Merge 4.14.1 into android-4.14
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / rfkill / core.c
1 /*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
36
37 #include "rfkill.h"
38
39 #define POLL_INTERVAL (5 * HZ)
40
41 #define RFKILL_BLOCK_HW BIT(0)
42 #define RFKILL_BLOCK_SW BIT(1)
43 #define RFKILL_BLOCK_SW_PREV BIT(2)
44 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
45 RFKILL_BLOCK_SW |\
46 RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49 struct rfkill {
50 spinlock_t lock;
51
52 enum rfkill_type type;
53
54 unsigned long state;
55
56 u32 idx;
57
58 bool registered;
59 bool persistent;
60 bool polling_paused;
61 bool suspended;
62
63 const struct rfkill_ops *ops;
64 void *data;
65
66 #ifdef CONFIG_RFKILL_LEDS
67 struct led_trigger led_trigger;
68 const char *ledtrigname;
69 #endif
70
71 struct device dev;
72 struct list_head node;
73
74 struct delayed_work poll_work;
75 struct work_struct uevent_work;
76 struct work_struct sync_work;
77 char name[];
78 };
79 #define to_rfkill(d) container_of(d, struct rfkill, dev)
80
81 struct rfkill_int_event {
82 struct list_head list;
83 struct rfkill_event ev;
84 };
85
86 struct rfkill_data {
87 struct list_head list;
88 struct list_head events;
89 struct mutex mtx;
90 wait_queue_head_t read_wait;
91 bool input_handler;
92 };
93
94
95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97 MODULE_DESCRIPTION("RF switch support");
98 MODULE_LICENSE("GPL");
99
100
101 /*
102 * The locking here should be made much smarter, we currently have
103 * a bit of a stupid situation because drivers might want to register
104 * the rfkill struct under their own lock, and take this lock during
105 * rfkill method calls -- which will cause an AB-BA deadlock situation.
106 *
107 * To fix that, we need to rework this code here to be mostly lock-free
108 * and only use the mutex for list manipulations, not to protect the
109 * various other global variables. Then we can avoid holding the mutex
110 * around driver operations, and all is happy.
111 */
112 static LIST_HEAD(rfkill_list); /* list of registered rf switches */
113 static DEFINE_MUTEX(rfkill_global_mutex);
114 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
115
116 static unsigned int rfkill_default_state = 1;
117 module_param_named(default_state, rfkill_default_state, uint, 0444);
118 MODULE_PARM_DESC(default_state,
119 "Default initial state for all radio types, 0 = radio off");
120
121 static struct {
122 bool cur, sav;
123 } rfkill_global_states[NUM_RFKILL_TYPES];
124
125 static bool rfkill_epo_lock_active;
126
127
128 #ifdef CONFIG_RFKILL_LEDS
129 static void rfkill_led_trigger_event(struct rfkill *rfkill)
130 {
131 struct led_trigger *trigger;
132
133 if (!rfkill->registered)
134 return;
135
136 trigger = &rfkill->led_trigger;
137
138 if (rfkill->state & RFKILL_BLOCK_ANY)
139 led_trigger_event(trigger, LED_OFF);
140 else
141 led_trigger_event(trigger, LED_FULL);
142 }
143
144 static void rfkill_led_trigger_activate(struct led_classdev *led)
145 {
146 struct rfkill *rfkill;
147
148 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150 rfkill_led_trigger_event(rfkill);
151 }
152
153 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154 {
155 return rfkill->led_trigger.name;
156 }
157 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160 {
161 BUG_ON(!rfkill);
162
163 rfkill->ledtrigname = name;
164 }
165 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167 static int rfkill_led_trigger_register(struct rfkill *rfkill)
168 {
169 rfkill->led_trigger.name = rfkill->ledtrigname
170 ? : dev_name(&rfkill->dev);
171 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172 return led_trigger_register(&rfkill->led_trigger);
173 }
174
175 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176 {
177 led_trigger_unregister(&rfkill->led_trigger);
178 }
179
180 static struct led_trigger rfkill_any_led_trigger;
181 static struct work_struct rfkill_any_work;
182
183 static void rfkill_any_led_trigger_worker(struct work_struct *work)
184 {
185 enum led_brightness brightness = LED_OFF;
186 struct rfkill *rfkill;
187
188 mutex_lock(&rfkill_global_mutex);
189 list_for_each_entry(rfkill, &rfkill_list, node) {
190 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
191 brightness = LED_FULL;
192 break;
193 }
194 }
195 mutex_unlock(&rfkill_global_mutex);
196
197 led_trigger_event(&rfkill_any_led_trigger, brightness);
198 }
199
200 static void rfkill_any_led_trigger_event(void)
201 {
202 schedule_work(&rfkill_any_work);
203 }
204
205 static void rfkill_any_led_trigger_activate(struct led_classdev *led_cdev)
206 {
207 rfkill_any_led_trigger_event();
208 }
209
210 static int rfkill_any_led_trigger_register(void)
211 {
212 INIT_WORK(&rfkill_any_work, rfkill_any_led_trigger_worker);
213 rfkill_any_led_trigger.name = "rfkill-any";
214 rfkill_any_led_trigger.activate = rfkill_any_led_trigger_activate;
215 return led_trigger_register(&rfkill_any_led_trigger);
216 }
217
218 static void rfkill_any_led_trigger_unregister(void)
219 {
220 led_trigger_unregister(&rfkill_any_led_trigger);
221 cancel_work_sync(&rfkill_any_work);
222 }
223 #else
224 static void rfkill_led_trigger_event(struct rfkill *rfkill)
225 {
226 }
227
228 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
229 {
230 return 0;
231 }
232
233 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
234 {
235 }
236
237 static void rfkill_any_led_trigger_event(void)
238 {
239 }
240
241 static int rfkill_any_led_trigger_register(void)
242 {
243 return 0;
244 }
245
246 static void rfkill_any_led_trigger_unregister(void)
247 {
248 }
249 #endif /* CONFIG_RFKILL_LEDS */
250
251 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
252 enum rfkill_operation op)
253 {
254 unsigned long flags;
255
256 ev->idx = rfkill->idx;
257 ev->type = rfkill->type;
258 ev->op = op;
259
260 spin_lock_irqsave(&rfkill->lock, flags);
261 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
262 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
263 RFKILL_BLOCK_SW_PREV));
264 spin_unlock_irqrestore(&rfkill->lock, flags);
265 }
266
267 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
268 {
269 struct rfkill_data *data;
270 struct rfkill_int_event *ev;
271
272 list_for_each_entry(data, &rfkill_fds, list) {
273 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
274 if (!ev)
275 continue;
276 rfkill_fill_event(&ev->ev, rfkill, op);
277 mutex_lock(&data->mtx);
278 list_add_tail(&ev->list, &data->events);
279 mutex_unlock(&data->mtx);
280 wake_up_interruptible(&data->read_wait);
281 }
282 }
283
284 static void rfkill_event(struct rfkill *rfkill)
285 {
286 if (!rfkill->registered)
287 return;
288
289 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
290
291 /* also send event to /dev/rfkill */
292 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
293 }
294
295 /**
296 * rfkill_set_block - wrapper for set_block method
297 *
298 * @rfkill: the rfkill struct to use
299 * @blocked: the new software state
300 *
301 * Calls the set_block method (when applicable) and handles notifications
302 * etc. as well.
303 */
304 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
305 {
306 unsigned long flags;
307 bool prev, curr;
308 int err;
309
310 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
311 return;
312
313 /*
314 * Some platforms (...!) generate input events which affect the
315 * _hard_ kill state -- whenever something tries to change the
316 * current software state query the hardware state too.
317 */
318 if (rfkill->ops->query)
319 rfkill->ops->query(rfkill, rfkill->data);
320
321 spin_lock_irqsave(&rfkill->lock, flags);
322 prev = rfkill->state & RFKILL_BLOCK_SW;
323
324 if (prev)
325 rfkill->state |= RFKILL_BLOCK_SW_PREV;
326 else
327 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
328
329 if (blocked)
330 rfkill->state |= RFKILL_BLOCK_SW;
331 else
332 rfkill->state &= ~RFKILL_BLOCK_SW;
333
334 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
335 spin_unlock_irqrestore(&rfkill->lock, flags);
336
337 err = rfkill->ops->set_block(rfkill->data, blocked);
338
339 spin_lock_irqsave(&rfkill->lock, flags);
340 if (err) {
341 /*
342 * Failed -- reset status to _PREV, which may be different
343 * from what we have set _PREV to earlier in this function
344 * if rfkill_set_sw_state was invoked.
345 */
346 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
347 rfkill->state |= RFKILL_BLOCK_SW;
348 else
349 rfkill->state &= ~RFKILL_BLOCK_SW;
350 }
351 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
352 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
353 curr = rfkill->state & RFKILL_BLOCK_SW;
354 spin_unlock_irqrestore(&rfkill->lock, flags);
355
356 rfkill_led_trigger_event(rfkill);
357 rfkill_any_led_trigger_event();
358
359 if (prev != curr)
360 rfkill_event(rfkill);
361 }
362
363 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
364 {
365 int i;
366
367 if (type != RFKILL_TYPE_ALL) {
368 rfkill_global_states[type].cur = blocked;
369 return;
370 }
371
372 for (i = 0; i < NUM_RFKILL_TYPES; i++)
373 rfkill_global_states[i].cur = blocked;
374 }
375
376 #ifdef CONFIG_RFKILL_INPUT
377 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
378
379 /**
380 * __rfkill_switch_all - Toggle state of all switches of given type
381 * @type: type of interfaces to be affected
382 * @blocked: the new state
383 *
384 * This function sets the state of all switches of given type,
385 * unless a specific switch is suspended.
386 *
387 * Caller must have acquired rfkill_global_mutex.
388 */
389 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
390 {
391 struct rfkill *rfkill;
392
393 rfkill_update_global_state(type, blocked);
394 list_for_each_entry(rfkill, &rfkill_list, node) {
395 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
396 continue;
397
398 rfkill_set_block(rfkill, blocked);
399 }
400 }
401
402 /**
403 * rfkill_switch_all - Toggle state of all switches of given type
404 * @type: type of interfaces to be affected
405 * @blocked: the new state
406 *
407 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
408 * Please refer to __rfkill_switch_all() for details.
409 *
410 * Does nothing if the EPO lock is active.
411 */
412 void rfkill_switch_all(enum rfkill_type type, bool blocked)
413 {
414 if (atomic_read(&rfkill_input_disabled))
415 return;
416
417 mutex_lock(&rfkill_global_mutex);
418
419 if (!rfkill_epo_lock_active)
420 __rfkill_switch_all(type, blocked);
421
422 mutex_unlock(&rfkill_global_mutex);
423 }
424
425 /**
426 * rfkill_epo - emergency power off all transmitters
427 *
428 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
429 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
430 *
431 * The global state before the EPO is saved and can be restored later
432 * using rfkill_restore_states().
433 */
434 void rfkill_epo(void)
435 {
436 struct rfkill *rfkill;
437 int i;
438
439 if (atomic_read(&rfkill_input_disabled))
440 return;
441
442 mutex_lock(&rfkill_global_mutex);
443
444 rfkill_epo_lock_active = true;
445 list_for_each_entry(rfkill, &rfkill_list, node)
446 rfkill_set_block(rfkill, true);
447
448 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
449 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
450 rfkill_global_states[i].cur = true;
451 }
452
453 mutex_unlock(&rfkill_global_mutex);
454 }
455
456 /**
457 * rfkill_restore_states - restore global states
458 *
459 * Restore (and sync switches to) the global state from the
460 * states in rfkill_default_states. This can undo the effects of
461 * a call to rfkill_epo().
462 */
463 void rfkill_restore_states(void)
464 {
465 int i;
466
467 if (atomic_read(&rfkill_input_disabled))
468 return;
469
470 mutex_lock(&rfkill_global_mutex);
471
472 rfkill_epo_lock_active = false;
473 for (i = 0; i < NUM_RFKILL_TYPES; i++)
474 __rfkill_switch_all(i, rfkill_global_states[i].sav);
475 mutex_unlock(&rfkill_global_mutex);
476 }
477
478 /**
479 * rfkill_remove_epo_lock - unlock state changes
480 *
481 * Used by rfkill-input manually unlock state changes, when
482 * the EPO switch is deactivated.
483 */
484 void rfkill_remove_epo_lock(void)
485 {
486 if (atomic_read(&rfkill_input_disabled))
487 return;
488
489 mutex_lock(&rfkill_global_mutex);
490 rfkill_epo_lock_active = false;
491 mutex_unlock(&rfkill_global_mutex);
492 }
493
494 /**
495 * rfkill_is_epo_lock_active - returns true EPO is active
496 *
497 * Returns 0 (false) if there is NOT an active EPO contidion,
498 * and 1 (true) if there is an active EPO contition, which
499 * locks all radios in one of the BLOCKED states.
500 *
501 * Can be called in atomic context.
502 */
503 bool rfkill_is_epo_lock_active(void)
504 {
505 return rfkill_epo_lock_active;
506 }
507
508 /**
509 * rfkill_get_global_sw_state - returns global state for a type
510 * @type: the type to get the global state of
511 *
512 * Returns the current global state for a given wireless
513 * device type.
514 */
515 bool rfkill_get_global_sw_state(const enum rfkill_type type)
516 {
517 return rfkill_global_states[type].cur;
518 }
519 #endif
520
521 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
522 {
523 unsigned long flags;
524 bool ret, prev;
525
526 BUG_ON(!rfkill);
527
528 spin_lock_irqsave(&rfkill->lock, flags);
529 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
530 if (blocked)
531 rfkill->state |= RFKILL_BLOCK_HW;
532 else
533 rfkill->state &= ~RFKILL_BLOCK_HW;
534 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
535 spin_unlock_irqrestore(&rfkill->lock, flags);
536
537 rfkill_led_trigger_event(rfkill);
538 rfkill_any_led_trigger_event();
539
540 if (rfkill->registered && prev != blocked)
541 schedule_work(&rfkill->uevent_work);
542
543 return ret;
544 }
545 EXPORT_SYMBOL(rfkill_set_hw_state);
546
547 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
548 {
549 u32 bit = RFKILL_BLOCK_SW;
550
551 /* if in a ops->set_block right now, use other bit */
552 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
553 bit = RFKILL_BLOCK_SW_PREV;
554
555 if (blocked)
556 rfkill->state |= bit;
557 else
558 rfkill->state &= ~bit;
559 }
560
561 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
562 {
563 unsigned long flags;
564 bool prev, hwblock;
565
566 BUG_ON(!rfkill);
567
568 spin_lock_irqsave(&rfkill->lock, flags);
569 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
570 __rfkill_set_sw_state(rfkill, blocked);
571 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
572 blocked = blocked || hwblock;
573 spin_unlock_irqrestore(&rfkill->lock, flags);
574
575 if (!rfkill->registered)
576 return blocked;
577
578 if (prev != blocked && !hwblock)
579 schedule_work(&rfkill->uevent_work);
580
581 rfkill_led_trigger_event(rfkill);
582 rfkill_any_led_trigger_event();
583
584 return blocked;
585 }
586 EXPORT_SYMBOL(rfkill_set_sw_state);
587
588 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
589 {
590 unsigned long flags;
591
592 BUG_ON(!rfkill);
593 BUG_ON(rfkill->registered);
594
595 spin_lock_irqsave(&rfkill->lock, flags);
596 __rfkill_set_sw_state(rfkill, blocked);
597 rfkill->persistent = true;
598 spin_unlock_irqrestore(&rfkill->lock, flags);
599 }
600 EXPORT_SYMBOL(rfkill_init_sw_state);
601
602 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
603 {
604 unsigned long flags;
605 bool swprev, hwprev;
606
607 BUG_ON(!rfkill);
608
609 spin_lock_irqsave(&rfkill->lock, flags);
610
611 /*
612 * No need to care about prev/setblock ... this is for uevent only
613 * and that will get triggered by rfkill_set_block anyway.
614 */
615 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
616 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
617 __rfkill_set_sw_state(rfkill, sw);
618 if (hw)
619 rfkill->state |= RFKILL_BLOCK_HW;
620 else
621 rfkill->state &= ~RFKILL_BLOCK_HW;
622
623 spin_unlock_irqrestore(&rfkill->lock, flags);
624
625 if (!rfkill->registered) {
626 rfkill->persistent = true;
627 } else {
628 if (swprev != sw || hwprev != hw)
629 schedule_work(&rfkill->uevent_work);
630
631 rfkill_led_trigger_event(rfkill);
632 rfkill_any_led_trigger_event();
633 }
634 }
635 EXPORT_SYMBOL(rfkill_set_states);
636
637 static const char * const rfkill_types[] = {
638 NULL, /* RFKILL_TYPE_ALL */
639 "wlan",
640 "bluetooth",
641 "ultrawideband",
642 "wimax",
643 "wwan",
644 "gps",
645 "fm",
646 "nfc",
647 };
648
649 enum rfkill_type rfkill_find_type(const char *name)
650 {
651 int i;
652
653 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
654
655 if (!name)
656 return RFKILL_TYPE_ALL;
657
658 for (i = 1; i < NUM_RFKILL_TYPES; i++)
659 if (!strcmp(name, rfkill_types[i]))
660 return i;
661 return RFKILL_TYPE_ALL;
662 }
663 EXPORT_SYMBOL(rfkill_find_type);
664
665 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
666 char *buf)
667 {
668 struct rfkill *rfkill = to_rfkill(dev);
669
670 return sprintf(buf, "%s\n", rfkill->name);
671 }
672 static DEVICE_ATTR_RO(name);
673
674 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
675 char *buf)
676 {
677 struct rfkill *rfkill = to_rfkill(dev);
678
679 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
680 }
681 static DEVICE_ATTR_RO(type);
682
683 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685 {
686 struct rfkill *rfkill = to_rfkill(dev);
687
688 return sprintf(buf, "%d\n", rfkill->idx);
689 }
690 static DEVICE_ATTR_RO(index);
691
692 static ssize_t persistent_show(struct device *dev,
693 struct device_attribute *attr, char *buf)
694 {
695 struct rfkill *rfkill = to_rfkill(dev);
696
697 return sprintf(buf, "%d\n", rfkill->persistent);
698 }
699 static DEVICE_ATTR_RO(persistent);
700
701 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
702 char *buf)
703 {
704 struct rfkill *rfkill = to_rfkill(dev);
705
706 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
707 }
708 static DEVICE_ATTR_RO(hard);
709
710 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
711 char *buf)
712 {
713 struct rfkill *rfkill = to_rfkill(dev);
714
715 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
716 }
717
718 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
719 const char *buf, size_t count)
720 {
721 struct rfkill *rfkill = to_rfkill(dev);
722 unsigned long state;
723 int err;
724
725 if (!capable(CAP_NET_ADMIN))
726 return -EPERM;
727
728 err = kstrtoul(buf, 0, &state);
729 if (err)
730 return err;
731
732 if (state > 1 )
733 return -EINVAL;
734
735 mutex_lock(&rfkill_global_mutex);
736 rfkill_set_block(rfkill, state);
737 mutex_unlock(&rfkill_global_mutex);
738
739 return count;
740 }
741 static DEVICE_ATTR_RW(soft);
742
743 static u8 user_state_from_blocked(unsigned long state)
744 {
745 if (state & RFKILL_BLOCK_HW)
746 return RFKILL_USER_STATE_HARD_BLOCKED;
747 if (state & RFKILL_BLOCK_SW)
748 return RFKILL_USER_STATE_SOFT_BLOCKED;
749
750 return RFKILL_USER_STATE_UNBLOCKED;
751 }
752
753 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
754 char *buf)
755 {
756 struct rfkill *rfkill = to_rfkill(dev);
757
758 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
759 }
760
761 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
762 const char *buf, size_t count)
763 {
764 struct rfkill *rfkill = to_rfkill(dev);
765 unsigned long state;
766 int err;
767
768 if (!capable(CAP_NET_ADMIN))
769 return -EPERM;
770
771 err = kstrtoul(buf, 0, &state);
772 if (err)
773 return err;
774
775 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
776 state != RFKILL_USER_STATE_UNBLOCKED)
777 return -EINVAL;
778
779 mutex_lock(&rfkill_global_mutex);
780 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
781 mutex_unlock(&rfkill_global_mutex);
782
783 return count;
784 }
785 static DEVICE_ATTR_RW(state);
786
787 static struct attribute *rfkill_dev_attrs[] = {
788 &dev_attr_name.attr,
789 &dev_attr_type.attr,
790 &dev_attr_index.attr,
791 &dev_attr_persistent.attr,
792 &dev_attr_state.attr,
793 &dev_attr_soft.attr,
794 &dev_attr_hard.attr,
795 NULL,
796 };
797 ATTRIBUTE_GROUPS(rfkill_dev);
798
799 static void rfkill_release(struct device *dev)
800 {
801 struct rfkill *rfkill = to_rfkill(dev);
802
803 kfree(rfkill);
804 }
805
806 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
807 {
808 struct rfkill *rfkill = to_rfkill(dev);
809 unsigned long flags;
810 u32 state;
811 int error;
812
813 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
814 if (error)
815 return error;
816 error = add_uevent_var(env, "RFKILL_TYPE=%s",
817 rfkill_types[rfkill->type]);
818 if (error)
819 return error;
820 spin_lock_irqsave(&rfkill->lock, flags);
821 state = rfkill->state;
822 spin_unlock_irqrestore(&rfkill->lock, flags);
823 error = add_uevent_var(env, "RFKILL_STATE=%d",
824 user_state_from_blocked(state));
825 return error;
826 }
827
828 void rfkill_pause_polling(struct rfkill *rfkill)
829 {
830 BUG_ON(!rfkill);
831
832 if (!rfkill->ops->poll)
833 return;
834
835 rfkill->polling_paused = true;
836 cancel_delayed_work_sync(&rfkill->poll_work);
837 }
838 EXPORT_SYMBOL(rfkill_pause_polling);
839
840 void rfkill_resume_polling(struct rfkill *rfkill)
841 {
842 BUG_ON(!rfkill);
843
844 if (!rfkill->ops->poll)
845 return;
846
847 rfkill->polling_paused = false;
848
849 if (rfkill->suspended)
850 return;
851
852 queue_delayed_work(system_power_efficient_wq,
853 &rfkill->poll_work, 0);
854 }
855 EXPORT_SYMBOL(rfkill_resume_polling);
856
857 static __maybe_unused int rfkill_suspend(struct device *dev)
858 {
859 struct rfkill *rfkill = to_rfkill(dev);
860
861 rfkill->suspended = true;
862 cancel_delayed_work_sync(&rfkill->poll_work);
863
864 return 0;
865 }
866
867 static __maybe_unused int rfkill_resume(struct device *dev)
868 {
869 struct rfkill *rfkill = to_rfkill(dev);
870 bool cur;
871
872 rfkill->suspended = false;
873
874 if (!rfkill->persistent) {
875 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
876 rfkill_set_block(rfkill, cur);
877 }
878
879 if (rfkill->ops->poll && !rfkill->polling_paused)
880 queue_delayed_work(system_power_efficient_wq,
881 &rfkill->poll_work, 0);
882
883 return 0;
884 }
885
886 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
887
888 static struct class rfkill_class = {
889 .name = "rfkill",
890 .dev_release = rfkill_release,
891 .dev_groups = rfkill_dev_groups,
892 .dev_uevent = rfkill_dev_uevent,
893 .pm = IS_ENABLED(CONFIG_RFKILL_PM) ? &rfkill_pm_ops : NULL,
894 };
895
896 bool rfkill_blocked(struct rfkill *rfkill)
897 {
898 unsigned long flags;
899 u32 state;
900
901 spin_lock_irqsave(&rfkill->lock, flags);
902 state = rfkill->state;
903 spin_unlock_irqrestore(&rfkill->lock, flags);
904
905 return !!(state & RFKILL_BLOCK_ANY);
906 }
907 EXPORT_SYMBOL(rfkill_blocked);
908
909
910 struct rfkill * __must_check rfkill_alloc(const char *name,
911 struct device *parent,
912 const enum rfkill_type type,
913 const struct rfkill_ops *ops,
914 void *ops_data)
915 {
916 struct rfkill *rfkill;
917 struct device *dev;
918
919 if (WARN_ON(!ops))
920 return NULL;
921
922 if (WARN_ON(!ops->set_block))
923 return NULL;
924
925 if (WARN_ON(!name))
926 return NULL;
927
928 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
929 return NULL;
930
931 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
932 if (!rfkill)
933 return NULL;
934
935 spin_lock_init(&rfkill->lock);
936 INIT_LIST_HEAD(&rfkill->node);
937 rfkill->type = type;
938 strcpy(rfkill->name, name);
939 rfkill->ops = ops;
940 rfkill->data = ops_data;
941
942 dev = &rfkill->dev;
943 dev->class = &rfkill_class;
944 dev->parent = parent;
945 device_initialize(dev);
946
947 return rfkill;
948 }
949 EXPORT_SYMBOL(rfkill_alloc);
950
951 static void rfkill_poll(struct work_struct *work)
952 {
953 struct rfkill *rfkill;
954
955 rfkill = container_of(work, struct rfkill, poll_work.work);
956
957 /*
958 * Poll hardware state -- driver will use one of the
959 * rfkill_set{,_hw,_sw}_state functions and use its
960 * return value to update the current status.
961 */
962 rfkill->ops->poll(rfkill, rfkill->data);
963
964 queue_delayed_work(system_power_efficient_wq,
965 &rfkill->poll_work,
966 round_jiffies_relative(POLL_INTERVAL));
967 }
968
969 static void rfkill_uevent_work(struct work_struct *work)
970 {
971 struct rfkill *rfkill;
972
973 rfkill = container_of(work, struct rfkill, uevent_work);
974
975 mutex_lock(&rfkill_global_mutex);
976 rfkill_event(rfkill);
977 mutex_unlock(&rfkill_global_mutex);
978 }
979
980 static void rfkill_sync_work(struct work_struct *work)
981 {
982 struct rfkill *rfkill;
983 bool cur;
984
985 rfkill = container_of(work, struct rfkill, sync_work);
986
987 mutex_lock(&rfkill_global_mutex);
988 cur = rfkill_global_states[rfkill->type].cur;
989 rfkill_set_block(rfkill, cur);
990 mutex_unlock(&rfkill_global_mutex);
991 }
992
993 int __must_check rfkill_register(struct rfkill *rfkill)
994 {
995 static unsigned long rfkill_no;
996 struct device *dev = &rfkill->dev;
997 int error;
998
999 BUG_ON(!rfkill);
1000
1001 mutex_lock(&rfkill_global_mutex);
1002
1003 if (rfkill->registered) {
1004 error = -EALREADY;
1005 goto unlock;
1006 }
1007
1008 rfkill->idx = rfkill_no;
1009 dev_set_name(dev, "rfkill%lu", rfkill_no);
1010 rfkill_no++;
1011
1012 list_add_tail(&rfkill->node, &rfkill_list);
1013
1014 error = device_add(dev);
1015 if (error)
1016 goto remove;
1017
1018 error = rfkill_led_trigger_register(rfkill);
1019 if (error)
1020 goto devdel;
1021
1022 rfkill->registered = true;
1023
1024 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1025 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1026 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1027
1028 if (rfkill->ops->poll)
1029 queue_delayed_work(system_power_efficient_wq,
1030 &rfkill->poll_work,
1031 round_jiffies_relative(POLL_INTERVAL));
1032
1033 if (!rfkill->persistent || rfkill_epo_lock_active) {
1034 schedule_work(&rfkill->sync_work);
1035 } else {
1036 #ifdef CONFIG_RFKILL_INPUT
1037 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1038
1039 if (!atomic_read(&rfkill_input_disabled))
1040 __rfkill_switch_all(rfkill->type, soft_blocked);
1041 #endif
1042 }
1043
1044 rfkill_any_led_trigger_event();
1045 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1046
1047 mutex_unlock(&rfkill_global_mutex);
1048 return 0;
1049
1050 devdel:
1051 device_del(&rfkill->dev);
1052 remove:
1053 list_del_init(&rfkill->node);
1054 unlock:
1055 mutex_unlock(&rfkill_global_mutex);
1056 return error;
1057 }
1058 EXPORT_SYMBOL(rfkill_register);
1059
1060 void rfkill_unregister(struct rfkill *rfkill)
1061 {
1062 BUG_ON(!rfkill);
1063
1064 if (rfkill->ops->poll)
1065 cancel_delayed_work_sync(&rfkill->poll_work);
1066
1067 cancel_work_sync(&rfkill->uevent_work);
1068 cancel_work_sync(&rfkill->sync_work);
1069
1070 rfkill->registered = false;
1071
1072 device_del(&rfkill->dev);
1073
1074 mutex_lock(&rfkill_global_mutex);
1075 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1076 list_del_init(&rfkill->node);
1077 rfkill_any_led_trigger_event();
1078 mutex_unlock(&rfkill_global_mutex);
1079
1080 rfkill_led_trigger_unregister(rfkill);
1081 }
1082 EXPORT_SYMBOL(rfkill_unregister);
1083
1084 void rfkill_destroy(struct rfkill *rfkill)
1085 {
1086 if (rfkill)
1087 put_device(&rfkill->dev);
1088 }
1089 EXPORT_SYMBOL(rfkill_destroy);
1090
1091 static int rfkill_fop_open(struct inode *inode, struct file *file)
1092 {
1093 struct rfkill_data *data;
1094 struct rfkill *rfkill;
1095 struct rfkill_int_event *ev, *tmp;
1096
1097 data = kzalloc(sizeof(*data), GFP_KERNEL);
1098 if (!data)
1099 return -ENOMEM;
1100
1101 INIT_LIST_HEAD(&data->events);
1102 mutex_init(&data->mtx);
1103 init_waitqueue_head(&data->read_wait);
1104
1105 mutex_lock(&rfkill_global_mutex);
1106 mutex_lock(&data->mtx);
1107 /*
1108 * start getting events from elsewhere but hold mtx to get
1109 * startup events added first
1110 */
1111
1112 list_for_each_entry(rfkill, &rfkill_list, node) {
1113 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1114 if (!ev)
1115 goto free;
1116 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1117 list_add_tail(&ev->list, &data->events);
1118 }
1119 list_add(&data->list, &rfkill_fds);
1120 mutex_unlock(&data->mtx);
1121 mutex_unlock(&rfkill_global_mutex);
1122
1123 file->private_data = data;
1124
1125 return nonseekable_open(inode, file);
1126
1127 free:
1128 mutex_unlock(&data->mtx);
1129 mutex_unlock(&rfkill_global_mutex);
1130 mutex_destroy(&data->mtx);
1131 list_for_each_entry_safe(ev, tmp, &data->events, list)
1132 kfree(ev);
1133 kfree(data);
1134 return -ENOMEM;
1135 }
1136
1137 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1138 {
1139 struct rfkill_data *data = file->private_data;
1140 unsigned int res = POLLOUT | POLLWRNORM;
1141
1142 poll_wait(file, &data->read_wait, wait);
1143
1144 mutex_lock(&data->mtx);
1145 if (!list_empty(&data->events))
1146 res = POLLIN | POLLRDNORM;
1147 mutex_unlock(&data->mtx);
1148
1149 return res;
1150 }
1151
1152 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1153 size_t count, loff_t *pos)
1154 {
1155 struct rfkill_data *data = file->private_data;
1156 struct rfkill_int_event *ev;
1157 unsigned long sz;
1158 int ret;
1159
1160 mutex_lock(&data->mtx);
1161
1162 while (list_empty(&data->events)) {
1163 if (file->f_flags & O_NONBLOCK) {
1164 ret = -EAGAIN;
1165 goto out;
1166 }
1167 mutex_unlock(&data->mtx);
1168 /* since we re-check and it just compares pointers,
1169 * using !list_empty() without locking isn't a problem
1170 */
1171 ret = wait_event_interruptible(data->read_wait,
1172 !list_empty(&data->events));
1173 mutex_lock(&data->mtx);
1174
1175 if (ret)
1176 goto out;
1177 }
1178
1179 ev = list_first_entry(&data->events, struct rfkill_int_event,
1180 list);
1181
1182 sz = min_t(unsigned long, sizeof(ev->ev), count);
1183 ret = sz;
1184 if (copy_to_user(buf, &ev->ev, sz))
1185 ret = -EFAULT;
1186
1187 list_del(&ev->list);
1188 kfree(ev);
1189 out:
1190 mutex_unlock(&data->mtx);
1191 return ret;
1192 }
1193
1194 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1195 size_t count, loff_t *pos)
1196 {
1197 struct rfkill *rfkill;
1198 struct rfkill_event ev;
1199 int ret;
1200
1201 /* we don't need the 'hard' variable but accept it */
1202 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1203 return -EINVAL;
1204
1205 /*
1206 * Copy as much data as we can accept into our 'ev' buffer,
1207 * but tell userspace how much we've copied so it can determine
1208 * our API version even in a write() call, if it cares.
1209 */
1210 count = min(count, sizeof(ev));
1211 if (copy_from_user(&ev, buf, count))
1212 return -EFAULT;
1213
1214 if (ev.type >= NUM_RFKILL_TYPES)
1215 return -EINVAL;
1216
1217 mutex_lock(&rfkill_global_mutex);
1218
1219 switch (ev.op) {
1220 case RFKILL_OP_CHANGE_ALL:
1221 rfkill_update_global_state(ev.type, ev.soft);
1222 list_for_each_entry(rfkill, &rfkill_list, node)
1223 if (rfkill->type == ev.type ||
1224 ev.type == RFKILL_TYPE_ALL)
1225 rfkill_set_block(rfkill, ev.soft);
1226 ret = 0;
1227 break;
1228 case RFKILL_OP_CHANGE:
1229 list_for_each_entry(rfkill, &rfkill_list, node)
1230 if (rfkill->idx == ev.idx &&
1231 (rfkill->type == ev.type ||
1232 ev.type == RFKILL_TYPE_ALL))
1233 rfkill_set_block(rfkill, ev.soft);
1234 ret = 0;
1235 break;
1236 default:
1237 ret = -EINVAL;
1238 break;
1239 }
1240
1241 mutex_unlock(&rfkill_global_mutex);
1242
1243 return ret ?: count;
1244 }
1245
1246 static int rfkill_fop_release(struct inode *inode, struct file *file)
1247 {
1248 struct rfkill_data *data = file->private_data;
1249 struct rfkill_int_event *ev, *tmp;
1250
1251 mutex_lock(&rfkill_global_mutex);
1252 list_del(&data->list);
1253 mutex_unlock(&rfkill_global_mutex);
1254
1255 mutex_destroy(&data->mtx);
1256 list_for_each_entry_safe(ev, tmp, &data->events, list)
1257 kfree(ev);
1258
1259 #ifdef CONFIG_RFKILL_INPUT
1260 if (data->input_handler)
1261 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1262 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1263 #endif
1264
1265 kfree(data);
1266
1267 return 0;
1268 }
1269
1270 #ifdef CONFIG_RFKILL_INPUT
1271 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1272 unsigned long arg)
1273 {
1274 struct rfkill_data *data = file->private_data;
1275
1276 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1277 return -ENOSYS;
1278
1279 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1280 return -ENOSYS;
1281
1282 mutex_lock(&data->mtx);
1283
1284 if (!data->input_handler) {
1285 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1286 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1287 data->input_handler = true;
1288 }
1289
1290 mutex_unlock(&data->mtx);
1291
1292 return 0;
1293 }
1294 #endif
1295
1296 static const struct file_operations rfkill_fops = {
1297 .owner = THIS_MODULE,
1298 .open = rfkill_fop_open,
1299 .read = rfkill_fop_read,
1300 .write = rfkill_fop_write,
1301 .poll = rfkill_fop_poll,
1302 .release = rfkill_fop_release,
1303 #ifdef CONFIG_RFKILL_INPUT
1304 .unlocked_ioctl = rfkill_fop_ioctl,
1305 .compat_ioctl = rfkill_fop_ioctl,
1306 #endif
1307 .llseek = no_llseek,
1308 };
1309
1310 static struct miscdevice rfkill_miscdev = {
1311 .name = "rfkill",
1312 .fops = &rfkill_fops,
1313 .minor = MISC_DYNAMIC_MINOR,
1314 };
1315
1316 static int __init rfkill_init(void)
1317 {
1318 int error;
1319
1320 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1321
1322 error = class_register(&rfkill_class);
1323 if (error)
1324 goto error_class;
1325
1326 error = misc_register(&rfkill_miscdev);
1327 if (error)
1328 goto error_misc;
1329
1330 error = rfkill_any_led_trigger_register();
1331 if (error)
1332 goto error_led_trigger;
1333
1334 #ifdef CONFIG_RFKILL_INPUT
1335 error = rfkill_handler_init();
1336 if (error)
1337 goto error_input;
1338 #endif
1339
1340 return 0;
1341
1342 #ifdef CONFIG_RFKILL_INPUT
1343 error_input:
1344 rfkill_any_led_trigger_unregister();
1345 #endif
1346 error_led_trigger:
1347 misc_deregister(&rfkill_miscdev);
1348 error_misc:
1349 class_unregister(&rfkill_class);
1350 error_class:
1351 return error;
1352 }
1353 subsys_initcall(rfkill_init);
1354
1355 static void __exit rfkill_exit(void)
1356 {
1357 #ifdef CONFIG_RFKILL_INPUT
1358 rfkill_handler_exit();
1359 #endif
1360 rfkill_any_led_trigger_unregister();
1361 misc_deregister(&rfkill_miscdev);
1362 class_unregister(&rfkill_class);
1363 }
1364 module_exit(rfkill_exit);