Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / sched / sch_sfq.c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/ipv6.h>
21 #include <linux/skbuff.h>
22 #include <linux/jhash.h>
23 #include <linux/slab.h>
24 #include <net/ip.h>
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
27
28
29 /* Stochastic Fairness Queuing algorithm.
30 =======================================
31
32 Source:
33 Paul E. McKenney "Stochastic Fairness Queuing",
34 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
35
36 Paul E. McKenney "Stochastic Fairness Queuing",
37 "Interworking: Research and Experience", v.2, 1991, p.113-131.
38
39
40 See also:
41 M. Shreedhar and George Varghese "Efficient Fair
42 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
43
44
45 This is not the thing that is usually called (W)FQ nowadays.
46 It does not use any timestamp mechanism, but instead
47 processes queues in round-robin order.
48
49 ADVANTAGE:
50
51 - It is very cheap. Both CPU and memory requirements are minimal.
52
53 DRAWBACKS:
54
55 - "Stochastic" -> It is not 100% fair.
56 When hash collisions occur, several flows are considered as one.
57
58 - "Round-robin" -> It introduces larger delays than virtual clock
59 based schemes, and should not be used for isolating interactive
60 traffic from non-interactive. It means, that this scheduler
61 should be used as leaf of CBQ or P3, which put interactive traffic
62 to higher priority band.
63
64 We still need true WFQ for top level CSZ, but using WFQ
65 for the best effort traffic is absolutely pointless:
66 SFQ is superior for this purpose.
67
68 IMPLEMENTATION:
69 This implementation limits maximal queue length to 128;
70 maximal mtu to 2^15-1; number of hash buckets to 1024.
71 The only goal of this restrictions was that all data
72 fit into one 4K page :-). Struct sfq_sched_data is
73 organized in anti-cache manner: all the data for a bucket
74 are scattered over different locations. This is not good,
75 but it allowed me to put it into 4K.
76
77 It is easy to increase these values, but not in flight. */
78
79 #define SFQ_DEPTH 128
80 #define SFQ_HASH_DIVISOR 1024
81
82 /* This type should contain at least SFQ_DEPTH*2 values */
83 typedef unsigned char sfq_index;
84
85 struct sfq_head
86 {
87 sfq_index next;
88 sfq_index prev;
89 };
90
91 struct sfq_sched_data
92 {
93 /* Parameters */
94 int perturb_period;
95 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
96 int limit;
97
98 /* Variables */
99 struct tcf_proto *filter_list;
100 struct timer_list perturb_timer;
101 u32 perturbation;
102 sfq_index tail; /* Index of current slot in round */
103 sfq_index max_depth; /* Maximal depth */
104
105 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
106 sfq_index next[SFQ_DEPTH]; /* Active slots link */
107 short allot[SFQ_DEPTH]; /* Current allotment per slot */
108 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
109 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
110 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
111 };
112
113 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
114 {
115 return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
116 }
117
118 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
119 {
120 u32 h, h2;
121
122 switch (skb->protocol) {
123 case htons(ETH_P_IP):
124 {
125 const struct iphdr *iph = ip_hdr(skb);
126 h = (__force u32)iph->daddr;
127 h2 = (__force u32)iph->saddr ^ iph->protocol;
128 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
129 (iph->protocol == IPPROTO_TCP ||
130 iph->protocol == IPPROTO_UDP ||
131 iph->protocol == IPPROTO_UDPLITE ||
132 iph->protocol == IPPROTO_SCTP ||
133 iph->protocol == IPPROTO_DCCP ||
134 iph->protocol == IPPROTO_ESP))
135 h2 ^= *(((u32*)iph) + iph->ihl);
136 break;
137 }
138 case htons(ETH_P_IPV6):
139 {
140 struct ipv6hdr *iph = ipv6_hdr(skb);
141 h = (__force u32)iph->daddr.s6_addr32[3];
142 h2 = (__force u32)iph->saddr.s6_addr32[3] ^ iph->nexthdr;
143 if (iph->nexthdr == IPPROTO_TCP ||
144 iph->nexthdr == IPPROTO_UDP ||
145 iph->nexthdr == IPPROTO_UDPLITE ||
146 iph->nexthdr == IPPROTO_SCTP ||
147 iph->nexthdr == IPPROTO_DCCP ||
148 iph->nexthdr == IPPROTO_ESP)
149 h2 ^= *(u32*)&iph[1];
150 break;
151 }
152 default:
153 h = (unsigned long)skb_dst(skb) ^ (__force u32)skb->protocol;
154 h2 = (unsigned long)skb->sk;
155 }
156
157 return sfq_fold_hash(q, h, h2);
158 }
159
160 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
161 int *qerr)
162 {
163 struct sfq_sched_data *q = qdisc_priv(sch);
164 struct tcf_result res;
165 int result;
166
167 if (TC_H_MAJ(skb->priority) == sch->handle &&
168 TC_H_MIN(skb->priority) > 0 &&
169 TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
170 return TC_H_MIN(skb->priority);
171
172 if (!q->filter_list)
173 return sfq_hash(q, skb) + 1;
174
175 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
176 result = tc_classify(skb, q->filter_list, &res);
177 if (result >= 0) {
178 #ifdef CONFIG_NET_CLS_ACT
179 switch (result) {
180 case TC_ACT_STOLEN:
181 case TC_ACT_QUEUED:
182 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
183 case TC_ACT_SHOT:
184 return 0;
185 }
186 #endif
187 if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
188 return TC_H_MIN(res.classid);
189 }
190 return 0;
191 }
192
193 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
194 {
195 sfq_index p, n;
196 int d = q->qs[x].qlen + SFQ_DEPTH;
197
198 p = d;
199 n = q->dep[d].next;
200 q->dep[x].next = n;
201 q->dep[x].prev = p;
202 q->dep[p].next = q->dep[n].prev = x;
203 }
204
205 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
206 {
207 sfq_index p, n;
208
209 n = q->dep[x].next;
210 p = q->dep[x].prev;
211 q->dep[p].next = n;
212 q->dep[n].prev = p;
213
214 if (n == p && q->max_depth == q->qs[x].qlen + 1)
215 q->max_depth--;
216
217 sfq_link(q, x);
218 }
219
220 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
221 {
222 sfq_index p, n;
223 int d;
224
225 n = q->dep[x].next;
226 p = q->dep[x].prev;
227 q->dep[p].next = n;
228 q->dep[n].prev = p;
229 d = q->qs[x].qlen;
230 if (q->max_depth < d)
231 q->max_depth = d;
232
233 sfq_link(q, x);
234 }
235
236 static unsigned int sfq_drop(struct Qdisc *sch)
237 {
238 struct sfq_sched_data *q = qdisc_priv(sch);
239 sfq_index d = q->max_depth;
240 struct sk_buff *skb;
241 unsigned int len;
242
243 /* Queue is full! Find the longest slot and
244 drop a packet from it */
245
246 if (d > 1) {
247 sfq_index x = q->dep[d + SFQ_DEPTH].next;
248 skb = q->qs[x].prev;
249 len = qdisc_pkt_len(skb);
250 __skb_unlink(skb, &q->qs[x]);
251 kfree_skb(skb);
252 sfq_dec(q, x);
253 sch->q.qlen--;
254 sch->qstats.drops++;
255 sch->qstats.backlog -= len;
256 return len;
257 }
258
259 if (d == 1) {
260 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
261 d = q->next[q->tail];
262 q->next[q->tail] = q->next[d];
263 q->allot[q->next[d]] += q->quantum;
264 skb = q->qs[d].prev;
265 len = qdisc_pkt_len(skb);
266 __skb_unlink(skb, &q->qs[d]);
267 kfree_skb(skb);
268 sfq_dec(q, d);
269 sch->q.qlen--;
270 q->ht[q->hash[d]] = SFQ_DEPTH;
271 sch->qstats.drops++;
272 sch->qstats.backlog -= len;
273 return len;
274 }
275
276 return 0;
277 }
278
279 static int
280 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
281 {
282 struct sfq_sched_data *q = qdisc_priv(sch);
283 unsigned int hash;
284 sfq_index x;
285 int uninitialized_var(ret);
286
287 hash = sfq_classify(skb, sch, &ret);
288 if (hash == 0) {
289 if (ret & __NET_XMIT_BYPASS)
290 sch->qstats.drops++;
291 kfree_skb(skb);
292 return ret;
293 }
294 hash--;
295
296 x = q->ht[hash];
297 if (x == SFQ_DEPTH) {
298 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
299 q->hash[x] = hash;
300 }
301
302 /* If selected queue has length q->limit, this means that
303 * all another queues are empty and that we do simple tail drop,
304 * i.e. drop _this_ packet.
305 */
306 if (q->qs[x].qlen >= q->limit)
307 return qdisc_drop(skb, sch);
308
309 sch->qstats.backlog += qdisc_pkt_len(skb);
310 __skb_queue_tail(&q->qs[x], skb);
311 sfq_inc(q, x);
312 if (q->qs[x].qlen == 1) { /* The flow is new */
313 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
314 q->tail = x;
315 q->next[x] = x;
316 q->allot[x] = q->quantum;
317 } else {
318 q->next[x] = q->next[q->tail];
319 q->next[q->tail] = x;
320 q->tail = x;
321 }
322 }
323 if (++sch->q.qlen <= q->limit) {
324 sch->bstats.bytes += qdisc_pkt_len(skb);
325 sch->bstats.packets++;
326 return 0;
327 }
328
329 sfq_drop(sch);
330 return NET_XMIT_CN;
331 }
332
333 static struct sk_buff *
334 sfq_peek(struct Qdisc *sch)
335 {
336 struct sfq_sched_data *q = qdisc_priv(sch);
337 sfq_index a;
338
339 /* No active slots */
340 if (q->tail == SFQ_DEPTH)
341 return NULL;
342
343 a = q->next[q->tail];
344 return skb_peek(&q->qs[a]);
345 }
346
347 static struct sk_buff *
348 sfq_dequeue(struct Qdisc *sch)
349 {
350 struct sfq_sched_data *q = qdisc_priv(sch);
351 struct sk_buff *skb;
352 sfq_index a, old_a;
353
354 /* No active slots */
355 if (q->tail == SFQ_DEPTH)
356 return NULL;
357
358 a = old_a = q->next[q->tail];
359
360 /* Grab packet */
361 skb = __skb_dequeue(&q->qs[a]);
362 sfq_dec(q, a);
363 sch->q.qlen--;
364 sch->qstats.backlog -= qdisc_pkt_len(skb);
365
366 /* Is the slot empty? */
367 if (q->qs[a].qlen == 0) {
368 q->ht[q->hash[a]] = SFQ_DEPTH;
369 a = q->next[a];
370 if (a == old_a) {
371 q->tail = SFQ_DEPTH;
372 return skb;
373 }
374 q->next[q->tail] = a;
375 q->allot[a] += q->quantum;
376 } else if ((q->allot[a] -= qdisc_pkt_len(skb)) <= 0) {
377 q->tail = a;
378 a = q->next[a];
379 q->allot[a] += q->quantum;
380 }
381 return skb;
382 }
383
384 static void
385 sfq_reset(struct Qdisc *sch)
386 {
387 struct sk_buff *skb;
388
389 while ((skb = sfq_dequeue(sch)) != NULL)
390 kfree_skb(skb);
391 }
392
393 static void sfq_perturbation(unsigned long arg)
394 {
395 struct Qdisc *sch = (struct Qdisc *)arg;
396 struct sfq_sched_data *q = qdisc_priv(sch);
397
398 q->perturbation = net_random();
399
400 if (q->perturb_period)
401 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
402 }
403
404 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
405 {
406 struct sfq_sched_data *q = qdisc_priv(sch);
407 struct tc_sfq_qopt *ctl = nla_data(opt);
408 unsigned int qlen;
409
410 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
411 return -EINVAL;
412
413 sch_tree_lock(sch);
414 q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
415 q->perturb_period = ctl->perturb_period * HZ;
416 if (ctl->limit)
417 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
418
419 qlen = sch->q.qlen;
420 while (sch->q.qlen > q->limit)
421 sfq_drop(sch);
422 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
423
424 del_timer(&q->perturb_timer);
425 if (q->perturb_period) {
426 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
427 q->perturbation = net_random();
428 }
429 sch_tree_unlock(sch);
430 return 0;
431 }
432
433 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
434 {
435 struct sfq_sched_data *q = qdisc_priv(sch);
436 int i;
437
438 q->perturb_timer.function = sfq_perturbation;
439 q->perturb_timer.data = (unsigned long)sch;
440 init_timer_deferrable(&q->perturb_timer);
441
442 for (i = 0; i < SFQ_HASH_DIVISOR; i++)
443 q->ht[i] = SFQ_DEPTH;
444
445 for (i = 0; i < SFQ_DEPTH; i++) {
446 skb_queue_head_init(&q->qs[i]);
447 q->dep[i + SFQ_DEPTH].next = i + SFQ_DEPTH;
448 q->dep[i + SFQ_DEPTH].prev = i + SFQ_DEPTH;
449 }
450
451 q->limit = SFQ_DEPTH - 1;
452 q->max_depth = 0;
453 q->tail = SFQ_DEPTH;
454 if (opt == NULL) {
455 q->quantum = psched_mtu(qdisc_dev(sch));
456 q->perturb_period = 0;
457 q->perturbation = net_random();
458 } else {
459 int err = sfq_change(sch, opt);
460 if (err)
461 return err;
462 }
463
464 for (i = 0; i < SFQ_DEPTH; i++)
465 sfq_link(q, i);
466 return 0;
467 }
468
469 static void sfq_destroy(struct Qdisc *sch)
470 {
471 struct sfq_sched_data *q = qdisc_priv(sch);
472
473 tcf_destroy_chain(&q->filter_list);
474 q->perturb_period = 0;
475 del_timer_sync(&q->perturb_timer);
476 }
477
478 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
479 {
480 struct sfq_sched_data *q = qdisc_priv(sch);
481 unsigned char *b = skb_tail_pointer(skb);
482 struct tc_sfq_qopt opt;
483
484 opt.quantum = q->quantum;
485 opt.perturb_period = q->perturb_period / HZ;
486
487 opt.limit = q->limit;
488 opt.divisor = SFQ_HASH_DIVISOR;
489 opt.flows = q->limit;
490
491 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
492
493 return skb->len;
494
495 nla_put_failure:
496 nlmsg_trim(skb, b);
497 return -1;
498 }
499
500 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
501 {
502 return 0;
503 }
504
505 static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
506 {
507 struct sfq_sched_data *q = qdisc_priv(sch);
508
509 if (cl)
510 return NULL;
511 return &q->filter_list;
512 }
513
514 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
515 struct sk_buff *skb, struct tcmsg *tcm)
516 {
517 tcm->tcm_handle |= TC_H_MIN(cl);
518 return 0;
519 }
520
521 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
522 struct gnet_dump *d)
523 {
524 struct sfq_sched_data *q = qdisc_priv(sch);
525 sfq_index idx = q->ht[cl-1];
526 struct gnet_stats_queue qs = { .qlen = q->qs[idx].qlen };
527 struct tc_sfq_xstats xstats = { .allot = q->allot[idx] };
528
529 if (gnet_stats_copy_queue(d, &qs) < 0)
530 return -1;
531 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
532 }
533
534 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
535 {
536 struct sfq_sched_data *q = qdisc_priv(sch);
537 unsigned int i;
538
539 if (arg->stop)
540 return;
541
542 for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
543 if (q->ht[i] == SFQ_DEPTH ||
544 arg->count < arg->skip) {
545 arg->count++;
546 continue;
547 }
548 if (arg->fn(sch, i + 1, arg) < 0) {
549 arg->stop = 1;
550 break;
551 }
552 arg->count++;
553 }
554 }
555
556 static const struct Qdisc_class_ops sfq_class_ops = {
557 .get = sfq_get,
558 .tcf_chain = sfq_find_tcf,
559 .dump = sfq_dump_class,
560 .dump_stats = sfq_dump_class_stats,
561 .walk = sfq_walk,
562 };
563
564 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
565 .cl_ops = &sfq_class_ops,
566 .id = "sfq",
567 .priv_size = sizeof(struct sfq_sched_data),
568 .enqueue = sfq_enqueue,
569 .dequeue = sfq_dequeue,
570 .peek = sfq_peek,
571 .drop = sfq_drop,
572 .init = sfq_init,
573 .reset = sfq_reset,
574 .destroy = sfq_destroy,
575 .change = NULL,
576 .dump = sfq_dump,
577 .owner = THIS_MODULE,
578 };
579
580 static int __init sfq_module_init(void)
581 {
582 return register_qdisc(&sfq_qdisc_ops);
583 }
584 static void __exit sfq_module_exit(void)
585 {
586 unregister_qdisc(&sfq_qdisc_ops);
587 }
588 module_init(sfq_module_init)
589 module_exit(sfq_module_exit)
590 MODULE_LICENSE("GPL");