[NETLINK]: Use nlmsg_trim() where appropriate
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sched / sch_tbf.c
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
12 *
13 */
14
15 #include <linux/module.h>
16 #include <asm/uaccess.h>
17 #include <asm/system.h>
18 #include <linux/bitops.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/jiffies.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/socket.h>
25 #include <linux/sockios.h>
26 #include <linux/in.h>
27 #include <linux/errno.h>
28 #include <linux/interrupt.h>
29 #include <linux/if_ether.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/notifier.h>
34 #include <net/ip.h>
35 #include <net/netlink.h>
36 #include <net/route.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <net/pkt_sched.h>
40
41
42 /* Simple Token Bucket Filter.
43 =======================================
44
45 SOURCE.
46 -------
47
48 None.
49
50 Description.
51 ------------
52
53 A data flow obeys TBF with rate R and depth B, if for any
54 time interval t_i...t_f the number of transmitted bits
55 does not exceed B + R*(t_f-t_i).
56
57 Packetized version of this definition:
58 The sequence of packets of sizes s_i served at moments t_i
59 obeys TBF, if for any i<=k:
60
61 s_i+....+s_k <= B + R*(t_k - t_i)
62
63 Algorithm.
64 ----------
65
66 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
67
68 N(t+delta) = min{B/R, N(t) + delta}
69
70 If the first packet in queue has length S, it may be
71 transmitted only at the time t_* when S/R <= N(t_*),
72 and in this case N(t) jumps:
73
74 N(t_* + 0) = N(t_* - 0) - S/R.
75
76
77
78 Actually, QoS requires two TBF to be applied to a data stream.
79 One of them controls steady state burst size, another
80 one with rate P (peak rate) and depth M (equal to link MTU)
81 limits bursts at a smaller time scale.
82
83 It is easy to see that P>R, and B>M. If P is infinity, this double
84 TBF is equivalent to a single one.
85
86 When TBF works in reshaping mode, latency is estimated as:
87
88 lat = max ((L-B)/R, (L-M)/P)
89
90
91 NOTES.
92 ------
93
94 If TBF throttles, it starts a watchdog timer, which will wake it up
95 when it is ready to transmit.
96 Note that the minimal timer resolution is 1/HZ.
97 If no new packets arrive during this period,
98 or if the device is not awaken by EOI for some previous packet,
99 TBF can stop its activity for 1/HZ.
100
101
102 This means, that with depth B, the maximal rate is
103
104 R_crit = B*HZ
105
106 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
107
108 Note that the peak rate TBF is much more tough: with MTU 1500
109 P_crit = 150Kbytes/sec. So, if you need greater peak
110 rates, use alpha with HZ=1000 :-)
111
112 With classful TBF, limit is just kept for backwards compatibility.
113 It is passed to the default bfifo qdisc - if the inner qdisc is
114 changed the limit is not effective anymore.
115 */
116
117 struct tbf_sched_data
118 {
119 /* Parameters */
120 u32 limit; /* Maximal length of backlog: bytes */
121 u32 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
122 u32 mtu;
123 u32 max_size;
124 struct qdisc_rate_table *R_tab;
125 struct qdisc_rate_table *P_tab;
126
127 /* Variables */
128 long tokens; /* Current number of B tokens */
129 long ptokens; /* Current number of P tokens */
130 psched_time_t t_c; /* Time check-point */
131 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
132 struct qdisc_watchdog watchdog; /* Watchdog timer */
133 };
134
135 #define L2T(q,L) ((q)->R_tab->data[(L)>>(q)->R_tab->rate.cell_log])
136 #define L2T_P(q,L) ((q)->P_tab->data[(L)>>(q)->P_tab->rate.cell_log])
137
138 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch)
139 {
140 struct tbf_sched_data *q = qdisc_priv(sch);
141 int ret;
142
143 if (skb->len > q->max_size) {
144 sch->qstats.drops++;
145 #ifdef CONFIG_NET_CLS_POLICE
146 if (sch->reshape_fail == NULL || sch->reshape_fail(skb, sch))
147 #endif
148 kfree_skb(skb);
149
150 return NET_XMIT_DROP;
151 }
152
153 if ((ret = q->qdisc->enqueue(skb, q->qdisc)) != 0) {
154 sch->qstats.drops++;
155 return ret;
156 }
157
158 sch->q.qlen++;
159 sch->bstats.bytes += skb->len;
160 sch->bstats.packets++;
161 return 0;
162 }
163
164 static int tbf_requeue(struct sk_buff *skb, struct Qdisc* sch)
165 {
166 struct tbf_sched_data *q = qdisc_priv(sch);
167 int ret;
168
169 if ((ret = q->qdisc->ops->requeue(skb, q->qdisc)) == 0) {
170 sch->q.qlen++;
171 sch->qstats.requeues++;
172 }
173
174 return ret;
175 }
176
177 static unsigned int tbf_drop(struct Qdisc* sch)
178 {
179 struct tbf_sched_data *q = qdisc_priv(sch);
180 unsigned int len = 0;
181
182 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
183 sch->q.qlen--;
184 sch->qstats.drops++;
185 }
186 return len;
187 }
188
189 static struct sk_buff *tbf_dequeue(struct Qdisc* sch)
190 {
191 struct tbf_sched_data *q = qdisc_priv(sch);
192 struct sk_buff *skb;
193
194 skb = q->qdisc->dequeue(q->qdisc);
195
196 if (skb) {
197 psched_time_t now;
198 long toks;
199 long ptoks = 0;
200 unsigned int len = skb->len;
201
202 PSCHED_GET_TIME(now);
203
204 toks = PSCHED_TDIFF_SAFE(now, q->t_c, q->buffer);
205
206 if (q->P_tab) {
207 ptoks = toks + q->ptokens;
208 if (ptoks > (long)q->mtu)
209 ptoks = q->mtu;
210 ptoks -= L2T_P(q, len);
211 }
212 toks += q->tokens;
213 if (toks > (long)q->buffer)
214 toks = q->buffer;
215 toks -= L2T(q, len);
216
217 if ((toks|ptoks) >= 0) {
218 q->t_c = now;
219 q->tokens = toks;
220 q->ptokens = ptoks;
221 sch->q.qlen--;
222 sch->flags &= ~TCQ_F_THROTTLED;
223 return skb;
224 }
225
226 qdisc_watchdog_schedule(&q->watchdog,
227 now + max_t(long, -toks, -ptoks));
228
229 /* Maybe we have a shorter packet in the queue,
230 which can be sent now. It sounds cool,
231 but, however, this is wrong in principle.
232 We MUST NOT reorder packets under these circumstances.
233
234 Really, if we split the flow into independent
235 subflows, it would be a very good solution.
236 This is the main idea of all FQ algorithms
237 (cf. CSZ, HPFQ, HFSC)
238 */
239
240 if (q->qdisc->ops->requeue(skb, q->qdisc) != NET_XMIT_SUCCESS) {
241 /* When requeue fails skb is dropped */
242 qdisc_tree_decrease_qlen(q->qdisc, 1);
243 sch->qstats.drops++;
244 }
245
246 sch->qstats.overlimits++;
247 }
248 return NULL;
249 }
250
251 static void tbf_reset(struct Qdisc* sch)
252 {
253 struct tbf_sched_data *q = qdisc_priv(sch);
254
255 qdisc_reset(q->qdisc);
256 sch->q.qlen = 0;
257 PSCHED_GET_TIME(q->t_c);
258 q->tokens = q->buffer;
259 q->ptokens = q->mtu;
260 qdisc_watchdog_cancel(&q->watchdog);
261 }
262
263 static struct Qdisc *tbf_create_dflt_qdisc(struct Qdisc *sch, u32 limit)
264 {
265 struct Qdisc *q;
266 struct rtattr *rta;
267 int ret;
268
269 q = qdisc_create_dflt(sch->dev, &bfifo_qdisc_ops,
270 TC_H_MAKE(sch->handle, 1));
271 if (q) {
272 rta = kmalloc(RTA_LENGTH(sizeof(struct tc_fifo_qopt)), GFP_KERNEL);
273 if (rta) {
274 rta->rta_type = RTM_NEWQDISC;
275 rta->rta_len = RTA_LENGTH(sizeof(struct tc_fifo_qopt));
276 ((struct tc_fifo_qopt *)RTA_DATA(rta))->limit = limit;
277
278 ret = q->ops->change(q, rta);
279 kfree(rta);
280
281 if (ret == 0)
282 return q;
283 }
284 qdisc_destroy(q);
285 }
286
287 return NULL;
288 }
289
290 static int tbf_change(struct Qdisc* sch, struct rtattr *opt)
291 {
292 int err = -EINVAL;
293 struct tbf_sched_data *q = qdisc_priv(sch);
294 struct rtattr *tb[TCA_TBF_PTAB];
295 struct tc_tbf_qopt *qopt;
296 struct qdisc_rate_table *rtab = NULL;
297 struct qdisc_rate_table *ptab = NULL;
298 struct Qdisc *child = NULL;
299 int max_size,n;
300
301 if (rtattr_parse_nested(tb, TCA_TBF_PTAB, opt) ||
302 tb[TCA_TBF_PARMS-1] == NULL ||
303 RTA_PAYLOAD(tb[TCA_TBF_PARMS-1]) < sizeof(*qopt))
304 goto done;
305
306 qopt = RTA_DATA(tb[TCA_TBF_PARMS-1]);
307 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB-1]);
308 if (rtab == NULL)
309 goto done;
310
311 if (qopt->peakrate.rate) {
312 if (qopt->peakrate.rate > qopt->rate.rate)
313 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB-1]);
314 if (ptab == NULL)
315 goto done;
316 }
317
318 for (n = 0; n < 256; n++)
319 if (rtab->data[n] > qopt->buffer) break;
320 max_size = (n << qopt->rate.cell_log)-1;
321 if (ptab) {
322 int size;
323
324 for (n = 0; n < 256; n++)
325 if (ptab->data[n] > qopt->mtu) break;
326 size = (n << qopt->peakrate.cell_log)-1;
327 if (size < max_size) max_size = size;
328 }
329 if (max_size < 0)
330 goto done;
331
332 if (qopt->limit > 0) {
333 if ((child = tbf_create_dflt_qdisc(sch, qopt->limit)) == NULL)
334 goto done;
335 }
336
337 sch_tree_lock(sch);
338 if (child) {
339 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
340 qdisc_destroy(xchg(&q->qdisc, child));
341 }
342 q->limit = qopt->limit;
343 q->mtu = qopt->mtu;
344 q->max_size = max_size;
345 q->buffer = qopt->buffer;
346 q->tokens = q->buffer;
347 q->ptokens = q->mtu;
348 rtab = xchg(&q->R_tab, rtab);
349 ptab = xchg(&q->P_tab, ptab);
350 sch_tree_unlock(sch);
351 err = 0;
352 done:
353 if (rtab)
354 qdisc_put_rtab(rtab);
355 if (ptab)
356 qdisc_put_rtab(ptab);
357 return err;
358 }
359
360 static int tbf_init(struct Qdisc* sch, struct rtattr *opt)
361 {
362 struct tbf_sched_data *q = qdisc_priv(sch);
363
364 if (opt == NULL)
365 return -EINVAL;
366
367 PSCHED_GET_TIME(q->t_c);
368 qdisc_watchdog_init(&q->watchdog, sch);
369 q->qdisc = &noop_qdisc;
370
371 return tbf_change(sch, opt);
372 }
373
374 static void tbf_destroy(struct Qdisc *sch)
375 {
376 struct tbf_sched_data *q = qdisc_priv(sch);
377
378 qdisc_watchdog_cancel(&q->watchdog);
379
380 if (q->P_tab)
381 qdisc_put_rtab(q->P_tab);
382 if (q->R_tab)
383 qdisc_put_rtab(q->R_tab);
384
385 qdisc_destroy(q->qdisc);
386 }
387
388 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
389 {
390 struct tbf_sched_data *q = qdisc_priv(sch);
391 unsigned char *b = skb_tail_pointer(skb);
392 struct rtattr *rta;
393 struct tc_tbf_qopt opt;
394
395 rta = (struct rtattr*)b;
396 RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
397
398 opt.limit = q->limit;
399 opt.rate = q->R_tab->rate;
400 if (q->P_tab)
401 opt.peakrate = q->P_tab->rate;
402 else
403 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
404 opt.mtu = q->mtu;
405 opt.buffer = q->buffer;
406 RTA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt);
407 rta->rta_len = skb_tail_pointer(skb) - b;
408
409 return skb->len;
410
411 rtattr_failure:
412 nlmsg_trim(skb, b);
413 return -1;
414 }
415
416 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
417 struct sk_buff *skb, struct tcmsg *tcm)
418 {
419 struct tbf_sched_data *q = qdisc_priv(sch);
420
421 if (cl != 1) /* only one class */
422 return -ENOENT;
423
424 tcm->tcm_handle |= TC_H_MIN(1);
425 tcm->tcm_info = q->qdisc->handle;
426
427 return 0;
428 }
429
430 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
431 struct Qdisc **old)
432 {
433 struct tbf_sched_data *q = qdisc_priv(sch);
434
435 if (new == NULL)
436 new = &noop_qdisc;
437
438 sch_tree_lock(sch);
439 *old = xchg(&q->qdisc, new);
440 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
441 qdisc_reset(*old);
442 sch_tree_unlock(sch);
443
444 return 0;
445 }
446
447 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
448 {
449 struct tbf_sched_data *q = qdisc_priv(sch);
450 return q->qdisc;
451 }
452
453 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
454 {
455 return 1;
456 }
457
458 static void tbf_put(struct Qdisc *sch, unsigned long arg)
459 {
460 }
461
462 static int tbf_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
463 struct rtattr **tca, unsigned long *arg)
464 {
465 return -ENOSYS;
466 }
467
468 static int tbf_delete(struct Qdisc *sch, unsigned long arg)
469 {
470 return -ENOSYS;
471 }
472
473 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
474 {
475 if (!walker->stop) {
476 if (walker->count >= walker->skip)
477 if (walker->fn(sch, 1, walker) < 0) {
478 walker->stop = 1;
479 return;
480 }
481 walker->count++;
482 }
483 }
484
485 static struct tcf_proto **tbf_find_tcf(struct Qdisc *sch, unsigned long cl)
486 {
487 return NULL;
488 }
489
490 static struct Qdisc_class_ops tbf_class_ops =
491 {
492 .graft = tbf_graft,
493 .leaf = tbf_leaf,
494 .get = tbf_get,
495 .put = tbf_put,
496 .change = tbf_change_class,
497 .delete = tbf_delete,
498 .walk = tbf_walk,
499 .tcf_chain = tbf_find_tcf,
500 .dump = tbf_dump_class,
501 };
502
503 static struct Qdisc_ops tbf_qdisc_ops = {
504 .next = NULL,
505 .cl_ops = &tbf_class_ops,
506 .id = "tbf",
507 .priv_size = sizeof(struct tbf_sched_data),
508 .enqueue = tbf_enqueue,
509 .dequeue = tbf_dequeue,
510 .requeue = tbf_requeue,
511 .drop = tbf_drop,
512 .init = tbf_init,
513 .reset = tbf_reset,
514 .destroy = tbf_destroy,
515 .change = tbf_change,
516 .dump = tbf_dump,
517 .owner = THIS_MODULE,
518 };
519
520 static int __init tbf_module_init(void)
521 {
522 return register_qdisc(&tbf_qdisc_ops);
523 }
524
525 static void __exit tbf_module_exit(void)
526 {
527 unregister_qdisc(&tbf_qdisc_ops);
528 }
529 module_init(tbf_module_init)
530 module_exit(tbf_module_exit)
531 MODULE_LICENSE("GPL");