY_ENABLE;
2616 }
2617 }
2618
2619 if (params.sack_freq == 1) {
2620 if (asoc) {
2621 asoc->param_flags =
2622 (asoc->param_flags & ~SPP_SACKDELAY) |
2623 SPP_SACKDELAY_DISABLE;
2624 } else {
2625 sp->param_flags =
2626 (sp->param_flags & ~SPP_SACKDELAY) |
2627 SPP_SACKDELAY_DISABLE;
2628 }
2629 } else if (params.sack_freq > 1) {
2630 if (asoc) {
2631 asoc->sackfreq = params.sack_freq;
2632 asoc->param_flags =
2633 (asoc->param_flags & ~SPP_SACKDELAY) |
2634 SPP_SACKDELAY_ENABLE;
2635 } else {
2636 sp->sackfreq = params.sack_freq;
2637 sp->param_flags =
2638 (sp->param_flags & ~SPP_SACKDELAY) |
2639 SPP_SACKDELAY_ENABLE;
2640 }
2641 }
2642
2643 /* If change is for association, also apply to each transport. */
2644 if (asoc) {
2645 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2646 transports) {
2647 if (params.sack_delay) {
2648 trans->sackdelay =
2649 msecs_to_jiffies(params.sack_delay);
2650 trans->param_flags =
2651 (trans->param_flags & ~SPP_SACKDELAY) |
2652 SPP_SACKDELAY_ENABLE;
2653 }
2654 if (params.sack_freq == 1) {
2655 trans->param_flags =
2656 (trans->param_flags & ~SPP_SACKDELAY) |
2657 SPP_SACKDELAY_DISABLE;
2658 } else if (params.sack_freq > 1) {
2659 trans->sackfreq = params.sack_freq;
2660 trans->param_flags =
2661 (trans->param_flags & ~SPP_SACKDELAY) |
2662 SPP_SACKDELAY_ENABLE;
2663 }
2664 }
2665 }
2666
2667 return 0;
2668 }
2669
2670 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2671 *
2672 * Applications can specify protocol parameters for the default association
2673 * initialization. The option name argument to setsockopt() and getsockopt()
2674 * is SCTP_INITMSG.
2675 *
2676 * Setting initialization parameters is effective only on an unconnected
2677 * socket (for UDP-style sockets only future associations are effected
2678 * by the change). With TCP-style sockets, this option is inherited by
2679 * sockets derived from a listener socket.
2680 */
2681 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2682 {
2683 struct sctp_initmsg sinit;
2684 struct sctp_sock *sp = sctp_sk(sk);
2685
2686 if (optlen != sizeof(struct sctp_initmsg))
2687 return -EINVAL;
2688 if (copy_from_user(&sinit, optval, optlen))
2689 return -EFAULT;
2690
2691 if (sinit.sinit_num_ostreams)
2692 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2693 if (sinit.sinit_max_instreams)
2694 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2695 if (sinit.sinit_max_attempts)
2696 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2697 if (sinit.sinit_max_init_timeo)
2698 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2699
2700 return 0;
2701 }
2702
2703 /*
2704 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2705 *
2706 * Applications that wish to use the sendto() system call may wish to
2707 * specify a default set of parameters that would normally be supplied
2708 * through the inclusion of ancillary data. This socket option allows
2709 * such an application to set the default sctp_sndrcvinfo structure.
2710 * The application that wishes to use this socket option simply passes
2711 * in to this call the sctp_sndrcvinfo structure defined in Section
2712 * 5.2.2) The input parameters accepted by this call include
2713 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2714 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2715 * to this call if the caller is using the UDP model.
2716 */
2717 static int sctp_setsockopt_default_send_param(struct sock *sk,
2718 char __user *optval,
2719 unsigned int optlen)
2720 {
2721 struct sctp_sndrcvinfo info;
2722 struct sctp_association *asoc;
2723 struct sctp_sock *sp = sctp_sk(sk);
2724
2725 if (optlen != sizeof(struct sctp_sndrcvinfo))
2726 return -EINVAL;
2727 if (copy_from_user(&info, optval, optlen))
2728 return -EFAULT;
2729
2730 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2731 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2732 return -EINVAL;
2733
2734 if (asoc) {
2735 asoc->default_stream = info.sinfo_stream;
2736 asoc->default_flags = info.sinfo_flags;
2737 asoc->default_ppid = info.sinfo_ppid;
2738 asoc->default_context = info.sinfo_context;
2739 asoc->default_timetolive = info.sinfo_timetolive;
2740 } else {
2741 sp->default_stream = info.sinfo_stream;
2742 sp->default_flags = info.sinfo_flags;
2743 sp->default_ppid = info.sinfo_ppid;
2744 sp->default_context = info.sinfo_context;
2745 sp->default_timetolive = info.sinfo_timetolive;
2746 }
2747
2748 return 0;
2749 }
2750
2751 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2752 *
2753 * Requests that the local SCTP stack use the enclosed peer address as
2754 * the association primary. The enclosed address must be one of the
2755 * association peer's addresses.
2756 */
2757 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2758 unsigned int optlen)
2759 {
2760 struct sctp_prim prim;
2761 struct sctp_transport *trans;
2762
2763 if (optlen != sizeof(struct sctp_prim))
2764 return -EINVAL;
2765
2766 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2767 return -EFAULT;
2768
2769 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2770 if (!trans)
2771 return -EINVAL;
2772
2773 sctp_assoc_set_primary(trans->asoc, trans);
2774
2775 return 0;
2776 }
2777
2778 /*
2779 * 7.1.5 SCTP_NODELAY
2780 *
2781 * Turn on/off any Nagle-like algorithm. This means that packets are
2782 * generally sent as soon as possible and no unnecessary delays are
2783 * introduced, at the cost of more packets in the network. Expects an
2784 * integer boolean flag.
2785 */
2786 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2787 unsigned int optlen)
2788 {
2789 int val;
2790
2791 if (optlen < sizeof(int))
2792 return -EINVAL;
2793 if (get_user(val, (int __user *)optval))
2794 return -EFAULT;
2795
2796 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2797 return 0;
2798 }
2799
2800 /*
2801 *
2802 * 7.1.1 SCTP_RTOINFO
2803 *
2804 * The protocol parameters used to initialize and bound retransmission
2805 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2806 * and modify these parameters.
2807 * All parameters are time values, in milliseconds. A value of 0, when
2808 * modifying the parameters, indicates that the current value should not
2809 * be changed.
2810 *
2811 */
2812 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2813 {
2814 struct sctp_rtoinfo rtoinfo;
2815 struct sctp_association *asoc;
2816
2817 if (optlen != sizeof (struct sctp_rtoinfo))
2818 return -EINVAL;
2819
2820 if (copy_from_user(&rtoinfo, optval, optlen))
2821 return -EFAULT;
2822
2823 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2824
2825 /* Set the values to the specific association */
2826 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2827 return -EINVAL;
2828
2829 if (asoc) {
2830 if (rtoinfo.srto_initial != 0)
2831 asoc->rto_initial =
2832 msecs_to_jiffies(rtoinfo.srto_initial);
2833 if (rtoinfo.srto_max != 0)
2834 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2835 if (rtoinfo.srto_min != 0)
2836 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2837 } else {
2838 /* If there is no association or the association-id = 0
2839 * set the values to the endpoint.
2840 */
2841 struct sctp_sock *sp = sctp_sk(sk);
2842
2843 if (rtoinfo.srto_initial != 0)
2844 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2845 if (rtoinfo.srto_max != 0)
2846 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2847 if (rtoinfo.srto_min != 0)
2848 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2849 }
2850
2851 return 0;
2852 }
2853
2854 /*
2855 *
2856 * 7.1.2 SCTP_ASSOCINFO
2857 *
2858 * This option is used to tune the maximum retransmission attempts
2859 * of the association.
2860 * Returns an error if the new association retransmission value is
2861 * greater than the sum of the retransmission value of the peer.
2862 * See [SCTP] for more information.
2863 *
2864 */
2865 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2866 {
2867
2868 struct sctp_assocparams assocparams;
2869 struct sctp_association *asoc;
2870
2871 if (optlen != sizeof(struct sctp_assocparams))
2872 return -EINVAL;
2873 if (copy_from_user(&assocparams, optval, optlen))
2874 return -EFAULT;
2875
2876 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2877
2878 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2879 return -EINVAL;
2880
2881 /* Set the values to the specific association */
2882 if (asoc) {
2883 if (assocparams.sasoc_asocmaxrxt != 0) {
2884 __u32 path_sum = 0;
2885 int paths = 0;
2886 struct sctp_transport *peer_addr;
2887
2888 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2889 transports) {
2890 path_sum += peer_addr->pathmaxrxt;
2891 paths++;
2892 }
2893
2894 /* Only validate asocmaxrxt if we have more than
2895 * one path/transport. We do this because path
2896 * retransmissions are only counted when we have more
2897 * then one path.
2898 */
2899 if (paths > 1 &&
2900 assocparams.sasoc_asocmaxrxt > path_sum)
2901 return -EINVAL;
2902
2903 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2904 }
2905
2906 if (assocparams.sasoc_cookie_life != 0) {
2907 asoc->cookie_life.tv_sec =
2908 assocparams.sasoc_cookie_life / 1000;
2909 asoc->cookie_life.tv_usec =
2910 (assocparams.sasoc_cookie_life % 1000)
2911 * 1000;
2912 }
2913 } else {
2914 /* Set the values to the endpoint */
2915 struct sctp_sock *sp = sctp_sk(sk);
2916
2917 if (assocparams.sasoc_asocmaxrxt != 0)
2918 sp->assocparams.sasoc_asocmaxrxt =
2919 assocparams.sasoc_asocmaxrxt;
2920 if (assocparams.sasoc_cookie_life != 0)
2921 sp->assocparams.sasoc_cookie_life =
2922 assocparams.sasoc_cookie_life;
2923 }
2924 return 0;
2925 }
2926
2927 /*
2928 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2929 *
2930 * This socket option is a boolean flag which turns on or off mapped V4
2931 * addresses. If this option is turned on and the socket is type
2932 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2933 * If this option is turned off, then no mapping will be done of V4
2934 * addresses and a user will receive both PF_INET6 and PF_INET type
2935 * addresses on the socket.
2936 */
2937 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2938 {
2939 int val;
2940 struct sctp_sock *sp = sctp_sk(sk);
2941
2942 if (optlen < sizeof(int))
2943 return -EINVAL;
2944 if (get_user(val, (int __user *)optval))
2945 return -EFAULT;
2946 if (val)
2947 sp->v4mapped = 1;
2948 else
2949 sp->v4mapped = 0;
2950
2951 return 0;
2952 }
2953
2954 /*
2955 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2956 * This option will get or set the maximum size to put in any outgoing
2957 * SCTP DATA chunk. If a message is larger than this size it will be
2958 * fragmented by SCTP into the specified size. Note that the underlying
2959 * SCTP implementation may fragment into smaller sized chunks when the
2960 * PMTU of the underlying association is smaller than the value set by
2961 * the user. The default value for this option is '0' which indicates
2962 * the user is NOT limiting fragmentation and only the PMTU will effect
2963 * SCTP's choice of DATA chunk size. Note also that values set larger
2964 * than the maximum size of an IP datagram will effectively let SCTP
2965 * control fragmentation (i.e. the same as setting this option to 0).
2966 *
2967 * The following structure is used to access and modify this parameter:
2968 *
2969 * struct sctp_assoc_value {
2970 * sctp_assoc_t assoc_id;
2971 * uint32_t assoc_value;
2972 * };
2973 *
2974 * assoc_id: This parameter is ignored for one-to-one style sockets.
2975 * For one-to-many style sockets this parameter indicates which
2976 * association the user is performing an action upon. Note that if
2977 * this field's value is zero then the endpoints default value is
2978 * changed (effecting future associations only).
2979 * assoc_value: This parameter specifies the maximum size in bytes.
2980 */
2981 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2982 {
2983 struct sctp_assoc_value params;
2984 struct sctp_association *asoc;
2985 struct sctp_sock *sp = sctp_sk(sk);
2986 int val;
2987
2988 if (optlen == sizeof(int)) {
2989 pr_warn("Use of int in maxseg socket option deprecated\n");
2990 pr_warn("Use struct sctp_assoc_value instead\n");
2991 if (copy_from_user(&val, optval, optlen))
2992 return -EFAULT;
2993 params.assoc_id = 0;
2994 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2995 if (copy_from_user(&params, optval, optlen))
2996 return -EFAULT;
2997 val = params.assoc_value;
2998 } else
2999 return -EINVAL;
3000
3001 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3002 return -EINVAL;
3003
3004 asoc = sctp_id2assoc(sk, params.assoc_id);
3005 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3006 return -EINVAL;
3007
3008 if (asoc) {
3009 if (val == 0) {
3010 val = asoc->pathmtu;
3011 val -= sp->pf->af->net_header_len;
3012 val -= sizeof(struct sctphdr) +
3013 sizeof(struct sctp_data_chunk);
3014 }
3015 asoc->user_frag = val;
3016 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3017 } else {
3018 sp->user_frag = val;
3019 }
3020
3021 return 0;
3022 }
3023
3024
3025 /*
3026 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3027 *
3028 * Requests that the peer mark the enclosed address as the association
3029 * primary. The enclosed address must be one of the association's
3030 * locally bound addresses. The following structure is used to make a
3031 * set primary request:
3032 */
3033 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3034 unsigned int optlen)
3035 {
3036 struct sctp_sock *sp;
3037 struct sctp_association *asoc = NULL;
3038 struct sctp_setpeerprim prim;
3039 struct sctp_chunk *chunk;
3040 struct sctp_af *af;
3041 int err;
3042
3043 sp = sctp_sk(sk);
3044
3045 if (!sctp_addip_enable)
3046 return -EPERM;
3047
3048 if (optlen != sizeof(struct sctp_setpeerprim))
3049 return -EINVAL;
3050
3051 if (copy_from_user(&prim, optval, optlen))
3052 return -EFAULT;
3053
3054 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3055 if (!asoc)
3056 return -EINVAL;
3057
3058 if (!asoc->peer.asconf_capable)
3059 return -EPERM;
3060
3061 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3062 return -EPERM;
3063
3064 if (!sctp_state(asoc, ESTABLISHED))
3065 return -ENOTCONN;
3066
3067 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3068 if (!af)
3069 return -EINVAL;
3070
3071 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3072 return -EADDRNOTAVAIL;
3073
3074 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3075 return -EADDRNOTAVAIL;
3076
3077 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3078 chunk = sctp_make_asconf_set_prim(asoc,
3079 (union sctp_addr *)&prim.sspp_addr);
3080 if (!chunk)
3081 return -ENOMEM;
3082
3083 err = sctp_send_asconf(asoc, chunk);
3084
3085 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3086
3087 return err;
3088 }
3089
3090 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3091 unsigned int optlen)
3092 {
3093 struct sctp_setadaptation adaptation;
3094
3095 if (optlen != sizeof(struct sctp_setadaptation))
3096 return -EINVAL;
3097 if (copy_from_user(&adaptation, optval, optlen))
3098 return -EFAULT;
3099
3100 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3101
3102 return 0;
3103 }
3104
3105 /*
3106 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3107 *
3108 * The context field in the sctp_sndrcvinfo structure is normally only
3109 * used when a failed message is retrieved holding the value that was
3110 * sent down on the actual send call. This option allows the setting of
3111 * a default context on an association basis that will be received on
3112 * reading messages from the peer. This is especially helpful in the
3113 * one-2-many model for an application to keep some reference to an
3114 * internal state machine that is processing messages on the
3115 * association. Note that the setting of this value only effects
3116 * received messages from the peer and does not effect the value that is
3117 * saved with outbound messages.
3118 */
3119 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3120 unsigned int optlen)
3121 {
3122 struct sctp_assoc_value params;
3123 struct sctp_sock *sp;
3124 struct sctp_association *asoc;
3125
3126 if (optlen != sizeof(struct sctp_assoc_value))
3127 return -EINVAL;
3128 if (copy_from_user(&params, optval, optlen))
3129 return -EFAULT;
3130
3131 sp = sctp_sk(sk);
3132
3133 if (params.assoc_id != 0) {
3134 asoc = sctp_id2assoc(sk, params.assoc_id);
3135 if (!asoc)
3136 return -EINVAL;
3137 asoc->default_rcv_context = params.assoc_value;
3138 } else {
3139 sp->default_rcv_context = params.assoc_value;
3140 }
3141
3142 return 0;
3143 }
3144
3145 /*
3146 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3147 *
3148 * This options will at a minimum specify if the implementation is doing
3149 * fragmented interleave. Fragmented interleave, for a one to many
3150 * socket, is when subsequent calls to receive a message may return
3151 * parts of messages from different associations. Some implementations
3152 * may allow you to turn this value on or off. If so, when turned off,
3153 * no fragment interleave will occur (which will cause a head of line
3154 * blocking amongst multiple associations sharing the same one to many
3155 * socket). When this option is turned on, then each receive call may
3156 * come from a different association (thus the user must receive data
3157 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3158 * association each receive belongs to.
3159 *
3160 * This option takes a boolean value. A non-zero value indicates that
3161 * fragmented interleave is on. A value of zero indicates that
3162 * fragmented interleave is off.
3163 *
3164 * Note that it is important that an implementation that allows this
3165 * option to be turned on, have it off by default. Otherwise an unaware
3166 * application using the one to many model may become confused and act
3167 * incorrectly.
3168 */
3169 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3170 char __user *optval,
3171 unsigned int optlen)
3172 {
3173 int val;
3174
3175 if (optlen != sizeof(int))
3176 return -EINVAL;
3177 if (get_user(val, (int __user *)optval))
3178 return -EFAULT;
3179
3180 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3181
3182 return 0;
3183 }
3184
3185 /*
3186 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3187 * (SCTP_PARTIAL_DELIVERY_POINT)
3188 *
3189 * This option will set or get the SCTP partial delivery point. This
3190 * point is the size of a message where the partial delivery API will be
3191 * invoked to help free up rwnd space for the peer. Setting this to a
3192 * lower value will cause partial deliveries to happen more often. The
3193 * calls argument is an integer that sets or gets the partial delivery
3194 * point. Note also that the call will fail if the user attempts to set
3195 * this value larger than the socket receive buffer size.
3196 *
3197 * Note that any single message having a length smaller than or equal to
3198 * the SCTP partial delivery point will be delivered in one single read
3199 * call as long as the user provided buffer is large enough to hold the
3200 * message.
3201 */
3202 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3203 char __user *optval,
3204 unsigned int optlen)
3205 {
3206 u32 val;
3207
3208 if (optlen != sizeof(u32))
3209 return -EINVAL;
3210 if (get_user(val, (int __user *)optval))
3211 return -EFAULT;
3212
3213 /* Note: We double the receive buffer from what the user sets
3214 * it to be, also initial rwnd is based on rcvbuf/2.
3215 */
3216 if (val > (sk->sk_rcvbuf >> 1))
3217 return -EINVAL;
3218
3219 sctp_sk(sk)->pd_point = val;
3220
3221 return 0; /* is this the right error code? */
3222 }
3223
3224 /*
3225 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3226 *
3227 * This option will allow a user to change the maximum burst of packets
3228 * that can be emitted by this association. Note that the default value
3229 * is 4, and some implementations may restrict this setting so that it
3230 * can only be lowered.
3231 *
3232 * NOTE: This text doesn't seem right. Do this on a socket basis with
3233 * future associations inheriting the socket value.
3234 */
3235 static int sctp_setsockopt_maxburst(struct sock *sk,
3236 char __user *optval,
3237 unsigned int optlen)
3238 {
3239 struct sctp_assoc_value params;
3240 struct sctp_sock *sp;
3241 struct sctp_association *asoc;
3242 int val;
3243 int assoc_id = 0;
3244
3245 if (optlen == sizeof(int)) {
3246 pr_warn("Use of int in max_burst socket option deprecated\n");
3247 pr_warn("Use struct sctp_assoc_value instead\n");
3248 if (copy_from_user(&val, optval, optlen))
3249 return -EFAULT;
3250 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3251 if (copy_from_user(&params, optval, optlen))
3252 return -EFAULT;
3253 val = params.assoc_value;
3254 assoc_id = params.assoc_id;
3255 } else
3256 return -EINVAL;
3257
3258 sp = sctp_sk(sk);
3259
3260 if (assoc_id != 0) {
3261 asoc = sctp_id2assoc(sk, assoc_id);
3262 if (!asoc)
3263 return -EINVAL;
3264 asoc->max_burst = val;
3265 } else
3266 sp->max_burst = val;
3267
3268 return 0;
3269 }
3270
3271 /*
3272 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3273 *
3274 * This set option adds a chunk type that the user is requesting to be
3275 * received only in an authenticated way. Changes to the list of chunks
3276 * will only effect future associations on the socket.
3277 */
3278 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3279 char __user *optval,
3280 unsigned int optlen)
3281 {
3282 struct sctp_authchunk val;
3283
3284 if (!sctp_auth_enable)
3285 return -EACCES;
3286
3287 if (optlen != sizeof(struct sctp_authchunk))
3288 return -EINVAL;
3289 if (copy_from_user(&val, optval, optlen))
3290 return -EFAULT;
3291
3292 switch (val.sauth_chunk) {
3293 case SCTP_CID_INIT:
3294 case SCTP_CID_INIT_ACK:
3295 case SCTP_CID_SHUTDOWN_COMPLETE:
3296 case SCTP_CID_AUTH:
3297 return -EINVAL;
3298 }
3299
3300 /* add this chunk id to the endpoint */
3301 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3302 }
3303
3304 /*
3305 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3306 *
3307 * This option gets or sets the list of HMAC algorithms that the local
3308 * endpoint requires the peer to use.
3309 */
3310 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3311 char __user *optval,
3312 unsigned int optlen)
3313 {
3314 struct sctp_hmacalgo *hmacs;
3315 u32 idents;
3316 int err;
3317
3318 if (!sctp_auth_enable)
3319 return -EACCES;
3320
3321 if (optlen < sizeof(struct sctp_hmacalgo))
3322 return -EINVAL;
3323
3324 hmacs= memdup_user(optval, optlen);
3325 if (IS_ERR(hmacs))
3326 return PTR_ERR(hmacs);
3327
3328 idents = hmacs->shmac_num_idents;
3329 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3330 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3331 err = -EINVAL;
3332 goto out;
3333 }
3334
3335 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3336 out:
3337 kfree(hmacs);
3338 return err;
3339 }
3340
3341 /*
3342 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3343 *
3344 * This option will set a shared secret key which is used to build an
3345 * association shared key.
3346 */
3347 static int sctp_setsockopt_auth_key(struct sock *sk,
3348 char __user *optval,
3349 unsigned int optlen)
3350 {
3351 struct sctp_authkey *authkey;
3352 struct sctp_association *asoc;
3353 int ret;
3354
3355 if (!sctp_auth_enable)
3356 return -EACCES;
3357
3358 if (optlen <= sizeof(struct sctp_authkey))
3359 return -EINVAL;
3360
3361 authkey= memdup_user(optval, optlen);
3362 if (IS_ERR(authkey))
3363 return PTR_ERR(authkey);
3364
3365 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3366 ret = -EINVAL;
3367 goto out;
3368 }
3369
3370 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3371 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3372 ret = -EINVAL;
3373 goto out;
3374 }
3375
3376 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3377 out:
3378 kfree(authkey);
3379 return ret;
3380 }
3381
3382 /*
3383 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3384 *
3385 * This option will get or set the active shared key to be used to build
3386 * the association shared key.
3387 */
3388 static int sctp_setsockopt_active_key(struct sock *sk,
3389 char __user *optval,
3390 unsigned int optlen)
3391 {
3392 struct sctp_authkeyid val;
3393 struct sctp_association *asoc;
3394
3395 if (!sctp_auth_enable)
3396 return -EACCES;
3397
3398 if (optlen != sizeof(struct sctp_authkeyid))
3399 return -EINVAL;
3400 if (copy_from_user(&val, optval, optlen))
3401 return -EFAULT;
3402
3403 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3404 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3405 return -EINVAL;
3406
3407 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3408 val.scact_keynumber);
3409 }
3410
3411 /*
3412 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3413 *
3414 * This set option will delete a shared secret key from use.
3415 */
3416 static int sctp_setsockopt_del_key(struct sock *sk,
3417 char __user *optval,
3418 unsigned int optlen)
3419 {
3420 struct sctp_authkeyid val;
3421 struct sctp_association *asoc;
3422
3423 if (!sctp_auth_enable)
3424 return -EACCES;
3425
3426 if (optlen != sizeof(struct sctp_authkeyid))
3427 return -EINVAL;
3428 if (copy_from_user(&val, optval, optlen))
3429 return -EFAULT;
3430
3431 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3432 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3433 return -EINVAL;
3434
3435 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3436 val.scact_keynumber);
3437
3438 }
3439
3440 /*
3441 * 8.1.23 SCTP_AUTO_ASCONF
3442 *
3443 * This option will enable or disable the use of the automatic generation of
3444 * ASCONF chunks to add and delete addresses to an existing association. Note
3445 * that this option has two caveats namely: a) it only affects sockets that
3446 * are bound to all addresses available to the SCTP stack, and b) the system
3447 * administrator may have an overriding control that turns the ASCONF feature
3448 * off no matter what setting the socket option may have.
3449 * This option expects an integer boolean flag, where a non-zero value turns on
3450 * the option, and a zero value turns off the option.
3451 * Note. In this implementation, socket operation overrides default parameter
3452 * being set by sysctl as well as FreeBSD implementation
3453 */
3454 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3455 unsigned int optlen)
3456 {
3457 int val;
3458 struct sctp_sock *sp = sctp_sk(sk);
3459
3460 if (optlen < sizeof(int))
3461 return -EINVAL;
3462 if (get_user(val, (int __user *)optval))
3463 return -EFAULT;
3464 if (!sctp_is_ep_boundall(sk) && val)
3465 return -EINVAL;
3466 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3467 return 0;
3468
3469 if (val == 0 && sp->do_auto_asconf) {
3470 list_del(&sp->auto_asconf_list);
3471 sp->do_auto_asconf = 0;
3472 } else if (val && !sp->do_auto_asconf) {
3473 list_add_tail(&sp->auto_asconf_list,
3474 &sctp_auto_asconf_splist);
3475 sp->do_auto_asconf = 1;
3476 }
3477 return 0;
3478 }
3479
3480
3481 /* API 6.2 setsockopt(), getsockopt()
3482 *
3483 * Applications use setsockopt() and getsockopt() to set or retrieve
3484 * socket options. Socket options are used to change the default
3485 * behavior of sockets calls. They are described in Section 7.
3486 *
3487 * The syntax is:
3488 *
3489 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3490 * int __user *optlen);
3491 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3492 * int optlen);
3493 *
3494 * sd - the socket descript.
3495 * level - set to IPPROTO_SCTP for all SCTP options.
3496 * optname - the option name.
3497 * optval - the buffer to store the value of the option.
3498 * optlen - the size of the buffer.
3499 */
3500 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3501 char __user *optval, unsigned int optlen)
3502 {
3503 int retval = 0;
3504
3505 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3506 sk, optname);
3507
3508 /* I can hardly begin to describe how wrong this is. This is
3509 * so broken as to be worse than useless. The API draft
3510 * REALLY is NOT helpful here... I am not convinced that the
3511 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3512 * are at all well-founded.
3513 */
3514 if (level != SOL_SCTP) {
3515 struct sctp_af *af = sctp_sk(sk)->pf->af;
3516 retval = af->setsockopt(sk, level, optname, optval, optlen);
3517 goto out_nounlock;
3518 }
3519
3520 sctp_lock_sock(sk);
3521
3522 switch (optname) {
3523 case SCTP_SOCKOPT_BINDX_ADD:
3524 /* 'optlen' is the size of the addresses buffer. */
3525 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3526 optlen, SCTP_BINDX_ADD_ADDR);
3527 break;
3528
3529 case SCTP_SOCKOPT_BINDX_REM:
3530 /* 'optlen' is the size of the addresses buffer. */
3531 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3532 optlen, SCTP_BINDX_REM_ADDR);
3533 break;
3534
3535 case SCTP_SOCKOPT_CONNECTX_OLD:
3536 /* 'optlen' is the size of the addresses buffer. */
3537 retval = sctp_setsockopt_connectx_old(sk,
3538 (struct sockaddr __user *)optval,
3539 optlen);
3540 break;
3541
3542 case SCTP_SOCKOPT_CONNECTX:
3543 /* 'optlen' is the size of the addresses buffer. */
3544 retval = sctp_setsockopt_connectx(sk,
3545 (struct sockaddr __user *)optval,
3546 optlen);
3547 break;
3548
3549 case SCTP_DISABLE_FRAGMENTS:
3550 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3551 break;
3552
3553 case SCTP_EVENTS:
3554 retval = sctp_setsockopt_events(sk, optval, optlen);
3555 break;
3556
3557 case SCTP_AUTOCLOSE:
3558 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3559 break;
3560
3561 case SCTP_PEER_ADDR_PARAMS:
3562 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3563 break;
3564
3565 case SCTP_DELAYED_SACK:
3566 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3567 break;
3568 case SCTP_PARTIAL_DELIVERY_POINT:
3569 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3570 break;
3571
3572 case SCTP_INITMSG:
3573 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3574 break;
3575 case SCTP_DEFAULT_SEND_PARAM:
3576 retval = sctp_setsockopt_default_send_param(sk, optval,
3577 optlen);
3578 break;
3579 case SCTP_PRIMARY_ADDR:
3580 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3581 break;
3582 case SCTP_SET_PEER_PRIMARY_ADDR:
3583 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3584 break;
3585 case SCTP_NODELAY:
3586 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3587 break;
3588 case SCTP_RTOINFO:
3589 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3590 break;
3591 case SCTP_ASSOCINFO:
3592 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3593 break;
3594 case SCTP_I_WANT_MAPPED_V4_ADDR:
3595 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3596 break;
3597 case SCTP_MAXSEG:
3598 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3599 break;
3600 case SCTP_ADAPTATION_LAYER:
3601 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3602 break;
3603 case SCTP_CONTEXT:
3604 retval = sctp_setsockopt_context(sk, optval, optlen);
3605 break;
3606 case SCTP_FRAGMENT_INTERLEAVE:
3607 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3608 break;
3609 case SCTP_MAX_BURST:
3610 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3611 break;
3612 case SCTP_AUTH_CHUNK:
3613 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3614 break;
3615 case SCTP_HMAC_IDENT:
3616 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3617 break;
3618 case SCTP_AUTH_KEY:
3619 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3620 break;
3621 case SCTP_AUTH_ACTIVE_KEY:
3622 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3623 break;
3624 case SCTP_AUTH_DELETE_KEY:
3625 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3626 break;
3627 case SCTP_AUTO_ASCONF:
3628 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3629 break;
3630 default:
3631 retval = -ENOPROTOOPT;
3632 break;
3633 }
3634
3635 sctp_release_sock(sk);
3636
3637 out_nounlock:
3638 return retval;
3639 }
3640
3641 /* API 3.1.6 connect() - UDP Style Syntax
3642 *
3643 * An application may use the connect() call in the UDP model to initiate an
3644 * association without sending data.
3645 *
3646 * The syntax is:
3647 *
3648 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3649 *
3650 * sd: the socket descriptor to have a new association added to.
3651 *
3652 * nam: the address structure (either struct sockaddr_in or struct
3653 * sockaddr_in6 defined in RFC2553 [7]).
3654 *
3655 * len: the size of the address.
3656 */
3657 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3658 int addr_len)
3659 {
3660 int err = 0;
3661 struct sctp_af *af;
3662
3663 sctp_lock_sock(sk);
3664
3665 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3666 __func__, sk, addr, addr_len);
3667
3668 /* Validate addr_len before calling common connect/connectx routine. */
3669 af = sctp_get_af_specific(addr->sa_family);
3670 if (!af || addr_len < af->sockaddr_len) {
3671 err = -EINVAL;
3672 } else {
3673 /* Pass correct addr len to common routine (so it knows there
3674 * is only one address being passed.
3675 */
3676 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3677 }
3678
3679 sctp_release_sock(sk);
3680 return err;
3681 }
3682
3683 /* FIXME: Write comments. */
3684 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3685 {
3686 return -EOPNOTSUPP; /* STUB */
3687 }
3688
3689 /* 4.1.4 accept() - TCP Style Syntax
3690 *
3691 * Applications use accept() call to remove an established SCTP
3692 * association from the accept queue of the endpoint. A new socket
3693 * descriptor will be returned from accept() to represent the newly
3694 * formed association.
3695 */
3696 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3697 {
3698 struct sctp_sock *sp;
3699 struct sctp_endpoint *ep;
3700 struct sock *newsk = NULL;
3701 struct sctp_association *asoc;
3702 long timeo;
3703 int error = 0;
3704
3705 sctp_lock_sock(sk);
3706
3707 sp = sctp_sk(sk);
3708 ep = sp->ep;
3709
3710 if (!sctp_style(sk, TCP)) {
3711 error = -EOPNOTSUPP;
3712 goto out;
3713 }
3714
3715 if (!sctp_sstate(sk, LISTENING)) {
3716 error = -EINVAL;
3717 goto out;
3718 }
3719
3720 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3721
3722 error = sctp_wait_for_accept(sk, timeo);
3723 if (error)
3724 goto out;
3725
3726 /* We treat the list of associations on the endpoint as the accept
3727 * queue and pick the first association on the list.
3728 */
3729 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3730
3731 newsk = sp->pf->create_accept_sk(sk, asoc);
3732 if (!newsk) {
3733 error = -ENOMEM;
3734 goto out;
3735 }
3736
3737 /* Populate the fields of the newsk from the oldsk and migrate the
3738 * asoc to the newsk.
3739 */
3740 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3741
3742 out:
3743 sctp_release_sock(sk);
3744 *err = error;
3745 return newsk;
3746 }
3747
3748 /* The SCTP ioctl handler. */
3749 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3750 {
3751 int rc = -ENOTCONN;
3752
3753 sctp_lock_sock(sk);
3754
3755 /*
3756 * SEQPACKET-style sockets in LISTENING state are valid, for
3757 * SCTP, so only discard TCP-style sockets in LISTENING state.
3758 */
3759 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3760 goto out;
3761
3762 switch (cmd) {
3763 case SIOCINQ: {
3764 struct sk_buff *skb;
3765 unsigned int amount = 0;
3766
3767 skb = skb_peek(&sk->sk_receive_queue);
3768 if (skb != NULL) {
3769 /*
3770 * We will only return the amount of this packet since
3771 * that is all that will be read.
3772 */
3773 amount = skb->len;
3774 }
3775 rc = put_user(amount, (int __user *)arg);
3776 break;
3777 }
3778 default:
3779 rc = -ENOIOCTLCMD;
3780 break;
3781 }
3782 out:
3783 sctp_release_sock(sk);
3784 return rc;
3785 }
3786
3787 /* This is the function which gets called during socket creation to
3788 * initialized the SCTP-specific portion of the sock.
3789 * The sock structure should already be zero-filled memory.
3790 */
3791 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3792 {
3793 struct sctp_endpoint *ep;
3794 struct sctp_sock *sp;
3795
3796 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3797
3798 sp = sctp_sk(sk);
3799
3800 /* Initialize the SCTP per socket area. */
3801 switch (sk->sk_type) {
3802 case SOCK_SEQPACKET:
3803 sp->type = SCTP_SOCKET_UDP;
3804 break;
3805 case SOCK_STREAM:
3806 sp->type = SCTP_SOCKET_TCP;
3807 break;
3808 default:
3809 return -ESOCKTNOSUPPORT;
3810 }
3811
3812 /* Initialize default send parameters. These parameters can be
3813 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3814 */
3815 sp->default_stream = 0;
3816 sp->default_ppid = 0;
3817 sp->default_flags = 0;
3818 sp->default_context = 0;
3819 sp->default_timetolive = 0;
3820
3821 sp->default_rcv_context = 0;
3822 sp->max_burst = sctp_max_burst;
3823
3824 /* Initialize default setup parameters. These parameters
3825 * can be modified with the SCTP_INITMSG socket option or
3826 * overridden by the SCTP_INIT CMSG.
3827 */
3828 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3829 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3830 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3831 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3832
3833 /* Initialize default RTO related parameters. These parameters can
3834 * be modified for with the SCTP_RTOINFO socket option.
3835 */
3836 sp->rtoinfo.srto_initial = sctp_rto_initial;
3837 sp->rtoinfo.srto_max = sctp_rto_max;
3838 sp->rtoinfo.srto_min = sctp_rto_min;
3839
3840 /* Initialize default association related parameters. These parameters
3841 * can be modified with the SCTP_ASSOCINFO socket option.
3842 */
3843 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3844 sp->assocparams.sasoc_number_peer_destinations = 0;
3845 sp->assocparams.sasoc_peer_rwnd = 0;
3846 sp->assocparams.sasoc_local_rwnd = 0;
3847 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3848
3849 /* Initialize default event subscriptions. By default, all the
3850 * options are off.
3851 */
3852 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3853
3854 /* Default Peer Address Parameters. These defaults can
3855 * be modified via SCTP_PEER_ADDR_PARAMS
3856 */
3857 sp->hbinterval = sctp_hb_interval;
3858 sp->pathmaxrxt = sctp_max_retrans_path;
3859 sp->pathmtu = 0; // allow default discovery
3860 sp->sackdelay = sctp_sack_timeout;
3861 sp->sackfreq = 2;
3862 sp->param_flags = SPP_HB_ENABLE |
3863 SPP_PMTUD_ENABLE |
3864 SPP_SACKDELAY_ENABLE;
3865
3866 /* If enabled no SCTP message fragmentation will be performed.
3867 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3868 */
3869 sp->disable_fragments = 0;
3870
3871 /* Enable Nagle algorithm by default. */
3872 sp->nodelay = 0;
3873
3874 /* Enable by default. */
3875 sp->v4mapped = 1;
3876
3877 /* Auto-close idle associations after the configured
3878 * number of seconds. A value of 0 disables this
3879 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3880 * for UDP-style sockets only.
3881 */
3882 sp->autoclose = 0;
3883
3884 /* User specified fragmentation limit. */
3885 sp->user_frag = 0;
3886
3887 sp->adaptation_ind = 0;
3888
3889 sp->pf = sctp_get_pf_specific(sk->sk_family);
3890
3891 /* Control variables for partial data delivery. */
3892 atomic_set(&sp->pd_mode, 0);
3893 skb_queue_head_init(&sp->pd_lobby);
3894 sp->frag_interleave = 0;
3895
3896 /* Create a per socket endpoint structure. Even if we
3897 * change the data structure relationships, this may still
3898 * be useful for storing pre-connect address information.
3899 */
3900 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3901 if (!ep)
3902 return -ENOMEM;
3903
3904 sp->ep = ep;
3905 sp->hmac = NULL;
3906
3907 SCTP_DBG_OBJCNT_INC(sock);
3908
3909 local_bh_disable();
3910 percpu_counter_inc(&sctp_sockets_allocated);
3911 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3912 if (sctp_default_auto_asconf) {
3913 list_add_tail(&sp->auto_asconf_list,
3914 &sctp_auto_asconf_splist);
3915 sp->do_auto_asconf = 1;
3916 } else
3917 sp->do_auto_asconf = 0;
3918 local_bh_enable();
3919
3920 return 0;
3921 }
3922
3923 /* Cleanup any SCTP per socket resources. */
3924 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3925 {
3926 struct sctp_sock *sp;
3927
3928 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3929
3930 /* Release our hold on the endpoint. */
3931 sp = sctp_sk(sk);
3932 if (sp->do_auto_asconf) {
3933 sp->do_auto_asconf = 0;
3934 list_del(&sp->auto_asconf_list);
3935 }
3936 sctp_endpoint_free(sp->ep);
3937 local_bh_disable();
3938 percpu_counter_dec(&sctp_sockets_allocated);
3939 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3940 local_bh_enable();
3941 }
3942
3943 /* API 4.1.7 shutdown() - TCP Style Syntax
3944 * int shutdown(int socket, int how);
3945 *
3946 * sd - the socket descriptor of the association to be closed.
3947 * how - Specifies the type of shutdown. The values are
3948 * as follows:
3949 * SHUT_RD
3950 * Disables further receive operations. No SCTP
3951 * protocol action is taken.
3952 * SHUT_WR
3953 * Disables further send operations, and initiates
3954 * the SCTP shutdown sequence.
3955 * SHUT_RDWR
3956 * Disables further send and receive operations
3957 * and initiates the SCTP shutdown sequence.
3958 */
3959 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3960 {
3961 struct sctp_endpoint *ep;
3962 struct sctp_association *asoc;
3963
3964 if (!sctp_style(sk, TCP))
3965 return;
3966
3967 if (how & SEND_SHUTDOWN) {
3968 ep = sctp_sk(sk)->ep;
3969 if (!list_empty(&ep->asocs)) {
3970 asoc = list_entry(ep->asocs.next,
3971 struct sctp_association, asocs);
3972 sctp_primitive_SHUTDOWN(asoc, NULL);
3973 }
3974 }
3975 }
3976
3977 /* 7.2.1 Association Status (SCTP_STATUS)
3978
3979 * Applications can retrieve current status information about an
3980 * association, including association state, peer receiver window size,
3981 * number of unacked data chunks, and number of data chunks pending
3982 * receipt. This information is read-only.
3983 */
3984 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3985 char __user *optval,
3986 int __user *optlen)
3987 {
3988 struct sctp_status status;
3989 struct sctp_association *asoc = NULL;
3990 struct sctp_transport *transport;
3991 sctp_assoc_t associd;
3992 int retval = 0;
3993
3994 if (len < sizeof(status)) {
3995 retval = -EINVAL;
3996 goto out;
3997 }
3998
3999 len = sizeof(status);
4000 if (copy_from_user(&status, optval, len)) {
4001 retval = -EFAULT;
4002 goto out;
4003 }
4004
4005 associd = status.sstat_assoc_id;
4006 asoc = sctp_id2assoc(sk, associd);
4007 if (!asoc) {
4008 retval = -EINVAL;
4009 goto out;
4010 }
4011
4012 transport = asoc->peer.primary_path;
4013
4014 status.sstat_assoc_id = sctp_assoc2id(asoc);
4015 status.sstat_state = asoc->state;
4016 status.sstat_rwnd = asoc->peer.rwnd;
4017 status.sstat_unackdata = asoc->unack_data;
4018
4019 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4020 status.sstat_instrms = asoc->c.sinit_max_instreams;
4021 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4022 status.sstat_fragmentation_point = asoc->frag_point;
4023 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4024 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4025 transport->af_specific->sockaddr_len);
4026 /* Map ipv4 address into v4-mapped-on-v6 address. */
4027 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4028 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4029 status.sstat_primary.spinfo_state = transport->state;
4030 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4031 status.sstat_primary.spinfo_srtt = transport->srtt;
4032 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4033 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4034
4035 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4036 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4037
4038 if (put_user(len, optlen)) {
4039 retval = -EFAULT;
4040 goto out;
4041 }
4042
4043 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4044 len, status.sstat_state, status.sstat_rwnd,
4045 status.sstat_assoc_id);
4046
4047 if (copy_to_user(optval, &status, len)) {
4048 retval = -EFAULT;
4049 goto out;
4050 }
4051
4052 out:
4053 return retval;
4054 }
4055
4056
4057 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4058 *
4059 * Applications can retrieve information about a specific peer address
4060 * of an association, including its reachability state, congestion
4061 * window, and retransmission timer values. This information is
4062 * read-only.
4063 */
4064 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4065 char __user *optval,
4066 int __user *optlen)
4067 {
4068 struct sctp_paddrinfo pinfo;
4069 struct sctp_transport *transport;
4070 int retval = 0;
4071
4072 if (len < sizeof(pinfo)) {
4073 retval = -EINVAL;
4074 goto out;
4075 }
4076
4077 len = sizeof(pinfo);
4078 if (copy_from_user(&pinfo, optval, len)) {
4079 retval = -EFAULT;
4080 goto out;
4081 }
4082
4083 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4084 pinfo.spinfo_assoc_id);
4085 if (!transport)
4086 return -EINVAL;
4087
4088 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4089 pinfo.spinfo_state = transport->state;
4090 pinfo.spinfo_cwnd = transport->cwnd;
4091 pinfo.spinfo_srtt = transport->srtt;
4092 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4093 pinfo.spinfo_mtu = transport->pathmtu;
4094
4095 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4096 pinfo.spinfo_state = SCTP_ACTIVE;
4097
4098 if (put_user(len, optlen)) {
4099 retval = -EFAULT;
4100 goto out;
4101 }
4102
4103 if (copy_to_user(optval, &pinfo, len)) {
4104 retval = -EFAULT;
4105 goto out;
4106 }
4107
4108 out:
4109 return retval;
4110 }
4111
4112 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4113 *
4114 * This option is a on/off flag. If enabled no SCTP message
4115 * fragmentation will be performed. Instead if a message being sent
4116 * exceeds the current PMTU size, the message will NOT be sent and
4117 * instead a error will be indicated to the user.
4118 */
4119 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4120 char __user *optval, int __user *optlen)
4121 {
4122 int val;
4123
4124 if (len < sizeof(int))
4125 return -EINVAL;
4126
4127 len = sizeof(int);
4128 val = (sctp_sk(sk)->disable_fragments == 1);
4129 if (put_user(len, optlen))
4130 return -EFAULT;
4131 if (copy_to_user(optval, &val, len))
4132 return -EFAULT;
4133 return 0;
4134 }
4135
4136 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4137 *
4138 * This socket option is used to specify various notifications and
4139 * ancillary data the user wishes to receive.
4140 */
4141 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4142 int __user *optlen)
4143 {
4144 if (len <= 0)
4145 return -EINVAL;
4146 if (len > sizeof(struct sctp_event_subscribe))
4147 len = sizeof(struct sctp_event_subscribe);
4148 if (put_user(len, optlen))
4149 return -EFAULT;
4150 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4151 return -EFAULT;
4152 return 0;
4153 }
4154
4155 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4156 *
4157 * This socket option is applicable to the UDP-style socket only. When
4158 * set it will cause associations that are idle for more than the
4159 * specified number of seconds to automatically close. An association
4160 * being idle is defined an association that has NOT sent or received
4161 * user data. The special value of '0' indicates that no automatic
4162 * close of any associations should be performed. The option expects an
4163 * integer defining the number of seconds of idle time before an
4164 * association is closed.
4165 */
4166 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4167 {
4168 /* Applicable to UDP-style socket only */
4169 if (sctp_style(sk, TCP))
4170 return -EOPNOTSUPP;
4171 if (len < sizeof(int))
4172 return -EINVAL;
4173 len = sizeof(int);
4174 if (put_user(len, optlen))
4175 return -EFAULT;
4176 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4177 return -EFAULT;
4178 return 0;
4179 }
4180
4181 /* Helper routine to branch off an association to a new socket. */
4182 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4183 {
4184 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4185 struct socket *sock;
4186 struct sctp_af *af;
4187 int err = 0;
4188
4189 if (!asoc)
4190 return -EINVAL;
4191
4192 /* An association cannot be branched off from an already peeled-off
4193 * socket, nor is this supported for tcp style sockets.
4194 */
4195 if (!sctp_style(sk, UDP))
4196 return -EINVAL;
4197
4198 /* Create a new socket. */
4199 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4200 if (err < 0)
4201 return err;
4202
4203 sctp_copy_sock(sock->sk, sk, asoc);
4204
4205 /* Make peeled-off sockets more like 1-1 accepted sockets.
4206 * Set the daddr and initialize id to something more random
4207 */
4208 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4209 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4210
4211 /* Populate the fields of the newsk from the oldsk and migrate the
4212 * asoc to the newsk.
4213 */
4214 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4215
4216 *sockp = sock;
4217
4218 return err;
4219 }
4220 EXPORT_SYMBOL(sctp_do_peeloff);
4221
4222 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4223 {
4224 sctp_peeloff_arg_t peeloff;
4225 struct socket *newsock;
4226 int retval = 0;
4227
4228 if (len < sizeof(sctp_peeloff_arg_t))
4229 return -EINVAL;
4230 len = sizeof(sctp_peeloff_arg_t);
4231 if (copy_from_user(&peeloff, optval, len))
4232 return -EFAULT;
4233
4234 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4235 if (retval < 0)
4236 goto out;
4237
4238 /* Map the socket to an unused fd that can be returned to the user. */
4239 retval = sock_map_fd(newsock, 0);
4240 if (retval < 0) {
4241 sock_release(newsock);
4242 goto out;
4243 }
4244
4245 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4246 __func__, sk, newsock->sk, retval);
4247
4248 /* Return the fd mapped to the new socket. */
4249 peeloff.sd = retval;
4250 if (put_user(len, optlen))
4251 return -EFAULT;
4252 if (copy_to_user(optval, &peeloff, len))
4253 retval = -EFAULT;
4254
4255 out:
4256 return retval;
4257 }
4258
4259 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4260 *
4261 * Applications can enable or disable heartbeats for any peer address of
4262 * an association, modify an address's heartbeat interval, force a
4263 * heartbeat to be sent immediately, and adjust the address's maximum
4264 * number of retransmissions sent before an address is considered
4265 * unreachable. The following structure is used to access and modify an
4266 * address's parameters:
4267 *
4268 * struct sctp_paddrparams {
4269 * sctp_assoc_t spp_assoc_id;
4270 * struct sockaddr_storage spp_address;
4271 * uint32_t spp_hbinterval;
4272 * uint16_t spp_pathmaxrxt;
4273 * uint32_t spp_pathmtu;
4274 * uint32_t spp_sackdelay;
4275 * uint32_t spp_flags;
4276 * };
4277 *
4278 * spp_assoc_id - (one-to-many style socket) This is filled in the
4279 * application, and identifies the association for
4280 * this query.
4281 * spp_address - This specifies which address is of interest.
4282 * spp_hbinterval - This contains the value of the heartbeat interval,
4283 * in milliseconds. If a value of zero
4284 * is present in this field then no changes are to
4285 * be made to this parameter.
4286 * spp_pathmaxrxt - This contains the maximum number of
4287 * retransmissions before this address shall be
4288 * considered unreachable. If a value of zero
4289 * is present in this field then no changes are to
4290 * be made to this parameter.
4291 * spp_pathmtu - When Path MTU discovery is disabled the value
4292 * specified here will be the "fixed" path mtu.
4293 * Note that if the spp_address field is empty
4294 * then all associations on this address will
4295 * have this fixed path mtu set upon them.
4296 *
4297 * spp_sackdelay - When delayed sack is enabled, this value specifies
4298 * the number of milliseconds that sacks will be delayed
4299 * for. This value will apply to all addresses of an
4300 * association if the spp_address field is empty. Note
4301 * also, that if delayed sack is enabled and this
4302 * value is set to 0, no change is made to the last
4303 * recorded delayed sack timer value.
4304 *
4305 * spp_flags - These flags are used to control various features
4306 * on an association. The flag field may contain
4307 * zero or more of the following options.
4308 *
4309 * SPP_HB_ENABLE - Enable heartbeats on the
4310 * specified address. Note that if the address
4311 * field is empty all addresses for the association
4312 * have heartbeats enabled upon them.
4313 *
4314 * SPP_HB_DISABLE - Disable heartbeats on the
4315 * speicifed address. Note that if the address
4316 * field is empty all addresses for the association
4317 * will have their heartbeats disabled. Note also
4318 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4319 * mutually exclusive, only one of these two should
4320 * be specified. Enabling both fields will have
4321 * undetermined results.
4322 *
4323 * SPP_HB_DEMAND - Request a user initiated heartbeat
4324 * to be made immediately.
4325 *
4326 * SPP_PMTUD_ENABLE - This field will enable PMTU
4327 * discovery upon the specified address. Note that
4328 * if the address feild is empty then all addresses
4329 * on the association are effected.
4330 *
4331 * SPP_PMTUD_DISABLE - This field will disable PMTU
4332 * discovery upon the specified address. Note that
4333 * if the address feild is empty then all addresses
4334 * on the association are effected. Not also that
4335 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4336 * exclusive. Enabling both will have undetermined
4337 * results.
4338 *
4339 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4340 * on delayed sack. The time specified in spp_sackdelay
4341 * is used to specify the sack delay for this address. Note
4342 * that if spp_address is empty then all addresses will
4343 * enable delayed sack and take on the sack delay
4344 * value specified in spp_sackdelay.
4345 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4346 * off delayed sack. If the spp_address field is blank then
4347 * delayed sack is disabled for the entire association. Note
4348 * also that this field is mutually exclusive to
4349 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4350 * results.
4351 */
4352 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4353 char __user *optval, int __user *optlen)
4354 {
4355 struct sctp_paddrparams params;
4356 struct sctp_transport *trans = NULL;
4357 struct sctp_association *asoc = NULL;
4358 struct sctp_sock *sp = sctp_sk(sk);
4359
4360 if (len < sizeof(struct sctp_paddrparams))
4361 return -EINVAL;
4362 len = sizeof(struct sctp_paddrparams);
4363 if (copy_from_user(&params, optval, len))
4364 return -EFAULT;
4365
4366 /* If an address other than INADDR_ANY is specified, and
4367 * no transport is found, then the request is invalid.
4368 */
4369 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4370 trans = sctp_addr_id2transport(sk, &params.spp_address,
4371 params.spp_assoc_id);
4372 if (!trans) {
4373 SCTP_DEBUG_PRINTK("Failed no transport\n");
4374 return -EINVAL;
4375 }
4376 }
4377
4378 /* Get association, if assoc_id != 0 and the socket is a one
4379 * to many style socket, and an association was not found, then
4380 * the id was invalid.
4381 */
4382 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4383 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4384 SCTP_DEBUG_PRINTK("Failed no association\n");
4385 return -EINVAL;
4386 }
4387
4388 if (trans) {
4389 /* Fetch transport values. */
4390 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4391 params.spp_pathmtu = trans->pathmtu;
4392 params.spp_pathmaxrxt = trans->pathmaxrxt;
4393 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4394
4395 /*draft-11 doesn't say what to return in spp_flags*/
4396 params.spp_flags = trans->param_flags;
4397 } else if (asoc) {
4398 /* Fetch association values. */
4399 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4400 params.spp_pathmtu = asoc->pathmtu;
4401 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4402 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4403
4404 /*draft-11 doesn't say what to return in spp_flags*/
4405 params.spp_flags = asoc->param_flags;
4406 } else {
4407 /* Fetch socket values. */
4408 params.spp_hbinterval = sp->hbinterval;
4409 params.spp_pathmtu = sp->pathmtu;
4410 params.spp_sackdelay = sp->sackdelay;
4411 params.spp_pathmaxrxt = sp->pathmaxrxt;
4412
4413 /*draft-11 doesn't say what to return in spp_flags*/
4414 params.spp_flags = sp->param_flags;
4415 }
4416
4417 if (copy_to_user(optval, &params, len))
4418 return -EFAULT;
4419
4420 if (put_user(len, optlen))
4421 return -EFAULT;
4422
4423 return 0;
4424 }
4425
4426 /*
4427 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4428 *
4429 * This option will effect the way delayed acks are performed. This
4430 * option allows you to get or set the delayed ack time, in
4431 * milliseconds. It also allows changing the delayed ack frequency.
4432 * Changing the frequency to 1 disables the delayed sack algorithm. If
4433 * the assoc_id is 0, then this sets or gets the endpoints default
4434 * values. If the assoc_id field is non-zero, then the set or get
4435 * effects the specified association for the one to many model (the
4436 * assoc_id field is ignored by the one to one model). Note that if
4437 * sack_delay or sack_freq are 0 when setting this option, then the
4438 * current values will remain unchanged.
4439 *
4440 * struct sctp_sack_info {
4441 * sctp_assoc_t sack_assoc_id;
4442 * uint32_t sack_delay;
4443 * uint32_t sack_freq;
4444 * };
4445 *
4446 * sack_assoc_id - This parameter, indicates which association the user
4447 * is performing an action upon. Note that if this field's value is
4448 * zero then the endpoints default value is changed (effecting future
4449 * associations only).
4450 *
4451 * sack_delay - This parameter contains the number of milliseconds that
4452 * the user is requesting the delayed ACK timer be set to. Note that
4453 * this value is defined in the standard to be between 200 and 500
4454 * milliseconds.
4455 *
4456 * sack_freq - This parameter contains the number of packets that must
4457 * be received before a sack is sent without waiting for the delay
4458 * timer to expire. The default value for this is 2, setting this
4459 * value to 1 will disable the delayed sack algorithm.
4460 */
4461 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4462 char __user *optval,
4463 int __user *optlen)
4464 {
4465 struct sctp_sack_info params;
4466 struct sctp_association *asoc = NULL;
4467 struct sctp_sock *sp = sctp_sk(sk);
4468
4469 if (len >= sizeof(struct sctp_sack_info)) {
4470 len = sizeof(struct sctp_sack_info);
4471
4472 if (copy_from_user(&params, optval, len))
4473 return -EFAULT;
4474 } else if (len == sizeof(struct sctp_assoc_value)) {
4475 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4476 pr_warn("Use struct sctp_sack_info instead\n");
4477 if (copy_from_user(&params, optval, len))
4478 return -EFAULT;
4479 } else
4480 return - EINVAL;
4481
4482 /* Get association, if sack_assoc_id != 0 and the socket is a one
4483 * to many style socket, and an association was not found, then
4484 * the id was invalid.
4485 */
4486 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4487 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4488 return -EINVAL;
4489
4490 if (asoc) {
4491 /* Fetch association values. */
4492 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4493 params.sack_delay = jiffies_to_msecs(
4494 asoc->sackdelay);
4495 params.sack_freq = asoc->sackfreq;
4496
4497 } else {
4498 params.sack_delay = 0;
4499 params.sack_freq = 1;
4500 }
4501 } else {
4502 /* Fetch socket values. */
4503 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4504 params.sack_delay = sp->sackdelay;
4505 params.sack_freq = sp->sackfreq;
4506 } else {
4507 params.sack_delay = 0;
4508 params.sack_freq = 1;
4509 }
4510 }
4511
4512 if (copy_to_user(optval, &params, len))
4513 return -EFAULT;
4514
4515 if (put_user(len, optlen))
4516 return -EFAULT;
4517
4518 return 0;
4519 }
4520
4521 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4522 *
4523 * Applications can specify protocol parameters for the default association
4524 * initialization. The option name argument to setsockopt() and getsockopt()
4525 * is SCTP_INITMSG.
4526 *
4527 * Setting initialization parameters is effective only on an unconnected
4528 * socket (for UDP-style sockets only future associations are effected
4529 * by the change). With TCP-style sockets, this option is inherited by
4530 * sockets derived from a listener socket.
4531 */
4532 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4533 {
4534 if (len < sizeof(struct sctp_initmsg))
4535 return -EINVAL;
4536 len = sizeof(struct sctp_initmsg);
4537 if (put_user(len, optlen))
4538 return -EFAULT;
4539 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4540 return -EFAULT;
4541 return 0;
4542 }
4543
4544
4545 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4546 char __user *optval, int __user *optlen)
4547 {
4548 struct sctp_association *asoc;
4549 int cnt = 0;
4550 struct sctp_getaddrs getaddrs;
4551 struct sctp_transport *from;
4552 void __user *to;
4553 union sctp_addr temp;
4554 struct sctp_sock *sp = sctp_sk(sk);
4555 int addrlen;
4556 size_t space_left;
4557 int bytes_copied;
4558
4559 if (len < sizeof(struct sctp_getaddrs))
4560 return -EINVAL;
4561
4562 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4563 return -EFAULT;
4564
4565 /* For UDP-style sockets, id specifies the association to query. */
4566 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4567 if (!asoc)
4568 return -EINVAL;
4569
4570 to = optval + offsetof(struct sctp_getaddrs,addrs);
4571 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4572
4573 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4574 transports) {
4575 memcpy(&temp, &from->ipaddr, sizeof(temp));
4576 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4577 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4578 if (space_left < addrlen)
4579 return -ENOMEM;
4580 if (copy_to_user(to, &temp, addrlen))
4581 return -EFAULT;
4582 to += addrlen;
4583 cnt++;
4584 space_left -= addrlen;
4585 }
4586
4587 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4588 return -EFAULT;
4589 bytes_copied = ((char __user *)to) - optval;
4590 if (put_user(bytes_copied, optlen))
4591 return -EFAULT;
4592
4593 return 0;
4594 }
4595
4596 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4597 size_t space_left, int *bytes_copied)
4598 {
4599 struct sctp_sockaddr_entry *addr;
4600 union sctp_addr temp;
4601 int cnt = 0;
4602 int addrlen;
4603
4604 rcu_read_lock();
4605 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4606 if (!addr->valid)
4607 continue;
4608
4609 if ((PF_INET == sk->sk_family) &&
4610 (AF_INET6 == addr->a.sa.sa_family))
4611 continue;
4612 if ((PF_INET6 == sk->sk_family) &&
4613 inet_v6_ipv6only(sk) &&
4614 (AF_INET == addr->a.sa.sa_family))
4615 continue;
4616 memcpy(&temp, &addr->a, sizeof(temp));
4617 if (!temp.v4.sin_port)
4618 temp.v4.sin_port = htons(port);
4619
4620 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4621 &temp);
4622 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4623 if (space_left < addrlen) {
4624 cnt = -ENOMEM;
4625 break;
4626 }
4627 memcpy(to, &temp, addrlen);
4628
4629 to += addrlen;
4630 cnt ++;
4631 space_left -= addrlen;
4632 *bytes_copied += addrlen;
4633 }
4634 rcu_read_unlock();
4635
4636 return cnt;
4637 }
4638
4639
4640 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4641 char __user *optval, int __user *optlen)
4642 {
4643 struct sctp_bind_addr *bp;
4644 struct sctp_association *asoc;
4645 int cnt = 0;
4646 struct sctp_getaddrs getaddrs;
4647 struct sctp_sockaddr_entry *addr;
4648 void __user *to;
4649 union sctp_addr temp;
4650 struct sctp_sock *sp = sctp_sk(sk);
4651 int addrlen;
4652 int err = 0;
4653 size_t space_left;
4654 int bytes_copied = 0;
4655 void *addrs;
4656 void *buf;
4657
4658 if (len < sizeof(struct sctp_getaddrs))
4659 return -EINVAL;
4660
4661 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4662 return -EFAULT;
4663
4664 /*
4665 * For UDP-style sockets, id specifies the association to query.
4666 * If the id field is set to the value '0' then the locally bound
4667 * addresses are returned without regard to any particular
4668 * association.
4669 */
4670 if (0 == getaddrs.assoc_id) {
4671 bp = &sctp_sk(sk)->ep->base.bind_addr;
4672 } else {
4673 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4674 if (!asoc)
4675 return -EINVAL;
4676 bp = &asoc->base.bind_addr;
4677 }
4678
4679 to = optval + offsetof(struct sctp_getaddrs,addrs);
4680 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4681
4682 addrs = kmalloc(space_left, GFP_KERNEL);
4683 if (!addrs)
4684 return -ENOMEM;
4685
4686 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4687 * addresses from the global local address list.
4688 */
4689 if (sctp_list_single_entry(&bp->address_list)) {
4690 addr = list_entry(bp->address_list.next,
4691 struct sctp_sockaddr_entry, list);
4692 if (sctp_is_any(sk, &addr->a)) {
4693 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4694 space_left, &bytes_copied);
4695 if (cnt < 0) {
4696 err = cnt;
4697 goto out;
4698 }
4699 goto copy_getaddrs;
4700 }
4701 }
4702
4703 buf = addrs;
4704 /* Protection on the bound address list is not needed since
4705 * in the socket option context we hold a socket lock and
4706 * thus the bound address list can't change.
4707 */
4708 list_for_each_entry(addr, &bp->address_list, list) {
4709 memcpy(&temp, &addr->a, sizeof(temp));
4710 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4711 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4712 if (space_left < addrlen) {
4713 err = -ENOMEM; /*fixme: right error?*/
4714 goto out;
4715 }
4716 memcpy(buf, &temp, addrlen);
4717 buf += addrlen;
4718 bytes_copied += addrlen;
4719 cnt ++;
4720 space_left -= addrlen;
4721 }
4722
4723 copy_getaddrs:
4724 if (copy_to_user(to, addrs, bytes_copied)) {
4725 err = -EFAULT;
4726 goto out;
4727 }
4728 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4729 err = -EFAULT;
4730 goto out;
4731 }
4732 if (put_user(bytes_copied, optlen))
4733 err = -EFAULT;
4734 out:
4735 kfree(addrs);
4736 return err;
4737 }
4738
4739 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4740 *
4741 * Requests that the local SCTP stack use the enclosed peer address as
4742 * the association primary. The enclosed address must be one of the
4743 * association peer's addresses.
4744 */
4745 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4746 char __user *optval, int __user *optlen)
4747 {
4748 struct sctp_prim prim;
4749 struct sctp_association *asoc;
4750 struct sctp_sock *sp = sctp_sk(sk);
4751
4752 if (len < sizeof(struct sctp_prim))
4753 return -EINVAL;
4754
4755 len = sizeof(struct sctp_prim);
4756
4757 if (copy_from_user(&prim, optval, len))
4758 return -EFAULT;
4759
4760 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4761 if (!asoc)
4762 return -EINVAL;
4763
4764 if (!asoc->peer.primary_path)
4765 return -ENOTCONN;
4766
4767 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4768 asoc->peer.primary_path->af_specific->sockaddr_len);
4769
4770 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4771 (union sctp_addr *)&prim.ssp_addr);
4772
4773 if (put_user(len, optlen))
4774 return -EFAULT;
4775 if (copy_to_user(optval, &prim, len))
4776 return -EFAULT;
4777
4778 return 0;
4779 }
4780
4781 /*
4782 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4783 *
4784 * Requests that the local endpoint set the specified Adaptation Layer
4785 * Indication parameter for all future INIT and INIT-ACK exchanges.
4786 */
4787 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4788 char __user *optval, int __user *optlen)
4789 {
4790 struct sctp_setadaptation adaptation;
4791
4792 if (len < sizeof(struct sctp_setadaptation))
4793 return -EINVAL;
4794
4795 len = sizeof(struct sctp_setadaptation);
4796
4797 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4798
4799 if (put_user(len, optlen))
4800 return -EFAULT;
4801 if (copy_to_user(optval, &adaptation, len))
4802 return -EFAULT;
4803
4804 return 0;
4805 }
4806
4807 /*
4808 *
4809 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4810 *
4811 * Applications that wish to use the sendto() system call may wish to
4812 * specify a default set of parameters that would normally be supplied
4813 * through the inclusion of ancillary data. This socket option allows
4814 * such an application to set the default sctp_sndrcvinfo structure.
4815
4816
4817 * The application that wishes to use this socket option simply passes
4818 * in to this call the sctp_sndrcvinfo structure defined in Section
4819 * 5.2.2) The input parameters accepted by this call include
4820 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4821 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4822 * to this call if the caller is using the UDP model.
4823 *
4824 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4825 */
4826 static int sctp_getsockopt_default_send_param(struct sock *sk,
4827 int len, char __user *optval,
4828 int __user *optlen)
4829 {
4830 struct sctp_sndrcvinfo info;
4831 struct sctp_association *asoc;
4832 struct sctp_sock *sp = sctp_sk(sk);
4833
4834 if (len < sizeof(struct sctp_sndrcvinfo))
4835 return -EINVAL;
4836
4837 len = sizeof(struct sctp_sndrcvinfo);
4838
4839 if (copy_from_user(&info, optval, len))
4840 return -EFAULT;
4841
4842 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4843 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4844 return -EINVAL;
4845
4846 if (asoc) {
4847 info.sinfo_stream = asoc->default_stream;
4848 info.sinfo_flags = asoc->default_flags;
4849 info.sinfo_ppid = asoc->default_ppid;
4850 info.sinfo_context = asoc->default_context;
4851 info.sinfo_timetolive = asoc->default_timetolive;
4852 } else {
4853 info.sinfo_stream = sp->default_stream;
4854 info.sinfo_flags = sp->default_flags;
4855 info.sinfo_ppid = sp->default_ppid;
4856 info.sinfo_context = sp->default_context;
4857 info.sinfo_timetolive = sp->default_timetolive;
4858 }
4859
4860 if (put_user(len, optlen))
4861 return -EFAULT;
4862 if (copy_to_user(optval, &info, len))
4863 return -EFAULT;
4864
4865 return 0;
4866 }
4867
4868 /*
4869 *
4870 * 7.1.5 SCTP_NODELAY
4871 *
4872 * Turn on/off any Nagle-like algorithm. This means that packets are
4873 * generally sent as soon as possible and no unnecessary delays are
4874 * introduced, at the cost of more packets in the network. Expects an
4875 * integer boolean flag.
4876 */
4877
4878 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4879 char __user *optval, int __user *optlen)
4880 {
4881 int val;
4882
4883 if (len < sizeof(int))
4884 return -EINVAL;
4885
4886 len = sizeof(int);
4887 val = (sctp_sk(sk)->nodelay == 1);
4888 if (put_user(len, optlen))
4889 return -EFAULT;
4890 if (copy_to_user(optval, &val, len))
4891 return -EFAULT;
4892 return 0;
4893 }
4894
4895 /*
4896 *
4897 * 7.1.1 SCTP_RTOINFO
4898 *
4899 * The protocol parameters used to initialize and bound retransmission
4900 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4901 * and modify these parameters.
4902 * All parameters are time values, in milliseconds. A value of 0, when
4903 * modifying the parameters, indicates that the current value should not
4904 * be changed.
4905 *
4906 */
4907 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4908 char __user *optval,
4909 int __user *optlen) {
4910 struct sctp_rtoinfo rtoinfo;
4911 struct sctp_association *asoc;
4912
4913 if (len < sizeof (struct sctp_rtoinfo))
4914 return -EINVAL;
4915
4916 len = sizeof(struct sctp_rtoinfo);
4917
4918 if (copy_from_user(&rtoinfo, optval, len))
4919 return -EFAULT;
4920
4921 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4922
4923 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4924 return -EINVAL;
4925
4926 /* Values corresponding to the specific association. */
4927 if (asoc) {
4928 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4929 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4930 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4931 } else {
4932 /* Values corresponding to the endpoint. */
4933 struct sctp_sock *sp = sctp_sk(sk);
4934
4935 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4936 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4937 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4938 }
4939
4940 if (put_user(len, optlen))
4941 return -EFAULT;
4942
4943 if (copy_to_user(optval, &rtoinfo, len))
4944 return -EFAULT;
4945
4946 return 0;
4947 }
4948
4949 /*
4950 *
4951 * 7.1.2 SCTP_ASSOCINFO
4952 *
4953 * This option is used to tune the maximum retransmission attempts
4954 * of the association.
4955 * Returns an error if the new association retransmission value is
4956 * greater than the sum of the retransmission value of the peer.
4957 * See [SCTP] for more information.
4958 *
4959 */
4960 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4961 char __user *optval,
4962 int __user *optlen)
4963 {
4964
4965 struct sctp_assocparams assocparams;
4966 struct sctp_association *asoc;
4967 struct list_head *pos;
4968 int cnt = 0;
4969
4970 if (len < sizeof (struct sctp_assocparams))
4971 return -EINVAL;
4972
4973 len = sizeof(struct sctp_assocparams);
4974
4975 if (copy_from_user(&assocparams, optval, len))
4976 return -EFAULT;
4977
4978 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4979
4980 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4981 return -EINVAL;
4982
4983 /* Values correspoinding to the specific association */
4984 if (asoc) {
4985 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4986 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4987 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4988 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4989 * 1000) +
4990 (asoc->cookie_life.tv_usec
4991 / 1000);
4992
4993 list_for_each(pos, &asoc->peer.transport_addr_list) {
4994 cnt ++;
4995 }
4996
4997 assocparams.sasoc_number_peer_destinations = cnt;
4998 } else {
4999 /* Values corresponding to the endpoint */
5000 struct sctp_sock *sp = sctp_sk(sk);
5001
5002 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5003 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5004 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5005 assocparams.sasoc_cookie_life =
5006 sp->assocparams.sasoc_cookie_life;
5007 assocparams.sasoc_number_peer_destinations =
5008 sp->assocparams.
5009 sasoc_number_peer_destinations;
5010 }
5011
5012 if (put_user(len, optlen))
5013 return -EFAULT;
5014
5015 if (copy_to_user(optval, &assocparams, len))
5016 return -EFAULT;
5017
5018 return 0;
5019 }
5020
5021 /*
5022 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5023 *
5024 * This socket option is a boolean flag which turns on or off mapped V4
5025 * addresses. If this option is turned on and the socket is type
5026 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5027 * If this option is turned off, then no mapping will be done of V4
5028 * addresses and a user will receive both PF_INET6 and PF_INET type
5029 * addresses on the socket.
5030 */
5031 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5032 char __user *optval, int __user *optlen)
5033 {
5034 int val;
5035 struct sctp_sock *sp = sctp_sk(sk);
5036
5037 if (len < sizeof(int))
5038 return -EINVAL;
5039
5040 len = sizeof(int);
5041 val = sp->v4mapped;
5042 if (put_user(len, optlen))
5043 return -EFAULT;
5044 if (copy_to_user(optval, &val, len))
5045 return -EFAULT;
5046
5047 return 0;
5048 }
5049
5050 /*
5051 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5052 * (chapter and verse is quoted at sctp_setsockopt_context())
5053 */
5054 static int sctp_getsockopt_context(struct sock *sk, int len,
5055 char __user *optval, int __user *optlen)
5056 {
5057 struct sctp_assoc_value params;
5058 struct sctp_sock *sp;
5059 struct sctp_association *asoc;
5060
5061 if (len < sizeof(struct sctp_assoc_value))
5062 return -EINVAL;
5063
5064 len = sizeof(struct sctp_assoc_value);
5065
5066 if (copy_from_user(&params, optval, len))
5067 return -EFAULT;
5068
5069 sp = sctp_sk(sk);
5070
5071 if (params.assoc_id != 0) {
5072 asoc = sctp_id2assoc(sk, params.assoc_id);
5073 if (!asoc)
5074 return -EINVAL;
5075 params.assoc_value = asoc->default_rcv_context;
5076 } else {
5077 params.assoc_value = sp->default_rcv_context;
5078 }
5079
5080 if (put_user(len, optlen))
5081 return -EFAULT;
5082 if (copy_to_user(optval, &params, len))
5083 return -EFAULT;
5084
5085 return 0;
5086 }
5087
5088 /*
5089 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5090 * This option will get or set the maximum size to put in any outgoing
5091 * SCTP DATA chunk. If a message is larger than this size it will be
5092 * fragmented by SCTP into the specified size. Note that the underlying
5093 * SCTP implementation may fragment into smaller sized chunks when the
5094 * PMTU of the underlying association is smaller than the value set by
5095 * the user. The default value for this option is '0' which indicates
5096 * the user is NOT limiting fragmentation and only the PMTU will effect
5097 * SCTP's choice of DATA chunk size. Note also that values set larger
5098 * than the maximum size of an IP datagram will effectively let SCTP
5099 * control fragmentation (i.e. the same as setting this option to 0).
5100 *
5101 * The following structure is used to access and modify this parameter:
5102 *
5103 * struct sctp_assoc_value {
5104 * sctp_assoc_t assoc_id;
5105 * uint32_t assoc_value;
5106 * };
5107 *
5108 * assoc_id: This parameter is ignored for one-to-one style sockets.
5109 * For one-to-many style sockets this parameter indicates which
5110 * association the user is performing an action upon. Note that if
5111 * this field's value is zero then the endpoints default value is
5112 * changed (effecting future associations only).
5113 * assoc_value: This parameter specifies the maximum size in bytes.
5114 */
5115 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5116 char __user *optval, int __user *optlen)
5117 {
5118 struct sctp_assoc_value params;
5119 struct sctp_association *asoc;
5120
5121 if (len == sizeof(int)) {
5122 pr_warn("Use of int in maxseg socket option deprecated\n");
5123 pr_warn("Use struct sctp_assoc_value instead\n");
5124 params.assoc_id = 0;
5125 } else if (len >= sizeof(struct sctp_assoc_value)) {
5126 len = sizeof(struct sctp_assoc_value);
5127 if (copy_from_user(&params, optval, sizeof(params)))
5128 return -EFAULT;
5129 } else
5130 return -EINVAL;
5131
5132 asoc = sctp_id2assoc(sk, params.assoc_id);
5133 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5134 return -EINVAL;
5135
5136 if (asoc)
5137 params.assoc_value = asoc->frag_point;
5138 else
5139 params.assoc_value = sctp_sk(sk)->user_frag;
5140
5141 if (put_user(len, optlen))
5142 return -EFAULT;
5143 if (len == sizeof(int)) {
5144 if (copy_to_user(optval, &params.assoc_value, len))
5145 return -EFAULT;
5146 } else {
5147 if (copy_to_user(optval, &params, len))
5148 return -EFAULT;
5149 }
5150
5151 return 0;
5152 }
5153
5154 /*
5155 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5156 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5157 */
5158 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5159 char __user *optval, int __user *optlen)
5160 {
5161 int val;
5162
5163 if (len < sizeof(int))
5164 return -EINVAL;
5165
5166 len = sizeof(int);
5167
5168 val = sctp_sk(sk)->frag_interleave;
5169 if (put_user(len, optlen))
5170 return -EFAULT;
5171 if (copy_to_user(optval, &val, len))
5172 return -EFAULT;
5173
5174 return 0;
5175 }
5176
5177 /*
5178 * 7.1.25. Set or Get the sctp partial delivery point
5179 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5180 */
5181 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5182 char __user *optval,
5183 int __user *optlen)
5184 {
5185 u32 val;
5186
5187 if (len < sizeof(u32))
5188 return -EINVAL;
5189
5190 len = sizeof(u32);
5191
5192 val = sctp_sk(sk)->pd_point;
5193 if (put_user(len, optlen))
5194 return -EFAULT;
5195 if (copy_to_user(optval, &val, len))
5196 return -EFAULT;
5197
5198 return 0;
5199 }
5200
5201 /*
5202 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5203 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5204 */
5205 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5206 char __user *optval,
5207 int __user *optlen)
5208 {
5209 struct sctp_assoc_value params;
5210 struct sctp_sock *sp;
5211 struct sctp_association *asoc;
5212
5213 if (len == sizeof(int)) {
5214 pr_warn("Use of int in max_burst socket option deprecated\n");
5215 pr_warn("Use struct sctp_assoc_value instead\n");
5216 params.assoc_id = 0;
5217 } else if (len >= sizeof(struct sctp_assoc_value)) {
5218 len = sizeof(struct sctp_assoc_value);
5219 if (copy_from_user(&params, optval, len))
5220 return -EFAULT;
5221 } else
5222 return -EINVAL;
5223
5224 sp = sctp_sk(sk);
5225
5226 if (params.assoc_id != 0) {
5227 asoc = sctp_id2assoc(sk, params.assoc_id);
5228 if (!asoc)
5229 return -EINVAL;
5230 params.assoc_value = asoc->max_burst;
5231 } else
5232 params.assoc_value = sp->max_burst;
5233
5234 if (len == sizeof(int)) {
5235 if (copy_to_user(optval, &params.assoc_value, len))
5236 return -EFAULT;
5237 } else {
5238 if (copy_to_user(optval, &params, len))
5239 return -EFAULT;
5240 }
5241
5242 return 0;
5243
5244 }
5245
5246 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5247 char __user *optval, int __user *optlen)
5248 {
5249 struct sctp_hmacalgo __user *p = (void __user *)optval;
5250 struct sctp_hmac_algo_param *hmacs;
5251 __u16 data_len = 0;
5252 u32 num_idents;
5253
5254 if (!sctp_auth_enable)
5255 return -EACCES;
5256
5257 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5258 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5259
5260 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5261 return -EINVAL;
5262
5263 len = sizeof(struct sctp_hmacalgo) + data_len;
5264 num_idents = data_len / sizeof(u16);
5265
5266 if (put_user(len, optlen))
5267 return -EFAULT;
5268 if (put_user(num_idents, &p->shmac_num_idents))
5269 return -EFAULT;
5270 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5271 return -EFAULT;
5272 return 0;
5273 }
5274
5275 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5276 char __user *optval, int __user *optlen)
5277 {
5278 struct sctp_authkeyid val;
5279 struct sctp_association *asoc;
5280
5281 if (!sctp_auth_enable)
5282 return -EACCES;
5283
5284 if (len < sizeof(struct sctp_authkeyid))
5285 return -EINVAL;
5286 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5287 return -EFAULT;
5288
5289 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5290 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5291 return -EINVAL;
5292
5293 if (asoc)
5294 val.scact_keynumber = asoc->active_key_id;
5295 else
5296 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5297
5298 len = sizeof(struct sctp_authkeyid);
5299 if (put_user(len, optlen))
5300 return -EFAULT;
5301 if (copy_to_user(optval, &val, len))
5302 return -EFAULT;
5303
5304 return 0;
5305 }
5306
5307 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5308 char __user *optval, int __user *optlen)
5309 {
5310 struct sctp_authchunks __user *p = (void __user *)optval;
5311 struct sctp_authchunks val;
5312 struct sctp_association *asoc;
5313 struct sctp_chunks_param *ch;
5314 u32 num_chunks = 0;
5315 char __user *to;
5316
5317 if (!sctp_auth_enable)
5318 return -EACCES;
5319
5320 if (len < sizeof(struct sctp_authchunks))
5321 return -EINVAL;
5322
5323 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5324 return -EFAULT;
5325
5326 to = p->gauth_chunks;
5327 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5328 if (!asoc)
5329 return -EINVAL;
5330
5331 ch = asoc->peer.peer_chunks;
5332 if (!ch)
5333 goto num;
5334
5335 /* See if the user provided enough room for all the data */
5336 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5337 if (len < num_chunks)
5338 return -EINVAL;
5339
5340 if (copy_to_user(to, ch->chunks, num_chunks))
5341 return -EFAULT;
5342 num:
5343 len = sizeof(struct sctp_authchunks) + num_chunks;
5344 if (put_user(len, optlen)) return -EFAULT;
5345 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5346 return -EFAULT;
5347 return 0;
5348 }
5349
5350 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5351 char __user *optval, int __user *optlen)
5352 {
5353 struct sctp_authchunks __user *p = (void __user *)optval;
5354 struct sctp_authchunks val;
5355 struct sctp_association *asoc;
5356 struct sctp_chunks_param *ch;
5357 u32 num_chunks = 0;
5358 char __user *to;
5359
5360 if (!sctp_auth_enable)
5361 return -EACCES;
5362
5363 if (len < sizeof(struct sctp_authchunks))
5364 return -EINVAL;
5365
5366 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5367 return -EFAULT;
5368
5369 to = p->gauth_chunks;
5370 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5371 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5372 return -EINVAL;
5373
5374 if (asoc)
5375 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5376 else
5377 ch = sctp_sk(sk)->ep->auth_chunk_list;
5378
5379 if (!ch)
5380 goto num;
5381
5382 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5383 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5384 return -EINVAL;
5385
5386 if (copy_to_user(to, ch->chunks, num_chunks))
5387 return -EFAULT;
5388 num:
5389 len = sizeof(struct sctp_authchunks) + num_chunks;
5390 if (put_user(len, optlen))
5391 return -EFAULT;
5392 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5393 return -EFAULT;
5394
5395 return 0;
5396 }
5397
5398 /*
5399 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5400 * This option gets the current number of associations that are attached
5401 * to a one-to-many style socket. The option value is an uint32_t.
5402 */
5403 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5404 char __user *optval, int __user *optlen)
5405 {
5406 struct sctp_sock *sp = sctp_sk(sk);
5407 struct sctp_association *asoc;
5408 u32 val = 0;
5409
5410 if (sctp_style(sk, TCP))
5411 return -EOPNOTSUPP;
5412
5413 if (len < sizeof(u32))
5414 return -EINVAL;
5415
5416 len = sizeof(u32);
5417
5418 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5419 val++;
5420 }
5421
5422 if (put_user(len, optlen))
5423 return -EFAULT;
5424 if (copy_to_user(optval, &val, len))
5425 return -EFAULT;
5426
5427 return 0;
5428 }
5429
5430 /*
5431 * 8.1.23 SCTP_AUTO_ASCONF
5432 * See the corresponding setsockopt entry as description
5433 */
5434 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5435 char __user *optval, int __user *optlen)
5436 {
5437 int val = 0;
5438
5439 if (len < sizeof(int))
5440 return -EINVAL;
5441
5442 len = sizeof(int);
5443 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5444 val = 1;
5445 if (put_user(len, optlen))
5446 return -EFAULT;
5447 if (copy_to_user(optval, &val, len))
5448 return -EFAULT;
5449 return 0;
5450 }
5451
5452 /*
5453 * 8.2.6. Get the Current Identifiers of Associations
5454 * (SCTP_GET_ASSOC_ID_LIST)
5455 *
5456 * This option gets the current list of SCTP association identifiers of
5457 * the SCTP associations handled by a one-to-many style socket.
5458 */
5459 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5460 char __user *optval, int __user *optlen)
5461 {
5462 struct sctp_sock *sp = sctp_sk(sk);
5463 struct sctp_association *asoc;
5464 struct sctp_assoc_ids *ids;
5465 u32 num = 0;
5466
5467 if (sctp_style(sk, TCP))
5468 return -EOPNOTSUPP;
5469
5470 if (len < sizeof(struct sctp_assoc_ids))
5471 return -EINVAL;
5472
5473 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5474 num++;
5475 }
5476
5477 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5478 return -EINVAL;
5479
5480 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5481
5482 ids = kmalloc(len, GFP_KERNEL);
5483 if (unlikely(!ids))
5484 return -ENOMEM;
5485
5486 ids->gaids_number_of_ids = num;
5487 num = 0;
5488 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5489 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5490 }
5491
5492 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5493 kfree(ids);
5494 return -EFAULT;
5495 }
5496
5497 kfree(ids);
5498 return 0;
5499 }
5500
5501 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5502 char __user *optval, int __user *optlen)
5503 {
5504 int retval = 0;
5505 int len;
5506
5507 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5508 sk, optname);
5509
5510 /* I can hardly begin to describe how wrong this is. This is
5511 * so broken as to be worse than useless. The API draft
5512 * REALLY is NOT helpful here... I am not convinced that the
5513 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5514 * are at all well-founded.
5515 */
5516 if (level != SOL_SCTP) {
5517 struct sctp_af *af = sctp_sk(sk)->pf->af;
5518
5519 retval = af->getsockopt(sk, level, optname, optval, optlen);
5520 return retval;
5521 }
5522
5523 if (get_user(len, optlen))
5524 return -EFAULT;
5525
5526 sctp_lock_sock(sk);
5527
5528 switch (optname) {
5529 case SCTP_STATUS:
5530 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5531 break;
5532 case SCTP_DISABLE_FRAGMENTS:
5533 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5534 optlen);
5535 break;
5536 case SCTP_EVENTS:
5537 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5538 break;
5539 case SCTP_AUTOCLOSE:
5540 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5541 break;
5542 case SCTP_SOCKOPT_PEELOFF:
5543 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5544 break;
5545 case SCTP_PEER_ADDR_PARAMS:
5546 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5547 optlen);
5548 break;
5549 case SCTP_DELAYED_SACK:
5550 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5551 optlen);
5552 break;
5553 case SCTP_INITMSG:
5554 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5555 break;
5556 case SCTP_GET_PEER_ADDRS:
5557 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5558 optlen);
5559 break;
5560 case SCTP_GET_LOCAL_ADDRS:
5561 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5562 optlen);
5563 break;
5564 case SCTP_SOCKOPT_CONNECTX3:
5565 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5566 break;
5567 case SCTP_DEFAULT_SEND_PARAM:
5568 retval = sctp_getsockopt_default_send_param(sk, len,
5569 optval, optlen);
5570 break;
5571 case SCTP_PRIMARY_ADDR:
5572 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5573 break;
5574 case SCTP_NODELAY:
5575 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5576 break;
5577 case SCTP_RTOINFO:
5578 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5579 break;
5580 case SCTP_ASSOCINFO:
5581 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5582 break;
5583 case SCTP_I_WANT_MAPPED_V4_ADDR:
5584 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5585 break;
5586 case SCTP_MAXSEG:
5587 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5588 break;
5589 case SCTP_GET_PEER_ADDR_INFO:
5590 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5591 optlen);
5592 break;
5593 case SCTP_ADAPTATION_LAYER:
5594 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5595 optlen);
5596 break;
5597 case SCTP_CONTEXT:
5598 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5599 break;
5600 case SCTP_FRAGMENT_INTERLEAVE:
5601 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5602 optlen);
5603 break;
5604 case SCTP_PARTIAL_DELIVERY_POINT:
5605 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5606 optlen);
5607 break;
5608 case SCTP_MAX_BURST:
5609 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5610 break;
5611 case SCTP_AUTH_KEY:
5612 case SCTP_AUTH_CHUNK:
5613 case SCTP_AUTH_DELETE_KEY:
5614 retval = -EOPNOTSUPP;
5615 break;
5616 case SCTP_HMAC_IDENT:
5617 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5618 break;
5619 case SCTP_AUTH_ACTIVE_KEY:
5620 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5621 break;
5622 case SCTP_PEER_AUTH_CHUNKS:
5623 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5624 optlen);
5625 break;
5626 case SCTP_LOCAL_AUTH_CHUNKS:
5627 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5628 optlen);
5629 break;
5630 case SCTP_GET_ASSOC_NUMBER:
5631 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5632 break;
5633 case SCTP_GET_ASSOC_ID_LIST:
5634 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5635 break;
5636 case SCTP_AUTO_ASCONF:
5637 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5638 break;
5639 default:
5640 retval = -ENOPROTOOPT;
5641 break;
5642 }
5643
5644 sctp_release_sock(sk);
5645 return retval;
5646 }
5647
5648 static void sctp_hash(struct sock *sk)
5649 {
5650 /* STUB */
5651 }
5652
5653 static void sctp_unhash(struct sock *sk)
5654 {
5655 /* STUB */
5656 }
5657
5658 /* Check if port is acceptable. Possibly find first available port.
5659 *
5660 * The port hash table (contained in the 'global' SCTP protocol storage
5661 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5662 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5663 * list (the list number is the port number hashed out, so as you
5664 * would expect from a hash function, all the ports in a given list have
5665 * such a number that hashes out to the same list number; you were
5666 * expecting that, right?); so each list has a set of ports, with a
5667 * link to the socket (struct sock) that uses it, the port number and
5668 * a fastreuse flag (FIXME: NPI ipg).
5669 */
5670 static struct sctp_bind_bucket *sctp_bucket_create(
5671 struct sctp_bind_hashbucket *head, unsigned short snum);
5672
5673 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5674 {
5675 struct sctp_bind_hashbucket *head; /* hash list */
5676 struct sctp_bind_bucket *pp; /* hash list port iterator */
5677 struct hlist_node *node;
5678 unsigned short snum;
5679 int ret;
5680
5681 snum = ntohs(addr->v4.sin_port);
5682
5683 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5684 sctp_local_bh_disable();
5685
5686 if (snum == 0) {
5687 /* Search for an available port. */
5688 int low, high, remaining, index;
5689 unsigned int rover;
5690
5691 inet_get_local_port_range(&low, &high);
5692 remaining = (high - low) + 1;
5693 rover = net_random() % remaining + low;
5694
5695 do {
5696 rover++;
5697 if ((rover < low) || (rover > high))
5698 rover = low;
5699 if (inet_is_reserved_local_port(rover))
5700 continue;
5701 index = sctp_phashfn(rover);
5702 head = &sctp_port_hashtable[index];
5703 sctp_spin_lock(&head->lock);
5704 sctp_for_each_hentry(pp, node, &head->chain)
5705 if (pp->port == rover)
5706 goto next;
5707 break;
5708 next:
5709 sctp_spin_unlock(&head->lock);
5710 } while (--remaining > 0);
5711
5712 /* Exhausted local port range during search? */
5713 ret = 1;
5714 if (remaining <= 0)
5715 goto fail;
5716
5717 /* OK, here is the one we will use. HEAD (the port
5718 * hash table list entry) is non-NULL and we hold it's
5719 * mutex.
5720 */
5721 snum = rover;
5722 } else {
5723 /* We are given an specific port number; we verify
5724 * that it is not being used. If it is used, we will
5725 * exahust the search in the hash list corresponding
5726 * to the port number (snum) - we detect that with the
5727 * port iterator, pp being NULL.
5728 */
5729 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5730 sctp_spin_lock(&head->lock);
5731 sctp_for_each_hentry(pp, node, &head->chain) {
5732 if (pp->port == snum)
5733 goto pp_found;
5734 }
5735 }
5736 pp = NULL;
5737 goto pp_not_found;
5738 pp_found:
5739 if (!hlist_empty(&pp->owner)) {
5740 /* We had a port hash table hit - there is an
5741 * available port (pp != NULL) and it is being
5742 * used by other socket (pp->owner not empty); that other
5743 * socket is going to be sk2.
5744 */
5745 int reuse = sk->sk_reuse;
5746 struct sock *sk2;
5747
5748 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5749 if (pp->fastreuse && sk->sk_reuse &&
5750 sk->sk_state != SCTP_SS_LISTENING)
5751 goto success;
5752
5753 /* Run through the list of sockets bound to the port
5754 * (pp->port) [via the pointers bind_next and
5755 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5756 * we get the endpoint they describe and run through
5757 * the endpoint's list of IP (v4 or v6) addresses,
5758 * comparing each of the addresses with the address of
5759 * the socket sk. If we find a match, then that means
5760 * that this port/socket (sk) combination are already
5761 * in an endpoint.
5762 */
5763 sk_for_each_bound(sk2, node, &pp->owner) {
5764 struct sctp_endpoint *ep2;
5765 ep2 = sctp_sk(sk2)->ep;
5766
5767 if (sk == sk2 ||
5768 (reuse && sk2->sk_reuse &&
5769 sk2->sk_state != SCTP_SS_LISTENING))
5770 continue;
5771
5772 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5773 sctp_sk(sk2), sctp_sk(sk))) {
5774 ret = (long)sk2;
5775 goto fail_unlock;
5776 }
5777 }
5778 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5779 }
5780 pp_not_found:
5781 /* If there was a hash table miss, create a new port. */
5782 ret = 1;
5783 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5784 goto fail_unlock;
5785
5786 /* In either case (hit or miss), make sure fastreuse is 1 only
5787 * if sk->sk_reuse is too (that is, if the caller requested
5788 * SO_REUSEADDR on this socket -sk-).
5789 */
5790 if (hlist_empty(&pp->owner)) {
5791 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5792 pp->fastreuse = 1;
5793 else
5794 pp->fastreuse = 0;
5795 } else if (pp->fastreuse &&
5796 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5797 pp->fastreuse = 0;
5798
5799 /* We are set, so fill up all the data in the hash table
5800 * entry, tie the socket list information with the rest of the
5801 * sockets FIXME: Blurry, NPI (ipg).
5802 */
5803 success:
5804 if (!sctp_sk(sk)->bind_hash) {
5805 inet_sk(sk)->inet_num = snum;
5806 sk_add_bind_node(sk, &pp->owner);
5807 sctp_sk(sk)->bind_hash = pp;
5808 }
5809 ret = 0;
5810
5811 fail_unlock:
5812 sctp_spin_unlock(&head->lock);
5813
5814 fail:
5815 sctp_local_bh_enable();
5816 return ret;
5817 }
5818
5819 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5820 * port is requested.
5821 */
5822 static int sctp_get_port(struct sock *sk, unsigned short snum)
5823 {
5824 long ret;
5825 union sctp_addr addr;
5826 struct sctp_af *af = sctp_sk(sk)->pf->af;
5827
5828 /* Set up a dummy address struct from the sk. */
5829 af->from_sk(&addr, sk);
5830 addr.v4.sin_port = htons(snum);
5831
5832 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5833 ret = sctp_get_port_local(sk, &addr);
5834
5835 return ret ? 1 : 0;
5836 }
5837
5838 /*
5839 * Move a socket to LISTENING state.
5840 */
5841 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5842 {
5843 struct sctp_sock *sp = sctp_sk(sk);
5844 struct sctp_endpoint *ep = sp->ep;
5845 struct crypto_hash *tfm = NULL;
5846
5847 /* Allocate HMAC for generating cookie. */
5848 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5849 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5850 if (IS_ERR(tfm)) {
5851 net_info_ratelimited("failed to load transform for %s: %ld\n",
5852 sctp_hmac_alg, PTR_ERR(tfm));
5853 return -ENOSYS;
5854 }
5855 sctp_sk(sk)->hmac = tfm;
5856 }
5857
5858 /*
5859 * If a bind() or sctp_bindx() is not called prior to a listen()
5860 * call that allows new associations to be accepted, the system
5861 * picks an ephemeral port and will choose an address set equivalent
5862 * to binding with a wildcard address.
5863 *
5864 * This is not currently spelled out in the SCTP sockets
5865 * extensions draft, but follows the practice as seen in TCP
5866 * sockets.
5867 *
5868 */
5869 sk->sk_state = SCTP_SS_LISTENING;
5870 if (!ep->base.bind_addr.port) {
5871 if (sctp_autobind(sk))
5872 return -EAGAIN;
5873 } else {
5874 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5875 sk->sk_state = SCTP_SS_CLOSED;
5876 return -EADDRINUSE;
5877 }
5878 }
5879
5880 sk->sk_max_ack_backlog = backlog;
5881 sctp_hash_endpoint(ep);
5882 return 0;
5883 }
5884
5885 /*
5886 * 4.1.3 / 5.1.3 listen()
5887 *
5888 * By default, new associations are not accepted for UDP style sockets.
5889 * An application uses listen() to mark a socket as being able to
5890 * accept new associations.
5891 *
5892 * On TCP style sockets, applications use listen() to ready the SCTP
5893 * endpoint for accepting inbound associations.
5894 *
5895 * On both types of endpoints a backlog of '0' disables listening.
5896 *
5897 * Move a socket to LISTENING state.
5898 */
5899 int sctp_inet_listen(struct socket *sock, int backlog)
5900 {
5901 struct sock *sk = sock->sk;
5902 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5903 int err = -EINVAL;
5904
5905 if (unlikely(backlog < 0))
5906 return err;
5907
5908 sctp_lock_sock(sk);
5909
5910 /* Peeled-off sockets are not allowed to listen(). */
5911 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5912 goto out;
5913
5914 if (sock->state != SS_UNCONNECTED)
5915 goto out;
5916
5917 /* If backlog is zero, disable listening. */
5918 if (!backlog) {
5919 if (sctp_sstate(sk, CLOSED))
5920 goto out;
5921
5922 err = 0;
5923 sctp_unhash_endpoint(ep);
5924 sk->sk_state = SCTP_SS_CLOSED;
5925 if (sk->sk_reuse)
5926 sctp_sk(sk)->bind_hash->fastreuse = 1;
5927 goto out;
5928 }
5929
5930 /* If we are already listening, just update the backlog */
5931 if (sctp_sstate(sk, LISTENING))
5932 sk->sk_max_ack_backlog = backlog;
5933 else {
5934 err = sctp_listen_start(sk, backlog);
5935 if (err)
5936 goto out;
5937 }
5938
5939 err = 0;
5940 out:
5941 sctp_release_sock(sk);
5942 return err;
5943 }
5944
5945 /*
5946 * This function is done by modeling the current datagram_poll() and the
5947 * tcp_poll(). Note that, based on these implementations, we don't
5948 * lock the socket in this function, even though it seems that,
5949 * ideally, locking or some other mechanisms can be used to ensure
5950 * the integrity of the counters (sndbuf and wmem_alloc) used
5951 * in this place. We assume that we don't need locks either until proven
5952 * otherwise.
5953 *
5954 * Another thing to note is that we include the Async I/O support
5955 * here, again, by modeling the current TCP/UDP code. We don't have
5956 * a good way to test with it yet.
5957 */
5958 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5959 {
5960 struct sock *sk = sock->sk;
5961 struct sctp_sock *sp = sctp_sk(sk);
5962 unsigned int mask;
5963
5964 poll_wait(file, sk_sleep(sk), wait);
5965
5966 /* A TCP-style listening socket becomes readable when the accept queue
5967 * is not empty.
5968 */
5969 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5970 return (!list_empty(&sp->ep->asocs)) ?
5971 (POLLIN | POLLRDNORM) : 0;
5972
5973 mask = 0;
5974
5975 /* Is there any exceptional events? */
5976 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5977 mask |= POLLERR;
5978 if (sk->sk_shutdown & RCV_SHUTDOWN)
5979 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5980 if (sk->sk_shutdown == SHUTDOWN_MASK)
5981 mask |= POLLHUP;
5982
5983 /* Is it readable? Reconsider this code with TCP-style support. */
5984 if (!skb_queue_empty(&sk->sk_receive_queue))
5985 mask |= POLLIN | POLLRDNORM;
5986
5987 /* The association is either gone or not ready. */
5988 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5989 return mask;
5990
5991 /* Is it writable? */
5992 if (sctp_writeable(sk)) {
5993 mask |= POLLOUT | POLLWRNORM;
5994 } else {
5995 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5996 /*
5997 * Since the socket is not locked, the buffer
5998 * might be made available after the writeable check and
5999 * before the bit is set. This could cause a lost I/O
6000 * signal. tcp_poll() has a race breaker for this race
6001 * condition. Based on their implementation, we put
6002 * in the following code to cover it as well.
6003 */
6004 if (sctp_writeable(sk))
6005 mask |= POLLOUT | POLLWRNORM;
6006 }
6007 return mask;
6008 }
6009
6010 /********************************************************************
6011 * 2nd Level Abstractions
6012 ********************************************************************/
6013
6014 static struct sctp_bind_bucket *sctp_bucket_create(
6015 struct sctp_bind_hashbucket *head, unsigned short snum)
6016 {
6017 struct sctp_bind_bucket *pp;
6018
6019 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6020 if (pp) {
6021 SCTP_DBG_OBJCNT_INC(bind_bucket);
6022 pp->port = snum;
6023 pp->fastreuse = 0;
6024 INIT_HLIST_HEAD(&pp->owner);
6025 hlist_add_head(&pp->node, &head->chain);
6026 }
6027 return pp;
6028 }
6029
6030 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6031 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6032 {
6033 if (pp && hlist_empty(&pp->owner)) {
6034 __hlist_del(&pp->node);
6035 kmem_cache_free(sctp_bucket_cachep, pp);
6036 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6037 }
6038 }
6039
6040 /* Release this socket's reference to a local port. */
6041 static inline void __sctp_put_port(struct sock *sk)
6042 {
6043 struct sctp_bind_hashbucket *head =
6044 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
6045 struct sctp_bind_bucket *pp;
6046
6047 sctp_spin_lock(&head->lock);
6048 pp = sctp_sk(sk)->bind_hash;
6049 __sk_del_bind_node(sk);
6050 sctp_sk(sk)->bind_hash = NULL;
6051 inet_sk(sk)->inet_num = 0;
6052 sctp_bucket_destroy(pp);
6053 sctp_spin_unlock(&head->lock);
6054 }
6055
6056 void sctp_put_port(struct sock *sk)
6057 {
6058 sctp_local_bh_disable();
6059 __sctp_put_port(sk);
6060 sctp_local_bh_enable();
6061 }
6062
6063 /*
6064 * The system picks an ephemeral port and choose an address set equivalent
6065 * to binding with a wildcard address.
6066 * One of those addresses will be the primary address for the association.
6067 * This automatically enables the multihoming capability of SCTP.
6068 */
6069 static int sctp_autobind(struct sock *sk)
6070 {
6071 union sctp_addr autoaddr;
6072 struct sctp_af *af;
6073 __be16 port;
6074
6075 /* Initialize a local sockaddr structure to INADDR_ANY. */
6076 af = sctp_sk(sk)->pf->af;
6077
6078 port = htons(inet_sk(sk)->inet_num);
6079 af->inaddr_any(&autoaddr, port);
6080
6081 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6082 }
6083
6084 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6085 *
6086 * From RFC 2292
6087 * 4.2 The cmsghdr Structure *
6088 *
6089 * When ancillary data is sent or received, any number of ancillary data
6090 * objects can be specified by the msg_control and msg_controllen members of
6091 * the msghdr structure, because each object is preceded by
6092 * a cmsghdr structure defining the object's length (the cmsg_len member).
6093 * Historically Berkeley-derived implementations have passed only one object
6094 * at a time, but this API allows multiple objects to be
6095 * passed in a single call to sendmsg() or recvmsg(). The following example
6096 * shows two ancillary data objects in a control buffer.
6097 *
6098 * |<--------------------------- msg_controllen -------------------------->|
6099 * | |
6100 *
6101 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6102 *
6103 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6104 * | | |
6105 *
6106 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6107 *
6108 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6109 * | | | | |
6110 *
6111 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6112 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6113 *
6114 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6115 *
6116 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6117 * ^
6118 * |
6119 *
6120 * msg_control
6121 * points here
6122 */
6123 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6124 sctp_cmsgs_t *cmsgs)
6125 {
6126 struct cmsghdr *cmsg;
6127 struct msghdr *my_msg = (struct msghdr *)msg;
6128
6129 for (cmsg = CMSG_FIRSTHDR(msg);
6130 cmsg != NULL;
6131 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6132 if (!CMSG_OK(my_msg, cmsg))
6133 return -EINVAL;
6134
6135 /* Should we parse this header or ignore? */
6136 if (cmsg->cmsg_level != IPPROTO_SCTP)
6137 continue;
6138
6139 /* Strictly check lengths following example in SCM code. */
6140 switch (cmsg->cmsg_type) {
6141 case SCTP_INIT:
6142 /* SCTP Socket API Extension
6143 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6144 *
6145 * This cmsghdr structure provides information for
6146 * initializing new SCTP associations with sendmsg().
6147 * The SCTP_INITMSG socket option uses this same data
6148 * structure. This structure is not used for
6149 * recvmsg().
6150 *
6151 * cmsg_level cmsg_type cmsg_data[]
6152 * ------------ ------------ ----------------------
6153 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6154 */
6155 if (cmsg->cmsg_len !=
6156 CMSG_LEN(sizeof(struct sctp_initmsg)))
6157 return -EINVAL;
6158 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6159 break;
6160
6161 case SCTP_SNDRCV:
6162 /* SCTP Socket API Extension
6163 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6164 *
6165 * This cmsghdr structure specifies SCTP options for
6166 * sendmsg() and describes SCTP header information
6167 * about a received message through recvmsg().
6168 *
6169 * cmsg_level cmsg_type cmsg_data[]
6170 * ------------ ------------ ----------------------
6171 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6172 */
6173 if (cmsg->cmsg_len !=
6174 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6175 return -EINVAL;
6176
6177 cmsgs->info =
6178 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6179
6180 /* Minimally, validate the sinfo_flags. */
6181 if (cmsgs->info->sinfo_flags &
6182 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6183 SCTP_ABORT | SCTP_EOF))
6184 return -EINVAL;
6185 break;
6186
6187 default:
6188 return -EINVAL;
6189 }
6190 }
6191 return 0;
6192 }
6193
6194 /*
6195 * Wait for a packet..
6196 * Note: This function is the same function as in core/datagram.c
6197 * with a few modifications to make lksctp work.
6198 */
6199 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6200 {
6201 int error;
6202 DEFINE_WAIT(wait);
6203
6204 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6205
6206 /* Socket errors? */
6207 error = sock_error(sk);
6208 if (error)
6209 goto out;
6210
6211 if (!skb_queue_empty(&sk->sk_receive_queue))
6212 goto ready;
6213
6214 /* Socket shut down? */
6215 if (sk->sk_shutdown & RCV_SHUTDOWN)
6216 goto out;
6217
6218 /* Sequenced packets can come disconnected. If so we report the
6219 * problem.
6220 */
6221 error = -ENOTCONN;
6222
6223 /* Is there a good reason to think that we may receive some data? */
6224 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6225 goto out;
6226
6227 /* Handle signals. */
6228 if (signal_pending(current))
6229 goto interrupted;
6230
6231 /* Let another process have a go. Since we are going to sleep
6232 * anyway. Note: This may cause odd behaviors if the message
6233 * does not fit in the user's buffer, but this seems to be the
6234 * only way to honor MSG_DONTWAIT realistically.
6235 */
6236 sctp_release_sock(sk);
6237 *timeo_p = schedule_timeout(*timeo_p);
6238 sctp_lock_sock(sk);
6239
6240 ready:
6241 finish_wait(sk_sleep(sk), &wait);
6242 return 0;
6243
6244 interrupted:
6245 error = sock_intr_errno(*timeo_p);
6246
6247 out:
6248 finish_wait(sk_sleep(sk), &wait);
6249 *err = error;
6250 return error;
6251 }
6252
6253 /* Receive a datagram.
6254 * Note: This is pretty much the same routine as in core/datagram.c
6255 * with a few changes to make lksctp work.
6256 */
6257 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6258 int noblock, int *err)
6259 {
6260 int error;
6261 struct sk_buff *skb;
6262 long timeo;
6263
6264 timeo = sock_rcvtimeo(sk, noblock);
6265
6266 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6267 timeo, MAX_SCHEDULE_TIMEOUT);
6268
6269 do {
6270 /* Again only user level code calls this function,
6271 * so nothing interrupt level
6272 * will suddenly eat the receive_queue.
6273 *
6274 * Look at current nfs client by the way...
6275 * However, this function was correct in any case. 8)
6276 */
6277 if (flags & MSG_PEEK) {
6278 spin_lock_bh(&sk->sk_receive_queue.lock);
6279 skb = skb_peek(&sk->sk_receive_queue);
6280 if (skb)
6281 atomic_inc(&skb->users);
6282 spin_unlock_bh(&sk->sk_receive_queue.lock);
6283 } else {
6284 skb = skb_dequeue(&sk->sk_receive_queue);
6285 }
6286
6287 if (skb)
6288 return skb;
6289
6290 /* Caller is allowed not to check sk->sk_err before calling. */
6291 error = sock_error(sk);
6292 if (error)
6293 goto no_packet;
6294
6295 if (sk->sk_shutdown & RCV_SHUTDOWN)
6296 break;
6297
6298 /* User doesn't want to wait. */
6299 error = -EAGAIN;
6300 if (!timeo)
6301 goto no_packet;
6302 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6303
6304 return NULL;
6305
6306 no_packet:
6307 *err = error;
6308 return NULL;
6309 }
6310
6311 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6312 static void __sctp_write_space(struct sctp_association *asoc)
6313 {
6314 struct sock *sk = asoc->base.sk;
6315 struct socket *sock = sk->sk_socket;
6316
6317 if ((sctp_wspace(asoc) > 0) && sock) {
6318 if (waitqueue_active(&asoc->wait))
6319 wake_up_interruptible(&asoc->wait);
6320
6321 if (sctp_writeable(sk)) {
6322 wait_queue_head_t *wq = sk_sleep(sk);
6323
6324 if (wq && waitqueue_active(wq))
6325 wake_up_interruptible(wq);
6326
6327 /* Note that we try to include the Async I/O support
6328 * here by modeling from the current TCP/UDP code.
6329 * We have not tested with it yet.
6330 */
6331 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6332 sock_wake_async(sock,
6333 SOCK_WAKE_SPACE, POLL_OUT);
6334 }
6335 }
6336 }
6337
6338 /* Do accounting for the sndbuf space.
6339 * Decrement the used sndbuf space of the corresponding association by the
6340 * data size which was just transmitted(freed).
6341 */
6342 static void sctp_wfree(struct sk_buff *skb)
6343 {
6344 struct sctp_association *asoc;
6345 struct sctp_chunk *chunk;
6346 struct sock *sk;
6347
6348 /* Get the saved chunk pointer. */
6349 chunk = *((struct sctp_chunk **)(skb->cb));
6350 asoc = chunk->asoc;
6351 sk = asoc->base.sk;
6352 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6353 sizeof(struct sk_buff) +
6354 sizeof(struct sctp_chunk);
6355
6356 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6357
6358 /*
6359 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6360 */
6361 sk->sk_wmem_queued -= skb->truesize;
6362 sk_mem_uncharge(sk, skb->truesize);
6363
6364 sock_wfree(skb);
6365 __sctp_write_space(asoc);
6366
6367 sctp_association_put(asoc);
6368 }
6369
6370 /* Do accounting for the receive space on the socket.
6371 * Accounting for the association is done in ulpevent.c
6372 * We set this as a destructor for the cloned data skbs so that
6373 * accounting is done at the correct time.
6374 */
6375 void sctp_sock_rfree(struct sk_buff *skb)
6376 {
6377 struct sock *sk = skb->sk;
6378 struct sctp_ulpevent *event = sctp_skb2event(skb);
6379
6380 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6381
6382 /*
6383 * Mimic the behavior of sock_rfree
6384 */
6385 sk_mem_uncharge(sk, event->rmem_len);
6386 }
6387
6388
6389 /* Helper function to wait for space in the sndbuf. */
6390 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6391 size_t msg_len)
6392 {
6393 struct sock *sk = asoc->base.sk;
6394 int err = 0;
6395 long current_timeo = *timeo_p;
6396 DEFINE_WAIT(wait);
6397
6398 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6399 asoc, (long)(*timeo_p), msg_len);
6400
6401 /* Increment the association's refcnt. */
6402 sctp_association_hold(asoc);
6403
6404 /* Wait on the association specific sndbuf space. */
6405 for (;;) {
6406 prepare_to_wait_exclusive(&asoc->wait, &wait,
6407 TASK_INTERRUPTIBLE);
6408 if (!*timeo_p)
6409 goto do_nonblock;
6410 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6411 asoc->base.dead)
6412 goto do_error;
6413 if (signal_pending(current))
6414 goto do_interrupted;
6415 if (msg_len <= sctp_wspace(asoc))
6416 break;
6417
6418 /* Let another process have a go. Since we are going
6419 * to sleep anyway.
6420 */
6421 sctp_release_sock(sk);
6422 current_timeo = schedule_timeout(current_timeo);
6423 BUG_ON(sk != asoc->base.sk);
6424 sctp_lock_sock(sk);
6425
6426 *timeo_p = current_timeo;
6427 }
6428
6429 out:
6430 finish_wait(&asoc->wait, &wait);
6431
6432 /* Release the association's refcnt. */
6433 sctp_association_put(asoc);
6434
6435 return err;
6436
6437 do_error:
6438 err = -EPIPE;
6439 goto out;
6440
6441 do_interrupted:
6442 err = sock_intr_errno(*timeo_p);
6443 goto out;
6444
6445 do_nonblock:
6446 err = -EAGAIN;
6447 goto out;
6448 }
6449
6450 void sctp_data_ready(struct sock *sk, int len)
6451 {
6452 struct socket_wq *wq;
6453
6454 rcu_read_lock();
6455 wq = rcu_dereference(sk->sk_wq);
6456 if (wq_has_sleeper(wq))
6457 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6458 POLLRDNORM | POLLRDBAND);
6459 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6460 rcu_read_unlock();
6461 }
6462
6463 /* If socket sndbuf has changed, wake up all per association waiters. */
6464 void sctp_write_space(struct sock *sk)
6465 {
6466 struct sctp_association *asoc;
6467
6468 /* Wake up the tasks in each wait queue. */
6469 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6470 __sctp_write_space(asoc);
6471 }
6472 }
6473
6474 /* Is there any sndbuf space available on the socket?
6475 *
6476 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6477 * associations on the same socket. For a UDP-style socket with
6478 * multiple associations, it is possible for it to be "unwriteable"
6479 * prematurely. I assume that this is acceptable because
6480 * a premature "unwriteable" is better than an accidental "writeable" which
6481 * would cause an unwanted block under certain circumstances. For the 1-1
6482 * UDP-style sockets or TCP-style sockets, this code should work.
6483 * - Daisy
6484 */
6485 static int sctp_writeable(struct sock *sk)
6486 {
6487 int amt = 0;
6488
6489 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6490 if (amt < 0)
6491 amt = 0;
6492 return amt;
6493 }
6494
6495 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6496 * returns immediately with EINPROGRESS.
6497 */
6498 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6499 {
6500 struct sock *sk = asoc->base.sk;
6501 int err = 0;
6502 long current_timeo = *timeo_p;
6503 DEFINE_WAIT(wait);
6504
6505 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6506 (long)(*timeo_p));
6507
6508 /* Increment the association's refcnt. */
6509 sctp_association_hold(asoc);
6510
6511 for (;;) {
6512 prepare_to_wait_exclusive(&asoc->wait, &wait,
6513 TASK_INTERRUPTIBLE);
6514 if (!*timeo_p)
6515 goto do_nonblock;
6516 if (sk->sk_shutdown & RCV_SHUTDOWN)
6517 break;
6518 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6519 asoc->base.dead)
6520 goto do_error;
6521 if (signal_pending(current))
6522 goto do_interrupted;
6523
6524 if (sctp_state(asoc, ESTABLISHED))
6525 break;
6526
6527 /* Let another process have a go. Since we are going
6528 * to sleep anyway.
6529 */
6530 sctp_release_sock(sk);
6531 current_timeo = schedule_timeout(current_timeo);
6532 sctp_lock_sock(sk);
6533
6534 *timeo_p = current_timeo;
6535 }
6536
6537 out:
6538 finish_wait(&asoc->wait, &wait);
6539
6540 /* Release the association's refcnt. */
6541 sctp_association_put(asoc);
6542
6543 return err;
6544
6545 do_error:
6546 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6547 err = -ETIMEDOUT;
6548 else
6549 err = -ECONNREFUSED;
6550 goto out;
6551
6552 do_interrupted:
6553 err = sock_intr_errno(*timeo_p);
6554 goto out;
6555
6556 do_nonblock:
6557 err = -EINPROGRESS;
6558 goto out;
6559 }
6560
6561 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6562 {
6563 struct sctp_endpoint *ep;
6564 int err = 0;
6565 DEFINE_WAIT(wait);
6566
6567 ep = sctp_sk(sk)->ep;
6568
6569
6570 for (;;) {
6571 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6572 TASK_INTERRUPTIBLE);
6573
6574 if (list_empty(&ep->asocs)) {
6575 sctp_release_sock(sk);
6576 timeo = schedule_timeout(timeo);
6577 sctp_lock_sock(sk);
6578 }
6579
6580 err = -EINVAL;
6581 if (!sctp_sstate(sk, LISTENING))
6582 break;
6583
6584 err = 0;
6585 if (!list_empty(&ep->asocs))
6586 break;
6587
6588 err = sock_intr_errno(timeo);
6589 if (signal_pending(current))
6590 break;
6591
6592 err = -EAGAIN;
6593 if (!timeo)
6594 break;
6595 }
6596
6597 finish_wait(sk_sleep(sk), &wait);
6598
6599 return err;
6600 }
6601
6602 static void sctp_wait_for_close(struct sock *sk, long timeout)
6603 {
6604 DEFINE_WAIT(wait);
6605
6606 do {
6607 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6608 if (list_empty(&sctp_sk(sk)->ep->asocs))
6609 break;
6610 sctp_release_sock(sk);
6611 timeout = schedule_timeout(timeout);
6612 sctp_lock_sock(sk);
6613 } while (!signal_pending(current) && timeout);
6614
6615 finish_wait(sk_sleep(sk), &wait);
6616 }
6617
6618 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6619 {
6620 struct sk_buff *frag;
6621
6622 if (!skb->data_len)
6623 goto done;
6624
6625 /* Don't forget the fragments. */
6626 skb_walk_frags(skb, frag)
6627 sctp_skb_set_owner_r_frag(frag, sk);
6628
6629 done:
6630 sctp_skb_set_owner_r(skb, sk);
6631 }
6632
6633 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6634 struct sctp_association *asoc)
6635 {
6636 struct inet_sock *inet = inet_sk(sk);
6637 struct inet_sock *newinet;
6638
6639 newsk->sk_type = sk->sk_type;
6640 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6641 newsk->sk_flags = sk->sk_flags;
6642 newsk->sk_no_check = sk->sk_no_check;
6643 newsk->sk_reuse = sk->sk_reuse;
6644
6645 newsk->sk_shutdown = sk->sk_shutdown;
6646 newsk->sk_destruct = inet_sock_destruct;
6647 newsk->sk_family = sk->sk_family;
6648 newsk->sk_protocol = IPPROTO_SCTP;
6649 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6650 newsk->sk_sndbuf = sk->sk_sndbuf;
6651 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6652 newsk->sk_lingertime = sk->sk_lingertime;
6653 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6654 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6655
6656 newinet = inet_sk(newsk);
6657
6658 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6659 * getsockname() and getpeername()
6660 */
6661 newinet->inet_sport = inet->inet_sport;
6662 newinet->inet_saddr = inet->inet_saddr;
6663 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6664 newinet->inet_dport = htons(asoc->peer.port);
6665 newinet->pmtudisc = inet->pmtudisc;
6666 newinet->inet_id = asoc->next_tsn ^ jiffies;
6667
6668 newinet->uc_ttl = inet->uc_ttl;
6669 newinet->mc_loop = 1;
6670 newinet->mc_ttl = 1;
6671 newinet->mc_index = 0;
6672 newinet->mc_list = NULL;
6673 }
6674
6675 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6676 * and its messages to the newsk.
6677 */
6678 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6679 struct sctp_association *assoc,
6680 sctp_socket_type_t type)
6681 {
6682 struct sctp_sock *oldsp = sctp_sk(oldsk);
6683 struct sctp_sock *newsp = sctp_sk(newsk);
6684 struct sctp_bind_bucket *pp; /* hash list port iterator */
6685 struct sctp_endpoint *newep = newsp->ep;
6686 struct sk_buff *skb, *tmp;
6687 struct sctp_ulpevent *event;
6688 struct sctp_bind_hashbucket *head;
6689 struct list_head tmplist;
6690
6691 /* Migrate socket buffer sizes and all the socket level options to the
6692 * new socket.
6693 */
6694 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6695 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6696 /* Brute force copy old sctp opt. */
6697 if (oldsp->do_auto_asconf) {
6698 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6699 inet_sk_copy_descendant(newsk, oldsk);
6700 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6701 } else
6702 inet_sk_copy_descendant(newsk, oldsk);
6703
6704 /* Restore the ep value that was overwritten with the above structure
6705 * copy.
6706 */
6707 newsp->ep = newep;
6708 newsp->hmac = NULL;
6709
6710 /* Hook this new socket in to the bind_hash list. */
6711 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6712 sctp_local_bh_disable();
6713 sctp_spin_lock(&head->lock);
6714 pp = sctp_sk(oldsk)->bind_hash;
6715 sk_add_bind_node(newsk, &pp->owner);
6716 sctp_sk(newsk)->bind_hash = pp;
6717 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6718 sctp_spin_unlock(&head->lock);
6719 sctp_local_bh_enable();
6720
6721 /* Copy the bind_addr list from the original endpoint to the new
6722 * endpoint so that we can handle restarts properly
6723 */
6724 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6725 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6726
6727 /* Move any messages in the old socket's receive queue that are for the
6728 * peeled off association to the new socket's receive queue.
6729 */
6730 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6731 event = sctp_skb2event(skb);
6732 if (event->asoc == assoc) {
6733 __skb_unlink(skb, &oldsk->sk_receive_queue);
6734 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6735 sctp_skb_set_owner_r_frag(skb, newsk);
6736 }
6737 }
6738
6739 /* Clean up any messages pending delivery due to partial
6740 * delivery. Three cases:
6741 * 1) No partial deliver; no work.
6742 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6743 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6744 */
6745 skb_queue_head_init(&newsp->pd_lobby);
6746 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6747
6748 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6749 struct sk_buff_head *queue;
6750
6751 /* Decide which queue to move pd_lobby skbs to. */
6752 if (assoc->ulpq.pd_mode) {
6753 queue = &newsp->pd_lobby;
6754 } else
6755 queue = &newsk->sk_receive_queue;
6756
6757 /* Walk through the pd_lobby, looking for skbs that
6758 * need moved to the new socket.
6759 */
6760 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6761 event = sctp_skb2event(skb);
6762 if (event->asoc == assoc) {
6763 __skb_unlink(skb, &oldsp->pd_lobby);
6764 __skb_queue_tail(queue, skb);
6765 sctp_skb_set_owner_r_frag(skb, newsk);
6766 }
6767 }
6768
6769 /* Clear up any skbs waiting for the partial
6770 * delivery to finish.
6771 */
6772 if (assoc->ulpq.pd_mode)
6773 sctp_clear_pd(oldsk, NULL);
6774
6775 }
6776
6777 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6778 sctp_skb_set_owner_r_frag(skb, newsk);
6779
6780 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6781 sctp_skb_set_owner_r_frag(skb, newsk);
6782
6783 /* Set the type of socket to indicate that it is peeled off from the
6784 * original UDP-style socket or created with the accept() call on a
6785 * TCP-style socket..
6786 */
6787 newsp->type = type;
6788
6789 /* Mark the new socket "in-use" by the user so that any packets
6790 * that may arrive on the association after we've moved it are
6791 * queued to the backlog. This prevents a potential race between
6792 * backlog processing on the old socket and new-packet processing
6793 * on the new socket.
6794 *
6795 * The caller has just allocated newsk so we can guarantee that other
6796 * paths won't try to lock it and then oldsk.
6797 */
6798 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6799 sctp_assoc_migrate(assoc, newsk);
6800
6801 /* If the association on the newsk is already closed before accept()
6802 * is called, set RCV_SHUTDOWN flag.
6803 */
6804 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6805 newsk->sk_shutdown |= RCV_SHUTDOWN;
6806
6807 newsk->sk_state = SCTP_SS_ESTABLISHED;
6808 sctp_release_sock(newsk);
6809 }
6810
6811
6812 /* This proto struct describes the ULP interface for SCTP. */
6813 struct proto sctp_prot = {
6814 .name = "SCTP",
6815 .owner = THIS_MODULE,
6816 .close = sctp_close,
6817 .connect = sctp_connect,
6818 .disconnect = sctp_disconnect,
6819 .accept = sctp_accept,
6820 .ioctl = sctp_ioctl,
6821 .init = sctp_init_sock,
6822 .destroy = sctp_destroy_sock,
6823 .shutdown = sctp_shutdown,
6824 .setsockopt = sctp_setsockopt,
6825 .getsockopt = sctp_getsockopt,
6826 .sendmsg = sctp_sendmsg,
6827 .recvmsg = sctp_recvmsg,
6828 .bind = sctp_bind,
6829 .backlog_rcv = sctp_backlog_rcv,
6830 .hash = sctp_hash,
6831 .unhash = sctp_unhash,
6832 .get_port = sctp_get_port,
6833 .obj_size = sizeof(struct sctp_sock),
6834 .sysctl_mem = sysctl_sctp_mem,
6835 .sysctl_rmem = sysctl_sctp_rmem,
6836 .sysctl_wmem = sysctl_sctp_wmem,
6837 .memory_pressure = &sctp_memory_pressure,
6838 .enter_memory_pressure = sctp_enter_memory_pressure,
6839 .memory_allocated = &sctp_memory_allocated,
6840 .sockets_allocated = &sctp_sockets_allocated,
6841 };
6842
6843 #if IS_ENABLED(CONFIG_IPV6)
6844
6845 struct proto sctpv6_prot = {
6846 .name = "SCTPv6",
6847 .owner = THIS_MODULE,
6848 .close = sctp_close,
6849 .connect = sctp_connect,
6850 .disconnect = sctp_disconnect,
6851 .accept = sctp_accept,
6852 .ioctl = sctp_ioctl,
6853 .init = sctp_init_sock,
6854 .destroy = sctp_destroy_sock,
6855 .shutdown = sctp_shutdown,
6856 .setsockopt = sctp_setsockopt,
6857 .getsockopt = sctp_getsockopt,
6858 .sendmsg = sctp_sendmsg,
6859 .recvmsg = sctp_recvmsg,
6860 .bind = sctp_bind,
6861 .backlog_rcv = sctp_backlog_rcv,
6862 .hash = sctp_hash,
6863 .unhash = sctp_unhash,
6864 .get_port = sctp_get_port,
6865 .obj_size = sizeof(struct sctp6_sock),
6866 .sysctl_mem = sysctl_sctp_mem,
6867 .sysctl_rmem = sysctl_sctp_rmem,
6868 .sysctl_wmem = sysctl_sctp_wmem,
6869 .memory_pressure = &sctp_memory_pressure,
6870 .enter_memory_pressure = sctp_enter_memory_pressure,
6871 .memory_allocated = &sctp_memory_allocated,
6872 .sockets_allocated = &sctp_sockets_allocated,
6873 };
6874 #endif /* IS_ENABLED(CONFIG_IPV6) */