Merge tag 'dt-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
52
53 #include <linux/types.h>
54 #include <linux/fcntl.h>
55 #include <linux/poll.h>
56 #include <linux/init.h>
57
58 #include <linux/slab.h>
59 #include <linux/in.h>
60 #include <net/ipv6.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63
64 /* Forward declarations for internal functions. */
65 static void sctp_assoc_bh_rcv(struct work_struct *work);
66 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
67 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
68
69 /* 1st Level Abstractions. */
70
71 /* Initialize a new association from provided memory. */
72 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
73 const struct sctp_endpoint *ep,
74 const struct sock *sk,
75 sctp_scope_t scope,
76 gfp_t gfp)
77 {
78 struct net *net = sock_net(sk);
79 struct sctp_sock *sp;
80 int i;
81 sctp_paramhdr_t *p;
82 int err;
83
84 /* Retrieve the SCTP per socket area. */
85 sp = sctp_sk((struct sock *)sk);
86
87 /* Discarding const is appropriate here. */
88 asoc->ep = (struct sctp_endpoint *)ep;
89 sctp_endpoint_hold(asoc->ep);
90
91 /* Hold the sock. */
92 asoc->base.sk = (struct sock *)sk;
93 sock_hold(asoc->base.sk);
94
95 /* Initialize the common base substructure. */
96 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
97
98 /* Initialize the object handling fields. */
99 atomic_set(&asoc->base.refcnt, 1);
100 asoc->base.dead = false;
101
102 /* Initialize the bind addr area. */
103 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
104
105 asoc->state = SCTP_STATE_CLOSED;
106
107 /* Set these values from the socket values, a conversion between
108 * millsecons to seconds/microseconds must also be done.
109 */
110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112 * 1000;
113 asoc->frag_point = 0;
114 asoc->user_frag = sp->user_frag;
115
116 /* Set the association max_retrans and RTO values from the
117 * socket values.
118 */
119 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
120 asoc->pf_retrans = net->sctp.pf_retrans;
121
122 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
123 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
124 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
125
126 asoc->overall_error_count = 0;
127
128 /* Initialize the association's heartbeat interval based on the
129 * sock configured value.
130 */
131 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
132
133 /* Initialize path max retrans value. */
134 asoc->pathmaxrxt = sp->pathmaxrxt;
135
136 /* Initialize default path MTU. */
137 asoc->pathmtu = sp->pathmtu;
138
139 /* Set association default SACK delay */
140 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
141 asoc->sackfreq = sp->sackfreq;
142
143 /* Set the association default flags controlling
144 * Heartbeat, SACK delay, and Path MTU Discovery.
145 */
146 asoc->param_flags = sp->param_flags;
147
148 /* Initialize the maximum mumber of new data packets that can be sent
149 * in a burst.
150 */
151 asoc->max_burst = sp->max_burst;
152
153 /* initialize association timers */
154 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
155 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
156 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
157 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
158 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
159 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
160
161 /* sctpimpguide Section 2.12.2
162 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
163 * recommended value of 5 times 'RTO.Max'.
164 */
165 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
166 = 5 * asoc->rto_max;
167
168 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
169 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
170 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
171 min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
172
173 /* Initializes the timers */
174 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
175 setup_timer(&asoc->timers[i], sctp_timer_events[i],
176 (unsigned long)asoc);
177
178 /* Pull default initialization values from the sock options.
179 * Note: This assumes that the values have already been
180 * validated in the sock.
181 */
182 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
183 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
184 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
185
186 asoc->max_init_timeo =
187 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
188
189 /* Allocate storage for the ssnmap after the inbound and outbound
190 * streams have been negotiated during Init.
191 */
192 asoc->ssnmap = NULL;
193
194 /* Set the local window size for receive.
195 * This is also the rcvbuf space per association.
196 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
197 * 1500 bytes in one SCTP packet.
198 */
199 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
200 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
201 else
202 asoc->rwnd = sk->sk_rcvbuf/2;
203
204 asoc->a_rwnd = asoc->rwnd;
205
206 asoc->rwnd_over = 0;
207 asoc->rwnd_press = 0;
208
209 /* Use my own max window until I learn something better. */
210 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
211
212 /* Set the sndbuf size for transmit. */
213 asoc->sndbuf_used = 0;
214
215 /* Initialize the receive memory counter */
216 atomic_set(&asoc->rmem_alloc, 0);
217
218 init_waitqueue_head(&asoc->wait);
219
220 asoc->c.my_vtag = sctp_generate_tag(ep);
221 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
222 asoc->c.peer_vtag = 0;
223 asoc->c.my_ttag = 0;
224 asoc->c.peer_ttag = 0;
225 asoc->c.my_port = ep->base.bind_addr.port;
226
227 asoc->c.initial_tsn = sctp_generate_tsn(ep);
228
229 asoc->next_tsn = asoc->c.initial_tsn;
230
231 asoc->ctsn_ack_point = asoc->next_tsn - 1;
232 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
233 asoc->highest_sacked = asoc->ctsn_ack_point;
234 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
235 asoc->unack_data = 0;
236
237 /* ADDIP Section 4.1 Asconf Chunk Procedures
238 *
239 * When an endpoint has an ASCONF signaled change to be sent to the
240 * remote endpoint it should do the following:
241 * ...
242 * A2) a serial number should be assigned to the chunk. The serial
243 * number SHOULD be a monotonically increasing number. The serial
244 * numbers SHOULD be initialized at the start of the
245 * association to the same value as the initial TSN.
246 */
247 asoc->addip_serial = asoc->c.initial_tsn;
248
249 INIT_LIST_HEAD(&asoc->addip_chunk_list);
250 INIT_LIST_HEAD(&asoc->asconf_ack_list);
251
252 /* Make an empty list of remote transport addresses. */
253 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
254 asoc->peer.transport_count = 0;
255
256 /* RFC 2960 5.1 Normal Establishment of an Association
257 *
258 * After the reception of the first data chunk in an
259 * association the endpoint must immediately respond with a
260 * sack to acknowledge the data chunk. Subsequent
261 * acknowledgements should be done as described in Section
262 * 6.2.
263 *
264 * [We implement this by telling a new association that it
265 * already received one packet.]
266 */
267 asoc->peer.sack_needed = 1;
268 asoc->peer.sack_cnt = 0;
269 asoc->peer.sack_generation = 1;
270
271 /* Assume that the peer will tell us if he recognizes ASCONF
272 * as part of INIT exchange.
273 * The sctp_addip_noauth option is there for backward compatibilty
274 * and will revert old behavior.
275 */
276 asoc->peer.asconf_capable = 0;
277 if (net->sctp.addip_noauth)
278 asoc->peer.asconf_capable = 1;
279 asoc->asconf_addr_del_pending = NULL;
280 asoc->src_out_of_asoc_ok = 0;
281 asoc->new_transport = NULL;
282
283 /* Create an input queue. */
284 sctp_inq_init(&asoc->base.inqueue);
285 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
286
287 /* Create an output queue. */
288 sctp_outq_init(asoc, &asoc->outqueue);
289
290 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
291 goto fail_init;
292
293 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
294
295 asoc->need_ecne = 0;
296
297 asoc->assoc_id = 0;
298
299 /* Assume that peer would support both address types unless we are
300 * told otherwise.
301 */
302 asoc->peer.ipv4_address = 1;
303 if (asoc->base.sk->sk_family == PF_INET6)
304 asoc->peer.ipv6_address = 1;
305 INIT_LIST_HEAD(&asoc->asocs);
306
307 asoc->autoclose = sp->autoclose;
308
309 asoc->default_stream = sp->default_stream;
310 asoc->default_ppid = sp->default_ppid;
311 asoc->default_flags = sp->default_flags;
312 asoc->default_context = sp->default_context;
313 asoc->default_timetolive = sp->default_timetolive;
314 asoc->default_rcv_context = sp->default_rcv_context;
315
316 /* SCTP_GET_ASSOC_STATS COUNTERS */
317 memset(&asoc->stats, 0, sizeof(struct sctp_priv_assoc_stats));
318
319 /* AUTH related initializations */
320 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
321 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
322 if (err)
323 goto fail_init;
324
325 asoc->active_key_id = ep->active_key_id;
326 asoc->asoc_shared_key = NULL;
327
328 asoc->default_hmac_id = 0;
329 /* Save the hmacs and chunks list into this association */
330 if (ep->auth_hmacs_list)
331 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
332 ntohs(ep->auth_hmacs_list->param_hdr.length));
333 if (ep->auth_chunk_list)
334 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
335 ntohs(ep->auth_chunk_list->param_hdr.length));
336
337 /* Get the AUTH random number for this association */
338 p = (sctp_paramhdr_t *)asoc->c.auth_random;
339 p->type = SCTP_PARAM_RANDOM;
340 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
341 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
342
343 return asoc;
344
345 fail_init:
346 sctp_endpoint_put(asoc->ep);
347 sock_put(asoc->base.sk);
348 return NULL;
349 }
350
351 /* Allocate and initialize a new association */
352 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
353 const struct sock *sk,
354 sctp_scope_t scope,
355 gfp_t gfp)
356 {
357 struct sctp_association *asoc;
358
359 asoc = t_new(struct sctp_association, gfp);
360 if (!asoc)
361 goto fail;
362
363 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
364 goto fail_init;
365
366 SCTP_DBG_OBJCNT_INC(assoc);
367 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
368
369 return asoc;
370
371 fail_init:
372 kfree(asoc);
373 fail:
374 return NULL;
375 }
376
377 /* Free this association if possible. There may still be users, so
378 * the actual deallocation may be delayed.
379 */
380 void sctp_association_free(struct sctp_association *asoc)
381 {
382 struct sock *sk = asoc->base.sk;
383 struct sctp_transport *transport;
384 struct list_head *pos, *temp;
385 int i;
386
387 /* Only real associations count against the endpoint, so
388 * don't bother for if this is a temporary association.
389 */
390 if (!asoc->temp) {
391 list_del(&asoc->asocs);
392
393 /* Decrement the backlog value for a TCP-style listening
394 * socket.
395 */
396 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
397 sk->sk_ack_backlog--;
398 }
399
400 /* Mark as dead, so other users can know this structure is
401 * going away.
402 */
403 asoc->base.dead = true;
404
405 /* Dispose of any data lying around in the outqueue. */
406 sctp_outq_free(&asoc->outqueue);
407
408 /* Dispose of any pending messages for the upper layer. */
409 sctp_ulpq_free(&asoc->ulpq);
410
411 /* Dispose of any pending chunks on the inqueue. */
412 sctp_inq_free(&asoc->base.inqueue);
413
414 sctp_tsnmap_free(&asoc->peer.tsn_map);
415
416 /* Free ssnmap storage. */
417 sctp_ssnmap_free(asoc->ssnmap);
418
419 /* Clean up the bound address list. */
420 sctp_bind_addr_free(&asoc->base.bind_addr);
421
422 /* Do we need to go through all of our timers and
423 * delete them? To be safe we will try to delete all, but we
424 * should be able to go through and make a guess based
425 * on our state.
426 */
427 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
428 if (del_timer(&asoc->timers[i]))
429 sctp_association_put(asoc);
430 }
431
432 /* Free peer's cached cookie. */
433 kfree(asoc->peer.cookie);
434 kfree(asoc->peer.peer_random);
435 kfree(asoc->peer.peer_chunks);
436 kfree(asoc->peer.peer_hmacs);
437
438 /* Release the transport structures. */
439 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
440 transport = list_entry(pos, struct sctp_transport, transports);
441 list_del_rcu(pos);
442 sctp_transport_free(transport);
443 }
444
445 asoc->peer.transport_count = 0;
446
447 sctp_asconf_queue_teardown(asoc);
448
449 /* Free pending address space being deleted */
450 if (asoc->asconf_addr_del_pending != NULL)
451 kfree(asoc->asconf_addr_del_pending);
452
453 /* AUTH - Free the endpoint shared keys */
454 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
455
456 /* AUTH - Free the association shared key */
457 sctp_auth_key_put(asoc->asoc_shared_key);
458
459 sctp_association_put(asoc);
460 }
461
462 /* Cleanup and free up an association. */
463 static void sctp_association_destroy(struct sctp_association *asoc)
464 {
465 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
466
467 sctp_endpoint_put(asoc->ep);
468 sock_put(asoc->base.sk);
469
470 if (asoc->assoc_id != 0) {
471 spin_lock_bh(&sctp_assocs_id_lock);
472 idr_remove(&sctp_assocs_id, asoc->assoc_id);
473 spin_unlock_bh(&sctp_assocs_id_lock);
474 }
475
476 WARN_ON(atomic_read(&asoc->rmem_alloc));
477
478 kfree(asoc);
479 SCTP_DBG_OBJCNT_DEC(assoc);
480 }
481
482 /* Change the primary destination address for the peer. */
483 void sctp_assoc_set_primary(struct sctp_association *asoc,
484 struct sctp_transport *transport)
485 {
486 int changeover = 0;
487
488 /* it's a changeover only if we already have a primary path
489 * that we are changing
490 */
491 if (asoc->peer.primary_path != NULL &&
492 asoc->peer.primary_path != transport)
493 changeover = 1 ;
494
495 asoc->peer.primary_path = transport;
496
497 /* Set a default msg_name for events. */
498 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
499 sizeof(union sctp_addr));
500
501 /* If the primary path is changing, assume that the
502 * user wants to use this new path.
503 */
504 if ((transport->state == SCTP_ACTIVE) ||
505 (transport->state == SCTP_UNKNOWN))
506 asoc->peer.active_path = transport;
507
508 /*
509 * SFR-CACC algorithm:
510 * Upon the receipt of a request to change the primary
511 * destination address, on the data structure for the new
512 * primary destination, the sender MUST do the following:
513 *
514 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
515 * to this destination address earlier. The sender MUST set
516 * CYCLING_CHANGEOVER to indicate that this switch is a
517 * double switch to the same destination address.
518 *
519 * Really, only bother is we have data queued or outstanding on
520 * the association.
521 */
522 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
523 return;
524
525 if (transport->cacc.changeover_active)
526 transport->cacc.cycling_changeover = changeover;
527
528 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
529 * a changeover has occurred.
530 */
531 transport->cacc.changeover_active = changeover;
532
533 /* 3) The sender MUST store the next TSN to be sent in
534 * next_tsn_at_change.
535 */
536 transport->cacc.next_tsn_at_change = asoc->next_tsn;
537 }
538
539 /* Remove a transport from an association. */
540 void sctp_assoc_rm_peer(struct sctp_association *asoc,
541 struct sctp_transport *peer)
542 {
543 struct list_head *pos;
544 struct sctp_transport *transport;
545
546 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
547 " port: %d\n",
548 asoc,
549 (&peer->ipaddr),
550 ntohs(peer->ipaddr.v4.sin_port));
551
552 /* If we are to remove the current retran_path, update it
553 * to the next peer before removing this peer from the list.
554 */
555 if (asoc->peer.retran_path == peer)
556 sctp_assoc_update_retran_path(asoc);
557
558 /* Remove this peer from the list. */
559 list_del_rcu(&peer->transports);
560
561 /* Get the first transport of asoc. */
562 pos = asoc->peer.transport_addr_list.next;
563 transport = list_entry(pos, struct sctp_transport, transports);
564
565 /* Update any entries that match the peer to be deleted. */
566 if (asoc->peer.primary_path == peer)
567 sctp_assoc_set_primary(asoc, transport);
568 if (asoc->peer.active_path == peer)
569 asoc->peer.active_path = transport;
570 if (asoc->peer.retran_path == peer)
571 asoc->peer.retran_path = transport;
572 if (asoc->peer.last_data_from == peer)
573 asoc->peer.last_data_from = transport;
574
575 /* If we remove the transport an INIT was last sent to, set it to
576 * NULL. Combined with the update of the retran path above, this
577 * will cause the next INIT to be sent to the next available
578 * transport, maintaining the cycle.
579 */
580 if (asoc->init_last_sent_to == peer)
581 asoc->init_last_sent_to = NULL;
582
583 /* If we remove the transport an SHUTDOWN was last sent to, set it
584 * to NULL. Combined with the update of the retran path above, this
585 * will cause the next SHUTDOWN to be sent to the next available
586 * transport, maintaining the cycle.
587 */
588 if (asoc->shutdown_last_sent_to == peer)
589 asoc->shutdown_last_sent_to = NULL;
590
591 /* If we remove the transport an ASCONF was last sent to, set it to
592 * NULL.
593 */
594 if (asoc->addip_last_asconf &&
595 asoc->addip_last_asconf->transport == peer)
596 asoc->addip_last_asconf->transport = NULL;
597
598 /* If we have something on the transmitted list, we have to
599 * save it off. The best place is the active path.
600 */
601 if (!list_empty(&peer->transmitted)) {
602 struct sctp_transport *active = asoc->peer.active_path;
603 struct sctp_chunk *ch;
604
605 /* Reset the transport of each chunk on this list */
606 list_for_each_entry(ch, &peer->transmitted,
607 transmitted_list) {
608 ch->transport = NULL;
609 ch->rtt_in_progress = 0;
610 }
611
612 list_splice_tail_init(&peer->transmitted,
613 &active->transmitted);
614
615 /* Start a T3 timer here in case it wasn't running so
616 * that these migrated packets have a chance to get
617 * retrnasmitted.
618 */
619 if (!timer_pending(&active->T3_rtx_timer))
620 if (!mod_timer(&active->T3_rtx_timer,
621 jiffies + active->rto))
622 sctp_transport_hold(active);
623 }
624
625 asoc->peer.transport_count--;
626
627 sctp_transport_free(peer);
628 }
629
630 /* Add a transport address to an association. */
631 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
632 const union sctp_addr *addr,
633 const gfp_t gfp,
634 const int peer_state)
635 {
636 struct net *net = sock_net(asoc->base.sk);
637 struct sctp_transport *peer;
638 struct sctp_sock *sp;
639 unsigned short port;
640
641 sp = sctp_sk(asoc->base.sk);
642
643 /* AF_INET and AF_INET6 share common port field. */
644 port = ntohs(addr->v4.sin_port);
645
646 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
647 " port: %d state:%d\n",
648 asoc,
649 addr,
650 port,
651 peer_state);
652
653 /* Set the port if it has not been set yet. */
654 if (0 == asoc->peer.port)
655 asoc->peer.port = port;
656
657 /* Check to see if this is a duplicate. */
658 peer = sctp_assoc_lookup_paddr(asoc, addr);
659 if (peer) {
660 /* An UNKNOWN state is only set on transports added by
661 * user in sctp_connectx() call. Such transports should be
662 * considered CONFIRMED per RFC 4960, Section 5.4.
663 */
664 if (peer->state == SCTP_UNKNOWN) {
665 peer->state = SCTP_ACTIVE;
666 }
667 return peer;
668 }
669
670 peer = sctp_transport_new(net, addr, gfp);
671 if (!peer)
672 return NULL;
673
674 sctp_transport_set_owner(peer, asoc);
675
676 /* Initialize the peer's heartbeat interval based on the
677 * association configured value.
678 */
679 peer->hbinterval = asoc->hbinterval;
680
681 /* Set the path max_retrans. */
682 peer->pathmaxrxt = asoc->pathmaxrxt;
683
684 /* And the partial failure retrnas threshold */
685 peer->pf_retrans = asoc->pf_retrans;
686
687 /* Initialize the peer's SACK delay timeout based on the
688 * association configured value.
689 */
690 peer->sackdelay = asoc->sackdelay;
691 peer->sackfreq = asoc->sackfreq;
692
693 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
694 * based on association setting.
695 */
696 peer->param_flags = asoc->param_flags;
697
698 sctp_transport_route(peer, NULL, sp);
699
700 /* Initialize the pmtu of the transport. */
701 if (peer->param_flags & SPP_PMTUD_DISABLE) {
702 if (asoc->pathmtu)
703 peer->pathmtu = asoc->pathmtu;
704 else
705 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
706 }
707
708 /* If this is the first transport addr on this association,
709 * initialize the association PMTU to the peer's PMTU.
710 * If not and the current association PMTU is higher than the new
711 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
712 */
713 if (asoc->pathmtu)
714 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
715 else
716 asoc->pathmtu = peer->pathmtu;
717
718 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
719 "%d\n", asoc, asoc->pathmtu);
720 peer->pmtu_pending = 0;
721
722 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
723
724 /* The asoc->peer.port might not be meaningful yet, but
725 * initialize the packet structure anyway.
726 */
727 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
728 asoc->peer.port);
729
730 /* 7.2.1 Slow-Start
731 *
732 * o The initial cwnd before DATA transmission or after a sufficiently
733 * long idle period MUST be set to
734 * min(4*MTU, max(2*MTU, 4380 bytes))
735 *
736 * o The initial value of ssthresh MAY be arbitrarily high
737 * (for example, implementations MAY use the size of the
738 * receiver advertised window).
739 */
740 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
741
742 /* At this point, we may not have the receiver's advertised window,
743 * so initialize ssthresh to the default value and it will be set
744 * later when we process the INIT.
745 */
746 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
747
748 peer->partial_bytes_acked = 0;
749 peer->flight_size = 0;
750 peer->burst_limited = 0;
751
752 /* Set the transport's RTO.initial value */
753 peer->rto = asoc->rto_initial;
754 sctp_max_rto(asoc, peer);
755
756 /* Set the peer's active state. */
757 peer->state = peer_state;
758
759 /* Attach the remote transport to our asoc. */
760 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
761 asoc->peer.transport_count++;
762
763 /* If we do not yet have a primary path, set one. */
764 if (!asoc->peer.primary_path) {
765 sctp_assoc_set_primary(asoc, peer);
766 asoc->peer.retran_path = peer;
767 }
768
769 if (asoc->peer.active_path == asoc->peer.retran_path &&
770 peer->state != SCTP_UNCONFIRMED) {
771 asoc->peer.retran_path = peer;
772 }
773
774 return peer;
775 }
776
777 /* Delete a transport address from an association. */
778 void sctp_assoc_del_peer(struct sctp_association *asoc,
779 const union sctp_addr *addr)
780 {
781 struct list_head *pos;
782 struct list_head *temp;
783 struct sctp_transport *transport;
784
785 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
786 transport = list_entry(pos, struct sctp_transport, transports);
787 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
788 /* Do book keeping for removing the peer and free it. */
789 sctp_assoc_rm_peer(asoc, transport);
790 break;
791 }
792 }
793 }
794
795 /* Lookup a transport by address. */
796 struct sctp_transport *sctp_assoc_lookup_paddr(
797 const struct sctp_association *asoc,
798 const union sctp_addr *address)
799 {
800 struct sctp_transport *t;
801
802 /* Cycle through all transports searching for a peer address. */
803
804 list_for_each_entry(t, &asoc->peer.transport_addr_list,
805 transports) {
806 if (sctp_cmp_addr_exact(address, &t->ipaddr))
807 return t;
808 }
809
810 return NULL;
811 }
812
813 /* Remove all transports except a give one */
814 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
815 struct sctp_transport *primary)
816 {
817 struct sctp_transport *temp;
818 struct sctp_transport *t;
819
820 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
821 transports) {
822 /* if the current transport is not the primary one, delete it */
823 if (t != primary)
824 sctp_assoc_rm_peer(asoc, t);
825 }
826 }
827
828 /* Engage in transport control operations.
829 * Mark the transport up or down and send a notification to the user.
830 * Select and update the new active and retran paths.
831 */
832 void sctp_assoc_control_transport(struct sctp_association *asoc,
833 struct sctp_transport *transport,
834 sctp_transport_cmd_t command,
835 sctp_sn_error_t error)
836 {
837 struct sctp_transport *t = NULL;
838 struct sctp_transport *first;
839 struct sctp_transport *second;
840 struct sctp_ulpevent *event;
841 struct sockaddr_storage addr;
842 int spc_state = 0;
843 bool ulp_notify = true;
844
845 /* Record the transition on the transport. */
846 switch (command) {
847 case SCTP_TRANSPORT_UP:
848 /* If we are moving from UNCONFIRMED state due
849 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
850 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
851 */
852 if (SCTP_UNCONFIRMED == transport->state &&
853 SCTP_HEARTBEAT_SUCCESS == error)
854 spc_state = SCTP_ADDR_CONFIRMED;
855 else
856 spc_state = SCTP_ADDR_AVAILABLE;
857 /* Don't inform ULP about transition from PF to
858 * active state and set cwnd to 1, see SCTP
859 * Quick failover draft section 5.1, point 5
860 */
861 if (transport->state == SCTP_PF) {
862 ulp_notify = false;
863 transport->cwnd = 1;
864 }
865 transport->state = SCTP_ACTIVE;
866 break;
867
868 case SCTP_TRANSPORT_DOWN:
869 /* If the transport was never confirmed, do not transition it
870 * to inactive state. Also, release the cached route since
871 * there may be a better route next time.
872 */
873 if (transport->state != SCTP_UNCONFIRMED)
874 transport->state = SCTP_INACTIVE;
875 else {
876 dst_release(transport->dst);
877 transport->dst = NULL;
878 }
879
880 spc_state = SCTP_ADDR_UNREACHABLE;
881 break;
882
883 case SCTP_TRANSPORT_PF:
884 transport->state = SCTP_PF;
885 ulp_notify = false;
886 break;
887
888 default:
889 return;
890 }
891
892 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
893 * user.
894 */
895 if (ulp_notify) {
896 memset(&addr, 0, sizeof(struct sockaddr_storage));
897 memcpy(&addr, &transport->ipaddr,
898 transport->af_specific->sockaddr_len);
899 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
900 0, spc_state, error, GFP_ATOMIC);
901 if (event)
902 sctp_ulpq_tail_event(&asoc->ulpq, event);
903 }
904
905 /* Select new active and retran paths. */
906
907 /* Look for the two most recently used active transports.
908 *
909 * This code produces the wrong ordering whenever jiffies
910 * rolls over, but we still get usable transports, so we don't
911 * worry about it.
912 */
913 first = NULL; second = NULL;
914
915 list_for_each_entry(t, &asoc->peer.transport_addr_list,
916 transports) {
917
918 if ((t->state == SCTP_INACTIVE) ||
919 (t->state == SCTP_UNCONFIRMED) ||
920 (t->state == SCTP_PF))
921 continue;
922 if (!first || t->last_time_heard > first->last_time_heard) {
923 second = first;
924 first = t;
925 }
926 if (!second || t->last_time_heard > second->last_time_heard)
927 second = t;
928 }
929
930 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
931 *
932 * By default, an endpoint should always transmit to the
933 * primary path, unless the SCTP user explicitly specifies the
934 * destination transport address (and possibly source
935 * transport address) to use.
936 *
937 * [If the primary is active but not most recent, bump the most
938 * recently used transport.]
939 */
940 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
941 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
942 first != asoc->peer.primary_path) {
943 second = first;
944 first = asoc->peer.primary_path;
945 }
946
947 /* If we failed to find a usable transport, just camp on the
948 * primary, even if it is inactive.
949 */
950 if (!first) {
951 first = asoc->peer.primary_path;
952 second = asoc->peer.primary_path;
953 }
954
955 /* Set the active and retran transports. */
956 asoc->peer.active_path = first;
957 asoc->peer.retran_path = second;
958 }
959
960 /* Hold a reference to an association. */
961 void sctp_association_hold(struct sctp_association *asoc)
962 {
963 atomic_inc(&asoc->base.refcnt);
964 }
965
966 /* Release a reference to an association and cleanup
967 * if there are no more references.
968 */
969 void sctp_association_put(struct sctp_association *asoc)
970 {
971 if (atomic_dec_and_test(&asoc->base.refcnt))
972 sctp_association_destroy(asoc);
973 }
974
975 /* Allocate the next TSN, Transmission Sequence Number, for the given
976 * association.
977 */
978 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
979 {
980 /* From Section 1.6 Serial Number Arithmetic:
981 * Transmission Sequence Numbers wrap around when they reach
982 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
983 * after transmitting TSN = 2*32 - 1 is TSN = 0.
984 */
985 __u32 retval = asoc->next_tsn;
986 asoc->next_tsn++;
987 asoc->unack_data++;
988
989 return retval;
990 }
991
992 /* Compare two addresses to see if they match. Wildcard addresses
993 * only match themselves.
994 */
995 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
996 const union sctp_addr *ss2)
997 {
998 struct sctp_af *af;
999
1000 af = sctp_get_af_specific(ss1->sa.sa_family);
1001 if (unlikely(!af))
1002 return 0;
1003
1004 return af->cmp_addr(ss1, ss2);
1005 }
1006
1007 /* Return an ecne chunk to get prepended to a packet.
1008 * Note: We are sly and return a shared, prealloced chunk. FIXME:
1009 * No we don't, but we could/should.
1010 */
1011 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
1012 {
1013 struct sctp_chunk *chunk;
1014
1015 /* Send ECNE if needed.
1016 * Not being able to allocate a chunk here is not deadly.
1017 */
1018 if (asoc->need_ecne)
1019 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
1020 else
1021 chunk = NULL;
1022
1023 return chunk;
1024 }
1025
1026 /*
1027 * Find which transport this TSN was sent on.
1028 */
1029 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
1030 __u32 tsn)
1031 {
1032 struct sctp_transport *active;
1033 struct sctp_transport *match;
1034 struct sctp_transport *transport;
1035 struct sctp_chunk *chunk;
1036 __be32 key = htonl(tsn);
1037
1038 match = NULL;
1039
1040 /*
1041 * FIXME: In general, find a more efficient data structure for
1042 * searching.
1043 */
1044
1045 /*
1046 * The general strategy is to search each transport's transmitted
1047 * list. Return which transport this TSN lives on.
1048 *
1049 * Let's be hopeful and check the active_path first.
1050 * Another optimization would be to know if there is only one
1051 * outbound path and not have to look for the TSN at all.
1052 *
1053 */
1054
1055 active = asoc->peer.active_path;
1056
1057 list_for_each_entry(chunk, &active->transmitted,
1058 transmitted_list) {
1059
1060 if (key == chunk->subh.data_hdr->tsn) {
1061 match = active;
1062 goto out;
1063 }
1064 }
1065
1066 /* If not found, go search all the other transports. */
1067 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1068 transports) {
1069
1070 if (transport == active)
1071 continue;
1072 list_for_each_entry(chunk, &transport->transmitted,
1073 transmitted_list) {
1074 if (key == chunk->subh.data_hdr->tsn) {
1075 match = transport;
1076 goto out;
1077 }
1078 }
1079 }
1080 out:
1081 return match;
1082 }
1083
1084 /* Is this the association we are looking for? */
1085 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1086 struct net *net,
1087 const union sctp_addr *laddr,
1088 const union sctp_addr *paddr)
1089 {
1090 struct sctp_transport *transport;
1091
1092 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1093 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1094 net_eq(sock_net(asoc->base.sk), net)) {
1095 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1096 if (!transport)
1097 goto out;
1098
1099 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1100 sctp_sk(asoc->base.sk)))
1101 goto out;
1102 }
1103 transport = NULL;
1104
1105 out:
1106 return transport;
1107 }
1108
1109 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1110 static void sctp_assoc_bh_rcv(struct work_struct *work)
1111 {
1112 struct sctp_association *asoc =
1113 container_of(work, struct sctp_association,
1114 base.inqueue.immediate);
1115 struct net *net = sock_net(asoc->base.sk);
1116 struct sctp_endpoint *ep;
1117 struct sctp_chunk *chunk;
1118 struct sctp_inq *inqueue;
1119 int state;
1120 sctp_subtype_t subtype;
1121 int error = 0;
1122
1123 /* The association should be held so we should be safe. */
1124 ep = asoc->ep;
1125
1126 inqueue = &asoc->base.inqueue;
1127 sctp_association_hold(asoc);
1128 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1129 state = asoc->state;
1130 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1131
1132 /* SCTP-AUTH, Section 6.3:
1133 * The receiver has a list of chunk types which it expects
1134 * to be received only after an AUTH-chunk. This list has
1135 * been sent to the peer during the association setup. It
1136 * MUST silently discard these chunks if they are not placed
1137 * after an AUTH chunk in the packet.
1138 */
1139 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1140 continue;
1141
1142 /* Remember where the last DATA chunk came from so we
1143 * know where to send the SACK.
1144 */
1145 if (sctp_chunk_is_data(chunk))
1146 asoc->peer.last_data_from = chunk->transport;
1147 else {
1148 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1149 asoc->stats.ictrlchunks++;
1150 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1151 asoc->stats.isacks++;
1152 }
1153
1154 if (chunk->transport)
1155 chunk->transport->last_time_heard = jiffies;
1156
1157 /* Run through the state machine. */
1158 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1159 state, ep, asoc, chunk, GFP_ATOMIC);
1160
1161 /* Check to see if the association is freed in response to
1162 * the incoming chunk. If so, get out of the while loop.
1163 */
1164 if (asoc->base.dead)
1165 break;
1166
1167 /* If there is an error on chunk, discard this packet. */
1168 if (error && chunk)
1169 chunk->pdiscard = 1;
1170 }
1171 sctp_association_put(asoc);
1172 }
1173
1174 /* This routine moves an association from its old sk to a new sk. */
1175 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1176 {
1177 struct sctp_sock *newsp = sctp_sk(newsk);
1178 struct sock *oldsk = assoc->base.sk;
1179
1180 /* Delete the association from the old endpoint's list of
1181 * associations.
1182 */
1183 list_del_init(&assoc->asocs);
1184
1185 /* Decrement the backlog value for a TCP-style socket. */
1186 if (sctp_style(oldsk, TCP))
1187 oldsk->sk_ack_backlog--;
1188
1189 /* Release references to the old endpoint and the sock. */
1190 sctp_endpoint_put(assoc->ep);
1191 sock_put(assoc->base.sk);
1192
1193 /* Get a reference to the new endpoint. */
1194 assoc->ep = newsp->ep;
1195 sctp_endpoint_hold(assoc->ep);
1196
1197 /* Get a reference to the new sock. */
1198 assoc->base.sk = newsk;
1199 sock_hold(assoc->base.sk);
1200
1201 /* Add the association to the new endpoint's list of associations. */
1202 sctp_endpoint_add_asoc(newsp->ep, assoc);
1203 }
1204
1205 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1206 void sctp_assoc_update(struct sctp_association *asoc,
1207 struct sctp_association *new)
1208 {
1209 struct sctp_transport *trans;
1210 struct list_head *pos, *temp;
1211
1212 /* Copy in new parameters of peer. */
1213 asoc->c = new->c;
1214 asoc->peer.rwnd = new->peer.rwnd;
1215 asoc->peer.sack_needed = new->peer.sack_needed;
1216 asoc->peer.i = new->peer.i;
1217 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1218 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1219
1220 /* Remove any peer addresses not present in the new association. */
1221 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1222 trans = list_entry(pos, struct sctp_transport, transports);
1223 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1224 sctp_assoc_rm_peer(asoc, trans);
1225 continue;
1226 }
1227
1228 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1229 sctp_transport_reset(trans);
1230 }
1231
1232 /* If the case is A (association restart), use
1233 * initial_tsn as next_tsn. If the case is B, use
1234 * current next_tsn in case data sent to peer
1235 * has been discarded and needs retransmission.
1236 */
1237 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1238 asoc->next_tsn = new->next_tsn;
1239 asoc->ctsn_ack_point = new->ctsn_ack_point;
1240 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1241
1242 /* Reinitialize SSN for both local streams
1243 * and peer's streams.
1244 */
1245 sctp_ssnmap_clear(asoc->ssnmap);
1246
1247 /* Flush the ULP reassembly and ordered queue.
1248 * Any data there will now be stale and will
1249 * cause problems.
1250 */
1251 sctp_ulpq_flush(&asoc->ulpq);
1252
1253 /* reset the overall association error count so
1254 * that the restarted association doesn't get torn
1255 * down on the next retransmission timer.
1256 */
1257 asoc->overall_error_count = 0;
1258
1259 } else {
1260 /* Add any peer addresses from the new association. */
1261 list_for_each_entry(trans, &new->peer.transport_addr_list,
1262 transports) {
1263 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1264 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1265 GFP_ATOMIC, trans->state);
1266 }
1267
1268 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1269 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1270 if (!asoc->ssnmap) {
1271 /* Move the ssnmap. */
1272 asoc->ssnmap = new->ssnmap;
1273 new->ssnmap = NULL;
1274 }
1275
1276 if (!asoc->assoc_id) {
1277 /* get a new association id since we don't have one
1278 * yet.
1279 */
1280 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1281 }
1282 }
1283
1284 /* SCTP-AUTH: Save the peer parameters from the new assocaitions
1285 * and also move the association shared keys over
1286 */
1287 kfree(asoc->peer.peer_random);
1288 asoc->peer.peer_random = new->peer.peer_random;
1289 new->peer.peer_random = NULL;
1290
1291 kfree(asoc->peer.peer_chunks);
1292 asoc->peer.peer_chunks = new->peer.peer_chunks;
1293 new->peer.peer_chunks = NULL;
1294
1295 kfree(asoc->peer.peer_hmacs);
1296 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1297 new->peer.peer_hmacs = NULL;
1298
1299 sctp_auth_key_put(asoc->asoc_shared_key);
1300 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1301 }
1302
1303 /* Update the retran path for sending a retransmitted packet.
1304 * Round-robin through the active transports, else round-robin
1305 * through the inactive transports as this is the next best thing
1306 * we can try.
1307 */
1308 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1309 {
1310 struct sctp_transport *t, *next;
1311 struct list_head *head = &asoc->peer.transport_addr_list;
1312 struct list_head *pos;
1313
1314 if (asoc->peer.transport_count == 1)
1315 return;
1316
1317 /* Find the next transport in a round-robin fashion. */
1318 t = asoc->peer.retran_path;
1319 pos = &t->transports;
1320 next = NULL;
1321
1322 while (1) {
1323 /* Skip the head. */
1324 if (pos->next == head)
1325 pos = head->next;
1326 else
1327 pos = pos->next;
1328
1329 t = list_entry(pos, struct sctp_transport, transports);
1330
1331 /* We have exhausted the list, but didn't find any
1332 * other active transports. If so, use the next
1333 * transport.
1334 */
1335 if (t == asoc->peer.retran_path) {
1336 t = next;
1337 break;
1338 }
1339
1340 /* Try to find an active transport. */
1341
1342 if ((t->state == SCTP_ACTIVE) ||
1343 (t->state == SCTP_UNKNOWN)) {
1344 break;
1345 } else {
1346 /* Keep track of the next transport in case
1347 * we don't find any active transport.
1348 */
1349 if (t->state != SCTP_UNCONFIRMED && !next)
1350 next = t;
1351 }
1352 }
1353
1354 if (t)
1355 asoc->peer.retran_path = t;
1356 else
1357 t = asoc->peer.retran_path;
1358
1359 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1360 " %p addr: ",
1361 " port: %d\n",
1362 asoc,
1363 (&t->ipaddr),
1364 ntohs(t->ipaddr.v4.sin_port));
1365 }
1366
1367 /* Choose the transport for sending retransmit packet. */
1368 struct sctp_transport *sctp_assoc_choose_alter_transport(
1369 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1370 {
1371 /* If this is the first time packet is sent, use the active path,
1372 * else use the retran path. If the last packet was sent over the
1373 * retran path, update the retran path and use it.
1374 */
1375 if (!last_sent_to)
1376 return asoc->peer.active_path;
1377 else {
1378 if (last_sent_to == asoc->peer.retran_path)
1379 sctp_assoc_update_retran_path(asoc);
1380 return asoc->peer.retran_path;
1381 }
1382 }
1383
1384 /* Update the association's pmtu and frag_point by going through all the
1385 * transports. This routine is called when a transport's PMTU has changed.
1386 */
1387 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1388 {
1389 struct sctp_transport *t;
1390 __u32 pmtu = 0;
1391
1392 if (!asoc)
1393 return;
1394
1395 /* Get the lowest pmtu of all the transports. */
1396 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1397 transports) {
1398 if (t->pmtu_pending && t->dst) {
1399 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1400 t->pmtu_pending = 0;
1401 }
1402 if (!pmtu || (t->pathmtu < pmtu))
1403 pmtu = t->pathmtu;
1404 }
1405
1406 if (pmtu) {
1407 asoc->pathmtu = pmtu;
1408 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1409 }
1410
1411 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1412 __func__, asoc, asoc->pathmtu, asoc->frag_point);
1413 }
1414
1415 /* Should we send a SACK to update our peer? */
1416 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1417 {
1418 struct net *net = sock_net(asoc->base.sk);
1419 switch (asoc->state) {
1420 case SCTP_STATE_ESTABLISHED:
1421 case SCTP_STATE_SHUTDOWN_PENDING:
1422 case SCTP_STATE_SHUTDOWN_RECEIVED:
1423 case SCTP_STATE_SHUTDOWN_SENT:
1424 if ((asoc->rwnd > asoc->a_rwnd) &&
1425 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1426 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1427 asoc->pathmtu)))
1428 return 1;
1429 break;
1430 default:
1431 break;
1432 }
1433 return 0;
1434 }
1435
1436 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1437 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1438 {
1439 struct sctp_chunk *sack;
1440 struct timer_list *timer;
1441
1442 if (asoc->rwnd_over) {
1443 if (asoc->rwnd_over >= len) {
1444 asoc->rwnd_over -= len;
1445 } else {
1446 asoc->rwnd += (len - asoc->rwnd_over);
1447 asoc->rwnd_over = 0;
1448 }
1449 } else {
1450 asoc->rwnd += len;
1451 }
1452
1453 /* If we had window pressure, start recovering it
1454 * once our rwnd had reached the accumulated pressure
1455 * threshold. The idea is to recover slowly, but up
1456 * to the initial advertised window.
1457 */
1458 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1459 int change = min(asoc->pathmtu, asoc->rwnd_press);
1460 asoc->rwnd += change;
1461 asoc->rwnd_press -= change;
1462 }
1463
1464 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1465 "- %u\n", __func__, asoc, len, asoc->rwnd,
1466 asoc->rwnd_over, asoc->a_rwnd);
1467
1468 /* Send a window update SACK if the rwnd has increased by at least the
1469 * minimum of the association's PMTU and half of the receive buffer.
1470 * The algorithm used is similar to the one described in
1471 * Section 4.2.3.3 of RFC 1122.
1472 */
1473 if (sctp_peer_needs_update(asoc)) {
1474 asoc->a_rwnd = asoc->rwnd;
1475 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1476 "rwnd: %u a_rwnd: %u\n", __func__,
1477 asoc, asoc->rwnd, asoc->a_rwnd);
1478 sack = sctp_make_sack(asoc);
1479 if (!sack)
1480 return;
1481
1482 asoc->peer.sack_needed = 0;
1483
1484 sctp_outq_tail(&asoc->outqueue, sack);
1485
1486 /* Stop the SACK timer. */
1487 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1488 if (del_timer(timer))
1489 sctp_association_put(asoc);
1490 }
1491 }
1492
1493 /* Decrease asoc's rwnd by len. */
1494 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1495 {
1496 int rx_count;
1497 int over = 0;
1498
1499 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1500 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1501
1502 if (asoc->ep->rcvbuf_policy)
1503 rx_count = atomic_read(&asoc->rmem_alloc);
1504 else
1505 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1506
1507 /* If we've reached or overflowed our receive buffer, announce
1508 * a 0 rwnd if rwnd would still be positive. Store the
1509 * the pottential pressure overflow so that the window can be restored
1510 * back to original value.
1511 */
1512 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1513 over = 1;
1514
1515 if (asoc->rwnd >= len) {
1516 asoc->rwnd -= len;
1517 if (over) {
1518 asoc->rwnd_press += asoc->rwnd;
1519 asoc->rwnd = 0;
1520 }
1521 } else {
1522 asoc->rwnd_over = len - asoc->rwnd;
1523 asoc->rwnd = 0;
1524 }
1525 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1526 __func__, asoc, len, asoc->rwnd,
1527 asoc->rwnd_over, asoc->rwnd_press);
1528 }
1529
1530 /* Build the bind address list for the association based on info from the
1531 * local endpoint and the remote peer.
1532 */
1533 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1534 sctp_scope_t scope, gfp_t gfp)
1535 {
1536 int flags;
1537
1538 /* Use scoping rules to determine the subset of addresses from
1539 * the endpoint.
1540 */
1541 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1542 if (asoc->peer.ipv4_address)
1543 flags |= SCTP_ADDR4_PEERSUPP;
1544 if (asoc->peer.ipv6_address)
1545 flags |= SCTP_ADDR6_PEERSUPP;
1546
1547 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1548 &asoc->base.bind_addr,
1549 &asoc->ep->base.bind_addr,
1550 scope, gfp, flags);
1551 }
1552
1553 /* Build the association's bind address list from the cookie. */
1554 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1555 struct sctp_cookie *cookie,
1556 gfp_t gfp)
1557 {
1558 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1559 int var_size3 = cookie->raw_addr_list_len;
1560 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1561
1562 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1563 asoc->ep->base.bind_addr.port, gfp);
1564 }
1565
1566 /* Lookup laddr in the bind address list of an association. */
1567 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1568 const union sctp_addr *laddr)
1569 {
1570 int found = 0;
1571
1572 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1573 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1574 sctp_sk(asoc->base.sk)))
1575 found = 1;
1576
1577 return found;
1578 }
1579
1580 /* Set an association id for a given association */
1581 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1582 {
1583 bool preload = gfp & __GFP_WAIT;
1584 int ret;
1585
1586 /* If the id is already assigned, keep it. */
1587 if (asoc->assoc_id)
1588 return 0;
1589
1590 if (preload)
1591 idr_preload(gfp);
1592 spin_lock_bh(&sctp_assocs_id_lock);
1593 /* 0 is not a valid assoc_id, must be >= 1 */
1594 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1595 spin_unlock_bh(&sctp_assocs_id_lock);
1596 if (preload)
1597 idr_preload_end();
1598 if (ret < 0)
1599 return ret;
1600
1601 asoc->assoc_id = (sctp_assoc_t)ret;
1602 return 0;
1603 }
1604
1605 /* Free the ASCONF queue */
1606 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1607 {
1608 struct sctp_chunk *asconf;
1609 struct sctp_chunk *tmp;
1610
1611 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1612 list_del_init(&asconf->list);
1613 sctp_chunk_free(asconf);
1614 }
1615 }
1616
1617 /* Free asconf_ack cache */
1618 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1619 {
1620 struct sctp_chunk *ack;
1621 struct sctp_chunk *tmp;
1622
1623 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1624 transmitted_list) {
1625 list_del_init(&ack->transmitted_list);
1626 sctp_chunk_free(ack);
1627 }
1628 }
1629
1630 /* Clean up the ASCONF_ACK queue */
1631 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1632 {
1633 struct sctp_chunk *ack;
1634 struct sctp_chunk *tmp;
1635
1636 /* We can remove all the entries from the queue up to
1637 * the "Peer-Sequence-Number".
1638 */
1639 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1640 transmitted_list) {
1641 if (ack->subh.addip_hdr->serial ==
1642 htonl(asoc->peer.addip_serial))
1643 break;
1644
1645 list_del_init(&ack->transmitted_list);
1646 sctp_chunk_free(ack);
1647 }
1648 }
1649
1650 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1651 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1652 const struct sctp_association *asoc,
1653 __be32 serial)
1654 {
1655 struct sctp_chunk *ack;
1656
1657 /* Walk through the list of cached ASCONF-ACKs and find the
1658 * ack chunk whose serial number matches that of the request.
1659 */
1660 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1661 if (ack->subh.addip_hdr->serial == serial) {
1662 sctp_chunk_hold(ack);
1663 return ack;
1664 }
1665 }
1666
1667 return NULL;
1668 }
1669
1670 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1671 {
1672 /* Free any cached ASCONF_ACK chunk. */
1673 sctp_assoc_free_asconf_acks(asoc);
1674
1675 /* Free the ASCONF queue. */
1676 sctp_assoc_free_asconf_queue(asoc);
1677
1678 /* Free any cached ASCONF chunk. */
1679 if (asoc->addip_last_asconf)
1680 sctp_chunk_free(asoc->addip_last_asconf);
1681 }