Merge branch 'ioat' into fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / outqueue.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 *
7 * This file is part of the SCTP kernel implementation
8 *
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
44 *
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
47 */
48
49 #include <linux/types.h>
50 #include <linux/list.h> /* For struct list_head */
51 #include <linux/socket.h>
52 #include <linux/ip.h>
53 #include <net/sock.h> /* For skb_set_owner_w */
54
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57
58 /* Declare internal functions here. */
59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
60 static void sctp_check_transmitted(struct sctp_outq *q,
61 struct list_head *transmitted_queue,
62 struct sctp_transport *transport,
63 struct sctp_sackhdr *sack,
64 __u32 highest_new_tsn);
65
66 static void sctp_mark_missing(struct sctp_outq *q,
67 struct list_head *transmitted_queue,
68 struct sctp_transport *transport,
69 __u32 highest_new_tsn,
70 int count_of_newacks);
71
72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
73
74 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
75
76 /* Add data to the front of the queue. */
77 static inline void sctp_outq_head_data(struct sctp_outq *q,
78 struct sctp_chunk *ch)
79 {
80 list_add(&ch->list, &q->out_chunk_list);
81 q->out_qlen += ch->skb->len;
82 return;
83 }
84
85 /* Take data from the front of the queue. */
86 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
87 {
88 struct sctp_chunk *ch = NULL;
89
90 if (!list_empty(&q->out_chunk_list)) {
91 struct list_head *entry = q->out_chunk_list.next;
92
93 ch = list_entry(entry, struct sctp_chunk, list);
94 list_del_init(entry);
95 q->out_qlen -= ch->skb->len;
96 }
97 return ch;
98 }
99 /* Add data chunk to the end of the queue. */
100 static inline void sctp_outq_tail_data(struct sctp_outq *q,
101 struct sctp_chunk *ch)
102 {
103 list_add_tail(&ch->list, &q->out_chunk_list);
104 q->out_qlen += ch->skb->len;
105 return;
106 }
107
108 /*
109 * SFR-CACC algorithm:
110 * D) If count_of_newacks is greater than or equal to 2
111 * and t was not sent to the current primary then the
112 * sender MUST NOT increment missing report count for t.
113 */
114 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
115 struct sctp_transport *transport,
116 int count_of_newacks)
117 {
118 if (count_of_newacks >=2 && transport != primary)
119 return 1;
120 return 0;
121 }
122
123 /*
124 * SFR-CACC algorithm:
125 * F) If count_of_newacks is less than 2, let d be the
126 * destination to which t was sent. If cacc_saw_newack
127 * is 0 for destination d, then the sender MUST NOT
128 * increment missing report count for t.
129 */
130 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
131 int count_of_newacks)
132 {
133 if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack)
134 return 1;
135 return 0;
136 }
137
138 /*
139 * SFR-CACC algorithm:
140 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
141 * execute steps C, D, F.
142 *
143 * C has been implemented in sctp_outq_sack
144 */
145 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
146 struct sctp_transport *transport,
147 int count_of_newacks)
148 {
149 if (!primary->cacc.cycling_changeover) {
150 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
151 return 1;
152 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
153 return 1;
154 return 0;
155 }
156 return 0;
157 }
158
159 /*
160 * SFR-CACC algorithm:
161 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
162 * than next_tsn_at_change of the current primary, then
163 * the sender MUST NOT increment missing report count
164 * for t.
165 */
166 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
167 {
168 if (primary->cacc.cycling_changeover &&
169 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
170 return 1;
171 return 0;
172 }
173
174 /*
175 * SFR-CACC algorithm:
176 * 3) If the missing report count for TSN t is to be
177 * incremented according to [RFC2960] and
178 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
179 * then the sender MUST futher execute steps 3.1 and
180 * 3.2 to determine if the missing report count for
181 * TSN t SHOULD NOT be incremented.
182 *
183 * 3.3) If 3.1 and 3.2 do not dictate that the missing
184 * report count for t should not be incremented, then
185 * the sender SOULD increment missing report count for
186 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
187 */
188 static inline int sctp_cacc_skip(struct sctp_transport *primary,
189 struct sctp_transport *transport,
190 int count_of_newacks,
191 __u32 tsn)
192 {
193 if (primary->cacc.changeover_active &&
194 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks)
195 || sctp_cacc_skip_3_2(primary, tsn)))
196 return 1;
197 return 0;
198 }
199
200 /* Initialize an existing sctp_outq. This does the boring stuff.
201 * You still need to define handlers if you really want to DO
202 * something with this structure...
203 */
204 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
205 {
206 q->asoc = asoc;
207 INIT_LIST_HEAD(&q->out_chunk_list);
208 INIT_LIST_HEAD(&q->control_chunk_list);
209 INIT_LIST_HEAD(&q->retransmit);
210 INIT_LIST_HEAD(&q->sacked);
211 INIT_LIST_HEAD(&q->abandoned);
212
213 q->fast_rtx = 0;
214 q->outstanding_bytes = 0;
215 q->empty = 1;
216 q->cork = 0;
217
218 q->malloced = 0;
219 q->out_qlen = 0;
220 }
221
222 /* Free the outqueue structure and any related pending chunks.
223 */
224 void sctp_outq_teardown(struct sctp_outq *q)
225 {
226 struct sctp_transport *transport;
227 struct list_head *lchunk, *temp;
228 struct sctp_chunk *chunk, *tmp;
229
230 /* Throw away unacknowledged chunks. */
231 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
232 transports) {
233 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
234 chunk = list_entry(lchunk, struct sctp_chunk,
235 transmitted_list);
236 /* Mark as part of a failed message. */
237 sctp_chunk_fail(chunk, q->error);
238 sctp_chunk_free(chunk);
239 }
240 }
241
242 /* Throw away chunks that have been gap ACKed. */
243 list_for_each_safe(lchunk, temp, &q->sacked) {
244 list_del_init(lchunk);
245 chunk = list_entry(lchunk, struct sctp_chunk,
246 transmitted_list);
247 sctp_chunk_fail(chunk, q->error);
248 sctp_chunk_free(chunk);
249 }
250
251 /* Throw away any chunks in the retransmit queue. */
252 list_for_each_safe(lchunk, temp, &q->retransmit) {
253 list_del_init(lchunk);
254 chunk = list_entry(lchunk, struct sctp_chunk,
255 transmitted_list);
256 sctp_chunk_fail(chunk, q->error);
257 sctp_chunk_free(chunk);
258 }
259
260 /* Throw away any chunks that are in the abandoned queue. */
261 list_for_each_safe(lchunk, temp, &q->abandoned) {
262 list_del_init(lchunk);
263 chunk = list_entry(lchunk, struct sctp_chunk,
264 transmitted_list);
265 sctp_chunk_fail(chunk, q->error);
266 sctp_chunk_free(chunk);
267 }
268
269 /* Throw away any leftover data chunks. */
270 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
271
272 /* Mark as send failure. */
273 sctp_chunk_fail(chunk, q->error);
274 sctp_chunk_free(chunk);
275 }
276
277 q->error = 0;
278
279 /* Throw away any leftover control chunks. */
280 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
281 list_del_init(&chunk->list);
282 sctp_chunk_free(chunk);
283 }
284 }
285
286 /* Free the outqueue structure and any related pending chunks. */
287 void sctp_outq_free(struct sctp_outq *q)
288 {
289 /* Throw away leftover chunks. */
290 sctp_outq_teardown(q);
291
292 /* If we were kmalloc()'d, free the memory. */
293 if (q->malloced)
294 kfree(q);
295 }
296
297 /* Put a new chunk in an sctp_outq. */
298 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
299 {
300 int error = 0;
301
302 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
303 q, chunk, chunk && chunk->chunk_hdr ?
304 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
305 : "Illegal Chunk");
306
307 /* If it is data, queue it up, otherwise, send it
308 * immediately.
309 */
310 if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
311 /* Is it OK to queue data chunks? */
312 /* From 9. Termination of Association
313 *
314 * When either endpoint performs a shutdown, the
315 * association on each peer will stop accepting new
316 * data from its user and only deliver data in queue
317 * at the time of sending or receiving the SHUTDOWN
318 * chunk.
319 */
320 switch (q->asoc->state) {
321 case SCTP_STATE_EMPTY:
322 case SCTP_STATE_CLOSED:
323 case SCTP_STATE_SHUTDOWN_PENDING:
324 case SCTP_STATE_SHUTDOWN_SENT:
325 case SCTP_STATE_SHUTDOWN_RECEIVED:
326 case SCTP_STATE_SHUTDOWN_ACK_SENT:
327 /* Cannot send after transport endpoint shutdown */
328 error = -ESHUTDOWN;
329 break;
330
331 default:
332 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
333 q, chunk, chunk && chunk->chunk_hdr ?
334 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
335 : "Illegal Chunk");
336
337 sctp_outq_tail_data(q, chunk);
338 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
339 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS);
340 else
341 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS);
342 q->empty = 0;
343 break;
344 }
345 } else {
346 list_add_tail(&chunk->list, &q->control_chunk_list);
347 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
348 }
349
350 if (error < 0)
351 return error;
352
353 if (!q->cork)
354 error = sctp_outq_flush(q, 0);
355
356 return error;
357 }
358
359 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
360 * and the abandoned list are in ascending order.
361 */
362 static void sctp_insert_list(struct list_head *head, struct list_head *new)
363 {
364 struct list_head *pos;
365 struct sctp_chunk *nchunk, *lchunk;
366 __u32 ntsn, ltsn;
367 int done = 0;
368
369 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
370 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
371
372 list_for_each(pos, head) {
373 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
374 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
375 if (TSN_lt(ntsn, ltsn)) {
376 list_add(new, pos->prev);
377 done = 1;
378 break;
379 }
380 }
381 if (!done)
382 list_add_tail(new, head);
383 }
384
385 /* Mark all the eligible packets on a transport for retransmission. */
386 void sctp_retransmit_mark(struct sctp_outq *q,
387 struct sctp_transport *transport,
388 __u8 reason)
389 {
390 struct list_head *lchunk, *ltemp;
391 struct sctp_chunk *chunk;
392
393 /* Walk through the specified transmitted queue. */
394 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
395 chunk = list_entry(lchunk, struct sctp_chunk,
396 transmitted_list);
397
398 /* If the chunk is abandoned, move it to abandoned list. */
399 if (sctp_chunk_abandoned(chunk)) {
400 list_del_init(lchunk);
401 sctp_insert_list(&q->abandoned, lchunk);
402
403 /* If this chunk has not been previousely acked,
404 * stop considering it 'outstanding'. Our peer
405 * will most likely never see it since it will
406 * not be retransmitted
407 */
408 if (!chunk->tsn_gap_acked) {
409 if (chunk->transport)
410 chunk->transport->flight_size -=
411 sctp_data_size(chunk);
412 q->outstanding_bytes -= sctp_data_size(chunk);
413 q->asoc->peer.rwnd += (sctp_data_size(chunk) +
414 sizeof(struct sk_buff));
415 }
416 continue;
417 }
418
419 /* If we are doing retransmission due to a timeout or pmtu
420 * discovery, only the chunks that are not yet acked should
421 * be added to the retransmit queue.
422 */
423 if ((reason == SCTP_RTXR_FAST_RTX &&
424 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
425 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
426 /* RFC 2960 6.2.1 Processing a Received SACK
427 *
428 * C) Any time a DATA chunk is marked for
429 * retransmission (via either T3-rtx timer expiration
430 * (Section 6.3.3) or via fast retransmit
431 * (Section 7.2.4)), add the data size of those
432 * chunks to the rwnd.
433 */
434 q->asoc->peer.rwnd += (sctp_data_size(chunk) +
435 sizeof(struct sk_buff));
436 q->outstanding_bytes -= sctp_data_size(chunk);
437 if (chunk->transport)
438 transport->flight_size -= sctp_data_size(chunk);
439
440 /* sctpimpguide-05 Section 2.8.2
441 * M5) If a T3-rtx timer expires, the
442 * 'TSN.Missing.Report' of all affected TSNs is set
443 * to 0.
444 */
445 chunk->tsn_missing_report = 0;
446
447 /* If a chunk that is being used for RTT measurement
448 * has to be retransmitted, we cannot use this chunk
449 * anymore for RTT measurements. Reset rto_pending so
450 * that a new RTT measurement is started when a new
451 * data chunk is sent.
452 */
453 if (chunk->rtt_in_progress) {
454 chunk->rtt_in_progress = 0;
455 transport->rto_pending = 0;
456 }
457
458 /* Move the chunk to the retransmit queue. The chunks
459 * on the retransmit queue are always kept in order.
460 */
461 list_del_init(lchunk);
462 sctp_insert_list(&q->retransmit, lchunk);
463 }
464 }
465
466 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
467 "cwnd: %d, ssthresh: %d, flight_size: %d, "
468 "pba: %d\n", __func__,
469 transport, reason,
470 transport->cwnd, transport->ssthresh,
471 transport->flight_size,
472 transport->partial_bytes_acked);
473
474 }
475
476 /* Mark all the eligible packets on a transport for retransmission and force
477 * one packet out.
478 */
479 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
480 sctp_retransmit_reason_t reason)
481 {
482 int error = 0;
483
484 switch(reason) {
485 case SCTP_RTXR_T3_RTX:
486 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS);
487 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
488 /* Update the retran path if the T3-rtx timer has expired for
489 * the current retran path.
490 */
491 if (transport == transport->asoc->peer.retran_path)
492 sctp_assoc_update_retran_path(transport->asoc);
493 transport->asoc->rtx_data_chunks +=
494 transport->asoc->unack_data;
495 break;
496 case SCTP_RTXR_FAST_RTX:
497 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS);
498 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
499 q->fast_rtx = 1;
500 break;
501 case SCTP_RTXR_PMTUD:
502 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS);
503 break;
504 case SCTP_RTXR_T1_RTX:
505 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS);
506 transport->asoc->init_retries++;
507 break;
508 default:
509 BUG();
510 }
511
512 sctp_retransmit_mark(q, transport, reason);
513
514 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
515 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
516 * following the procedures outlined in C1 - C5.
517 */
518 if (reason == SCTP_RTXR_T3_RTX)
519 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
520
521 /* Flush the queues only on timeout, since fast_rtx is only
522 * triggered during sack processing and the queue
523 * will be flushed at the end.
524 */
525 if (reason != SCTP_RTXR_FAST_RTX)
526 error = sctp_outq_flush(q, /* rtx_timeout */ 1);
527
528 if (error)
529 q->asoc->base.sk->sk_err = -error;
530 }
531
532 /*
533 * Transmit DATA chunks on the retransmit queue. Upon return from
534 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
535 * need to be transmitted by the caller.
536 * We assume that pkt->transport has already been set.
537 *
538 * The return value is a normal kernel error return value.
539 */
540 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
541 int rtx_timeout, int *start_timer)
542 {
543 struct list_head *lqueue;
544 struct sctp_transport *transport = pkt->transport;
545 sctp_xmit_t status;
546 struct sctp_chunk *chunk, *chunk1;
547 struct sctp_association *asoc;
548 int fast_rtx;
549 int error = 0;
550 int timer = 0;
551 int done = 0;
552
553 asoc = q->asoc;
554 lqueue = &q->retransmit;
555 fast_rtx = q->fast_rtx;
556
557 /* This loop handles time-out retransmissions, fast retransmissions,
558 * and retransmissions due to opening of whindow.
559 *
560 * RFC 2960 6.3.3 Handle T3-rtx Expiration
561 *
562 * E3) Determine how many of the earliest (i.e., lowest TSN)
563 * outstanding DATA chunks for the address for which the
564 * T3-rtx has expired will fit into a single packet, subject
565 * to the MTU constraint for the path corresponding to the
566 * destination transport address to which the retransmission
567 * is being sent (this may be different from the address for
568 * which the timer expires [see Section 6.4]). Call this value
569 * K. Bundle and retransmit those K DATA chunks in a single
570 * packet to the destination endpoint.
571 *
572 * [Just to be painfully clear, if we are retransmitting
573 * because a timeout just happened, we should send only ONE
574 * packet of retransmitted data.]
575 *
576 * For fast retransmissions we also send only ONE packet. However,
577 * if we are just flushing the queue due to open window, we'll
578 * try to send as much as possible.
579 */
580 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
581
582 /* Make sure that Gap Acked TSNs are not retransmitted. A
583 * simple approach is just to move such TSNs out of the
584 * way and into a 'transmitted' queue and skip to the
585 * next chunk.
586 */
587 if (chunk->tsn_gap_acked) {
588 list_del(&chunk->transmitted_list);
589 list_add_tail(&chunk->transmitted_list,
590 &transport->transmitted);
591 continue;
592 }
593
594 /* If we are doing fast retransmit, ignore non-fast_rtransmit
595 * chunks
596 */
597 if (fast_rtx && !chunk->fast_retransmit)
598 continue;
599
600 /* Attempt to append this chunk to the packet. */
601 status = sctp_packet_append_chunk(pkt, chunk);
602
603 switch (status) {
604 case SCTP_XMIT_PMTU_FULL:
605 /* Send this packet. */
606 error = sctp_packet_transmit(pkt);
607
608 /* If we are retransmitting, we should only
609 * send a single packet.
610 */
611 if (rtx_timeout || fast_rtx)
612 done = 1;
613
614 /* Bundle next chunk in the next round. */
615 break;
616
617 case SCTP_XMIT_RWND_FULL:
618 /* Send this packet. */
619 error = sctp_packet_transmit(pkt);
620
621 /* Stop sending DATA as there is no more room
622 * at the receiver.
623 */
624 done = 1;
625 break;
626
627 case SCTP_XMIT_NAGLE_DELAY:
628 /* Send this packet. */
629 error = sctp_packet_transmit(pkt);
630
631 /* Stop sending DATA because of nagle delay. */
632 done = 1;
633 break;
634
635 default:
636 /* The append was successful, so add this chunk to
637 * the transmitted list.
638 */
639 list_del(&chunk->transmitted_list);
640 list_add_tail(&chunk->transmitted_list,
641 &transport->transmitted);
642
643 /* Mark the chunk as ineligible for fast retransmit
644 * after it is retransmitted.
645 */
646 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
647 chunk->fast_retransmit = SCTP_DONT_FRTX;
648
649 /* Force start T3-rtx timer when fast retransmitting
650 * the earliest outstanding TSN
651 */
652 if (!timer && fast_rtx &&
653 ntohl(chunk->subh.data_hdr->tsn) ==
654 asoc->ctsn_ack_point + 1)
655 timer = 2;
656
657 q->empty = 0;
658 break;
659 }
660
661 /* Set the timer if there were no errors */
662 if (!error && !timer)
663 timer = 1;
664
665 if (done)
666 break;
667 }
668
669 /* If we are here due to a retransmit timeout or a fast
670 * retransmit and if there are any chunks left in the retransmit
671 * queue that could not fit in the PMTU sized packet, they need
672 * to be marked as ineligible for a subsequent fast retransmit.
673 */
674 if (rtx_timeout || fast_rtx) {
675 list_for_each_entry(chunk1, lqueue, transmitted_list) {
676 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
677 chunk1->fast_retransmit = SCTP_DONT_FRTX;
678 }
679 }
680
681 *start_timer = timer;
682
683 /* Clear fast retransmit hint */
684 if (fast_rtx)
685 q->fast_rtx = 0;
686
687 return error;
688 }
689
690 /* Cork the outqueue so queued chunks are really queued. */
691 int sctp_outq_uncork(struct sctp_outq *q)
692 {
693 int error = 0;
694 if (q->cork)
695 q->cork = 0;
696 error = sctp_outq_flush(q, 0);
697 return error;
698 }
699
700
701 /*
702 * Try to flush an outqueue.
703 *
704 * Description: Send everything in q which we legally can, subject to
705 * congestion limitations.
706 * * Note: This function can be called from multiple contexts so appropriate
707 * locking concerns must be made. Today we use the sock lock to protect
708 * this function.
709 */
710 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
711 {
712 struct sctp_packet *packet;
713 struct sctp_packet singleton;
714 struct sctp_association *asoc = q->asoc;
715 __u16 sport = asoc->base.bind_addr.port;
716 __u16 dport = asoc->peer.port;
717 __u32 vtag = asoc->peer.i.init_tag;
718 struct sctp_transport *transport = NULL;
719 struct sctp_transport *new_transport;
720 struct sctp_chunk *chunk, *tmp;
721 sctp_xmit_t status;
722 int error = 0;
723 int start_timer = 0;
724 int one_packet = 0;
725
726 /* These transports have chunks to send. */
727 struct list_head transport_list;
728 struct list_head *ltransport;
729
730 INIT_LIST_HEAD(&transport_list);
731 packet = NULL;
732
733 /*
734 * 6.10 Bundling
735 * ...
736 * When bundling control chunks with DATA chunks, an
737 * endpoint MUST place control chunks first in the outbound
738 * SCTP packet. The transmitter MUST transmit DATA chunks
739 * within a SCTP packet in increasing order of TSN.
740 * ...
741 */
742
743 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
744 list_del_init(&chunk->list);
745
746 /* Pick the right transport to use. */
747 new_transport = chunk->transport;
748
749 if (!new_transport) {
750 /*
751 * If we have a prior transport pointer, see if
752 * the destination address of the chunk
753 * matches the destination address of the
754 * current transport. If not a match, then
755 * try to look up the transport with a given
756 * destination address. We do this because
757 * after processing ASCONFs, we may have new
758 * transports created.
759 */
760 if (transport &&
761 sctp_cmp_addr_exact(&chunk->dest,
762 &transport->ipaddr))
763 new_transport = transport;
764 else
765 new_transport = sctp_assoc_lookup_paddr(asoc,
766 &chunk->dest);
767
768 /* if we still don't have a new transport, then
769 * use the current active path.
770 */
771 if (!new_transport)
772 new_transport = asoc->peer.active_path;
773 } else if ((new_transport->state == SCTP_INACTIVE) ||
774 (new_transport->state == SCTP_UNCONFIRMED)) {
775 /* If the chunk is Heartbeat or Heartbeat Ack,
776 * send it to chunk->transport, even if it's
777 * inactive.
778 *
779 * 3.3.6 Heartbeat Acknowledgement:
780 * ...
781 * A HEARTBEAT ACK is always sent to the source IP
782 * address of the IP datagram containing the
783 * HEARTBEAT chunk to which this ack is responding.
784 * ...
785 *
786 * ASCONF_ACKs also must be sent to the source.
787 */
788 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
789 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
790 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
791 new_transport = asoc->peer.active_path;
792 }
793
794 /* Are we switching transports?
795 * Take care of transport locks.
796 */
797 if (new_transport != transport) {
798 transport = new_transport;
799 if (list_empty(&transport->send_ready)) {
800 list_add_tail(&transport->send_ready,
801 &transport_list);
802 }
803 packet = &transport->packet;
804 sctp_packet_config(packet, vtag,
805 asoc->peer.ecn_capable);
806 }
807
808 switch (chunk->chunk_hdr->type) {
809 /*
810 * 6.10 Bundling
811 * ...
812 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
813 * COMPLETE with any other chunks. [Send them immediately.]
814 */
815 case SCTP_CID_INIT:
816 case SCTP_CID_INIT_ACK:
817 case SCTP_CID_SHUTDOWN_COMPLETE:
818 sctp_packet_init(&singleton, transport, sport, dport);
819 sctp_packet_config(&singleton, vtag, 0);
820 sctp_packet_append_chunk(&singleton, chunk);
821 error = sctp_packet_transmit(&singleton);
822 if (error < 0)
823 return error;
824 break;
825
826 case SCTP_CID_ABORT:
827 if (sctp_test_T_bit(chunk)) {
828 packet->vtag = asoc->c.my_vtag;
829 }
830 /* The following chunks are "response" chunks, i.e.
831 * they are generated in response to something we
832 * received. If we are sending these, then we can
833 * send only 1 packet containing these chunks.
834 */
835 case SCTP_CID_HEARTBEAT_ACK:
836 case SCTP_CID_SHUTDOWN_ACK:
837 case SCTP_CID_COOKIE_ACK:
838 case SCTP_CID_COOKIE_ECHO:
839 case SCTP_CID_ERROR:
840 case SCTP_CID_ECN_CWR:
841 case SCTP_CID_ASCONF_ACK:
842 one_packet = 1;
843 /* Fall throught */
844
845 case SCTP_CID_SACK:
846 case SCTP_CID_HEARTBEAT:
847 case SCTP_CID_SHUTDOWN:
848 case SCTP_CID_ECN_ECNE:
849 case SCTP_CID_ASCONF:
850 case SCTP_CID_FWD_TSN:
851 status = sctp_packet_transmit_chunk(packet, chunk,
852 one_packet);
853 if (status != SCTP_XMIT_OK) {
854 /* put the chunk back */
855 list_add(&chunk->list, &q->control_chunk_list);
856 }
857 break;
858
859 default:
860 /* We built a chunk with an illegal type! */
861 BUG();
862 }
863 }
864
865 /* Is it OK to send data chunks? */
866 switch (asoc->state) {
867 case SCTP_STATE_COOKIE_ECHOED:
868 /* Only allow bundling when this packet has a COOKIE-ECHO
869 * chunk.
870 */
871 if (!packet || !packet->has_cookie_echo)
872 break;
873
874 /* fallthru */
875 case SCTP_STATE_ESTABLISHED:
876 case SCTP_STATE_SHUTDOWN_PENDING:
877 case SCTP_STATE_SHUTDOWN_RECEIVED:
878 /*
879 * RFC 2960 6.1 Transmission of DATA Chunks
880 *
881 * C) When the time comes for the sender to transmit,
882 * before sending new DATA chunks, the sender MUST
883 * first transmit any outstanding DATA chunks which
884 * are marked for retransmission (limited by the
885 * current cwnd).
886 */
887 if (!list_empty(&q->retransmit)) {
888 if (transport == asoc->peer.retran_path)
889 goto retran;
890
891 /* Switch transports & prepare the packet. */
892
893 transport = asoc->peer.retran_path;
894
895 if (list_empty(&transport->send_ready)) {
896 list_add_tail(&transport->send_ready,
897 &transport_list);
898 }
899
900 packet = &transport->packet;
901 sctp_packet_config(packet, vtag,
902 asoc->peer.ecn_capable);
903 retran:
904 error = sctp_outq_flush_rtx(q, packet,
905 rtx_timeout, &start_timer);
906
907 if (start_timer)
908 sctp_transport_reset_timers(transport,
909 start_timer-1);
910
911 /* This can happen on COOKIE-ECHO resend. Only
912 * one chunk can get bundled with a COOKIE-ECHO.
913 */
914 if (packet->has_cookie_echo)
915 goto sctp_flush_out;
916
917 /* Don't send new data if there is still data
918 * waiting to retransmit.
919 */
920 if (!list_empty(&q->retransmit))
921 goto sctp_flush_out;
922 }
923
924 /* Finally, transmit new packets. */
925 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
926 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
927 * stream identifier.
928 */
929 if (chunk->sinfo.sinfo_stream >=
930 asoc->c.sinit_num_ostreams) {
931
932 /* Mark as failed send. */
933 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
934 sctp_chunk_free(chunk);
935 continue;
936 }
937
938 /* Has this chunk expired? */
939 if (sctp_chunk_abandoned(chunk)) {
940 sctp_chunk_fail(chunk, 0);
941 sctp_chunk_free(chunk);
942 continue;
943 }
944
945 /* If there is a specified transport, use it.
946 * Otherwise, we want to use the active path.
947 */
948 new_transport = chunk->transport;
949 if (!new_transport ||
950 ((new_transport->state == SCTP_INACTIVE) ||
951 (new_transport->state == SCTP_UNCONFIRMED)))
952 new_transport = asoc->peer.active_path;
953
954 /* Change packets if necessary. */
955 if (new_transport != transport) {
956 transport = new_transport;
957
958 /* Schedule to have this transport's
959 * packet flushed.
960 */
961 if (list_empty(&transport->send_ready)) {
962 list_add_tail(&transport->send_ready,
963 &transport_list);
964 }
965
966 packet = &transport->packet;
967 sctp_packet_config(packet, vtag,
968 asoc->peer.ecn_capable);
969 }
970
971 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
972 q, chunk,
973 chunk && chunk->chunk_hdr ?
974 sctp_cname(SCTP_ST_CHUNK(
975 chunk->chunk_hdr->type))
976 : "Illegal Chunk");
977
978 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
979 "%p skb->users %d.\n",
980 ntohl(chunk->subh.data_hdr->tsn),
981 chunk->skb ?chunk->skb->head : NULL,
982 chunk->skb ?
983 atomic_read(&chunk->skb->users) : -1);
984
985 /* Add the chunk to the packet. */
986 status = sctp_packet_transmit_chunk(packet, chunk, 0);
987
988 switch (status) {
989 case SCTP_XMIT_PMTU_FULL:
990 case SCTP_XMIT_RWND_FULL:
991 case SCTP_XMIT_NAGLE_DELAY:
992 /* We could not append this chunk, so put
993 * the chunk back on the output queue.
994 */
995 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
996 "not transmit TSN: 0x%x, status: %d\n",
997 ntohl(chunk->subh.data_hdr->tsn),
998 status);
999 sctp_outq_head_data(q, chunk);
1000 goto sctp_flush_out;
1001 break;
1002
1003 case SCTP_XMIT_OK:
1004 break;
1005
1006 default:
1007 BUG();
1008 }
1009
1010 /* BUG: We assume that the sctp_packet_transmit()
1011 * call below will succeed all the time and add the
1012 * chunk to the transmitted list and restart the
1013 * timers.
1014 * It is possible that the call can fail under OOM
1015 * conditions.
1016 *
1017 * Is this really a problem? Won't this behave
1018 * like a lost TSN?
1019 */
1020 list_add_tail(&chunk->transmitted_list,
1021 &transport->transmitted);
1022
1023 sctp_transport_reset_timers(transport, 0);
1024
1025 q->empty = 0;
1026
1027 /* Only let one DATA chunk get bundled with a
1028 * COOKIE-ECHO chunk.
1029 */
1030 if (packet->has_cookie_echo)
1031 goto sctp_flush_out;
1032 }
1033 break;
1034
1035 default:
1036 /* Do nothing. */
1037 break;
1038 }
1039
1040 sctp_flush_out:
1041
1042 /* Before returning, examine all the transports touched in
1043 * this call. Right now, we bluntly force clear all the
1044 * transports. Things might change after we implement Nagle.
1045 * But such an examination is still required.
1046 *
1047 * --xguo
1048 */
1049 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1050 struct sctp_transport *t = list_entry(ltransport,
1051 struct sctp_transport,
1052 send_ready);
1053 packet = &t->packet;
1054 if (!sctp_packet_empty(packet))
1055 error = sctp_packet_transmit(packet);
1056 }
1057
1058 return error;
1059 }
1060
1061 /* Update unack_data based on the incoming SACK chunk */
1062 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1063 struct sctp_sackhdr *sack)
1064 {
1065 sctp_sack_variable_t *frags;
1066 __u16 unack_data;
1067 int i;
1068
1069 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1070
1071 frags = sack->variable;
1072 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1073 unack_data -= ((ntohs(frags[i].gab.end) -
1074 ntohs(frags[i].gab.start) + 1));
1075 }
1076
1077 assoc->unack_data = unack_data;
1078 }
1079
1080 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
1081 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack,
1082 struct sctp_association *asoc)
1083 {
1084 struct sctp_transport *transport;
1085 struct sctp_chunk *chunk;
1086 __u32 highest_new_tsn, tsn;
1087 struct list_head *transport_list = &asoc->peer.transport_addr_list;
1088
1089 highest_new_tsn = ntohl(sack->cum_tsn_ack);
1090
1091 list_for_each_entry(transport, transport_list, transports) {
1092 list_for_each_entry(chunk, &transport->transmitted,
1093 transmitted_list) {
1094 tsn = ntohl(chunk->subh.data_hdr->tsn);
1095
1096 if (!chunk->tsn_gap_acked &&
1097 TSN_lt(highest_new_tsn, tsn) &&
1098 sctp_acked(sack, tsn))
1099 highest_new_tsn = tsn;
1100 }
1101 }
1102
1103 return highest_new_tsn;
1104 }
1105
1106 /* This is where we REALLY process a SACK.
1107 *
1108 * Process the SACK against the outqueue. Mostly, this just frees
1109 * things off the transmitted queue.
1110 */
1111 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1112 {
1113 struct sctp_association *asoc = q->asoc;
1114 struct sctp_transport *transport;
1115 struct sctp_chunk *tchunk = NULL;
1116 struct list_head *lchunk, *transport_list, *temp;
1117 sctp_sack_variable_t *frags = sack->variable;
1118 __u32 sack_ctsn, ctsn, tsn;
1119 __u32 highest_tsn, highest_new_tsn;
1120 __u32 sack_a_rwnd;
1121 unsigned outstanding;
1122 struct sctp_transport *primary = asoc->peer.primary_path;
1123 int count_of_newacks = 0;
1124 int gap_ack_blocks;
1125
1126 /* Grab the association's destination address list. */
1127 transport_list = &asoc->peer.transport_addr_list;
1128
1129 sack_ctsn = ntohl(sack->cum_tsn_ack);
1130 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1131 /*
1132 * SFR-CACC algorithm:
1133 * On receipt of a SACK the sender SHOULD execute the
1134 * following statements.
1135 *
1136 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1137 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1138 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1139 * all destinations.
1140 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1141 * is set the receiver of the SACK MUST take the following actions:
1142 *
1143 * A) Initialize the cacc_saw_newack to 0 for all destination
1144 * addresses.
1145 *
1146 * Only bother if changeover_active is set. Otherwise, this is
1147 * totally suboptimal to do on every SACK.
1148 */
1149 if (primary->cacc.changeover_active) {
1150 u8 clear_cycling = 0;
1151
1152 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1153 primary->cacc.changeover_active = 0;
1154 clear_cycling = 1;
1155 }
1156
1157 if (clear_cycling || gap_ack_blocks) {
1158 list_for_each_entry(transport, transport_list,
1159 transports) {
1160 if (clear_cycling)
1161 transport->cacc.cycling_changeover = 0;
1162 if (gap_ack_blocks)
1163 transport->cacc.cacc_saw_newack = 0;
1164 }
1165 }
1166 }
1167
1168 /* Get the highest TSN in the sack. */
1169 highest_tsn = sack_ctsn;
1170 if (gap_ack_blocks)
1171 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1172
1173 if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
1174 highest_new_tsn = highest_tsn;
1175 asoc->highest_sacked = highest_tsn;
1176 } else {
1177 highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
1178 }
1179
1180
1181 /* Run through the retransmit queue. Credit bytes received
1182 * and free those chunks that we can.
1183 */
1184 sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
1185
1186 /* Run through the transmitted queue.
1187 * Credit bytes received and free those chunks which we can.
1188 *
1189 * This is a MASSIVE candidate for optimization.
1190 */
1191 list_for_each_entry(transport, transport_list, transports) {
1192 sctp_check_transmitted(q, &transport->transmitted,
1193 transport, sack, highest_new_tsn);
1194 /*
1195 * SFR-CACC algorithm:
1196 * C) Let count_of_newacks be the number of
1197 * destinations for which cacc_saw_newack is set.
1198 */
1199 if (transport->cacc.cacc_saw_newack)
1200 count_of_newacks ++;
1201 }
1202
1203 if (gap_ack_blocks) {
1204 list_for_each_entry(transport, transport_list, transports)
1205 sctp_mark_missing(q, &transport->transmitted, transport,
1206 highest_new_tsn, count_of_newacks);
1207 }
1208
1209 /* Move the Cumulative TSN Ack Point if appropriate. */
1210 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
1211 asoc->ctsn_ack_point = sack_ctsn;
1212
1213 /* Update unack_data field in the assoc. */
1214 sctp_sack_update_unack_data(asoc, sack);
1215
1216 ctsn = asoc->ctsn_ack_point;
1217
1218 /* Throw away stuff rotting on the sack queue. */
1219 list_for_each_safe(lchunk, temp, &q->sacked) {
1220 tchunk = list_entry(lchunk, struct sctp_chunk,
1221 transmitted_list);
1222 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1223 if (TSN_lte(tsn, ctsn)) {
1224 list_del_init(&tchunk->transmitted_list);
1225 sctp_chunk_free(tchunk);
1226 }
1227 }
1228
1229 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1230 * number of bytes still outstanding after processing the
1231 * Cumulative TSN Ack and the Gap Ack Blocks.
1232 */
1233
1234 sack_a_rwnd = ntohl(sack->a_rwnd);
1235 outstanding = q->outstanding_bytes;
1236
1237 if (outstanding < sack_a_rwnd)
1238 sack_a_rwnd -= outstanding;
1239 else
1240 sack_a_rwnd = 0;
1241
1242 asoc->peer.rwnd = sack_a_rwnd;
1243
1244 sctp_generate_fwdtsn(q, sack_ctsn);
1245
1246 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1247 __func__, sack_ctsn);
1248 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1249 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1250 __func__, asoc, ctsn, asoc->adv_peer_ack_point);
1251
1252 /* See if all chunks are acked.
1253 * Make sure the empty queue handler will get run later.
1254 */
1255 q->empty = (list_empty(&q->out_chunk_list) &&
1256 list_empty(&q->retransmit));
1257 if (!q->empty)
1258 goto finish;
1259
1260 list_for_each_entry(transport, transport_list, transports) {
1261 q->empty = q->empty && list_empty(&transport->transmitted);
1262 if (!q->empty)
1263 goto finish;
1264 }
1265
1266 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1267 finish:
1268 return q->empty;
1269 }
1270
1271 /* Is the outqueue empty? */
1272 int sctp_outq_is_empty(const struct sctp_outq *q)
1273 {
1274 return q->empty;
1275 }
1276
1277 /********************************************************************
1278 * 2nd Level Abstractions
1279 ********************************************************************/
1280
1281 /* Go through a transport's transmitted list or the association's retransmit
1282 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1283 * The retransmit list will not have an associated transport.
1284 *
1285 * I added coherent debug information output. --xguo
1286 *
1287 * Instead of printing 'sacked' or 'kept' for each TSN on the
1288 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1289 * KEPT TSN6-TSN7, etc.
1290 */
1291 static void sctp_check_transmitted(struct sctp_outq *q,
1292 struct list_head *transmitted_queue,
1293 struct sctp_transport *transport,
1294 struct sctp_sackhdr *sack,
1295 __u32 highest_new_tsn_in_sack)
1296 {
1297 struct list_head *lchunk;
1298 struct sctp_chunk *tchunk;
1299 struct list_head tlist;
1300 __u32 tsn;
1301 __u32 sack_ctsn;
1302 __u32 rtt;
1303 __u8 restart_timer = 0;
1304 int bytes_acked = 0;
1305 int migrate_bytes = 0;
1306
1307 /* These state variables are for coherent debug output. --xguo */
1308
1309 #if SCTP_DEBUG
1310 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */
1311 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */
1312 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */
1313 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */
1314
1315 /* 0 : The last TSN was ACKed.
1316 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1317 * -1: We need to initialize.
1318 */
1319 int dbg_prt_state = -1;
1320 #endif /* SCTP_DEBUG */
1321
1322 sack_ctsn = ntohl(sack->cum_tsn_ack);
1323
1324 INIT_LIST_HEAD(&tlist);
1325
1326 /* The while loop will skip empty transmitted queues. */
1327 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1328 tchunk = list_entry(lchunk, struct sctp_chunk,
1329 transmitted_list);
1330
1331 if (sctp_chunk_abandoned(tchunk)) {
1332 /* Move the chunk to abandoned list. */
1333 sctp_insert_list(&q->abandoned, lchunk);
1334
1335 /* If this chunk has not been acked, stop
1336 * considering it as 'outstanding'.
1337 */
1338 if (!tchunk->tsn_gap_acked) {
1339 if (tchunk->transport)
1340 tchunk->transport->flight_size -=
1341 sctp_data_size(tchunk);
1342 q->outstanding_bytes -= sctp_data_size(tchunk);
1343 }
1344 continue;
1345 }
1346
1347 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1348 if (sctp_acked(sack, tsn)) {
1349 /* If this queue is the retransmit queue, the
1350 * retransmit timer has already reclaimed
1351 * the outstanding bytes for this chunk, so only
1352 * count bytes associated with a transport.
1353 */
1354 if (transport) {
1355 /* If this chunk is being used for RTT
1356 * measurement, calculate the RTT and update
1357 * the RTO using this value.
1358 *
1359 * 6.3.1 C5) Karn's algorithm: RTT measurements
1360 * MUST NOT be made using packets that were
1361 * retransmitted (and thus for which it is
1362 * ambiguous whether the reply was for the
1363 * first instance of the packet or a later
1364 * instance).
1365 */
1366 if (!tchunk->tsn_gap_acked &&
1367 !tchunk->resent &&
1368 tchunk->rtt_in_progress) {
1369 tchunk->rtt_in_progress = 0;
1370 rtt = jiffies - tchunk->sent_at;
1371 sctp_transport_update_rto(transport,
1372 rtt);
1373 }
1374 }
1375
1376 /* If the chunk hasn't been marked as ACKED,
1377 * mark it and account bytes_acked if the
1378 * chunk had a valid transport (it will not
1379 * have a transport if ASCONF had deleted it
1380 * while DATA was outstanding).
1381 */
1382 if (!tchunk->tsn_gap_acked) {
1383 tchunk->tsn_gap_acked = 1;
1384 bytes_acked += sctp_data_size(tchunk);
1385 if (!tchunk->transport)
1386 migrate_bytes += sctp_data_size(tchunk);
1387 }
1388
1389 if (TSN_lte(tsn, sack_ctsn)) {
1390 /* RFC 2960 6.3.2 Retransmission Timer Rules
1391 *
1392 * R3) Whenever a SACK is received
1393 * that acknowledges the DATA chunk
1394 * with the earliest outstanding TSN
1395 * for that address, restart T3-rtx
1396 * timer for that address with its
1397 * current RTO.
1398 */
1399 restart_timer = 1;
1400
1401 if (!tchunk->tsn_gap_acked) {
1402 /*
1403 * SFR-CACC algorithm:
1404 * 2) If the SACK contains gap acks
1405 * and the flag CHANGEOVER_ACTIVE is
1406 * set the receiver of the SACK MUST
1407 * take the following action:
1408 *
1409 * B) For each TSN t being acked that
1410 * has not been acked in any SACK so
1411 * far, set cacc_saw_newack to 1 for
1412 * the destination that the TSN was
1413 * sent to.
1414 */
1415 if (transport &&
1416 sack->num_gap_ack_blocks &&
1417 q->asoc->peer.primary_path->cacc.
1418 changeover_active)
1419 transport->cacc.cacc_saw_newack
1420 = 1;
1421 }
1422
1423 list_add_tail(&tchunk->transmitted_list,
1424 &q->sacked);
1425 } else {
1426 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1427 * M2) Each time a SACK arrives reporting
1428 * 'Stray DATA chunk(s)' record the highest TSN
1429 * reported as newly acknowledged, call this
1430 * value 'HighestTSNinSack'. A newly
1431 * acknowledged DATA chunk is one not
1432 * previously acknowledged in a SACK.
1433 *
1434 * When the SCTP sender of data receives a SACK
1435 * chunk that acknowledges, for the first time,
1436 * the receipt of a DATA chunk, all the still
1437 * unacknowledged DATA chunks whose TSN is
1438 * older than that newly acknowledged DATA
1439 * chunk, are qualified as 'Stray DATA chunks'.
1440 */
1441 list_add_tail(lchunk, &tlist);
1442 }
1443
1444 #if SCTP_DEBUG
1445 switch (dbg_prt_state) {
1446 case 0: /* last TSN was ACKed */
1447 if (dbg_last_ack_tsn + 1 == tsn) {
1448 /* This TSN belongs to the
1449 * current ACK range.
1450 */
1451 break;
1452 }
1453
1454 if (dbg_last_ack_tsn != dbg_ack_tsn) {
1455 /* Display the end of the
1456 * current range.
1457 */
1458 SCTP_DEBUG_PRINTK("-%08x",
1459 dbg_last_ack_tsn);
1460 }
1461
1462 /* Start a new range. */
1463 SCTP_DEBUG_PRINTK(",%08x", tsn);
1464 dbg_ack_tsn = tsn;
1465 break;
1466
1467 case 1: /* The last TSN was NOT ACKed. */
1468 if (dbg_last_kept_tsn != dbg_kept_tsn) {
1469 /* Display the end of current range. */
1470 SCTP_DEBUG_PRINTK("-%08x",
1471 dbg_last_kept_tsn);
1472 }
1473
1474 SCTP_DEBUG_PRINTK("\n");
1475
1476 /* FALL THROUGH... */
1477 default:
1478 /* This is the first-ever TSN we examined. */
1479 /* Start a new range of ACK-ed TSNs. */
1480 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1481 dbg_prt_state = 0;
1482 dbg_ack_tsn = tsn;
1483 }
1484
1485 dbg_last_ack_tsn = tsn;
1486 #endif /* SCTP_DEBUG */
1487
1488 } else {
1489 if (tchunk->tsn_gap_acked) {
1490 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1491 "data TSN: 0x%x\n",
1492 __func__,
1493 tsn);
1494 tchunk->tsn_gap_acked = 0;
1495
1496 if (tchunk->transport)
1497 bytes_acked -= sctp_data_size(tchunk);
1498
1499 /* RFC 2960 6.3.2 Retransmission Timer Rules
1500 *
1501 * R4) Whenever a SACK is received missing a
1502 * TSN that was previously acknowledged via a
1503 * Gap Ack Block, start T3-rtx for the
1504 * destination address to which the DATA
1505 * chunk was originally
1506 * transmitted if it is not already running.
1507 */
1508 restart_timer = 1;
1509 }
1510
1511 list_add_tail(lchunk, &tlist);
1512
1513 #if SCTP_DEBUG
1514 /* See the above comments on ACK-ed TSNs. */
1515 switch (dbg_prt_state) {
1516 case 1:
1517 if (dbg_last_kept_tsn + 1 == tsn)
1518 break;
1519
1520 if (dbg_last_kept_tsn != dbg_kept_tsn)
1521 SCTP_DEBUG_PRINTK("-%08x",
1522 dbg_last_kept_tsn);
1523
1524 SCTP_DEBUG_PRINTK(",%08x", tsn);
1525 dbg_kept_tsn = tsn;
1526 break;
1527
1528 case 0:
1529 if (dbg_last_ack_tsn != dbg_ack_tsn)
1530 SCTP_DEBUG_PRINTK("-%08x",
1531 dbg_last_ack_tsn);
1532 SCTP_DEBUG_PRINTK("\n");
1533
1534 /* FALL THROUGH... */
1535 default:
1536 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1537 dbg_prt_state = 1;
1538 dbg_kept_tsn = tsn;
1539 }
1540
1541 dbg_last_kept_tsn = tsn;
1542 #endif /* SCTP_DEBUG */
1543 }
1544 }
1545
1546 #if SCTP_DEBUG
1547 /* Finish off the last range, displaying its ending TSN. */
1548 switch (dbg_prt_state) {
1549 case 0:
1550 if (dbg_last_ack_tsn != dbg_ack_tsn) {
1551 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
1552 } else {
1553 SCTP_DEBUG_PRINTK("\n");
1554 }
1555 break;
1556
1557 case 1:
1558 if (dbg_last_kept_tsn != dbg_kept_tsn) {
1559 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
1560 } else {
1561 SCTP_DEBUG_PRINTK("\n");
1562 }
1563 }
1564 #endif /* SCTP_DEBUG */
1565 if (transport) {
1566 if (bytes_acked) {
1567 /* We may have counted DATA that was migrated
1568 * to this transport due to DEL-IP operation.
1569 * Subtract those bytes, since the were never
1570 * send on this transport and shouldn't be
1571 * credited to this transport.
1572 */
1573 bytes_acked -= migrate_bytes;
1574
1575 /* 8.2. When an outstanding TSN is acknowledged,
1576 * the endpoint shall clear the error counter of
1577 * the destination transport address to which the
1578 * DATA chunk was last sent.
1579 * The association's overall error counter is
1580 * also cleared.
1581 */
1582 transport->error_count = 0;
1583 transport->asoc->overall_error_count = 0;
1584
1585 /* Mark the destination transport address as
1586 * active if it is not so marked.
1587 */
1588 if ((transport->state == SCTP_INACTIVE) ||
1589 (transport->state == SCTP_UNCONFIRMED)) {
1590 sctp_assoc_control_transport(
1591 transport->asoc,
1592 transport,
1593 SCTP_TRANSPORT_UP,
1594 SCTP_RECEIVED_SACK);
1595 }
1596
1597 sctp_transport_raise_cwnd(transport, sack_ctsn,
1598 bytes_acked);
1599
1600 transport->flight_size -= bytes_acked;
1601 if (transport->flight_size == 0)
1602 transport->partial_bytes_acked = 0;
1603 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1604 } else {
1605 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1606 * When a sender is doing zero window probing, it
1607 * should not timeout the association if it continues
1608 * to receive new packets from the receiver. The
1609 * reason is that the receiver MAY keep its window
1610 * closed for an indefinite time.
1611 * A sender is doing zero window probing when the
1612 * receiver's advertised window is zero, and there is
1613 * only one data chunk in flight to the receiver.
1614 */
1615 if (!q->asoc->peer.rwnd &&
1616 !list_empty(&tlist) &&
1617 (sack_ctsn+2 == q->asoc->next_tsn)) {
1618 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1619 "window probe: %u\n",
1620 __func__, sack_ctsn);
1621 q->asoc->overall_error_count = 0;
1622 transport->error_count = 0;
1623 }
1624 }
1625
1626 /* RFC 2960 6.3.2 Retransmission Timer Rules
1627 *
1628 * R2) Whenever all outstanding data sent to an address have
1629 * been acknowledged, turn off the T3-rtx timer of that
1630 * address.
1631 */
1632 if (!transport->flight_size) {
1633 if (timer_pending(&transport->T3_rtx_timer) &&
1634 del_timer(&transport->T3_rtx_timer)) {
1635 sctp_transport_put(transport);
1636 }
1637 } else if (restart_timer) {
1638 if (!mod_timer(&transport->T3_rtx_timer,
1639 jiffies + transport->rto))
1640 sctp_transport_hold(transport);
1641 }
1642 }
1643
1644 list_splice(&tlist, transmitted_queue);
1645 }
1646
1647 /* Mark chunks as missing and consequently may get retransmitted. */
1648 static void sctp_mark_missing(struct sctp_outq *q,
1649 struct list_head *transmitted_queue,
1650 struct sctp_transport *transport,
1651 __u32 highest_new_tsn_in_sack,
1652 int count_of_newacks)
1653 {
1654 struct sctp_chunk *chunk;
1655 __u32 tsn;
1656 char do_fast_retransmit = 0;
1657 struct sctp_transport *primary = q->asoc->peer.primary_path;
1658
1659 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1660
1661 tsn = ntohl(chunk->subh.data_hdr->tsn);
1662
1663 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1664 * 'Unacknowledged TSN's', if the TSN number of an
1665 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1666 * value, increment the 'TSN.Missing.Report' count on that
1667 * chunk if it has NOT been fast retransmitted or marked for
1668 * fast retransmit already.
1669 */
1670 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1671 !chunk->tsn_gap_acked &&
1672 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1673
1674 /* SFR-CACC may require us to skip marking
1675 * this chunk as missing.
1676 */
1677 if (!transport || !sctp_cacc_skip(primary, transport,
1678 count_of_newacks, tsn)) {
1679 chunk->tsn_missing_report++;
1680
1681 SCTP_DEBUG_PRINTK(
1682 "%s: TSN 0x%x missing counter: %d\n",
1683 __func__, tsn,
1684 chunk->tsn_missing_report);
1685 }
1686 }
1687 /*
1688 * M4) If any DATA chunk is found to have a
1689 * 'TSN.Missing.Report'
1690 * value larger than or equal to 3, mark that chunk for
1691 * retransmission and start the fast retransmit procedure.
1692 */
1693
1694 if (chunk->tsn_missing_report >= 3) {
1695 chunk->fast_retransmit = SCTP_NEED_FRTX;
1696 do_fast_retransmit = 1;
1697 }
1698 }
1699
1700 if (transport) {
1701 if (do_fast_retransmit)
1702 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1703
1704 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1705 "ssthresh: %d, flight_size: %d, pba: %d\n",
1706 __func__, transport, transport->cwnd,
1707 transport->ssthresh, transport->flight_size,
1708 transport->partial_bytes_acked);
1709 }
1710 }
1711
1712 /* Is the given TSN acked by this packet? */
1713 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1714 {
1715 int i;
1716 sctp_sack_variable_t *frags;
1717 __u16 gap;
1718 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1719
1720 if (TSN_lte(tsn, ctsn))
1721 goto pass;
1722
1723 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1724 *
1725 * Gap Ack Blocks:
1726 * These fields contain the Gap Ack Blocks. They are repeated
1727 * for each Gap Ack Block up to the number of Gap Ack Blocks
1728 * defined in the Number of Gap Ack Blocks field. All DATA
1729 * chunks with TSNs greater than or equal to (Cumulative TSN
1730 * Ack + Gap Ack Block Start) and less than or equal to
1731 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1732 * Block are assumed to have been received correctly.
1733 */
1734
1735 frags = sack->variable;
1736 gap = tsn - ctsn;
1737 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1738 if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1739 TSN_lte(gap, ntohs(frags[i].gab.end)))
1740 goto pass;
1741 }
1742
1743 return 0;
1744 pass:
1745 return 1;
1746 }
1747
1748 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1749 int nskips, __be16 stream)
1750 {
1751 int i;
1752
1753 for (i = 0; i < nskips; i++) {
1754 if (skiplist[i].stream == stream)
1755 return i;
1756 }
1757 return i;
1758 }
1759
1760 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1761 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1762 {
1763 struct sctp_association *asoc = q->asoc;
1764 struct sctp_chunk *ftsn_chunk = NULL;
1765 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1766 int nskips = 0;
1767 int skip_pos = 0;
1768 __u32 tsn;
1769 struct sctp_chunk *chunk;
1770 struct list_head *lchunk, *temp;
1771
1772 if (!asoc->peer.prsctp_capable)
1773 return;
1774
1775 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1776 * received SACK.
1777 *
1778 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1779 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1780 */
1781 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1782 asoc->adv_peer_ack_point = ctsn;
1783
1784 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1785 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1786 * the chunk next in the out-queue space is marked as "abandoned" as
1787 * shown in the following example:
1788 *
1789 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1790 * and the Advanced.Peer.Ack.Point is updated to this value:
1791 *
1792 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1793 * normal SACK processing local advancement
1794 * ... ...
1795 * Adv.Ack.Pt-> 102 acked 102 acked
1796 * 103 abandoned 103 abandoned
1797 * 104 abandoned Adv.Ack.P-> 104 abandoned
1798 * 105 105
1799 * 106 acked 106 acked
1800 * ... ...
1801 *
1802 * In this example, the data sender successfully advanced the
1803 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1804 */
1805 list_for_each_safe(lchunk, temp, &q->abandoned) {
1806 chunk = list_entry(lchunk, struct sctp_chunk,
1807 transmitted_list);
1808 tsn = ntohl(chunk->subh.data_hdr->tsn);
1809
1810 /* Remove any chunks in the abandoned queue that are acked by
1811 * the ctsn.
1812 */
1813 if (TSN_lte(tsn, ctsn)) {
1814 list_del_init(lchunk);
1815 sctp_chunk_free(chunk);
1816 } else {
1817 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1818 asoc->adv_peer_ack_point = tsn;
1819 if (chunk->chunk_hdr->flags &
1820 SCTP_DATA_UNORDERED)
1821 continue;
1822 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1823 nskips,
1824 chunk->subh.data_hdr->stream);
1825 ftsn_skip_arr[skip_pos].stream =
1826 chunk->subh.data_hdr->stream;
1827 ftsn_skip_arr[skip_pos].ssn =
1828 chunk->subh.data_hdr->ssn;
1829 if (skip_pos == nskips)
1830 nskips++;
1831 if (nskips == 10)
1832 break;
1833 } else
1834 break;
1835 }
1836 }
1837
1838 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1839 * is greater than the Cumulative TSN ACK carried in the received
1840 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1841 * chunk containing the latest value of the
1842 * "Advanced.Peer.Ack.Point".
1843 *
1844 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1845 * list each stream and sequence number in the forwarded TSN. This
1846 * information will enable the receiver to easily find any
1847 * stranded TSN's waiting on stream reorder queues. Each stream
1848 * SHOULD only be reported once; this means that if multiple
1849 * abandoned messages occur in the same stream then only the
1850 * highest abandoned stream sequence number is reported. If the
1851 * total size of the FORWARD TSN does NOT fit in a single MTU then
1852 * the sender of the FORWARD TSN SHOULD lower the
1853 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1854 * single MTU.
1855 */
1856 if (asoc->adv_peer_ack_point > ctsn)
1857 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1858 nskips, &ftsn_skip_arr[0]);
1859
1860 if (ftsn_chunk) {
1861 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1862 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
1863 }
1864 }