0247cc432e0293f2881a594367e79c666e9b9f4d
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / net / sctp / input.c
1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions handle all input from the IP layer into SCTP.
12 *
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
17 * any later version.
18 *
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
24 *
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, see
27 * <http://www.gnu.org/licenses/>.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <linux-sctp@vger.kernel.org>
32 *
33 * Written or modified by:
34 * La Monte H.P. Yarroll <piggy@acm.org>
35 * Karl Knutson <karl@athena.chicago.il.us>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Jon Grimm <jgrimm@us.ibm.com>
38 * Hui Huang <hui.huang@nokia.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Sridhar Samudrala <sri@us.ibm.com>
41 * Ardelle Fan <ardelle.fan@intel.com>
42 */
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 struct sk_buff *skb,
64 const union sctp_addr *paddr,
65 const union sctp_addr *laddr,
66 struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 struct net *net,
71 const union sctp_addr *local,
72 const union sctp_addr *peer,
73 struct sctp_transport **pt);
74
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76
77
78 /* Calculate the SCTP checksum of an SCTP packet. */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 struct sctphdr *sh = sctp_hdr(skb);
82 __le32 cmp = sh->checksum;
83 __le32 val = sctp_compute_cksum(skb, 0);
84
85 if (val != cmp) {
86 /* CRC failure, dump it. */
87 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 return -1;
89 }
90 return 0;
91 }
92
93 /*
94 * This is the routine which IP calls when receiving an SCTP packet.
95 */
96 int sctp_rcv(struct sk_buff *skb)
97 {
98 struct sock *sk;
99 struct sctp_association *asoc;
100 struct sctp_endpoint *ep = NULL;
101 struct sctp_ep_common *rcvr;
102 struct sctp_transport *transport = NULL;
103 struct sctp_chunk *chunk;
104 union sctp_addr src;
105 union sctp_addr dest;
106 int family;
107 struct sctp_af *af;
108 struct net *net = dev_net(skb->dev);
109
110 if (skb->pkt_type != PACKET_HOST)
111 goto discard_it;
112
113 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
114
115 /* If packet is too small to contain a single chunk, let's not
116 * waste time on it anymore.
117 */
118 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
119 skb_transport_offset(skb))
120 goto discard_it;
121
122 /* If the packet is fragmented and we need to do crc checking,
123 * it's better to just linearize it otherwise crc computing
124 * takes longer.
125 */
126 if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
127 skb_linearize(skb)) ||
128 !pskb_may_pull(skb, sizeof(struct sctphdr)))
129 goto discard_it;
130
131 /* Pull up the IP header. */
132 __skb_pull(skb, skb_transport_offset(skb));
133
134 skb->csum_valid = 0; /* Previous value not applicable */
135 if (skb_csum_unnecessary(skb))
136 __skb_decr_checksum_unnecessary(skb);
137 else if (!sctp_checksum_disable &&
138 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
139 sctp_rcv_checksum(net, skb) < 0)
140 goto discard_it;
141 skb->csum_valid = 1;
142
143 __skb_pull(skb, sizeof(struct sctphdr));
144
145 family = ipver2af(ip_hdr(skb)->version);
146 af = sctp_get_af_specific(family);
147 if (unlikely(!af))
148 goto discard_it;
149 SCTP_INPUT_CB(skb)->af = af;
150
151 /* Initialize local addresses for lookups. */
152 af->from_skb(&src, skb, 1);
153 af->from_skb(&dest, skb, 0);
154
155 /* If the packet is to or from a non-unicast address,
156 * silently discard the packet.
157 *
158 * This is not clearly defined in the RFC except in section
159 * 8.4 - OOTB handling. However, based on the book "Stream Control
160 * Transmission Protocol" 2.1, "It is important to note that the
161 * IP address of an SCTP transport address must be a routable
162 * unicast address. In other words, IP multicast addresses and
163 * IP broadcast addresses cannot be used in an SCTP transport
164 * address."
165 */
166 if (!af->addr_valid(&src, NULL, skb) ||
167 !af->addr_valid(&dest, NULL, skb))
168 goto discard_it;
169
170 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171
172 if (!asoc)
173 ep = __sctp_rcv_lookup_endpoint(net, &dest);
174
175 /* Retrieve the common input handling substructure. */
176 rcvr = asoc ? &asoc->base : &ep->base;
177 sk = rcvr->sk;
178
179 /*
180 * If a frame arrives on an interface and the receiving socket is
181 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 */
183 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 if (transport) {
185 sctp_transport_put(transport);
186 asoc = NULL;
187 transport = NULL;
188 } else {
189 sctp_endpoint_put(ep);
190 ep = NULL;
191 }
192 sk = net->sctp.ctl_sock;
193 ep = sctp_sk(sk)->ep;
194 sctp_endpoint_hold(ep);
195 rcvr = &ep->base;
196 }
197
198 /*
199 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
200 * An SCTP packet is called an "out of the blue" (OOTB)
201 * packet if it is correctly formed, i.e., passed the
202 * receiver's checksum check, but the receiver is not
203 * able to identify the association to which this
204 * packet belongs.
205 */
206 if (!asoc) {
207 if (sctp_rcv_ootb(skb)) {
208 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
209 goto discard_release;
210 }
211 }
212
213 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
214 goto discard_release;
215 nf_reset(skb);
216
217 if (sk_filter(sk, skb))
218 goto discard_release;
219
220 /* Create an SCTP packet structure. */
221 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
222 if (!chunk)
223 goto discard_release;
224 SCTP_INPUT_CB(skb)->chunk = chunk;
225
226 /* Remember what endpoint is to handle this packet. */
227 chunk->rcvr = rcvr;
228
229 /* Remember the SCTP header. */
230 chunk->sctp_hdr = sctp_hdr(skb);
231
232 /* Set the source and destination addresses of the incoming chunk. */
233 sctp_init_addrs(chunk, &src, &dest);
234
235 /* Remember where we came from. */
236 chunk->transport = transport;
237
238 /* Acquire access to the sock lock. Note: We are safe from other
239 * bottom halves on this lock, but a user may be in the lock too,
240 * so check if it is busy.
241 */
242 bh_lock_sock(sk);
243
244 if (sk != rcvr->sk) {
245 /* Our cached sk is different from the rcvr->sk. This is
246 * because migrate()/accept() may have moved the association
247 * to a new socket and released all the sockets. So now we
248 * are holding a lock on the old socket while the user may
249 * be doing something with the new socket. Switch our veiw
250 * of the current sk.
251 */
252 bh_unlock_sock(sk);
253 sk = rcvr->sk;
254 bh_lock_sock(sk);
255 }
256
257 if (sock_owned_by_user(sk)) {
258 if (sctp_add_backlog(sk, skb)) {
259 bh_unlock_sock(sk);
260 sctp_chunk_free(chunk);
261 skb = NULL; /* sctp_chunk_free already freed the skb */
262 goto discard_release;
263 }
264 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
265 } else {
266 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
267 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
268 }
269
270 bh_unlock_sock(sk);
271
272 /* Release the asoc/ep ref we took in the lookup calls. */
273 if (transport)
274 sctp_transport_put(transport);
275 else
276 sctp_endpoint_put(ep);
277
278 return 0;
279
280 discard_it:
281 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
282 kfree_skb(skb);
283 return 0;
284
285 discard_release:
286 /* Release the asoc/ep ref we took in the lookup calls. */
287 if (transport)
288 sctp_transport_put(transport);
289 else
290 sctp_endpoint_put(ep);
291
292 goto discard_it;
293 }
294
295 /* Process the backlog queue of the socket. Every skb on
296 * the backlog holds a ref on an association or endpoint.
297 * We hold this ref throughout the state machine to make
298 * sure that the structure we need is still around.
299 */
300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
301 {
302 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
303 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
304 struct sctp_transport *t = chunk->transport;
305 struct sctp_ep_common *rcvr = NULL;
306 int backloged = 0;
307
308 rcvr = chunk->rcvr;
309
310 /* If the rcvr is dead then the association or endpoint
311 * has been deleted and we can safely drop the chunk
312 * and refs that we are holding.
313 */
314 if (rcvr->dead) {
315 sctp_chunk_free(chunk);
316 goto done;
317 }
318
319 if (unlikely(rcvr->sk != sk)) {
320 /* In this case, the association moved from one socket to
321 * another. We are currently sitting on the backlog of the
322 * old socket, so we need to move.
323 * However, since we are here in the process context we
324 * need to take make sure that the user doesn't own
325 * the new socket when we process the packet.
326 * If the new socket is user-owned, queue the chunk to the
327 * backlog of the new socket without dropping any refs.
328 * Otherwise, we can safely push the chunk on the inqueue.
329 */
330
331 sk = rcvr->sk;
332 local_bh_disable();
333 bh_lock_sock(sk);
334
335 if (sock_owned_by_user(sk)) {
336 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
337 sctp_chunk_free(chunk);
338 else
339 backloged = 1;
340 } else
341 sctp_inq_push(inqueue, chunk);
342
343 bh_unlock_sock(sk);
344 local_bh_enable();
345
346 /* If the chunk was backloged again, don't drop refs */
347 if (backloged)
348 return 0;
349 } else {
350 sctp_inq_push(inqueue, chunk);
351 }
352
353 done:
354 /* Release the refs we took in sctp_add_backlog */
355 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 sctp_transport_put(t);
357 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 sctp_endpoint_put(sctp_ep(rcvr));
359 else
360 BUG();
361
362 return 0;
363 }
364
365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
366 {
367 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 struct sctp_transport *t = chunk->transport;
369 struct sctp_ep_common *rcvr = chunk->rcvr;
370 int ret;
371
372 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
373 if (!ret) {
374 /* Hold the assoc/ep while hanging on the backlog queue.
375 * This way, we know structures we need will not disappear
376 * from us
377 */
378 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
379 sctp_transport_hold(t);
380 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
381 sctp_endpoint_hold(sctp_ep(rcvr));
382 else
383 BUG();
384 }
385 return ret;
386
387 }
388
389 /* Handle icmp frag needed error. */
390 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
391 struct sctp_transport *t, __u32 pmtu)
392 {
393 if (!t || (t->pathmtu <= pmtu))
394 return;
395
396 if (sock_owned_by_user(sk)) {
397 asoc->pmtu_pending = 1;
398 t->pmtu_pending = 1;
399 return;
400 }
401
402 if (!(t->param_flags & SPP_PMTUD_ENABLE))
403 /* We can't allow retransmitting in such case, as the
404 * retransmission would be sized just as before, and thus we
405 * would get another icmp, and retransmit again.
406 */
407 return;
408
409 /* Update transports view of the MTU. Return if no update was needed.
410 * If an update wasn't needed/possible, it also doesn't make sense to
411 * try to retransmit now.
412 */
413 if (!sctp_transport_update_pmtu(t, pmtu))
414 return;
415
416 /* Update association pmtu. */
417 sctp_assoc_sync_pmtu(asoc);
418
419 /* Retransmit with the new pmtu setting. */
420 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
421 }
422
423 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
424 struct sk_buff *skb)
425 {
426 struct dst_entry *dst;
427
428 if (sock_owned_by_user(sk) || !t)
429 return;
430 dst = sctp_transport_dst_check(t);
431 if (dst)
432 dst->ops->redirect(dst, sk, skb);
433 }
434
435 /*
436 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
437 *
438 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
439 * or a "Protocol Unreachable" treat this message as an abort
440 * with the T bit set.
441 *
442 * This function sends an event to the state machine, which will abort the
443 * association.
444 *
445 */
446 void sctp_icmp_proto_unreachable(struct sock *sk,
447 struct sctp_association *asoc,
448 struct sctp_transport *t)
449 {
450 if (sock_owned_by_user(sk)) {
451 if (timer_pending(&t->proto_unreach_timer))
452 return;
453 else {
454 if (!mod_timer(&t->proto_unreach_timer,
455 jiffies + (HZ/20)))
456 sctp_association_hold(asoc);
457 }
458 } else {
459 struct net *net = sock_net(sk);
460
461 pr_debug("%s: unrecognized next header type "
462 "encountered!\n", __func__);
463
464 if (del_timer(&t->proto_unreach_timer))
465 sctp_association_put(asoc);
466
467 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
468 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
469 asoc->state, asoc->ep, asoc, t,
470 GFP_ATOMIC);
471 }
472 }
473
474 /* Common lookup code for icmp/icmpv6 error handler. */
475 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
476 struct sctphdr *sctphdr,
477 struct sctp_association **app,
478 struct sctp_transport **tpp)
479 {
480 struct sctp_init_chunk *chunkhdr, _chunkhdr;
481 union sctp_addr saddr;
482 union sctp_addr daddr;
483 struct sctp_af *af;
484 struct sock *sk = NULL;
485 struct sctp_association *asoc;
486 struct sctp_transport *transport = NULL;
487 __u32 vtag = ntohl(sctphdr->vtag);
488
489 *app = NULL; *tpp = NULL;
490
491 af = sctp_get_af_specific(family);
492 if (unlikely(!af)) {
493 return NULL;
494 }
495
496 /* Initialize local addresses for lookups. */
497 af->from_skb(&saddr, skb, 1);
498 af->from_skb(&daddr, skb, 0);
499
500 /* Look for an association that matches the incoming ICMP error
501 * packet.
502 */
503 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
504 if (!asoc)
505 return NULL;
506
507 sk = asoc->base.sk;
508
509 /* RFC 4960, Appendix C. ICMP Handling
510 *
511 * ICMP6) An implementation MUST validate that the Verification Tag
512 * contained in the ICMP message matches the Verification Tag of
513 * the peer. If the Verification Tag is not 0 and does NOT
514 * match, discard the ICMP message. If it is 0 and the ICMP
515 * message contains enough bytes to verify that the chunk type is
516 * an INIT chunk and that the Initiate Tag matches the tag of the
517 * peer, continue with ICMP7. If the ICMP message is too short
518 * or the chunk type or the Initiate Tag does not match, silently
519 * discard the packet.
520 */
521 if (vtag == 0) {
522 /* chunk header + first 4 octects of init header */
523 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
524 sizeof(struct sctphdr),
525 sizeof(struct sctp_chunkhdr) +
526 sizeof(__be32), &_chunkhdr);
527 if (!chunkhdr ||
528 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
529 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
530 goto out;
531
532 } else if (vtag != asoc->c.peer_vtag) {
533 goto out;
534 }
535
536 bh_lock_sock(sk);
537
538 /* If too many ICMPs get dropped on busy
539 * servers this needs to be solved differently.
540 */
541 if (sock_owned_by_user(sk))
542 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
543
544 *app = asoc;
545 *tpp = transport;
546 return sk;
547
548 out:
549 sctp_transport_put(transport);
550 return NULL;
551 }
552
553 /* Common cleanup code for icmp/icmpv6 error handler. */
554 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
555 {
556 bh_unlock_sock(sk);
557 sctp_transport_put(t);
558 }
559
560 /*
561 * This routine is called by the ICMP module when it gets some
562 * sort of error condition. If err < 0 then the socket should
563 * be closed and the error returned to the user. If err > 0
564 * it's just the icmp type << 8 | icmp code. After adjustment
565 * header points to the first 8 bytes of the sctp header. We need
566 * to find the appropriate port.
567 *
568 * The locking strategy used here is very "optimistic". When
569 * someone else accesses the socket the ICMP is just dropped
570 * and for some paths there is no check at all.
571 * A more general error queue to queue errors for later handling
572 * is probably better.
573 *
574 */
575 void sctp_v4_err(struct sk_buff *skb, __u32 info)
576 {
577 const struct iphdr *iph = (const struct iphdr *)skb->data;
578 const int ihlen = iph->ihl * 4;
579 const int type = icmp_hdr(skb)->type;
580 const int code = icmp_hdr(skb)->code;
581 struct sock *sk;
582 struct sctp_association *asoc = NULL;
583 struct sctp_transport *transport;
584 struct inet_sock *inet;
585 __u16 saveip, savesctp;
586 int err;
587 struct net *net = dev_net(skb->dev);
588
589 /* Fix up skb to look at the embedded net header. */
590 saveip = skb->network_header;
591 savesctp = skb->transport_header;
592 skb_reset_network_header(skb);
593 skb_set_transport_header(skb, ihlen);
594 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
595 /* Put back, the original values. */
596 skb->network_header = saveip;
597 skb->transport_header = savesctp;
598 if (!sk) {
599 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
600 return;
601 }
602 /* Warning: The sock lock is held. Remember to call
603 * sctp_err_finish!
604 */
605
606 switch (type) {
607 case ICMP_PARAMETERPROB:
608 err = EPROTO;
609 break;
610 case ICMP_DEST_UNREACH:
611 if (code > NR_ICMP_UNREACH)
612 goto out_unlock;
613
614 /* PMTU discovery (RFC1191) */
615 if (ICMP_FRAG_NEEDED == code) {
616 sctp_icmp_frag_needed(sk, asoc, transport,
617 SCTP_TRUNC4(info));
618 goto out_unlock;
619 } else {
620 if (ICMP_PROT_UNREACH == code) {
621 sctp_icmp_proto_unreachable(sk, asoc,
622 transport);
623 goto out_unlock;
624 }
625 }
626 err = icmp_err_convert[code].errno;
627 break;
628 case ICMP_TIME_EXCEEDED:
629 /* Ignore any time exceeded errors due to fragment reassembly
630 * timeouts.
631 */
632 if (ICMP_EXC_FRAGTIME == code)
633 goto out_unlock;
634
635 err = EHOSTUNREACH;
636 break;
637 case ICMP_REDIRECT:
638 sctp_icmp_redirect(sk, transport, skb);
639 /* Fall through to out_unlock. */
640 default:
641 goto out_unlock;
642 }
643
644 inet = inet_sk(sk);
645 if (!sock_owned_by_user(sk) && inet->recverr) {
646 sk->sk_err = err;
647 sk->sk_error_report(sk);
648 } else { /* Only an error on timeout */
649 sk->sk_err_soft = err;
650 }
651
652 out_unlock:
653 sctp_err_finish(sk, transport);
654 }
655
656 /*
657 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
658 *
659 * This function scans all the chunks in the OOTB packet to determine if
660 * the packet should be discarded right away. If a response might be needed
661 * for this packet, or, if further processing is possible, the packet will
662 * be queued to a proper inqueue for the next phase of handling.
663 *
664 * Output:
665 * Return 0 - If further processing is needed.
666 * Return 1 - If the packet can be discarded right away.
667 */
668 static int sctp_rcv_ootb(struct sk_buff *skb)
669 {
670 struct sctp_chunkhdr *ch, _ch;
671 int ch_end, offset = 0;
672
673 /* Scan through all the chunks in the packet. */
674 do {
675 /* Make sure we have at least the header there */
676 if (offset + sizeof(_ch) > skb->len)
677 break;
678
679 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
680
681 /* Break out if chunk length is less then minimal. */
682 if (ntohs(ch->length) < sizeof(_ch))
683 break;
684
685 ch_end = offset + SCTP_PAD4(ntohs(ch->length));
686 if (ch_end > skb->len)
687 break;
688
689 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
690 * receiver MUST silently discard the OOTB packet and take no
691 * further action.
692 */
693 if (SCTP_CID_ABORT == ch->type)
694 goto discard;
695
696 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
697 * chunk, the receiver should silently discard the packet
698 * and take no further action.
699 */
700 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
701 goto discard;
702
703 /* RFC 4460, 2.11.2
704 * This will discard packets with INIT chunk bundled as
705 * subsequent chunks in the packet. When INIT is first,
706 * the normal INIT processing will discard the chunk.
707 */
708 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
709 goto discard;
710
711 offset = ch_end;
712 } while (ch_end < skb->len);
713
714 return 0;
715
716 discard:
717 return 1;
718 }
719
720 /* Insert endpoint into the hash table. */
721 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
722 {
723 struct net *net = sock_net(ep->base.sk);
724 struct sctp_ep_common *epb;
725 struct sctp_hashbucket *head;
726
727 epb = &ep->base;
728
729 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
730 head = &sctp_ep_hashtable[epb->hashent];
731
732 write_lock(&head->lock);
733 hlist_add_head(&epb->node, &head->chain);
734 write_unlock(&head->lock);
735 }
736
737 /* Add an endpoint to the hash. Local BH-safe. */
738 void sctp_hash_endpoint(struct sctp_endpoint *ep)
739 {
740 local_bh_disable();
741 __sctp_hash_endpoint(ep);
742 local_bh_enable();
743 }
744
745 /* Remove endpoint from the hash table. */
746 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
747 {
748 struct net *net = sock_net(ep->base.sk);
749 struct sctp_hashbucket *head;
750 struct sctp_ep_common *epb;
751
752 epb = &ep->base;
753
754 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
755
756 head = &sctp_ep_hashtable[epb->hashent];
757
758 write_lock(&head->lock);
759 hlist_del_init(&epb->node);
760 write_unlock(&head->lock);
761 }
762
763 /* Remove endpoint from the hash. Local BH-safe. */
764 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
765 {
766 local_bh_disable();
767 __sctp_unhash_endpoint(ep);
768 local_bh_enable();
769 }
770
771 /* Look up an endpoint. */
772 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
773 const union sctp_addr *laddr)
774 {
775 struct sctp_hashbucket *head;
776 struct sctp_ep_common *epb;
777 struct sctp_endpoint *ep;
778 int hash;
779
780 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
781 head = &sctp_ep_hashtable[hash];
782 read_lock(&head->lock);
783 sctp_for_each_hentry(epb, &head->chain) {
784 ep = sctp_ep(epb);
785 if (sctp_endpoint_is_match(ep, net, laddr))
786 goto hit;
787 }
788
789 ep = sctp_sk(net->sctp.ctl_sock)->ep;
790
791 hit:
792 sctp_endpoint_hold(ep);
793 read_unlock(&head->lock);
794 return ep;
795 }
796
797 /* rhashtable for transport */
798 struct sctp_hash_cmp_arg {
799 const union sctp_addr *paddr;
800 const struct net *net;
801 __be16 lport;
802 };
803
804 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
805 const void *ptr)
806 {
807 struct sctp_transport *t = (struct sctp_transport *)ptr;
808 const struct sctp_hash_cmp_arg *x = arg->key;
809 int err = 1;
810
811 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
812 return err;
813 if (!sctp_transport_hold(t))
814 return err;
815
816 if (!net_eq(sock_net(t->asoc->base.sk), x->net))
817 goto out;
818 if (x->lport != htons(t->asoc->base.bind_addr.port))
819 goto out;
820
821 err = 0;
822 out:
823 sctp_transport_put(t);
824 return err;
825 }
826
827 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
828 {
829 const struct sctp_transport *t = data;
830 const union sctp_addr *paddr = &t->ipaddr;
831 const struct net *net = sock_net(t->asoc->base.sk);
832 __be16 lport = htons(t->asoc->base.bind_addr.port);
833 __u32 addr;
834
835 if (paddr->sa.sa_family == AF_INET6)
836 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
837 else
838 addr = (__force __u32)paddr->v4.sin_addr.s_addr;
839
840 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
841 (__force __u32)lport, net_hash_mix(net), seed);
842 }
843
844 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
845 {
846 const struct sctp_hash_cmp_arg *x = data;
847 const union sctp_addr *paddr = x->paddr;
848 const struct net *net = x->net;
849 __be16 lport = x->lport;
850 __u32 addr;
851
852 if (paddr->sa.sa_family == AF_INET6)
853 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
854 else
855 addr = (__force __u32)paddr->v4.sin_addr.s_addr;
856
857 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
858 (__force __u32)lport, net_hash_mix(net), seed);
859 }
860
861 static const struct rhashtable_params sctp_hash_params = {
862 .head_offset = offsetof(struct sctp_transport, node),
863 .hashfn = sctp_hash_key,
864 .obj_hashfn = sctp_hash_obj,
865 .obj_cmpfn = sctp_hash_cmp,
866 .automatic_shrinking = true,
867 };
868
869 int sctp_transport_hashtable_init(void)
870 {
871 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
872 }
873
874 void sctp_transport_hashtable_destroy(void)
875 {
876 rhltable_destroy(&sctp_transport_hashtable);
877 }
878
879 int sctp_hash_transport(struct sctp_transport *t)
880 {
881 struct sctp_transport *transport;
882 struct rhlist_head *tmp, *list;
883 struct sctp_hash_cmp_arg arg;
884 int err;
885
886 if (t->asoc->temp)
887 return 0;
888
889 arg.net = sock_net(t->asoc->base.sk);
890 arg.paddr = &t->ipaddr;
891 arg.lport = htons(t->asoc->base.bind_addr.port);
892
893 rcu_read_lock();
894 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
895 sctp_hash_params);
896
897 rhl_for_each_entry_rcu(transport, tmp, list, node)
898 if (transport->asoc->ep == t->asoc->ep) {
899 rcu_read_unlock();
900 return -EEXIST;
901 }
902 rcu_read_unlock();
903
904 err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
905 &t->node, sctp_hash_params);
906 if (err)
907 pr_err_once("insert transport fail, errno %d\n", err);
908
909 return err;
910 }
911
912 void sctp_unhash_transport(struct sctp_transport *t)
913 {
914 if (t->asoc->temp)
915 return;
916
917 rhltable_remove(&sctp_transport_hashtable, &t->node,
918 sctp_hash_params);
919 }
920
921 /* return a transport with holding it */
922 struct sctp_transport *sctp_addrs_lookup_transport(
923 struct net *net,
924 const union sctp_addr *laddr,
925 const union sctp_addr *paddr)
926 {
927 struct rhlist_head *tmp, *list;
928 struct sctp_transport *t;
929 struct sctp_hash_cmp_arg arg = {
930 .paddr = paddr,
931 .net = net,
932 .lport = laddr->v4.sin_port,
933 };
934
935 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
936 sctp_hash_params);
937
938 rhl_for_each_entry_rcu(t, tmp, list, node) {
939 if (!sctp_transport_hold(t))
940 continue;
941
942 if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
943 laddr, sctp_sk(t->asoc->base.sk)))
944 return t;
945 sctp_transport_put(t);
946 }
947
948 return NULL;
949 }
950
951 /* return a transport without holding it, as it's only used under sock lock */
952 struct sctp_transport *sctp_epaddr_lookup_transport(
953 const struct sctp_endpoint *ep,
954 const union sctp_addr *paddr)
955 {
956 struct net *net = sock_net(ep->base.sk);
957 struct rhlist_head *tmp, *list;
958 struct sctp_transport *t;
959 struct sctp_hash_cmp_arg arg = {
960 .paddr = paddr,
961 .net = net,
962 .lport = htons(ep->base.bind_addr.port),
963 };
964
965 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
966 sctp_hash_params);
967
968 rhl_for_each_entry_rcu(t, tmp, list, node)
969 if (ep == t->asoc->ep)
970 return t;
971
972 return NULL;
973 }
974
975 /* Look up an association. */
976 static struct sctp_association *__sctp_lookup_association(
977 struct net *net,
978 const union sctp_addr *local,
979 const union sctp_addr *peer,
980 struct sctp_transport **pt)
981 {
982 struct sctp_transport *t;
983 struct sctp_association *asoc = NULL;
984
985 t = sctp_addrs_lookup_transport(net, local, peer);
986 if (!t)
987 goto out;
988
989 asoc = t->asoc;
990 *pt = t;
991
992 out:
993 return asoc;
994 }
995
996 /* Look up an association. protected by RCU read lock */
997 static
998 struct sctp_association *sctp_lookup_association(struct net *net,
999 const union sctp_addr *laddr,
1000 const union sctp_addr *paddr,
1001 struct sctp_transport **transportp)
1002 {
1003 struct sctp_association *asoc;
1004
1005 rcu_read_lock();
1006 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1007 rcu_read_unlock();
1008
1009 return asoc;
1010 }
1011
1012 /* Is there an association matching the given local and peer addresses? */
1013 int sctp_has_association(struct net *net,
1014 const union sctp_addr *laddr,
1015 const union sctp_addr *paddr)
1016 {
1017 struct sctp_association *asoc;
1018 struct sctp_transport *transport;
1019
1020 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
1021 sctp_transport_put(transport);
1022 return 1;
1023 }
1024
1025 return 0;
1026 }
1027
1028 /*
1029 * SCTP Implementors Guide, 2.18 Handling of address
1030 * parameters within the INIT or INIT-ACK.
1031 *
1032 * D) When searching for a matching TCB upon reception of an INIT
1033 * or INIT-ACK chunk the receiver SHOULD use not only the
1034 * source address of the packet (containing the INIT or
1035 * INIT-ACK) but the receiver SHOULD also use all valid
1036 * address parameters contained within the chunk.
1037 *
1038 * 2.18.3 Solution description
1039 *
1040 * This new text clearly specifies to an implementor the need
1041 * to look within the INIT or INIT-ACK. Any implementation that
1042 * does not do this, may not be able to establish associations
1043 * in certain circumstances.
1044 *
1045 */
1046 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1047 struct sk_buff *skb,
1048 const union sctp_addr *laddr, struct sctp_transport **transportp)
1049 {
1050 struct sctp_association *asoc;
1051 union sctp_addr addr;
1052 union sctp_addr *paddr = &addr;
1053 struct sctphdr *sh = sctp_hdr(skb);
1054 union sctp_params params;
1055 struct sctp_init_chunk *init;
1056 struct sctp_af *af;
1057
1058 /*
1059 * This code will NOT touch anything inside the chunk--it is
1060 * strictly READ-ONLY.
1061 *
1062 * RFC 2960 3 SCTP packet Format
1063 *
1064 * Multiple chunks can be bundled into one SCTP packet up to
1065 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1066 * COMPLETE chunks. These chunks MUST NOT be bundled with any
1067 * other chunk in a packet. See Section 6.10 for more details
1068 * on chunk bundling.
1069 */
1070
1071 /* Find the start of the TLVs and the end of the chunk. This is
1072 * the region we search for address parameters.
1073 */
1074 init = (struct sctp_init_chunk *)skb->data;
1075
1076 /* Walk the parameters looking for embedded addresses. */
1077 sctp_walk_params(params, init, init_hdr.params) {
1078
1079 /* Note: Ignoring hostname addresses. */
1080 af = sctp_get_af_specific(param_type2af(params.p->type));
1081 if (!af)
1082 continue;
1083
1084 af->from_addr_param(paddr, params.addr, sh->source, 0);
1085
1086 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1087 if (asoc)
1088 return asoc;
1089 }
1090
1091 return NULL;
1092 }
1093
1094 /* ADD-IP, Section 5.2
1095 * When an endpoint receives an ASCONF Chunk from the remote peer
1096 * special procedures may be needed to identify the association the
1097 * ASCONF Chunk is associated with. To properly find the association
1098 * the following procedures SHOULD be followed:
1099 *
1100 * D2) If the association is not found, use the address found in the
1101 * Address Parameter TLV combined with the port number found in the
1102 * SCTP common header. If found proceed to rule D4.
1103 *
1104 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1105 * address found in the ASCONF Address Parameter TLV of each of the
1106 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1107 */
1108 static struct sctp_association *__sctp_rcv_asconf_lookup(
1109 struct net *net,
1110 struct sctp_chunkhdr *ch,
1111 const union sctp_addr *laddr,
1112 __be16 peer_port,
1113 struct sctp_transport **transportp)
1114 {
1115 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1116 struct sctp_af *af;
1117 union sctp_addr_param *param;
1118 union sctp_addr paddr;
1119
1120 /* Skip over the ADDIP header and find the Address parameter */
1121 param = (union sctp_addr_param *)(asconf + 1);
1122
1123 af = sctp_get_af_specific(param_type2af(param->p.type));
1124 if (unlikely(!af))
1125 return NULL;
1126
1127 af->from_addr_param(&paddr, param, peer_port, 0);
1128
1129 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1130 }
1131
1132
1133 /* SCTP-AUTH, Section 6.3:
1134 * If the receiver does not find a STCB for a packet containing an AUTH
1135 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1136 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1137 * association.
1138 *
1139 * This means that any chunks that can help us identify the association need
1140 * to be looked at to find this association.
1141 */
1142 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1143 struct sk_buff *skb,
1144 const union sctp_addr *laddr,
1145 struct sctp_transport **transportp)
1146 {
1147 struct sctp_association *asoc = NULL;
1148 struct sctp_chunkhdr *ch;
1149 int have_auth = 0;
1150 unsigned int chunk_num = 1;
1151 __u8 *ch_end;
1152
1153 /* Walk through the chunks looking for AUTH or ASCONF chunks
1154 * to help us find the association.
1155 */
1156 ch = (struct sctp_chunkhdr *)skb->data;
1157 do {
1158 /* Break out if chunk length is less then minimal. */
1159 if (ntohs(ch->length) < sizeof(*ch))
1160 break;
1161
1162 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1163 if (ch_end > skb_tail_pointer(skb))
1164 break;
1165
1166 switch (ch->type) {
1167 case SCTP_CID_AUTH:
1168 have_auth = chunk_num;
1169 break;
1170
1171 case SCTP_CID_COOKIE_ECHO:
1172 /* If a packet arrives containing an AUTH chunk as
1173 * a first chunk, a COOKIE-ECHO chunk as the second
1174 * chunk, and possibly more chunks after them, and
1175 * the receiver does not have an STCB for that
1176 * packet, then authentication is based on
1177 * the contents of the COOKIE- ECHO chunk.
1178 */
1179 if (have_auth == 1 && chunk_num == 2)
1180 return NULL;
1181 break;
1182
1183 case SCTP_CID_ASCONF:
1184 if (have_auth || net->sctp.addip_noauth)
1185 asoc = __sctp_rcv_asconf_lookup(
1186 net, ch, laddr,
1187 sctp_hdr(skb)->source,
1188 transportp);
1189 default:
1190 break;
1191 }
1192
1193 if (asoc)
1194 break;
1195
1196 ch = (struct sctp_chunkhdr *)ch_end;
1197 chunk_num++;
1198 } while (ch_end < skb_tail_pointer(skb));
1199
1200 return asoc;
1201 }
1202
1203 /*
1204 * There are circumstances when we need to look inside the SCTP packet
1205 * for information to help us find the association. Examples
1206 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1207 * chunks.
1208 */
1209 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1210 struct sk_buff *skb,
1211 const union sctp_addr *laddr,
1212 struct sctp_transport **transportp)
1213 {
1214 struct sctp_chunkhdr *ch;
1215
1216 /* We do not allow GSO frames here as we need to linearize and
1217 * then cannot guarantee frame boundaries. This shouldn't be an
1218 * issue as packets hitting this are mostly INIT or INIT-ACK and
1219 * those cannot be on GSO-style anyway.
1220 */
1221 if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP)
1222 return NULL;
1223
1224 ch = (struct sctp_chunkhdr *)skb->data;
1225
1226 /* The code below will attempt to walk the chunk and extract
1227 * parameter information. Before we do that, we need to verify
1228 * that the chunk length doesn't cause overflow. Otherwise, we'll
1229 * walk off the end.
1230 */
1231 if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1232 return NULL;
1233
1234 /* If this is INIT/INIT-ACK look inside the chunk too. */
1235 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1236 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1237
1238 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1239 }
1240
1241 /* Lookup an association for an inbound skb. */
1242 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1243 struct sk_buff *skb,
1244 const union sctp_addr *paddr,
1245 const union sctp_addr *laddr,
1246 struct sctp_transport **transportp)
1247 {
1248 struct sctp_association *asoc;
1249
1250 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1251 if (asoc)
1252 goto out;
1253
1254 /* Further lookup for INIT/INIT-ACK packets.
1255 * SCTP Implementors Guide, 2.18 Handling of address
1256 * parameters within the INIT or INIT-ACK.
1257 */
1258 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1259 if (asoc)
1260 goto out;
1261
1262 if (paddr->sa.sa_family == AF_INET)
1263 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1264 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1265 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1266 else
1267 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1268 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1269 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1270
1271 out:
1272 return asoc;
1273 }