import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / rfkill / core.c
1 /*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/workqueue.h>
26 #include <linux/capability.h>
27 #include <linux/list.h>
28 #include <linux/mutex.h>
29 #include <linux/rfkill.h>
30 #include <linux/sched.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/miscdevice.h>
34 #include <linux/wait.h>
35 #include <linux/poll.h>
36 #include <linux/fs.h>
37 #include <linux/slab.h>
38
39 #include "rfkill.h"
40
41 #define POLL_INTERVAL (5 * HZ)
42
43 #define RFKILL_BLOCK_HW BIT(0)
44 #define RFKILL_BLOCK_SW BIT(1)
45 #define RFKILL_BLOCK_SW_PREV BIT(2)
46 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
47 RFKILL_BLOCK_SW |\
48 RFKILL_BLOCK_SW_PREV)
49 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
50
51 struct rfkill {
52 spinlock_t lock;
53
54 const char *name;
55 enum rfkill_type type;
56
57 unsigned long state;
58
59 u32 idx;
60
61 bool registered;
62 bool persistent;
63
64 const struct rfkill_ops *ops;
65 void *data;
66
67 #ifdef CONFIG_RFKILL_LEDS
68 struct led_trigger led_trigger;
69 const char *ledtrigname;
70 #endif
71
72 struct device dev;
73 struct list_head node;
74
75 struct delayed_work poll_work;
76 struct work_struct uevent_work;
77 struct work_struct sync_work;
78 };
79 #define to_rfkill(d) container_of(d, struct rfkill, dev)
80
81 struct rfkill_int_event {
82 struct list_head list;
83 struct rfkill_event ev;
84 };
85
86 struct rfkill_data {
87 struct list_head list;
88 struct list_head events;
89 struct mutex mtx;
90 wait_queue_head_t read_wait;
91 bool input_handler;
92 };
93
94
95 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
96 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
97 MODULE_DESCRIPTION("RF switch support");
98 MODULE_LICENSE("GPL");
99
100
101 /*
102 * The locking here should be made much smarter, we currently have
103 * a bit of a stupid situation because drivers might want to register
104 * the rfkill struct under their own lock, and take this lock during
105 * rfkill method calls -- which will cause an AB-BA deadlock situation.
106 *
107 * To fix that, we need to rework this code here to be mostly lock-free
108 * and only use the mutex for list manipulations, not to protect the
109 * various other global variables. Then we can avoid holding the mutex
110 * around driver operations, and all is happy.
111 */
112 static LIST_HEAD(rfkill_list); /* list of registered rf switches */
113 static DEFINE_MUTEX(rfkill_global_mutex);
114 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
115
116 static unsigned int rfkill_default_state = 1;
117 module_param_named(default_state, rfkill_default_state, uint, 0444);
118 MODULE_PARM_DESC(default_state,
119 "Default initial state for all radio types, 0 = radio off");
120
121 static struct {
122 bool cur, sav;
123 } rfkill_global_states[NUM_RFKILL_TYPES];
124
125 static bool rfkill_epo_lock_active;
126
127
128 #ifdef CONFIG_RFKILL_LEDS
129 static void rfkill_led_trigger_event(struct rfkill *rfkill)
130 {
131 struct led_trigger *trigger;
132
133 if (!rfkill->registered)
134 return;
135
136 trigger = &rfkill->led_trigger;
137
138 if (rfkill->state & RFKILL_BLOCK_ANY)
139 led_trigger_event(trigger, LED_OFF);
140 else
141 led_trigger_event(trigger, LED_FULL);
142 }
143
144 static void rfkill_led_trigger_activate(struct led_classdev *led)
145 {
146 struct rfkill *rfkill;
147
148 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
149
150 rfkill_led_trigger_event(rfkill);
151 }
152
153 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
154 {
155 return rfkill->led_trigger.name;
156 }
157 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
158
159 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
160 {
161 BUG_ON(!rfkill);
162
163 rfkill->ledtrigname = name;
164 }
165 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
166
167 static int rfkill_led_trigger_register(struct rfkill *rfkill)
168 {
169 rfkill->led_trigger.name = rfkill->ledtrigname
170 ? : dev_name(&rfkill->dev);
171 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
172 return led_trigger_register(&rfkill->led_trigger);
173 }
174
175 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
176 {
177 led_trigger_unregister(&rfkill->led_trigger);
178 }
179 #else
180 static void rfkill_led_trigger_event(struct rfkill *rfkill)
181 {
182 }
183
184 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
185 {
186 return 0;
187 }
188
189 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
190 {
191 }
192 #endif /* CONFIG_RFKILL_LEDS */
193
194 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
195 enum rfkill_operation op)
196 {
197 unsigned long flags;
198
199 ev->idx = rfkill->idx;
200 ev->type = rfkill->type;
201 ev->op = op;
202
203 spin_lock_irqsave(&rfkill->lock, flags);
204 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
205 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
206 RFKILL_BLOCK_SW_PREV));
207 spin_unlock_irqrestore(&rfkill->lock, flags);
208 }
209
210 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
211 {
212 struct rfkill_data *data;
213 struct rfkill_int_event *ev;
214
215 list_for_each_entry(data, &rfkill_fds, list) {
216 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
217 if (!ev)
218 continue;
219 rfkill_fill_event(&ev->ev, rfkill, op);
220 mutex_lock(&data->mtx);
221 list_add_tail(&ev->list, &data->events);
222 mutex_unlock(&data->mtx);
223 wake_up_interruptible(&data->read_wait);
224 }
225 }
226
227 static void rfkill_event(struct rfkill *rfkill)
228 {
229 if (!rfkill->registered)
230 return;
231
232 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
233
234 /* also send event to /dev/rfkill */
235 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
236 }
237
238 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
239 bool blocked, bool *change)
240 {
241 unsigned long flags;
242 bool prev, any;
243
244 BUG_ON(!rfkill);
245
246 spin_lock_irqsave(&rfkill->lock, flags);
247 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
248 if (blocked)
249 rfkill->state |= RFKILL_BLOCK_HW;
250 else
251 rfkill->state &= ~RFKILL_BLOCK_HW;
252 *change = prev != blocked;
253 any = !!(rfkill->state & RFKILL_BLOCK_ANY);
254 spin_unlock_irqrestore(&rfkill->lock, flags);
255
256 rfkill_led_trigger_event(rfkill);
257
258 return any;
259 }
260
261 /**
262 * rfkill_set_block - wrapper for set_block method
263 *
264 * @rfkill: the rfkill struct to use
265 * @blocked: the new software state
266 *
267 * Calls the set_block method (when applicable) and handles notifications
268 * etc. as well.
269 */
270 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
271 {
272 unsigned long flags;
273 bool prev, curr;
274 int err;
275
276 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
277 return;
278
279 /*
280 * Some platforms (...!) generate input events which affect the
281 * _hard_ kill state -- whenever something tries to change the
282 * current software state query the hardware state too.
283 */
284 if (rfkill->ops->query)
285 rfkill->ops->query(rfkill, rfkill->data);
286
287 spin_lock_irqsave(&rfkill->lock, flags);
288 prev = rfkill->state & RFKILL_BLOCK_SW;
289
290 if (rfkill->state & RFKILL_BLOCK_SW)
291 rfkill->state |= RFKILL_BLOCK_SW_PREV;
292 else
293 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
294
295 if (blocked)
296 rfkill->state |= RFKILL_BLOCK_SW;
297 else
298 rfkill->state &= ~RFKILL_BLOCK_SW;
299
300 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
301 spin_unlock_irqrestore(&rfkill->lock, flags);
302
303 err = rfkill->ops->set_block(rfkill->data, blocked);
304
305 spin_lock_irqsave(&rfkill->lock, flags);
306 if (err) {
307 /*
308 * Failed -- reset status to _prev, this may be different
309 * from what set set _PREV to earlier in this function
310 * if rfkill_set_sw_state was invoked.
311 */
312 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
313 rfkill->state |= RFKILL_BLOCK_SW;
314 else
315 rfkill->state &= ~RFKILL_BLOCK_SW;
316 }
317 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
318 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
319 curr = rfkill->state & RFKILL_BLOCK_SW;
320 spin_unlock_irqrestore(&rfkill->lock, flags);
321
322 rfkill_led_trigger_event(rfkill);
323
324 if (prev != curr)
325 rfkill_event(rfkill);
326 }
327
328 #ifdef CONFIG_RFKILL_INPUT
329 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
330
331 /**
332 * __rfkill_switch_all - Toggle state of all switches of given type
333 * @type: type of interfaces to be affected
334 * @state: the new state
335 *
336 * This function sets the state of all switches of given type,
337 * unless a specific switch is claimed by userspace (in which case,
338 * that switch is left alone) or suspended.
339 *
340 * Caller must have acquired rfkill_global_mutex.
341 */
342 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
343 {
344 struct rfkill *rfkill;
345
346 rfkill_global_states[type].cur = blocked;
347 list_for_each_entry(rfkill, &rfkill_list, node) {
348 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
349 continue;
350
351 rfkill_set_block(rfkill, blocked);
352 }
353 }
354
355 /**
356 * rfkill_switch_all - Toggle state of all switches of given type
357 * @type: type of interfaces to be affected
358 * @state: the new state
359 *
360 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
361 * Please refer to __rfkill_switch_all() for details.
362 *
363 * Does nothing if the EPO lock is active.
364 */
365 void rfkill_switch_all(enum rfkill_type type, bool blocked)
366 {
367 if (atomic_read(&rfkill_input_disabled))
368 return;
369
370 mutex_lock(&rfkill_global_mutex);
371
372 if (!rfkill_epo_lock_active)
373 __rfkill_switch_all(type, blocked);
374
375 mutex_unlock(&rfkill_global_mutex);
376 }
377
378 /**
379 * rfkill_epo - emergency power off all transmitters
380 *
381 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
382 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
383 *
384 * The global state before the EPO is saved and can be restored later
385 * using rfkill_restore_states().
386 */
387 void rfkill_epo(void)
388 {
389 struct rfkill *rfkill;
390 int i;
391
392 if (atomic_read(&rfkill_input_disabled))
393 return;
394
395 mutex_lock(&rfkill_global_mutex);
396
397 rfkill_epo_lock_active = true;
398 list_for_each_entry(rfkill, &rfkill_list, node)
399 rfkill_set_block(rfkill, true);
400
401 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
402 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
403 rfkill_global_states[i].cur = true;
404 }
405
406 mutex_unlock(&rfkill_global_mutex);
407 }
408
409 /**
410 * rfkill_restore_states - restore global states
411 *
412 * Restore (and sync switches to) the global state from the
413 * states in rfkill_default_states. This can undo the effects of
414 * a call to rfkill_epo().
415 */
416 void rfkill_restore_states(void)
417 {
418 int i;
419
420 if (atomic_read(&rfkill_input_disabled))
421 return;
422
423 mutex_lock(&rfkill_global_mutex);
424
425 rfkill_epo_lock_active = false;
426 for (i = 0; i < NUM_RFKILL_TYPES; i++)
427 __rfkill_switch_all(i, rfkill_global_states[i].sav);
428 mutex_unlock(&rfkill_global_mutex);
429 }
430
431 /**
432 * rfkill_remove_epo_lock - unlock state changes
433 *
434 * Used by rfkill-input manually unlock state changes, when
435 * the EPO switch is deactivated.
436 */
437 void rfkill_remove_epo_lock(void)
438 {
439 if (atomic_read(&rfkill_input_disabled))
440 return;
441
442 mutex_lock(&rfkill_global_mutex);
443 rfkill_epo_lock_active = false;
444 mutex_unlock(&rfkill_global_mutex);
445 }
446
447 /**
448 * rfkill_is_epo_lock_active - returns true EPO is active
449 *
450 * Returns 0 (false) if there is NOT an active EPO contidion,
451 * and 1 (true) if there is an active EPO contition, which
452 * locks all radios in one of the BLOCKED states.
453 *
454 * Can be called in atomic context.
455 */
456 bool rfkill_is_epo_lock_active(void)
457 {
458 return rfkill_epo_lock_active;
459 }
460
461 /**
462 * rfkill_get_global_sw_state - returns global state for a type
463 * @type: the type to get the global state of
464 *
465 * Returns the current global state for a given wireless
466 * device type.
467 */
468 bool rfkill_get_global_sw_state(const enum rfkill_type type)
469 {
470 return rfkill_global_states[type].cur;
471 }
472 #endif
473
474
475 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
476 {
477 bool ret, change;
478
479 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
480
481 if (!rfkill->registered)
482 return ret;
483
484 if (change)
485 schedule_work(&rfkill->uevent_work);
486
487 return ret;
488 }
489 EXPORT_SYMBOL(rfkill_set_hw_state);
490
491 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
492 {
493 u32 bit = RFKILL_BLOCK_SW;
494
495 /* if in a ops->set_block right now, use other bit */
496 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
497 bit = RFKILL_BLOCK_SW_PREV;
498
499 if (blocked)
500 rfkill->state |= bit;
501 else
502 rfkill->state &= ~bit;
503 }
504
505 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
506 {
507 unsigned long flags;
508 bool prev, hwblock;
509
510 BUG_ON(!rfkill);
511
512 spin_lock_irqsave(&rfkill->lock, flags);
513 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
514 __rfkill_set_sw_state(rfkill, blocked);
515 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
516 blocked = blocked || hwblock;
517 spin_unlock_irqrestore(&rfkill->lock, flags);
518
519 if (!rfkill->registered)
520 return blocked;
521
522 if (prev != blocked && !hwblock)
523 schedule_work(&rfkill->uevent_work);
524
525 rfkill_led_trigger_event(rfkill);
526
527 return blocked;
528 }
529 EXPORT_SYMBOL(rfkill_set_sw_state);
530
531 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
532 {
533 unsigned long flags;
534
535 BUG_ON(!rfkill);
536 BUG_ON(rfkill->registered);
537
538 spin_lock_irqsave(&rfkill->lock, flags);
539 __rfkill_set_sw_state(rfkill, blocked);
540 rfkill->persistent = true;
541 spin_unlock_irqrestore(&rfkill->lock, flags);
542 }
543 EXPORT_SYMBOL(rfkill_init_sw_state);
544
545 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
546 {
547 unsigned long flags;
548 bool swprev, hwprev;
549
550 BUG_ON(!rfkill);
551
552 spin_lock_irqsave(&rfkill->lock, flags);
553
554 /*
555 * No need to care about prev/setblock ... this is for uevent only
556 * and that will get triggered by rfkill_set_block anyway.
557 */
558 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
559 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
560 __rfkill_set_sw_state(rfkill, sw);
561 if (hw)
562 rfkill->state |= RFKILL_BLOCK_HW;
563 else
564 rfkill->state &= ~RFKILL_BLOCK_HW;
565
566 spin_unlock_irqrestore(&rfkill->lock, flags);
567
568 if (!rfkill->registered) {
569 rfkill->persistent = true;
570 } else {
571 if (swprev != sw || hwprev != hw)
572 schedule_work(&rfkill->uevent_work);
573
574 rfkill_led_trigger_event(rfkill);
575 }
576 }
577 EXPORT_SYMBOL(rfkill_set_states);
578
579 static ssize_t rfkill_name_show(struct device *dev,
580 struct device_attribute *attr,
581 char *buf)
582 {
583 struct rfkill *rfkill = to_rfkill(dev);
584
585 return sprintf(buf, "%s\n", rfkill->name);
586 }
587
588 static const char *rfkill_get_type_str(enum rfkill_type type)
589 {
590 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
591
592 switch (type) {
593 case RFKILL_TYPE_WLAN:
594 return "wlan";
595 case RFKILL_TYPE_BLUETOOTH:
596 return "bluetooth";
597 case RFKILL_TYPE_UWB:
598 return "ultrawideband";
599 case RFKILL_TYPE_WIMAX:
600 return "wimax";
601 case RFKILL_TYPE_WWAN:
602 return "wwan";
603 case RFKILL_TYPE_GPS:
604 return "gps";
605 case RFKILL_TYPE_FM:
606 return "fm";
607 case RFKILL_TYPE_NFC:
608 return "nfc";
609 default:
610 BUG();
611 }
612 }
613
614 static ssize_t rfkill_type_show(struct device *dev,
615 struct device_attribute *attr,
616 char *buf)
617 {
618 struct rfkill *rfkill = to_rfkill(dev);
619
620 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
621 }
622
623 static ssize_t rfkill_idx_show(struct device *dev,
624 struct device_attribute *attr,
625 char *buf)
626 {
627 struct rfkill *rfkill = to_rfkill(dev);
628
629 return sprintf(buf, "%d\n", rfkill->idx);
630 }
631
632 static ssize_t rfkill_persistent_show(struct device *dev,
633 struct device_attribute *attr,
634 char *buf)
635 {
636 struct rfkill *rfkill = to_rfkill(dev);
637
638 return sprintf(buf, "%d\n", rfkill->persistent);
639 }
640
641 static ssize_t rfkill_hard_show(struct device *dev,
642 struct device_attribute *attr,
643 char *buf)
644 {
645 struct rfkill *rfkill = to_rfkill(dev);
646
647 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
648 }
649
650 static ssize_t rfkill_soft_show(struct device *dev,
651 struct device_attribute *attr,
652 char *buf)
653 {
654 struct rfkill *rfkill = to_rfkill(dev);
655
656 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
657 }
658
659 static ssize_t rfkill_soft_store(struct device *dev,
660 struct device_attribute *attr,
661 const char *buf, size_t count)
662 {
663 struct rfkill *rfkill = to_rfkill(dev);
664 unsigned long state;
665 int err;
666
667 if (!capable(CAP_NET_ADMIN))
668 return -EPERM;
669
670 err = kstrtoul(buf, 0, &state);
671 if (err)
672 return err;
673
674 if (state > 1 )
675 return -EINVAL;
676
677 mutex_lock(&rfkill_global_mutex);
678 rfkill_set_block(rfkill, state);
679 mutex_unlock(&rfkill_global_mutex);
680
681 return count;
682 }
683
684 static u8 user_state_from_blocked(unsigned long state)
685 {
686 if (state & RFKILL_BLOCK_HW)
687 return RFKILL_USER_STATE_HARD_BLOCKED;
688 if (state & RFKILL_BLOCK_SW)
689 return RFKILL_USER_STATE_SOFT_BLOCKED;
690
691 return RFKILL_USER_STATE_UNBLOCKED;
692 }
693
694 static ssize_t rfkill_state_show(struct device *dev,
695 struct device_attribute *attr,
696 char *buf)
697 {
698 struct rfkill *rfkill = to_rfkill(dev);
699
700 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
701 }
702
703 static ssize_t rfkill_state_store(struct device *dev,
704 struct device_attribute *attr,
705 const char *buf, size_t count)
706 {
707 struct rfkill *rfkill = to_rfkill(dev);
708 unsigned long state;
709 int err;
710
711 if (!capable(CAP_NET_ADMIN))
712 return -EPERM;
713
714 err = kstrtoul(buf, 0, &state);
715 if (err)
716 return err;
717
718 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
719 state != RFKILL_USER_STATE_UNBLOCKED)
720 return -EINVAL;
721
722 mutex_lock(&rfkill_global_mutex);
723 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
724 mutex_unlock(&rfkill_global_mutex);
725
726 return count;
727 }
728
729 static ssize_t rfkill_claim_show(struct device *dev,
730 struct device_attribute *attr,
731 char *buf)
732 {
733 return sprintf(buf, "%d\n", 0);
734 }
735
736 static ssize_t rfkill_claim_store(struct device *dev,
737 struct device_attribute *attr,
738 const char *buf, size_t count)
739 {
740 return -EOPNOTSUPP;
741 }
742
743 static struct device_attribute rfkill_dev_attrs[] = {
744 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
745 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
746 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
747 __ATTR(persistent, S_IRUGO, rfkill_persistent_show, NULL),
748 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
749 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
750 __ATTR(soft, S_IRUGO|S_IWUSR, rfkill_soft_show, rfkill_soft_store),
751 __ATTR(hard, S_IRUGO, rfkill_hard_show, NULL),
752 __ATTR_NULL
753 };
754
755 static void rfkill_release(struct device *dev)
756 {
757 struct rfkill *rfkill = to_rfkill(dev);
758
759 kfree(rfkill);
760 }
761
762 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
763 {
764 struct rfkill *rfkill = to_rfkill(dev);
765 unsigned long flags;
766 u32 state;
767 int error;
768
769 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
770 if (error)
771 return error;
772 error = add_uevent_var(env, "RFKILL_TYPE=%s",
773 rfkill_get_type_str(rfkill->type));
774 if (error)
775 return error;
776 spin_lock_irqsave(&rfkill->lock, flags);
777 state = rfkill->state;
778 spin_unlock_irqrestore(&rfkill->lock, flags);
779 error = add_uevent_var(env, "RFKILL_STATE=%d",
780 user_state_from_blocked(state));
781 return error;
782 }
783
784 void rfkill_pause_polling(struct rfkill *rfkill)
785 {
786 BUG_ON(!rfkill);
787
788 if (!rfkill->ops->poll)
789 return;
790
791 cancel_delayed_work_sync(&rfkill->poll_work);
792 }
793 EXPORT_SYMBOL(rfkill_pause_polling);
794
795 #ifdef CONFIG_RFKILL_PM
796 void rfkill_resume_polling(struct rfkill *rfkill)
797 {
798 BUG_ON(!rfkill);
799
800 if (!rfkill->ops->poll)
801 return;
802
803 schedule_work(&rfkill->poll_work.work);
804 }
805 EXPORT_SYMBOL(rfkill_resume_polling);
806
807 static int rfkill_suspend(struct device *dev, pm_message_t state)
808 {
809 struct rfkill *rfkill = to_rfkill(dev);
810
811 rfkill_pause_polling(rfkill);
812
813 return 0;
814 }
815
816 static int rfkill_resume(struct device *dev)
817 {
818 struct rfkill *rfkill = to_rfkill(dev);
819 bool cur;
820
821 if (!rfkill->persistent) {
822 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
823 rfkill_set_block(rfkill, cur);
824 }
825
826 rfkill_resume_polling(rfkill);
827
828 return 0;
829 }
830 #endif
831
832 static struct class rfkill_class = {
833 .name = "rfkill",
834 .dev_release = rfkill_release,
835 .dev_attrs = rfkill_dev_attrs,
836 .dev_uevent = rfkill_dev_uevent,
837 #ifdef CONFIG_RFKILL_PM
838 .suspend = rfkill_suspend,
839 .resume = rfkill_resume,
840 #endif
841 };
842
843 bool rfkill_blocked(struct rfkill *rfkill)
844 {
845 unsigned long flags;
846 u32 state;
847
848 spin_lock_irqsave(&rfkill->lock, flags);
849 state = rfkill->state;
850 spin_unlock_irqrestore(&rfkill->lock, flags);
851
852 return !!(state & RFKILL_BLOCK_ANY);
853 }
854 EXPORT_SYMBOL(rfkill_blocked);
855
856
857 struct rfkill * __must_check rfkill_alloc(const char *name,
858 struct device *parent,
859 const enum rfkill_type type,
860 const struct rfkill_ops *ops,
861 void *ops_data)
862 {
863 struct rfkill *rfkill;
864 struct device *dev;
865
866 if (WARN_ON(!ops))
867 return NULL;
868
869 if (WARN_ON(!ops->set_block))
870 return NULL;
871
872 if (WARN_ON(!name))
873 return NULL;
874
875 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
876 return NULL;
877
878 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
879 if (!rfkill)
880 return NULL;
881
882 spin_lock_init(&rfkill->lock);
883 INIT_LIST_HEAD(&rfkill->node);
884 rfkill->type = type;
885 rfkill->name = name;
886 rfkill->ops = ops;
887 rfkill->data = ops_data;
888
889 dev = &rfkill->dev;
890 dev->class = &rfkill_class;
891 dev->parent = parent;
892 device_initialize(dev);
893
894 return rfkill;
895 }
896 EXPORT_SYMBOL(rfkill_alloc);
897
898 static void rfkill_poll(struct work_struct *work)
899 {
900 struct rfkill *rfkill;
901
902 rfkill = container_of(work, struct rfkill, poll_work.work);
903
904 /*
905 * Poll hardware state -- driver will use one of the
906 * rfkill_set{,_hw,_sw}_state functions and use its
907 * return value to update the current status.
908 */
909 rfkill->ops->poll(rfkill, rfkill->data);
910
911 schedule_delayed_work(&rfkill->poll_work,
912 round_jiffies_relative(POLL_INTERVAL));
913 }
914
915 static void rfkill_uevent_work(struct work_struct *work)
916 {
917 struct rfkill *rfkill;
918
919 rfkill = container_of(work, struct rfkill, uevent_work);
920
921 mutex_lock(&rfkill_global_mutex);
922 rfkill_event(rfkill);
923 mutex_unlock(&rfkill_global_mutex);
924 }
925
926 static void rfkill_sync_work(struct work_struct *work)
927 {
928 struct rfkill *rfkill;
929 bool cur;
930
931 rfkill = container_of(work, struct rfkill, sync_work);
932
933 mutex_lock(&rfkill_global_mutex);
934 cur = rfkill_global_states[rfkill->type].cur;
935 rfkill_set_block(rfkill, cur);
936 mutex_unlock(&rfkill_global_mutex);
937 }
938
939 int __must_check rfkill_register(struct rfkill *rfkill)
940 {
941 static unsigned long rfkill_no;
942 struct device *dev = &rfkill->dev;
943 int error;
944
945 BUG_ON(!rfkill);
946
947 mutex_lock(&rfkill_global_mutex);
948
949 if (rfkill->registered) {
950 error = -EALREADY;
951 goto unlock;
952 }
953
954 rfkill->idx = rfkill_no;
955 dev_set_name(dev, "rfkill%lu", rfkill_no);
956 rfkill_no++;
957
958 list_add_tail(&rfkill->node, &rfkill_list);
959
960 error = device_add(dev);
961 if (error)
962 goto remove;
963
964 error = rfkill_led_trigger_register(rfkill);
965 if (error)
966 goto devdel;
967
968 rfkill->registered = true;
969
970 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
971 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
972 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
973
974 if (rfkill->ops->poll)
975 schedule_delayed_work(&rfkill->poll_work,
976 round_jiffies_relative(POLL_INTERVAL));
977
978 if (!rfkill->persistent || rfkill_epo_lock_active) {
979 schedule_work(&rfkill->sync_work);
980 } else {
981 #ifdef CONFIG_RFKILL_INPUT
982 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
983
984 if (!atomic_read(&rfkill_input_disabled))
985 __rfkill_switch_all(rfkill->type, soft_blocked);
986 #endif
987 }
988
989 rfkill_send_events(rfkill, RFKILL_OP_ADD);
990
991 mutex_unlock(&rfkill_global_mutex);
992 return 0;
993
994 devdel:
995 device_del(&rfkill->dev);
996 remove:
997 list_del_init(&rfkill->node);
998 unlock:
999 mutex_unlock(&rfkill_global_mutex);
1000 return error;
1001 }
1002 EXPORT_SYMBOL(rfkill_register);
1003
1004 void rfkill_unregister(struct rfkill *rfkill)
1005 {
1006 BUG_ON(!rfkill);
1007
1008 if (rfkill->ops->poll)
1009 cancel_delayed_work_sync(&rfkill->poll_work);
1010
1011 cancel_work_sync(&rfkill->uevent_work);
1012 cancel_work_sync(&rfkill->sync_work);
1013
1014 rfkill->registered = false;
1015
1016 device_del(&rfkill->dev);
1017
1018 mutex_lock(&rfkill_global_mutex);
1019 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1020 list_del_init(&rfkill->node);
1021 mutex_unlock(&rfkill_global_mutex);
1022
1023 rfkill_led_trigger_unregister(rfkill);
1024 }
1025 EXPORT_SYMBOL(rfkill_unregister);
1026
1027 void rfkill_destroy(struct rfkill *rfkill)
1028 {
1029 if (rfkill)
1030 put_device(&rfkill->dev);
1031 }
1032 EXPORT_SYMBOL(rfkill_destroy);
1033
1034 static int rfkill_fop_open(struct inode *inode, struct file *file)
1035 {
1036 struct rfkill_data *data;
1037 struct rfkill *rfkill;
1038 struct rfkill_int_event *ev, *tmp;
1039
1040 data = kzalloc(sizeof(*data), GFP_KERNEL);
1041 if (!data)
1042 return -ENOMEM;
1043
1044 INIT_LIST_HEAD(&data->events);
1045 mutex_init(&data->mtx);
1046 init_waitqueue_head(&data->read_wait);
1047
1048 mutex_lock(&rfkill_global_mutex);
1049 mutex_lock(&data->mtx);
1050 /*
1051 * start getting events from elsewhere but hold mtx to get
1052 * startup events added first
1053 */
1054
1055 list_for_each_entry(rfkill, &rfkill_list, node) {
1056 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1057 if (!ev)
1058 goto free;
1059 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1060 list_add_tail(&ev->list, &data->events);
1061 }
1062 list_add(&data->list, &rfkill_fds);
1063 mutex_unlock(&data->mtx);
1064 mutex_unlock(&rfkill_global_mutex);
1065
1066 file->private_data = data;
1067
1068 return nonseekable_open(inode, file);
1069
1070 free:
1071 mutex_unlock(&data->mtx);
1072 mutex_unlock(&rfkill_global_mutex);
1073 mutex_destroy(&data->mtx);
1074 list_for_each_entry_safe(ev, tmp, &data->events, list)
1075 kfree(ev);
1076 kfree(data);
1077 return -ENOMEM;
1078 }
1079
1080 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1081 {
1082 struct rfkill_data *data = file->private_data;
1083 unsigned int res = POLLOUT | POLLWRNORM;
1084
1085 poll_wait(file, &data->read_wait, wait);
1086
1087 mutex_lock(&data->mtx);
1088 if (!list_empty(&data->events))
1089 res = POLLIN | POLLRDNORM;
1090 mutex_unlock(&data->mtx);
1091
1092 return res;
1093 }
1094
1095 static bool rfkill_readable(struct rfkill_data *data)
1096 {
1097 bool r;
1098
1099 mutex_lock(&data->mtx);
1100 r = !list_empty(&data->events);
1101 mutex_unlock(&data->mtx);
1102
1103 return r;
1104 }
1105
1106 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1107 size_t count, loff_t *pos)
1108 {
1109 struct rfkill_data *data = file->private_data;
1110 struct rfkill_int_event *ev;
1111 unsigned long sz;
1112 int ret;
1113
1114 mutex_lock(&data->mtx);
1115
1116 while (list_empty(&data->events)) {
1117 if (file->f_flags & O_NONBLOCK) {
1118 ret = -EAGAIN;
1119 goto out;
1120 }
1121 mutex_unlock(&data->mtx);
1122 ret = wait_event_interruptible(data->read_wait,
1123 rfkill_readable(data));
1124 mutex_lock(&data->mtx);
1125
1126 if (ret)
1127 goto out;
1128 }
1129
1130 ev = list_first_entry(&data->events, struct rfkill_int_event,
1131 list);
1132
1133 sz = min_t(unsigned long, sizeof(ev->ev), count);
1134 ret = sz;
1135 if (copy_to_user(buf, &ev->ev, sz))
1136 ret = -EFAULT;
1137
1138 list_del(&ev->list);
1139 kfree(ev);
1140 out:
1141 mutex_unlock(&data->mtx);
1142 return ret;
1143 }
1144
1145 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1146 size_t count, loff_t *pos)
1147 {
1148 struct rfkill *rfkill;
1149 struct rfkill_event ev;
1150
1151 /* we don't need the 'hard' variable but accept it */
1152 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1153 return -EINVAL;
1154
1155 /*
1156 * Copy as much data as we can accept into our 'ev' buffer,
1157 * but tell userspace how much we've copied so it can determine
1158 * our API version even in a write() call, if it cares.
1159 */
1160 count = min(count, sizeof(ev));
1161 if (copy_from_user(&ev, buf, count))
1162 return -EFAULT;
1163
1164 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1165 return -EINVAL;
1166
1167 if (ev.type >= NUM_RFKILL_TYPES)
1168 return -EINVAL;
1169
1170 mutex_lock(&rfkill_global_mutex);
1171
1172 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1173 if (ev.type == RFKILL_TYPE_ALL) {
1174 enum rfkill_type i;
1175 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1176 rfkill_global_states[i].cur = ev.soft;
1177 } else {
1178 rfkill_global_states[ev.type].cur = ev.soft;
1179 }
1180 }
1181
1182 list_for_each_entry(rfkill, &rfkill_list, node) {
1183 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1184 continue;
1185
1186 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1187 continue;
1188
1189 rfkill_set_block(rfkill, ev.soft);
1190 }
1191 mutex_unlock(&rfkill_global_mutex);
1192
1193 return count;
1194 }
1195
1196 static int rfkill_fop_release(struct inode *inode, struct file *file)
1197 {
1198 struct rfkill_data *data = file->private_data;
1199 struct rfkill_int_event *ev, *tmp;
1200
1201 mutex_lock(&rfkill_global_mutex);
1202 list_del(&data->list);
1203 mutex_unlock(&rfkill_global_mutex);
1204
1205 mutex_destroy(&data->mtx);
1206 list_for_each_entry_safe(ev, tmp, &data->events, list)
1207 kfree(ev);
1208
1209 #ifdef CONFIG_RFKILL_INPUT
1210 if (data->input_handler)
1211 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1212 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1213 #endif
1214
1215 kfree(data);
1216
1217 return 0;
1218 }
1219
1220 #ifdef CONFIG_RFKILL_INPUT
1221 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1222 unsigned long arg)
1223 {
1224 struct rfkill_data *data = file->private_data;
1225
1226 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1227 return -ENOSYS;
1228
1229 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1230 return -ENOSYS;
1231
1232 mutex_lock(&data->mtx);
1233
1234 if (!data->input_handler) {
1235 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1236 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1237 data->input_handler = true;
1238 }
1239
1240 mutex_unlock(&data->mtx);
1241
1242 return 0;
1243 }
1244 #endif
1245
1246 static const struct file_operations rfkill_fops = {
1247 .owner = THIS_MODULE,
1248 .open = rfkill_fop_open,
1249 .read = rfkill_fop_read,
1250 .write = rfkill_fop_write,
1251 .poll = rfkill_fop_poll,
1252 .release = rfkill_fop_release,
1253 #ifdef CONFIG_RFKILL_INPUT
1254 .unlocked_ioctl = rfkill_fop_ioctl,
1255 .compat_ioctl = rfkill_fop_ioctl,
1256 #endif
1257 .llseek = no_llseek,
1258 };
1259
1260 static struct miscdevice rfkill_miscdev = {
1261 .name = "rfkill",
1262 .fops = &rfkill_fops,
1263 .minor = MISC_DYNAMIC_MINOR,
1264 };
1265
1266 static int __init rfkill_init(void)
1267 {
1268 int error;
1269 int i;
1270
1271 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1272 rfkill_global_states[i].cur = !rfkill_default_state;
1273
1274 error = class_register(&rfkill_class);
1275 if (error)
1276 goto out;
1277
1278 error = misc_register(&rfkill_miscdev);
1279 if (error) {
1280 class_unregister(&rfkill_class);
1281 goto out;
1282 }
1283
1284 #ifdef CONFIG_RFKILL_INPUT
1285 error = rfkill_handler_init();
1286 if (error) {
1287 misc_deregister(&rfkill_miscdev);
1288 class_unregister(&rfkill_class);
1289 goto out;
1290 }
1291 #endif
1292
1293 out:
1294 return error;
1295 }
1296 subsys_initcall(rfkill_init);
1297
1298 static void __exit rfkill_exit(void)
1299 {
1300 #ifdef CONFIG_RFKILL_INPUT
1301 rfkill_handler_exit();
1302 #endif
1303 misc_deregister(&rfkill_miscdev);
1304 class_unregister(&rfkill_class);
1305 }
1306 module_exit(rfkill_exit);