remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 struct sctp_association *asoc,
68 const struct sctp_endpoint *ep,
69 const struct sock *sk,
70 enum sctp_scope scope, gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 struct sctp_paramhdr *p;
75 int i;
76
77 /* Retrieve the SCTP per socket area. */
78 sp = sctp_sk((struct sock *)sk);
79
80 /* Discarding const is appropriate here. */
81 asoc->ep = (struct sctp_endpoint *)ep;
82 asoc->base.sk = (struct sock *)sk;
83
84 sctp_endpoint_hold(asoc->ep);
85 sock_hold(asoc->base.sk);
86
87 /* Initialize the common base substructure. */
88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89
90 /* Initialize the object handling fields. */
91 refcount_set(&asoc->base.refcnt, 1);
92
93 /* Initialize the bind addr area. */
94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95
96 asoc->state = SCTP_STATE_CLOSED;
97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 asoc->user_frag = sp->user_frag;
99
100 /* Set the association max_retrans and RTO values from the
101 * socket values.
102 */
103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 asoc->pf_retrans = net->sctp.pf_retrans;
105
106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109
110 /* Initialize the association's heartbeat interval based on the
111 * sock configured value.
112 */
113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114
115 /* Initialize path max retrans value. */
116 asoc->pathmaxrxt = sp->pathmaxrxt;
117
118 /* Initialize default path MTU. */
119 asoc->pathmtu = sp->pathmtu;
120
121 /* Set association default SACK delay */
122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123 asoc->sackfreq = sp->sackfreq;
124
125 /* Set the association default flags controlling
126 * Heartbeat, SACK delay, and Path MTU Discovery.
127 */
128 asoc->param_flags = sp->param_flags;
129
130 /* Initialize the maximum number of new data packets that can be sent
131 * in a burst.
132 */
133 asoc->max_burst = sp->max_burst;
134
135 /* initialize association timers */
136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
139
140 /* sctpimpguide Section 2.12.2
141 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
142 * recommended value of 5 times 'RTO.Max'.
143 */
144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
145 = 5 * asoc->rto_max;
146
147 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
149
150 /* Initializes the timers */
151 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
152 setup_timer(&asoc->timers[i], sctp_timer_events[i],
153 (unsigned long)asoc);
154
155 /* Pull default initialization values from the sock options.
156 * Note: This assumes that the values have already been
157 * validated in the sock.
158 */
159 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
160 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
161 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
162
163 asoc->max_init_timeo =
164 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
165
166 /* Set the local window size for receive.
167 * This is also the rcvbuf space per association.
168 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
169 * 1500 bytes in one SCTP packet.
170 */
171 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
172 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
173 else
174 asoc->rwnd = sk->sk_rcvbuf/2;
175
176 asoc->a_rwnd = asoc->rwnd;
177
178 /* Use my own max window until I learn something better. */
179 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
180
181 /* Initialize the receive memory counter */
182 atomic_set(&asoc->rmem_alloc, 0);
183
184 init_waitqueue_head(&asoc->wait);
185
186 asoc->c.my_vtag = sctp_generate_tag(ep);
187 asoc->c.my_port = ep->base.bind_addr.port;
188
189 asoc->c.initial_tsn = sctp_generate_tsn(ep);
190
191 asoc->next_tsn = asoc->c.initial_tsn;
192
193 asoc->ctsn_ack_point = asoc->next_tsn - 1;
194 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
195 asoc->highest_sacked = asoc->ctsn_ack_point;
196 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
197
198 /* ADDIP Section 4.1 Asconf Chunk Procedures
199 *
200 * When an endpoint has an ASCONF signaled change to be sent to the
201 * remote endpoint it should do the following:
202 * ...
203 * A2) a serial number should be assigned to the chunk. The serial
204 * number SHOULD be a monotonically increasing number. The serial
205 * numbers SHOULD be initialized at the start of the
206 * association to the same value as the initial TSN.
207 */
208 asoc->addip_serial = asoc->c.initial_tsn;
209 asoc->strreset_outseq = asoc->c.initial_tsn;
210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217 /* RFC 2960 5.1 Normal Establishment of an Association
218 *
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
224 *
225 * [We implement this by telling a new association that it
226 * already received one packet.]
227 */
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
230
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
235 */
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
238
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
248
249 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
250 0, gfp))
251 goto fail_init;
252
253 /* Assume that peer would support both address types unless we are
254 * told otherwise.
255 */
256 asoc->peer.ipv4_address = 1;
257 if (asoc->base.sk->sk_family == PF_INET6)
258 asoc->peer.ipv6_address = 1;
259 INIT_LIST_HEAD(&asoc->asocs);
260
261 asoc->default_stream = sp->default_stream;
262 asoc->default_ppid = sp->default_ppid;
263 asoc->default_flags = sp->default_flags;
264 asoc->default_context = sp->default_context;
265 asoc->default_timetolive = sp->default_timetolive;
266 asoc->default_rcv_context = sp->default_rcv_context;
267
268 /* AUTH related initializations */
269 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
270 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
271 goto stream_free;
272
273 asoc->active_key_id = ep->active_key_id;
274 asoc->prsctp_enable = ep->prsctp_enable;
275 asoc->reconf_enable = ep->reconf_enable;
276 asoc->strreset_enable = ep->strreset_enable;
277
278 /* Save the hmacs and chunks list into this association */
279 if (ep->auth_hmacs_list)
280 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
281 ntohs(ep->auth_hmacs_list->param_hdr.length));
282 if (ep->auth_chunk_list)
283 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
284 ntohs(ep->auth_chunk_list->param_hdr.length));
285
286 /* Get the AUTH random number for this association */
287 p = (struct sctp_paramhdr *)asoc->c.auth_random;
288 p->type = SCTP_PARAM_RANDOM;
289 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
290 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
291
292 return asoc;
293
294 stream_free:
295 sctp_stream_free(&asoc->stream);
296 fail_init:
297 sock_put(asoc->base.sk);
298 sctp_endpoint_put(asoc->ep);
299 return NULL;
300 }
301
302 /* Allocate and initialize a new association */
303 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
304 const struct sock *sk,
305 enum sctp_scope scope, gfp_t gfp)
306 {
307 struct sctp_association *asoc;
308
309 asoc = kzalloc(sizeof(*asoc), gfp);
310 if (!asoc)
311 goto fail;
312
313 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
314 goto fail_init;
315
316 SCTP_DBG_OBJCNT_INC(assoc);
317
318 pr_debug("Created asoc %p\n", asoc);
319
320 return asoc;
321
322 fail_init:
323 kfree(asoc);
324 fail:
325 return NULL;
326 }
327
328 /* Free this association if possible. There may still be users, so
329 * the actual deallocation may be delayed.
330 */
331 void sctp_association_free(struct sctp_association *asoc)
332 {
333 struct sock *sk = asoc->base.sk;
334 struct sctp_transport *transport;
335 struct list_head *pos, *temp;
336 int i;
337
338 /* Only real associations count against the endpoint, so
339 * don't bother for if this is a temporary association.
340 */
341 if (!list_empty(&asoc->asocs)) {
342 list_del(&asoc->asocs);
343
344 /* Decrement the backlog value for a TCP-style listening
345 * socket.
346 */
347 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
348 sk->sk_ack_backlog--;
349 }
350
351 /* Mark as dead, so other users can know this structure is
352 * going away.
353 */
354 asoc->base.dead = true;
355
356 /* Dispose of any data lying around in the outqueue. */
357 sctp_outq_free(&asoc->outqueue);
358
359 /* Dispose of any pending messages for the upper layer. */
360 sctp_ulpq_free(&asoc->ulpq);
361
362 /* Dispose of any pending chunks on the inqueue. */
363 sctp_inq_free(&asoc->base.inqueue);
364
365 sctp_tsnmap_free(&asoc->peer.tsn_map);
366
367 /* Free stream information. */
368 sctp_stream_free(&asoc->stream);
369
370 if (asoc->strreset_chunk)
371 sctp_chunk_free(asoc->strreset_chunk);
372
373 /* Clean up the bound address list. */
374 sctp_bind_addr_free(&asoc->base.bind_addr);
375
376 /* Do we need to go through all of our timers and
377 * delete them? To be safe we will try to delete all, but we
378 * should be able to go through and make a guess based
379 * on our state.
380 */
381 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
382 if (del_timer(&asoc->timers[i]))
383 sctp_association_put(asoc);
384 }
385
386 /* Free peer's cached cookie. */
387 kfree(asoc->peer.cookie);
388 kfree(asoc->peer.peer_random);
389 kfree(asoc->peer.peer_chunks);
390 kfree(asoc->peer.peer_hmacs);
391
392 /* Release the transport structures. */
393 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
394 transport = list_entry(pos, struct sctp_transport, transports);
395 list_del_rcu(pos);
396 sctp_unhash_transport(transport);
397 sctp_transport_free(transport);
398 }
399
400 asoc->peer.transport_count = 0;
401
402 sctp_asconf_queue_teardown(asoc);
403
404 /* Free pending address space being deleted */
405 kfree(asoc->asconf_addr_del_pending);
406
407 /* AUTH - Free the endpoint shared keys */
408 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
409
410 /* AUTH - Free the association shared key */
411 sctp_auth_key_put(asoc->asoc_shared_key);
412
413 sctp_association_put(asoc);
414 }
415
416 /* Cleanup and free up an association. */
417 static void sctp_association_destroy(struct sctp_association *asoc)
418 {
419 if (unlikely(!asoc->base.dead)) {
420 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
421 return;
422 }
423
424 sctp_endpoint_put(asoc->ep);
425 sock_put(asoc->base.sk);
426
427 if (asoc->assoc_id != 0) {
428 spin_lock_bh(&sctp_assocs_id_lock);
429 idr_remove(&sctp_assocs_id, asoc->assoc_id);
430 spin_unlock_bh(&sctp_assocs_id_lock);
431 }
432
433 WARN_ON(atomic_read(&asoc->rmem_alloc));
434
435 kfree_rcu(asoc, rcu);
436 SCTP_DBG_OBJCNT_DEC(assoc);
437 }
438
439 /* Change the primary destination address for the peer. */
440 void sctp_assoc_set_primary(struct sctp_association *asoc,
441 struct sctp_transport *transport)
442 {
443 int changeover = 0;
444
445 /* it's a changeover only if we already have a primary path
446 * that we are changing
447 */
448 if (asoc->peer.primary_path != NULL &&
449 asoc->peer.primary_path != transport)
450 changeover = 1 ;
451
452 asoc->peer.primary_path = transport;
453
454 /* Set a default msg_name for events. */
455 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
456 sizeof(union sctp_addr));
457
458 /* If the primary path is changing, assume that the
459 * user wants to use this new path.
460 */
461 if ((transport->state == SCTP_ACTIVE) ||
462 (transport->state == SCTP_UNKNOWN))
463 asoc->peer.active_path = transport;
464
465 /*
466 * SFR-CACC algorithm:
467 * Upon the receipt of a request to change the primary
468 * destination address, on the data structure for the new
469 * primary destination, the sender MUST do the following:
470 *
471 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
472 * to this destination address earlier. The sender MUST set
473 * CYCLING_CHANGEOVER to indicate that this switch is a
474 * double switch to the same destination address.
475 *
476 * Really, only bother is we have data queued or outstanding on
477 * the association.
478 */
479 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
480 return;
481
482 if (transport->cacc.changeover_active)
483 transport->cacc.cycling_changeover = changeover;
484
485 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
486 * a changeover has occurred.
487 */
488 transport->cacc.changeover_active = changeover;
489
490 /* 3) The sender MUST store the next TSN to be sent in
491 * next_tsn_at_change.
492 */
493 transport->cacc.next_tsn_at_change = asoc->next_tsn;
494 }
495
496 /* Remove a transport from an association. */
497 void sctp_assoc_rm_peer(struct sctp_association *asoc,
498 struct sctp_transport *peer)
499 {
500 struct sctp_transport *transport;
501 struct list_head *pos;
502 struct sctp_chunk *ch;
503
504 pr_debug("%s: association:%p addr:%pISpc\n",
505 __func__, asoc, &peer->ipaddr.sa);
506
507 /* If we are to remove the current retran_path, update it
508 * to the next peer before removing this peer from the list.
509 */
510 if (asoc->peer.retran_path == peer)
511 sctp_assoc_update_retran_path(asoc);
512
513 /* Remove this peer from the list. */
514 list_del_rcu(&peer->transports);
515 /* Remove this peer from the transport hashtable */
516 sctp_unhash_transport(peer);
517
518 /* Get the first transport of asoc. */
519 pos = asoc->peer.transport_addr_list.next;
520 transport = list_entry(pos, struct sctp_transport, transports);
521
522 /* Update any entries that match the peer to be deleted. */
523 if (asoc->peer.primary_path == peer)
524 sctp_assoc_set_primary(asoc, transport);
525 if (asoc->peer.active_path == peer)
526 asoc->peer.active_path = transport;
527 if (asoc->peer.retran_path == peer)
528 asoc->peer.retran_path = transport;
529 if (asoc->peer.last_data_from == peer)
530 asoc->peer.last_data_from = transport;
531
532 if (asoc->strreset_chunk &&
533 asoc->strreset_chunk->transport == peer) {
534 asoc->strreset_chunk->transport = transport;
535 sctp_transport_reset_reconf_timer(transport);
536 }
537
538 /* If we remove the transport an INIT was last sent to, set it to
539 * NULL. Combined with the update of the retran path above, this
540 * will cause the next INIT to be sent to the next available
541 * transport, maintaining the cycle.
542 */
543 if (asoc->init_last_sent_to == peer)
544 asoc->init_last_sent_to = NULL;
545
546 /* If we remove the transport an SHUTDOWN was last sent to, set it
547 * to NULL. Combined with the update of the retran path above, this
548 * will cause the next SHUTDOWN to be sent to the next available
549 * transport, maintaining the cycle.
550 */
551 if (asoc->shutdown_last_sent_to == peer)
552 asoc->shutdown_last_sent_to = NULL;
553
554 /* If we remove the transport an ASCONF was last sent to, set it to
555 * NULL.
556 */
557 if (asoc->addip_last_asconf &&
558 asoc->addip_last_asconf->transport == peer)
559 asoc->addip_last_asconf->transport = NULL;
560
561 /* If we have something on the transmitted list, we have to
562 * save it off. The best place is the active path.
563 */
564 if (!list_empty(&peer->transmitted)) {
565 struct sctp_transport *active = asoc->peer.active_path;
566
567 /* Reset the transport of each chunk on this list */
568 list_for_each_entry(ch, &peer->transmitted,
569 transmitted_list) {
570 ch->transport = NULL;
571 ch->rtt_in_progress = 0;
572 }
573
574 list_splice_tail_init(&peer->transmitted,
575 &active->transmitted);
576
577 /* Start a T3 timer here in case it wasn't running so
578 * that these migrated packets have a chance to get
579 * retransmitted.
580 */
581 if (!timer_pending(&active->T3_rtx_timer))
582 if (!mod_timer(&active->T3_rtx_timer,
583 jiffies + active->rto))
584 sctp_transport_hold(active);
585 }
586
587 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
588 if (ch->transport == peer)
589 ch->transport = NULL;
590
591 asoc->peer.transport_count--;
592
593 sctp_transport_free(peer);
594 }
595
596 /* Add a transport address to an association. */
597 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
598 const union sctp_addr *addr,
599 const gfp_t gfp,
600 const int peer_state)
601 {
602 struct net *net = sock_net(asoc->base.sk);
603 struct sctp_transport *peer;
604 struct sctp_sock *sp;
605 unsigned short port;
606
607 sp = sctp_sk(asoc->base.sk);
608
609 /* AF_INET and AF_INET6 share common port field. */
610 port = ntohs(addr->v4.sin_port);
611
612 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
613 asoc, &addr->sa, peer_state);
614
615 /* Set the port if it has not been set yet. */
616 if (0 == asoc->peer.port)
617 asoc->peer.port = port;
618
619 /* Check to see if this is a duplicate. */
620 peer = sctp_assoc_lookup_paddr(asoc, addr);
621 if (peer) {
622 /* An UNKNOWN state is only set on transports added by
623 * user in sctp_connectx() call. Such transports should be
624 * considered CONFIRMED per RFC 4960, Section 5.4.
625 */
626 if (peer->state == SCTP_UNKNOWN) {
627 peer->state = SCTP_ACTIVE;
628 }
629 return peer;
630 }
631
632 peer = sctp_transport_new(net, addr, gfp);
633 if (!peer)
634 return NULL;
635
636 sctp_transport_set_owner(peer, asoc);
637
638 /* Initialize the peer's heartbeat interval based on the
639 * association configured value.
640 */
641 peer->hbinterval = asoc->hbinterval;
642
643 /* Set the path max_retrans. */
644 peer->pathmaxrxt = asoc->pathmaxrxt;
645
646 /* And the partial failure retrans threshold */
647 peer->pf_retrans = asoc->pf_retrans;
648
649 /* Initialize the peer's SACK delay timeout based on the
650 * association configured value.
651 */
652 peer->sackdelay = asoc->sackdelay;
653 peer->sackfreq = asoc->sackfreq;
654
655 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
656 * based on association setting.
657 */
658 peer->param_flags = asoc->param_flags;
659
660 sctp_transport_route(peer, NULL, sp);
661
662 /* Initialize the pmtu of the transport. */
663 if (peer->param_flags & SPP_PMTUD_DISABLE) {
664 if (asoc->pathmtu)
665 peer->pathmtu = asoc->pathmtu;
666 else
667 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
668 }
669
670 /* If this is the first transport addr on this association,
671 * initialize the association PMTU to the peer's PMTU.
672 * If not and the current association PMTU is higher than the new
673 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
674 */
675 if (asoc->pathmtu)
676 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
677 else
678 asoc->pathmtu = peer->pathmtu;
679
680 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
681 asoc->pathmtu);
682
683 peer->pmtu_pending = 0;
684
685 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
686
687 /* The asoc->peer.port might not be meaningful yet, but
688 * initialize the packet structure anyway.
689 */
690 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
691 asoc->peer.port);
692
693 /* 7.2.1 Slow-Start
694 *
695 * o The initial cwnd before DATA transmission or after a sufficiently
696 * long idle period MUST be set to
697 * min(4*MTU, max(2*MTU, 4380 bytes))
698 *
699 * o The initial value of ssthresh MAY be arbitrarily high
700 * (for example, implementations MAY use the size of the
701 * receiver advertised window).
702 */
703 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
704
705 /* At this point, we may not have the receiver's advertised window,
706 * so initialize ssthresh to the default value and it will be set
707 * later when we process the INIT.
708 */
709 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
710
711 peer->partial_bytes_acked = 0;
712 peer->flight_size = 0;
713 peer->burst_limited = 0;
714
715 /* Set the transport's RTO.initial value */
716 peer->rto = asoc->rto_initial;
717 sctp_max_rto(asoc, peer);
718
719 /* Set the peer's active state. */
720 peer->state = peer_state;
721
722 /* Add this peer into the transport hashtable */
723 if (sctp_hash_transport(peer)) {
724 sctp_transport_free(peer);
725 return NULL;
726 }
727
728 /* Attach the remote transport to our asoc. */
729 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
730 asoc->peer.transport_count++;
731
732 /* If we do not yet have a primary path, set one. */
733 if (!asoc->peer.primary_path) {
734 sctp_assoc_set_primary(asoc, peer);
735 asoc->peer.retran_path = peer;
736 }
737
738 if (asoc->peer.active_path == asoc->peer.retran_path &&
739 peer->state != SCTP_UNCONFIRMED) {
740 asoc->peer.retran_path = peer;
741 }
742
743 return peer;
744 }
745
746 /* Delete a transport address from an association. */
747 void sctp_assoc_del_peer(struct sctp_association *asoc,
748 const union sctp_addr *addr)
749 {
750 struct list_head *pos;
751 struct list_head *temp;
752 struct sctp_transport *transport;
753
754 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
755 transport = list_entry(pos, struct sctp_transport, transports);
756 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
757 /* Do book keeping for removing the peer and free it. */
758 sctp_assoc_rm_peer(asoc, transport);
759 break;
760 }
761 }
762 }
763
764 /* Lookup a transport by address. */
765 struct sctp_transport *sctp_assoc_lookup_paddr(
766 const struct sctp_association *asoc,
767 const union sctp_addr *address)
768 {
769 struct sctp_transport *t;
770
771 /* Cycle through all transports searching for a peer address. */
772
773 list_for_each_entry(t, &asoc->peer.transport_addr_list,
774 transports) {
775 if (sctp_cmp_addr_exact(address, &t->ipaddr))
776 return t;
777 }
778
779 return NULL;
780 }
781
782 /* Remove all transports except a give one */
783 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
784 struct sctp_transport *primary)
785 {
786 struct sctp_transport *temp;
787 struct sctp_transport *t;
788
789 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
790 transports) {
791 /* if the current transport is not the primary one, delete it */
792 if (t != primary)
793 sctp_assoc_rm_peer(asoc, t);
794 }
795 }
796
797 /* Engage in transport control operations.
798 * Mark the transport up or down and send a notification to the user.
799 * Select and update the new active and retran paths.
800 */
801 void sctp_assoc_control_transport(struct sctp_association *asoc,
802 struct sctp_transport *transport,
803 enum sctp_transport_cmd command,
804 sctp_sn_error_t error)
805 {
806 struct sctp_ulpevent *event;
807 struct sockaddr_storage addr;
808 int spc_state = 0;
809 bool ulp_notify = true;
810
811 /* Record the transition on the transport. */
812 switch (command) {
813 case SCTP_TRANSPORT_UP:
814 /* If we are moving from UNCONFIRMED state due
815 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
816 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
817 */
818 if (SCTP_UNCONFIRMED == transport->state &&
819 SCTP_HEARTBEAT_SUCCESS == error)
820 spc_state = SCTP_ADDR_CONFIRMED;
821 else
822 spc_state = SCTP_ADDR_AVAILABLE;
823 /* Don't inform ULP about transition from PF to
824 * active state and set cwnd to 1 MTU, see SCTP
825 * Quick failover draft section 5.1, point 5
826 */
827 if (transport->state == SCTP_PF) {
828 ulp_notify = false;
829 transport->cwnd = asoc->pathmtu;
830 }
831 transport->state = SCTP_ACTIVE;
832 break;
833
834 case SCTP_TRANSPORT_DOWN:
835 /* If the transport was never confirmed, do not transition it
836 * to inactive state. Also, release the cached route since
837 * there may be a better route next time.
838 */
839 if (transport->state != SCTP_UNCONFIRMED)
840 transport->state = SCTP_INACTIVE;
841 else {
842 sctp_transport_dst_release(transport);
843 ulp_notify = false;
844 }
845
846 spc_state = SCTP_ADDR_UNREACHABLE;
847 break;
848
849 case SCTP_TRANSPORT_PF:
850 transport->state = SCTP_PF;
851 ulp_notify = false;
852 break;
853
854 default:
855 return;
856 }
857
858 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
859 * to the user.
860 */
861 if (ulp_notify) {
862 memset(&addr, 0, sizeof(struct sockaddr_storage));
863 memcpy(&addr, &transport->ipaddr,
864 transport->af_specific->sockaddr_len);
865
866 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
867 0, spc_state, error, GFP_ATOMIC);
868 if (event)
869 sctp_ulpq_tail_event(&asoc->ulpq, event);
870 }
871
872 /* Select new active and retran paths. */
873 sctp_select_active_and_retran_path(asoc);
874 }
875
876 /* Hold a reference to an association. */
877 void sctp_association_hold(struct sctp_association *asoc)
878 {
879 refcount_inc(&asoc->base.refcnt);
880 }
881
882 /* Release a reference to an association and cleanup
883 * if there are no more references.
884 */
885 void sctp_association_put(struct sctp_association *asoc)
886 {
887 if (refcount_dec_and_test(&asoc->base.refcnt))
888 sctp_association_destroy(asoc);
889 }
890
891 /* Allocate the next TSN, Transmission Sequence Number, for the given
892 * association.
893 */
894 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
895 {
896 /* From Section 1.6 Serial Number Arithmetic:
897 * Transmission Sequence Numbers wrap around when they reach
898 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
899 * after transmitting TSN = 2*32 - 1 is TSN = 0.
900 */
901 __u32 retval = asoc->next_tsn;
902 asoc->next_tsn++;
903 asoc->unack_data++;
904
905 return retval;
906 }
907
908 /* Compare two addresses to see if they match. Wildcard addresses
909 * only match themselves.
910 */
911 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
912 const union sctp_addr *ss2)
913 {
914 struct sctp_af *af;
915
916 af = sctp_get_af_specific(ss1->sa.sa_family);
917 if (unlikely(!af))
918 return 0;
919
920 return af->cmp_addr(ss1, ss2);
921 }
922
923 /* Return an ecne chunk to get prepended to a packet.
924 * Note: We are sly and return a shared, prealloced chunk. FIXME:
925 * No we don't, but we could/should.
926 */
927 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
928 {
929 if (!asoc->need_ecne)
930 return NULL;
931
932 /* Send ECNE if needed.
933 * Not being able to allocate a chunk here is not deadly.
934 */
935 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
936 }
937
938 /*
939 * Find which transport this TSN was sent on.
940 */
941 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
942 __u32 tsn)
943 {
944 struct sctp_transport *active;
945 struct sctp_transport *match;
946 struct sctp_transport *transport;
947 struct sctp_chunk *chunk;
948 __be32 key = htonl(tsn);
949
950 match = NULL;
951
952 /*
953 * FIXME: In general, find a more efficient data structure for
954 * searching.
955 */
956
957 /*
958 * The general strategy is to search each transport's transmitted
959 * list. Return which transport this TSN lives on.
960 *
961 * Let's be hopeful and check the active_path first.
962 * Another optimization would be to know if there is only one
963 * outbound path and not have to look for the TSN at all.
964 *
965 */
966
967 active = asoc->peer.active_path;
968
969 list_for_each_entry(chunk, &active->transmitted,
970 transmitted_list) {
971
972 if (key == chunk->subh.data_hdr->tsn) {
973 match = active;
974 goto out;
975 }
976 }
977
978 /* If not found, go search all the other transports. */
979 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
980 transports) {
981
982 if (transport == active)
983 continue;
984 list_for_each_entry(chunk, &transport->transmitted,
985 transmitted_list) {
986 if (key == chunk->subh.data_hdr->tsn) {
987 match = transport;
988 goto out;
989 }
990 }
991 }
992 out:
993 return match;
994 }
995
996 /* Is this the association we are looking for? */
997 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
998 struct net *net,
999 const union sctp_addr *laddr,
1000 const union sctp_addr *paddr)
1001 {
1002 struct sctp_transport *transport;
1003
1004 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1005 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1006 net_eq(sock_net(asoc->base.sk), net)) {
1007 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1008 if (!transport)
1009 goto out;
1010
1011 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1012 sctp_sk(asoc->base.sk)))
1013 goto out;
1014 }
1015 transport = NULL;
1016
1017 out:
1018 return transport;
1019 }
1020
1021 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1022 static void sctp_assoc_bh_rcv(struct work_struct *work)
1023 {
1024 struct sctp_association *asoc =
1025 container_of(work, struct sctp_association,
1026 base.inqueue.immediate);
1027 struct net *net = sock_net(asoc->base.sk);
1028 union sctp_subtype subtype;
1029 struct sctp_endpoint *ep;
1030 struct sctp_chunk *chunk;
1031 struct sctp_inq *inqueue;
1032 int first_time = 1; /* is this the first time through the loop */
1033 int error = 0;
1034 int state;
1035
1036 /* The association should be held so we should be safe. */
1037 ep = asoc->ep;
1038
1039 inqueue = &asoc->base.inqueue;
1040 sctp_association_hold(asoc);
1041 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1042 state = asoc->state;
1043 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1044
1045 /* If the first chunk in the packet is AUTH, do special
1046 * processing specified in Section 6.3 of SCTP-AUTH spec
1047 */
1048 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1049 struct sctp_chunkhdr *next_hdr;
1050
1051 next_hdr = sctp_inq_peek(inqueue);
1052 if (!next_hdr)
1053 goto normal;
1054
1055 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1056 * chunk while saving a pointer to it so we can do
1057 * Authentication later (during cookie-echo
1058 * processing).
1059 */
1060 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1061 chunk->auth_chunk = skb_clone(chunk->skb,
1062 GFP_ATOMIC);
1063 chunk->auth = 1;
1064 continue;
1065 }
1066 }
1067
1068 normal:
1069 /* SCTP-AUTH, Section 6.3:
1070 * The receiver has a list of chunk types which it expects
1071 * to be received only after an AUTH-chunk. This list has
1072 * been sent to the peer during the association setup. It
1073 * MUST silently discard these chunks if they are not placed
1074 * after an AUTH chunk in the packet.
1075 */
1076 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1077 continue;
1078
1079 /* Remember where the last DATA chunk came from so we
1080 * know where to send the SACK.
1081 */
1082 if (sctp_chunk_is_data(chunk))
1083 asoc->peer.last_data_from = chunk->transport;
1084 else {
1085 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1086 asoc->stats.ictrlchunks++;
1087 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1088 asoc->stats.isacks++;
1089 }
1090
1091 if (chunk->transport)
1092 chunk->transport->last_time_heard = ktime_get();
1093
1094 /* Run through the state machine. */
1095 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1096 state, ep, asoc, chunk, GFP_ATOMIC);
1097
1098 /* Check to see if the association is freed in response to
1099 * the incoming chunk. If so, get out of the while loop.
1100 */
1101 if (asoc->base.dead)
1102 break;
1103
1104 /* If there is an error on chunk, discard this packet. */
1105 if (error && chunk)
1106 chunk->pdiscard = 1;
1107
1108 if (first_time)
1109 first_time = 0;
1110 }
1111 sctp_association_put(asoc);
1112 }
1113
1114 /* This routine moves an association from its old sk to a new sk. */
1115 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1116 {
1117 struct sctp_sock *newsp = sctp_sk(newsk);
1118 struct sock *oldsk = assoc->base.sk;
1119
1120 /* Delete the association from the old endpoint's list of
1121 * associations.
1122 */
1123 list_del_init(&assoc->asocs);
1124
1125 /* Decrement the backlog value for a TCP-style socket. */
1126 if (sctp_style(oldsk, TCP))
1127 oldsk->sk_ack_backlog--;
1128
1129 /* Release references to the old endpoint and the sock. */
1130 sctp_endpoint_put(assoc->ep);
1131 sock_put(assoc->base.sk);
1132
1133 /* Get a reference to the new endpoint. */
1134 assoc->ep = newsp->ep;
1135 sctp_endpoint_hold(assoc->ep);
1136
1137 /* Get a reference to the new sock. */
1138 assoc->base.sk = newsk;
1139 sock_hold(assoc->base.sk);
1140
1141 /* Add the association to the new endpoint's list of associations. */
1142 sctp_endpoint_add_asoc(newsp->ep, assoc);
1143 }
1144
1145 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1146 int sctp_assoc_update(struct sctp_association *asoc,
1147 struct sctp_association *new)
1148 {
1149 struct sctp_transport *trans;
1150 struct list_head *pos, *temp;
1151
1152 /* Copy in new parameters of peer. */
1153 asoc->c = new->c;
1154 asoc->peer.rwnd = new->peer.rwnd;
1155 asoc->peer.sack_needed = new->peer.sack_needed;
1156 asoc->peer.auth_capable = new->peer.auth_capable;
1157 asoc->peer.i = new->peer.i;
1158
1159 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1160 asoc->peer.i.initial_tsn, GFP_ATOMIC))
1161 return -ENOMEM;
1162
1163 /* Remove any peer addresses not present in the new association. */
1164 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1165 trans = list_entry(pos, struct sctp_transport, transports);
1166 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1167 sctp_assoc_rm_peer(asoc, trans);
1168 continue;
1169 }
1170
1171 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1172 sctp_transport_reset(trans);
1173 }
1174
1175 /* If the case is A (association restart), use
1176 * initial_tsn as next_tsn. If the case is B, use
1177 * current next_tsn in case data sent to peer
1178 * has been discarded and needs retransmission.
1179 */
1180 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1181 asoc->next_tsn = new->next_tsn;
1182 asoc->ctsn_ack_point = new->ctsn_ack_point;
1183 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1184
1185 /* Reinitialize SSN for both local streams
1186 * and peer's streams.
1187 */
1188 sctp_stream_clear(&asoc->stream);
1189
1190 /* Flush the ULP reassembly and ordered queue.
1191 * Any data there will now be stale and will
1192 * cause problems.
1193 */
1194 sctp_ulpq_flush(&asoc->ulpq);
1195
1196 /* reset the overall association error count so
1197 * that the restarted association doesn't get torn
1198 * down on the next retransmission timer.
1199 */
1200 asoc->overall_error_count = 0;
1201
1202 } else {
1203 /* Add any peer addresses from the new association. */
1204 list_for_each_entry(trans, &new->peer.transport_addr_list,
1205 transports)
1206 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1207 !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1208 GFP_ATOMIC, trans->state))
1209 return -ENOMEM;
1210
1211 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1212 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1213
1214 if (sctp_state(asoc, COOKIE_WAIT))
1215 sctp_stream_update(&asoc->stream, &new->stream);
1216
1217 /* get a new assoc id if we don't have one yet. */
1218 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1219 return -ENOMEM;
1220 }
1221
1222 /* SCTP-AUTH: Save the peer parameters from the new associations
1223 * and also move the association shared keys over
1224 */
1225 kfree(asoc->peer.peer_random);
1226 asoc->peer.peer_random = new->peer.peer_random;
1227 new->peer.peer_random = NULL;
1228
1229 kfree(asoc->peer.peer_chunks);
1230 asoc->peer.peer_chunks = new->peer.peer_chunks;
1231 new->peer.peer_chunks = NULL;
1232
1233 kfree(asoc->peer.peer_hmacs);
1234 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1235 new->peer.peer_hmacs = NULL;
1236
1237 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1238 }
1239
1240 /* Update the retran path for sending a retransmitted packet.
1241 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1242 *
1243 * When there is outbound data to send and the primary path
1244 * becomes inactive (e.g., due to failures), or where the
1245 * SCTP user explicitly requests to send data to an
1246 * inactive destination transport address, before reporting
1247 * an error to its ULP, the SCTP endpoint should try to send
1248 * the data to an alternate active destination transport
1249 * address if one exists.
1250 *
1251 * When retransmitting data that timed out, if the endpoint
1252 * is multihomed, it should consider each source-destination
1253 * address pair in its retransmission selection policy.
1254 * When retransmitting timed-out data, the endpoint should
1255 * attempt to pick the most divergent source-destination
1256 * pair from the original source-destination pair to which
1257 * the packet was transmitted.
1258 *
1259 * Note: Rules for picking the most divergent source-destination
1260 * pair are an implementation decision and are not specified
1261 * within this document.
1262 *
1263 * Our basic strategy is to round-robin transports in priorities
1264 * according to sctp_trans_score() e.g., if no such
1265 * transport with state SCTP_ACTIVE exists, round-robin through
1266 * SCTP_UNKNOWN, etc. You get the picture.
1267 */
1268 static u8 sctp_trans_score(const struct sctp_transport *trans)
1269 {
1270 switch (trans->state) {
1271 case SCTP_ACTIVE:
1272 return 3; /* best case */
1273 case SCTP_UNKNOWN:
1274 return 2;
1275 case SCTP_PF:
1276 return 1;
1277 default: /* case SCTP_INACTIVE */
1278 return 0; /* worst case */
1279 }
1280 }
1281
1282 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1283 struct sctp_transport *trans2)
1284 {
1285 if (trans1->error_count > trans2->error_count) {
1286 return trans2;
1287 } else if (trans1->error_count == trans2->error_count &&
1288 ktime_after(trans2->last_time_heard,
1289 trans1->last_time_heard)) {
1290 return trans2;
1291 } else {
1292 return trans1;
1293 }
1294 }
1295
1296 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1297 struct sctp_transport *best)
1298 {
1299 u8 score_curr, score_best;
1300
1301 if (best == NULL || curr == best)
1302 return curr;
1303
1304 score_curr = sctp_trans_score(curr);
1305 score_best = sctp_trans_score(best);
1306
1307 /* First, try a score-based selection if both transport states
1308 * differ. If we're in a tie, lets try to make a more clever
1309 * decision here based on error counts and last time heard.
1310 */
1311 if (score_curr > score_best)
1312 return curr;
1313 else if (score_curr == score_best)
1314 return sctp_trans_elect_tie(best, curr);
1315 else
1316 return best;
1317 }
1318
1319 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1320 {
1321 struct sctp_transport *trans = asoc->peer.retran_path;
1322 struct sctp_transport *trans_next = NULL;
1323
1324 /* We're done as we only have the one and only path. */
1325 if (asoc->peer.transport_count == 1)
1326 return;
1327 /* If active_path and retran_path are the same and active,
1328 * then this is the only active path. Use it.
1329 */
1330 if (asoc->peer.active_path == asoc->peer.retran_path &&
1331 asoc->peer.active_path->state == SCTP_ACTIVE)
1332 return;
1333
1334 /* Iterate from retran_path's successor back to retran_path. */
1335 for (trans = list_next_entry(trans, transports); 1;
1336 trans = list_next_entry(trans, transports)) {
1337 /* Manually skip the head element. */
1338 if (&trans->transports == &asoc->peer.transport_addr_list)
1339 continue;
1340 if (trans->state == SCTP_UNCONFIRMED)
1341 continue;
1342 trans_next = sctp_trans_elect_best(trans, trans_next);
1343 /* Active is good enough for immediate return. */
1344 if (trans_next->state == SCTP_ACTIVE)
1345 break;
1346 /* We've reached the end, time to update path. */
1347 if (trans == asoc->peer.retran_path)
1348 break;
1349 }
1350
1351 asoc->peer.retran_path = trans_next;
1352
1353 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1354 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1355 }
1356
1357 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1358 {
1359 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1360 struct sctp_transport *trans_pf = NULL;
1361
1362 /* Look for the two most recently used active transports. */
1363 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1364 transports) {
1365 /* Skip uninteresting transports. */
1366 if (trans->state == SCTP_INACTIVE ||
1367 trans->state == SCTP_UNCONFIRMED)
1368 continue;
1369 /* Keep track of the best PF transport from our
1370 * list in case we don't find an active one.
1371 */
1372 if (trans->state == SCTP_PF) {
1373 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1374 continue;
1375 }
1376 /* For active transports, pick the most recent ones. */
1377 if (trans_pri == NULL ||
1378 ktime_after(trans->last_time_heard,
1379 trans_pri->last_time_heard)) {
1380 trans_sec = trans_pri;
1381 trans_pri = trans;
1382 } else if (trans_sec == NULL ||
1383 ktime_after(trans->last_time_heard,
1384 trans_sec->last_time_heard)) {
1385 trans_sec = trans;
1386 }
1387 }
1388
1389 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1390 *
1391 * By default, an endpoint should always transmit to the primary
1392 * path, unless the SCTP user explicitly specifies the
1393 * destination transport address (and possibly source transport
1394 * address) to use. [If the primary is active but not most recent,
1395 * bump the most recently used transport.]
1396 */
1397 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1398 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1399 asoc->peer.primary_path != trans_pri) {
1400 trans_sec = trans_pri;
1401 trans_pri = asoc->peer.primary_path;
1402 }
1403
1404 /* We did not find anything useful for a possible retransmission
1405 * path; either primary path that we found is the the same as
1406 * the current one, or we didn't generally find an active one.
1407 */
1408 if (trans_sec == NULL)
1409 trans_sec = trans_pri;
1410
1411 /* If we failed to find a usable transport, just camp on the
1412 * active or pick a PF iff it's the better choice.
1413 */
1414 if (trans_pri == NULL) {
1415 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1416 trans_sec = trans_pri;
1417 }
1418
1419 /* Set the active and retran transports. */
1420 asoc->peer.active_path = trans_pri;
1421 asoc->peer.retran_path = trans_sec;
1422 }
1423
1424 struct sctp_transport *
1425 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1426 struct sctp_transport *last_sent_to)
1427 {
1428 /* If this is the first time packet is sent, use the active path,
1429 * else use the retran path. If the last packet was sent over the
1430 * retran path, update the retran path and use it.
1431 */
1432 if (last_sent_to == NULL) {
1433 return asoc->peer.active_path;
1434 } else {
1435 if (last_sent_to == asoc->peer.retran_path)
1436 sctp_assoc_update_retran_path(asoc);
1437
1438 return asoc->peer.retran_path;
1439 }
1440 }
1441
1442 /* Update the association's pmtu and frag_point by going through all the
1443 * transports. This routine is called when a transport's PMTU has changed.
1444 */
1445 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1446 {
1447 struct sctp_transport *t;
1448 __u32 pmtu = 0;
1449
1450 if (!asoc)
1451 return;
1452
1453 /* Get the lowest pmtu of all the transports. */
1454 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1455 transports) {
1456 if (t->pmtu_pending && t->dst) {
1457 sctp_transport_update_pmtu(
1458 t, SCTP_TRUNC4(dst_mtu(t->dst)));
1459 t->pmtu_pending = 0;
1460 }
1461 if (!pmtu || (t->pathmtu < pmtu))
1462 pmtu = t->pathmtu;
1463 }
1464
1465 if (pmtu) {
1466 asoc->pathmtu = pmtu;
1467 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1468 }
1469
1470 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1471 asoc->pathmtu, asoc->frag_point);
1472 }
1473
1474 /* Should we send a SACK to update our peer? */
1475 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1476 {
1477 struct net *net = sock_net(asoc->base.sk);
1478 switch (asoc->state) {
1479 case SCTP_STATE_ESTABLISHED:
1480 case SCTP_STATE_SHUTDOWN_PENDING:
1481 case SCTP_STATE_SHUTDOWN_RECEIVED:
1482 case SCTP_STATE_SHUTDOWN_SENT:
1483 if ((asoc->rwnd > asoc->a_rwnd) &&
1484 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1485 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1486 asoc->pathmtu)))
1487 return true;
1488 break;
1489 default:
1490 break;
1491 }
1492 return false;
1493 }
1494
1495 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1496 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1497 {
1498 struct sctp_chunk *sack;
1499 struct timer_list *timer;
1500
1501 if (asoc->rwnd_over) {
1502 if (asoc->rwnd_over >= len) {
1503 asoc->rwnd_over -= len;
1504 } else {
1505 asoc->rwnd += (len - asoc->rwnd_over);
1506 asoc->rwnd_over = 0;
1507 }
1508 } else {
1509 asoc->rwnd += len;
1510 }
1511
1512 /* If we had window pressure, start recovering it
1513 * once our rwnd had reached the accumulated pressure
1514 * threshold. The idea is to recover slowly, but up
1515 * to the initial advertised window.
1516 */
1517 if (asoc->rwnd_press) {
1518 int change = min(asoc->pathmtu, asoc->rwnd_press);
1519 asoc->rwnd += change;
1520 asoc->rwnd_press -= change;
1521 }
1522
1523 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1524 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1525 asoc->a_rwnd);
1526
1527 /* Send a window update SACK if the rwnd has increased by at least the
1528 * minimum of the association's PMTU and half of the receive buffer.
1529 * The algorithm used is similar to the one described in
1530 * Section 4.2.3.3 of RFC 1122.
1531 */
1532 if (sctp_peer_needs_update(asoc)) {
1533 asoc->a_rwnd = asoc->rwnd;
1534
1535 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1536 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1537 asoc->a_rwnd);
1538
1539 sack = sctp_make_sack(asoc);
1540 if (!sack)
1541 return;
1542
1543 asoc->peer.sack_needed = 0;
1544
1545 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1546
1547 /* Stop the SACK timer. */
1548 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1549 if (del_timer(timer))
1550 sctp_association_put(asoc);
1551 }
1552 }
1553
1554 /* Decrease asoc's rwnd by len. */
1555 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1556 {
1557 int rx_count;
1558 int over = 0;
1559
1560 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1561 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1562 "asoc->rwnd_over:%u!\n", __func__, asoc,
1563 asoc->rwnd, asoc->rwnd_over);
1564
1565 if (asoc->ep->rcvbuf_policy)
1566 rx_count = atomic_read(&asoc->rmem_alloc);
1567 else
1568 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1569
1570 /* If we've reached or overflowed our receive buffer, announce
1571 * a 0 rwnd if rwnd would still be positive. Store the
1572 * the potential pressure overflow so that the window can be restored
1573 * back to original value.
1574 */
1575 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1576 over = 1;
1577
1578 if (asoc->rwnd >= len) {
1579 asoc->rwnd -= len;
1580 if (over) {
1581 asoc->rwnd_press += asoc->rwnd;
1582 asoc->rwnd = 0;
1583 }
1584 } else {
1585 asoc->rwnd_over += len - asoc->rwnd;
1586 asoc->rwnd = 0;
1587 }
1588
1589 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1590 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1591 asoc->rwnd_press);
1592 }
1593
1594 /* Build the bind address list for the association based on info from the
1595 * local endpoint and the remote peer.
1596 */
1597 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1598 enum sctp_scope scope, gfp_t gfp)
1599 {
1600 int flags;
1601
1602 /* Use scoping rules to determine the subset of addresses from
1603 * the endpoint.
1604 */
1605 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1606 if (asoc->peer.ipv4_address)
1607 flags |= SCTP_ADDR4_PEERSUPP;
1608 if (asoc->peer.ipv6_address)
1609 flags |= SCTP_ADDR6_PEERSUPP;
1610
1611 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1612 &asoc->base.bind_addr,
1613 &asoc->ep->base.bind_addr,
1614 scope, gfp, flags);
1615 }
1616
1617 /* Build the association's bind address list from the cookie. */
1618 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1619 struct sctp_cookie *cookie,
1620 gfp_t gfp)
1621 {
1622 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1623 int var_size3 = cookie->raw_addr_list_len;
1624 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1625
1626 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1627 asoc->ep->base.bind_addr.port, gfp);
1628 }
1629
1630 /* Lookup laddr in the bind address list of an association. */
1631 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1632 const union sctp_addr *laddr)
1633 {
1634 int found = 0;
1635
1636 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1637 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1638 sctp_sk(asoc->base.sk)))
1639 found = 1;
1640
1641 return found;
1642 }
1643
1644 /* Set an association id for a given association */
1645 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1646 {
1647 bool preload = gfpflags_allow_blocking(gfp);
1648 int ret;
1649
1650 /* If the id is already assigned, keep it. */
1651 if (asoc->assoc_id)
1652 return 0;
1653
1654 if (preload)
1655 idr_preload(gfp);
1656 spin_lock_bh(&sctp_assocs_id_lock);
1657 /* 0 is not a valid assoc_id, must be >= 1 */
1658 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1659 spin_unlock_bh(&sctp_assocs_id_lock);
1660 if (preload)
1661 idr_preload_end();
1662 if (ret < 0)
1663 return ret;
1664
1665 asoc->assoc_id = (sctp_assoc_t)ret;
1666 return 0;
1667 }
1668
1669 /* Free the ASCONF queue */
1670 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1671 {
1672 struct sctp_chunk *asconf;
1673 struct sctp_chunk *tmp;
1674
1675 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1676 list_del_init(&asconf->list);
1677 sctp_chunk_free(asconf);
1678 }
1679 }
1680
1681 /* Free asconf_ack cache */
1682 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1683 {
1684 struct sctp_chunk *ack;
1685 struct sctp_chunk *tmp;
1686
1687 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1688 transmitted_list) {
1689 list_del_init(&ack->transmitted_list);
1690 sctp_chunk_free(ack);
1691 }
1692 }
1693
1694 /* Clean up the ASCONF_ACK queue */
1695 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1696 {
1697 struct sctp_chunk *ack;
1698 struct sctp_chunk *tmp;
1699
1700 /* We can remove all the entries from the queue up to
1701 * the "Peer-Sequence-Number".
1702 */
1703 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1704 transmitted_list) {
1705 if (ack->subh.addip_hdr->serial ==
1706 htonl(asoc->peer.addip_serial))
1707 break;
1708
1709 list_del_init(&ack->transmitted_list);
1710 sctp_chunk_free(ack);
1711 }
1712 }
1713
1714 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1715 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1716 const struct sctp_association *asoc,
1717 __be32 serial)
1718 {
1719 struct sctp_chunk *ack;
1720
1721 /* Walk through the list of cached ASCONF-ACKs and find the
1722 * ack chunk whose serial number matches that of the request.
1723 */
1724 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1725 if (sctp_chunk_pending(ack))
1726 continue;
1727 if (ack->subh.addip_hdr->serial == serial) {
1728 sctp_chunk_hold(ack);
1729 return ack;
1730 }
1731 }
1732
1733 return NULL;
1734 }
1735
1736 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1737 {
1738 /* Free any cached ASCONF_ACK chunk. */
1739 sctp_assoc_free_asconf_acks(asoc);
1740
1741 /* Free the ASCONF queue. */
1742 sctp_assoc_free_asconf_queue(asoc);
1743
1744 /* Free any cached ASCONF chunk. */
1745 if (asoc->addip_last_asconf)
1746 sctp_chunk_free(asoc->addip_last_asconf);
1747 }