Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / openvswitch / actions.c
1 /*
2 * Copyright (c) 2007-2017 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/netfilter_ipv6.h>
26 #include <linux/sctp.h>
27 #include <linux/tcp.h>
28 #include <linux/udp.h>
29 #include <linux/in6.h>
30 #include <linux/if_arp.h>
31 #include <linux/if_vlan.h>
32
33 #include <net/dst.h>
34 #include <net/ip.h>
35 #include <net/ipv6.h>
36 #include <net/ip6_fib.h>
37 #include <net/checksum.h>
38 #include <net/dsfield.h>
39 #include <net/mpls.h>
40 #include <net/sctp/checksum.h>
41
42 #include "datapath.h"
43 #include "flow.h"
44 #include "conntrack.h"
45 #include "vport.h"
46
47 struct deferred_action {
48 struct sk_buff *skb;
49 const struct nlattr *actions;
50 int actions_len;
51
52 /* Store pkt_key clone when creating deferred action. */
53 struct sw_flow_key pkt_key;
54 };
55
56 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
57 struct ovs_frag_data {
58 unsigned long dst;
59 struct vport *vport;
60 struct ovs_skb_cb cb;
61 __be16 inner_protocol;
62 u16 network_offset; /* valid only for MPLS */
63 u16 vlan_tci;
64 __be16 vlan_proto;
65 unsigned int l2_len;
66 u8 mac_proto;
67 u8 l2_data[MAX_L2_LEN];
68 };
69
70 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
71
72 #define DEFERRED_ACTION_FIFO_SIZE 10
73 #define OVS_RECURSION_LIMIT 5
74 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
75 struct action_fifo {
76 int head;
77 int tail;
78 /* Deferred action fifo queue storage. */
79 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
80 };
81
82 struct action_flow_keys {
83 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
84 };
85
86 static struct action_fifo __percpu *action_fifos;
87 static struct action_flow_keys __percpu *flow_keys;
88 static DEFINE_PER_CPU(int, exec_actions_level);
89
90 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
91 * space. Return NULL if out of key spaces.
92 */
93 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
94 {
95 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
96 int level = this_cpu_read(exec_actions_level);
97 struct sw_flow_key *key = NULL;
98
99 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
100 key = &keys->key[level - 1];
101 *key = *key_;
102 }
103
104 return key;
105 }
106
107 static void action_fifo_init(struct action_fifo *fifo)
108 {
109 fifo->head = 0;
110 fifo->tail = 0;
111 }
112
113 static bool action_fifo_is_empty(const struct action_fifo *fifo)
114 {
115 return (fifo->head == fifo->tail);
116 }
117
118 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
119 {
120 if (action_fifo_is_empty(fifo))
121 return NULL;
122
123 return &fifo->fifo[fifo->tail++];
124 }
125
126 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
127 {
128 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
129 return NULL;
130
131 return &fifo->fifo[fifo->head++];
132 }
133
134 /* Return true if fifo is not full */
135 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
136 const struct sw_flow_key *key,
137 const struct nlattr *actions,
138 const int actions_len)
139 {
140 struct action_fifo *fifo;
141 struct deferred_action *da;
142
143 fifo = this_cpu_ptr(action_fifos);
144 da = action_fifo_put(fifo);
145 if (da) {
146 da->skb = skb;
147 da->actions = actions;
148 da->actions_len = actions_len;
149 da->pkt_key = *key;
150 }
151
152 return da;
153 }
154
155 static void invalidate_flow_key(struct sw_flow_key *key)
156 {
157 key->mac_proto |= SW_FLOW_KEY_INVALID;
158 }
159
160 static bool is_flow_key_valid(const struct sw_flow_key *key)
161 {
162 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
163 }
164
165 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
166 struct sw_flow_key *key,
167 u32 recirc_id,
168 const struct nlattr *actions, int len,
169 bool last, bool clone_flow_key);
170
171 static void update_ethertype(struct sk_buff *skb, struct ethhdr *hdr,
172 __be16 ethertype)
173 {
174 if (skb->ip_summed == CHECKSUM_COMPLETE) {
175 __be16 diff[] = { ~(hdr->h_proto), ethertype };
176
177 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
178 ~skb->csum);
179 }
180
181 hdr->h_proto = ethertype;
182 }
183
184 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
185 const struct ovs_action_push_mpls *mpls)
186 {
187 struct mpls_shim_hdr *new_mpls_lse;
188
189 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
190 if (skb->encapsulation)
191 return -ENOTSUPP;
192
193 if (skb_cow_head(skb, MPLS_HLEN) < 0)
194 return -ENOMEM;
195
196 if (!skb->inner_protocol) {
197 skb_set_inner_network_header(skb, skb->mac_len);
198 skb_set_inner_protocol(skb, skb->protocol);
199 }
200
201 skb_push(skb, MPLS_HLEN);
202 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
203 skb->mac_len);
204 skb_reset_mac_header(skb);
205 skb_set_network_header(skb, skb->mac_len);
206
207 new_mpls_lse = mpls_hdr(skb);
208 new_mpls_lse->label_stack_entry = mpls->mpls_lse;
209
210 skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN);
211
212 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET)
213 update_ethertype(skb, eth_hdr(skb), mpls->mpls_ethertype);
214 skb->protocol = mpls->mpls_ethertype;
215
216 invalidate_flow_key(key);
217 return 0;
218 }
219
220 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
221 const __be16 ethertype)
222 {
223 int err;
224
225 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
226 if (unlikely(err))
227 return err;
228
229 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
230
231 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
232 skb->mac_len);
233
234 __skb_pull(skb, MPLS_HLEN);
235 skb_reset_mac_header(skb);
236 skb_set_network_header(skb, skb->mac_len);
237
238 if (ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET) {
239 struct ethhdr *hdr;
240
241 /* mpls_hdr() is used to locate the ethertype field correctly in the
242 * presence of VLAN tags.
243 */
244 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
245 update_ethertype(skb, hdr, ethertype);
246 }
247 if (eth_p_mpls(skb->protocol))
248 skb->protocol = ethertype;
249
250 invalidate_flow_key(key);
251 return 0;
252 }
253
254 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
255 const __be32 *mpls_lse, const __be32 *mask)
256 {
257 struct mpls_shim_hdr *stack;
258 __be32 lse;
259 int err;
260
261 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
262 if (unlikely(err))
263 return err;
264
265 stack = mpls_hdr(skb);
266 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
267 if (skb->ip_summed == CHECKSUM_COMPLETE) {
268 __be32 diff[] = { ~(stack->label_stack_entry), lse };
269
270 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
271 ~skb->csum);
272 }
273
274 stack->label_stack_entry = lse;
275 flow_key->mpls.top_lse = lse;
276 return 0;
277 }
278
279 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
280 {
281 int err;
282
283 err = skb_vlan_pop(skb);
284 if (skb_vlan_tag_present(skb)) {
285 invalidate_flow_key(key);
286 } else {
287 key->eth.vlan.tci = 0;
288 key->eth.vlan.tpid = 0;
289 }
290 return err;
291 }
292
293 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
294 const struct ovs_action_push_vlan *vlan)
295 {
296 if (skb_vlan_tag_present(skb)) {
297 invalidate_flow_key(key);
298 } else {
299 key->eth.vlan.tci = vlan->vlan_tci;
300 key->eth.vlan.tpid = vlan->vlan_tpid;
301 }
302 return skb_vlan_push(skb, vlan->vlan_tpid,
303 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
304 }
305
306 /* 'src' is already properly masked. */
307 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
308 {
309 u16 *dst = (u16 *)dst_;
310 const u16 *src = (const u16 *)src_;
311 const u16 *mask = (const u16 *)mask_;
312
313 OVS_SET_MASKED(dst[0], src[0], mask[0]);
314 OVS_SET_MASKED(dst[1], src[1], mask[1]);
315 OVS_SET_MASKED(dst[2], src[2], mask[2]);
316 }
317
318 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
319 const struct ovs_key_ethernet *key,
320 const struct ovs_key_ethernet *mask)
321 {
322 int err;
323
324 err = skb_ensure_writable(skb, ETH_HLEN);
325 if (unlikely(err))
326 return err;
327
328 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
329
330 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
331 mask->eth_src);
332 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
333 mask->eth_dst);
334
335 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
336
337 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
338 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
339 return 0;
340 }
341
342 /* pop_eth does not support VLAN packets as this action is never called
343 * for them.
344 */
345 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
346 {
347 skb_pull_rcsum(skb, ETH_HLEN);
348 skb_reset_mac_header(skb);
349 skb_reset_mac_len(skb);
350
351 /* safe right before invalidate_flow_key */
352 key->mac_proto = MAC_PROTO_NONE;
353 invalidate_flow_key(key);
354 return 0;
355 }
356
357 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
358 const struct ovs_action_push_eth *ethh)
359 {
360 struct ethhdr *hdr;
361
362 /* Add the new Ethernet header */
363 if (skb_cow_head(skb, ETH_HLEN) < 0)
364 return -ENOMEM;
365
366 skb_push(skb, ETH_HLEN);
367 skb_reset_mac_header(skb);
368 skb_reset_mac_len(skb);
369
370 hdr = eth_hdr(skb);
371 ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
372 ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
373 hdr->h_proto = skb->protocol;
374
375 skb_postpush_rcsum(skb, hdr, ETH_HLEN);
376
377 /* safe right before invalidate_flow_key */
378 key->mac_proto = MAC_PROTO_ETHERNET;
379 invalidate_flow_key(key);
380 return 0;
381 }
382
383 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
384 __be32 addr, __be32 new_addr)
385 {
386 int transport_len = skb->len - skb_transport_offset(skb);
387
388 if (nh->frag_off & htons(IP_OFFSET))
389 return;
390
391 if (nh->protocol == IPPROTO_TCP) {
392 if (likely(transport_len >= sizeof(struct tcphdr)))
393 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
394 addr, new_addr, true);
395 } else if (nh->protocol == IPPROTO_UDP) {
396 if (likely(transport_len >= sizeof(struct udphdr))) {
397 struct udphdr *uh = udp_hdr(skb);
398
399 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
400 inet_proto_csum_replace4(&uh->check, skb,
401 addr, new_addr, true);
402 if (!uh->check)
403 uh->check = CSUM_MANGLED_0;
404 }
405 }
406 }
407 }
408
409 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
410 __be32 *addr, __be32 new_addr)
411 {
412 update_ip_l4_checksum(skb, nh, *addr, new_addr);
413 csum_replace4(&nh->check, *addr, new_addr);
414 skb_clear_hash(skb);
415 *addr = new_addr;
416 }
417
418 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
419 __be32 addr[4], const __be32 new_addr[4])
420 {
421 int transport_len = skb->len - skb_transport_offset(skb);
422
423 if (l4_proto == NEXTHDR_TCP) {
424 if (likely(transport_len >= sizeof(struct tcphdr)))
425 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
426 addr, new_addr, true);
427 } else if (l4_proto == NEXTHDR_UDP) {
428 if (likely(transport_len >= sizeof(struct udphdr))) {
429 struct udphdr *uh = udp_hdr(skb);
430
431 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
432 inet_proto_csum_replace16(&uh->check, skb,
433 addr, new_addr, true);
434 if (!uh->check)
435 uh->check = CSUM_MANGLED_0;
436 }
437 }
438 } else if (l4_proto == NEXTHDR_ICMP) {
439 if (likely(transport_len >= sizeof(struct icmp6hdr)))
440 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
441 skb, addr, new_addr, true);
442 }
443 }
444
445 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
446 const __be32 mask[4], __be32 masked[4])
447 {
448 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
449 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
450 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
451 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
452 }
453
454 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
455 __be32 addr[4], const __be32 new_addr[4],
456 bool recalculate_csum)
457 {
458 if (recalculate_csum)
459 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
460
461 skb_clear_hash(skb);
462 memcpy(addr, new_addr, sizeof(__be32[4]));
463 }
464
465 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
466 {
467 /* Bits 21-24 are always unmasked, so this retains their values. */
468 OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
469 OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
470 OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
471 }
472
473 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
474 u8 mask)
475 {
476 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
477
478 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
479 nh->ttl = new_ttl;
480 }
481
482 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
483 const struct ovs_key_ipv4 *key,
484 const struct ovs_key_ipv4 *mask)
485 {
486 struct iphdr *nh;
487 __be32 new_addr;
488 int err;
489
490 err = skb_ensure_writable(skb, skb_network_offset(skb) +
491 sizeof(struct iphdr));
492 if (unlikely(err))
493 return err;
494
495 nh = ip_hdr(skb);
496
497 /* Setting an IP addresses is typically only a side effect of
498 * matching on them in the current userspace implementation, so it
499 * makes sense to check if the value actually changed.
500 */
501 if (mask->ipv4_src) {
502 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
503
504 if (unlikely(new_addr != nh->saddr)) {
505 set_ip_addr(skb, nh, &nh->saddr, new_addr);
506 flow_key->ipv4.addr.src = new_addr;
507 }
508 }
509 if (mask->ipv4_dst) {
510 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
511
512 if (unlikely(new_addr != nh->daddr)) {
513 set_ip_addr(skb, nh, &nh->daddr, new_addr);
514 flow_key->ipv4.addr.dst = new_addr;
515 }
516 }
517 if (mask->ipv4_tos) {
518 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
519 flow_key->ip.tos = nh->tos;
520 }
521 if (mask->ipv4_ttl) {
522 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
523 flow_key->ip.ttl = nh->ttl;
524 }
525
526 return 0;
527 }
528
529 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
530 {
531 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
532 }
533
534 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
535 const struct ovs_key_ipv6 *key,
536 const struct ovs_key_ipv6 *mask)
537 {
538 struct ipv6hdr *nh;
539 int err;
540
541 err = skb_ensure_writable(skb, skb_network_offset(skb) +
542 sizeof(struct ipv6hdr));
543 if (unlikely(err))
544 return err;
545
546 nh = ipv6_hdr(skb);
547
548 /* Setting an IP addresses is typically only a side effect of
549 * matching on them in the current userspace implementation, so it
550 * makes sense to check if the value actually changed.
551 */
552 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
553 __be32 *saddr = (__be32 *)&nh->saddr;
554 __be32 masked[4];
555
556 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
557
558 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
559 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
560 true);
561 memcpy(&flow_key->ipv6.addr.src, masked,
562 sizeof(flow_key->ipv6.addr.src));
563 }
564 }
565 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
566 unsigned int offset = 0;
567 int flags = IP6_FH_F_SKIP_RH;
568 bool recalc_csum = true;
569 __be32 *daddr = (__be32 *)&nh->daddr;
570 __be32 masked[4];
571
572 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
573
574 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
575 if (ipv6_ext_hdr(nh->nexthdr))
576 recalc_csum = (ipv6_find_hdr(skb, &offset,
577 NEXTHDR_ROUTING,
578 NULL, &flags)
579 != NEXTHDR_ROUTING);
580
581 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
582 recalc_csum);
583 memcpy(&flow_key->ipv6.addr.dst, masked,
584 sizeof(flow_key->ipv6.addr.dst));
585 }
586 }
587 if (mask->ipv6_tclass) {
588 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
589 flow_key->ip.tos = ipv6_get_dsfield(nh);
590 }
591 if (mask->ipv6_label) {
592 set_ipv6_fl(nh, ntohl(key->ipv6_label),
593 ntohl(mask->ipv6_label));
594 flow_key->ipv6.label =
595 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
596 }
597 if (mask->ipv6_hlimit) {
598 OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
599 mask->ipv6_hlimit);
600 flow_key->ip.ttl = nh->hop_limit;
601 }
602 return 0;
603 }
604
605 /* Must follow skb_ensure_writable() since that can move the skb data. */
606 static void set_tp_port(struct sk_buff *skb, __be16 *port,
607 __be16 new_port, __sum16 *check)
608 {
609 inet_proto_csum_replace2(check, skb, *port, new_port, false);
610 *port = new_port;
611 }
612
613 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
614 const struct ovs_key_udp *key,
615 const struct ovs_key_udp *mask)
616 {
617 struct udphdr *uh;
618 __be16 src, dst;
619 int err;
620
621 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
622 sizeof(struct udphdr));
623 if (unlikely(err))
624 return err;
625
626 uh = udp_hdr(skb);
627 /* Either of the masks is non-zero, so do not bother checking them. */
628 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
629 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
630
631 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
632 if (likely(src != uh->source)) {
633 set_tp_port(skb, &uh->source, src, &uh->check);
634 flow_key->tp.src = src;
635 }
636 if (likely(dst != uh->dest)) {
637 set_tp_port(skb, &uh->dest, dst, &uh->check);
638 flow_key->tp.dst = dst;
639 }
640
641 if (unlikely(!uh->check))
642 uh->check = CSUM_MANGLED_0;
643 } else {
644 uh->source = src;
645 uh->dest = dst;
646 flow_key->tp.src = src;
647 flow_key->tp.dst = dst;
648 }
649
650 skb_clear_hash(skb);
651
652 return 0;
653 }
654
655 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
656 const struct ovs_key_tcp *key,
657 const struct ovs_key_tcp *mask)
658 {
659 struct tcphdr *th;
660 __be16 src, dst;
661 int err;
662
663 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
664 sizeof(struct tcphdr));
665 if (unlikely(err))
666 return err;
667
668 th = tcp_hdr(skb);
669 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
670 if (likely(src != th->source)) {
671 set_tp_port(skb, &th->source, src, &th->check);
672 flow_key->tp.src = src;
673 }
674 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
675 if (likely(dst != th->dest)) {
676 set_tp_port(skb, &th->dest, dst, &th->check);
677 flow_key->tp.dst = dst;
678 }
679 skb_clear_hash(skb);
680
681 return 0;
682 }
683
684 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
685 const struct ovs_key_sctp *key,
686 const struct ovs_key_sctp *mask)
687 {
688 unsigned int sctphoff = skb_transport_offset(skb);
689 struct sctphdr *sh;
690 __le32 old_correct_csum, new_csum, old_csum;
691 int err;
692
693 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
694 if (unlikely(err))
695 return err;
696
697 sh = sctp_hdr(skb);
698 old_csum = sh->checksum;
699 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
700
701 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
702 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
703
704 new_csum = sctp_compute_cksum(skb, sctphoff);
705
706 /* Carry any checksum errors through. */
707 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
708
709 skb_clear_hash(skb);
710 flow_key->tp.src = sh->source;
711 flow_key->tp.dst = sh->dest;
712
713 return 0;
714 }
715
716 static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
717 {
718 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
719 struct vport *vport = data->vport;
720
721 if (skb_cow_head(skb, data->l2_len) < 0) {
722 kfree_skb(skb);
723 return -ENOMEM;
724 }
725
726 __skb_dst_copy(skb, data->dst);
727 *OVS_CB(skb) = data->cb;
728 skb->inner_protocol = data->inner_protocol;
729 skb->vlan_tci = data->vlan_tci;
730 skb->vlan_proto = data->vlan_proto;
731
732 /* Reconstruct the MAC header. */
733 skb_push(skb, data->l2_len);
734 memcpy(skb->data, &data->l2_data, data->l2_len);
735 skb_postpush_rcsum(skb, skb->data, data->l2_len);
736 skb_reset_mac_header(skb);
737
738 if (eth_p_mpls(skb->protocol)) {
739 skb->inner_network_header = skb->network_header;
740 skb_set_network_header(skb, data->network_offset);
741 skb_reset_mac_len(skb);
742 }
743
744 ovs_vport_send(vport, skb, data->mac_proto);
745 return 0;
746 }
747
748 static unsigned int
749 ovs_dst_get_mtu(const struct dst_entry *dst)
750 {
751 return dst->dev->mtu;
752 }
753
754 static struct dst_ops ovs_dst_ops = {
755 .family = AF_UNSPEC,
756 .mtu = ovs_dst_get_mtu,
757 };
758
759 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
760 * ovs_vport_output(), which is called once per fragmented packet.
761 */
762 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
763 u16 orig_network_offset, u8 mac_proto)
764 {
765 unsigned int hlen = skb_network_offset(skb);
766 struct ovs_frag_data *data;
767
768 data = this_cpu_ptr(&ovs_frag_data_storage);
769 data->dst = skb->_skb_refdst;
770 data->vport = vport;
771 data->cb = *OVS_CB(skb);
772 data->inner_protocol = skb->inner_protocol;
773 data->network_offset = orig_network_offset;
774 data->vlan_tci = skb->vlan_tci;
775 data->vlan_proto = skb->vlan_proto;
776 data->mac_proto = mac_proto;
777 data->l2_len = hlen;
778 memcpy(&data->l2_data, skb->data, hlen);
779
780 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
781 skb_pull(skb, hlen);
782 }
783
784 static void ovs_fragment(struct net *net, struct vport *vport,
785 struct sk_buff *skb, u16 mru,
786 struct sw_flow_key *key)
787 {
788 u16 orig_network_offset = 0;
789
790 if (eth_p_mpls(skb->protocol)) {
791 orig_network_offset = skb_network_offset(skb);
792 skb->network_header = skb->inner_network_header;
793 }
794
795 if (skb_network_offset(skb) > MAX_L2_LEN) {
796 OVS_NLERR(1, "L2 header too long to fragment");
797 goto err;
798 }
799
800 if (key->eth.type == htons(ETH_P_IP)) {
801 struct dst_entry ovs_dst;
802 unsigned long orig_dst;
803
804 prepare_frag(vport, skb, orig_network_offset,
805 ovs_key_mac_proto(key));
806 dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
807 DST_OBSOLETE_NONE, DST_NOCOUNT);
808 ovs_dst.dev = vport->dev;
809
810 orig_dst = skb->_skb_refdst;
811 skb_dst_set_noref(skb, &ovs_dst);
812 IPCB(skb)->frag_max_size = mru;
813
814 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
815 refdst_drop(orig_dst);
816 } else if (key->eth.type == htons(ETH_P_IPV6)) {
817 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
818 unsigned long orig_dst;
819 struct rt6_info ovs_rt;
820
821 if (!v6ops)
822 goto err;
823
824 prepare_frag(vport, skb, orig_network_offset,
825 ovs_key_mac_proto(key));
826 memset(&ovs_rt, 0, sizeof(ovs_rt));
827 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
828 DST_OBSOLETE_NONE, DST_NOCOUNT);
829 ovs_rt.dst.dev = vport->dev;
830
831 orig_dst = skb->_skb_refdst;
832 skb_dst_set_noref(skb, &ovs_rt.dst);
833 IP6CB(skb)->frag_max_size = mru;
834
835 v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
836 refdst_drop(orig_dst);
837 } else {
838 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
839 ovs_vport_name(vport), ntohs(key->eth.type), mru,
840 vport->dev->mtu);
841 goto err;
842 }
843
844 return;
845 err:
846 kfree_skb(skb);
847 }
848
849 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
850 struct sw_flow_key *key)
851 {
852 struct vport *vport = ovs_vport_rcu(dp, out_port);
853
854 if (likely(vport)) {
855 u16 mru = OVS_CB(skb)->mru;
856 u32 cutlen = OVS_CB(skb)->cutlen;
857
858 if (unlikely(cutlen > 0)) {
859 if (skb->len - cutlen > ovs_mac_header_len(key))
860 pskb_trim(skb, skb->len - cutlen);
861 else
862 pskb_trim(skb, ovs_mac_header_len(key));
863 }
864
865 if (likely(!mru ||
866 (skb->len <= mru + vport->dev->hard_header_len))) {
867 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
868 } else if (mru <= vport->dev->mtu) {
869 struct net *net = read_pnet(&dp->net);
870
871 ovs_fragment(net, vport, skb, mru, key);
872 } else {
873 kfree_skb(skb);
874 }
875 } else {
876 kfree_skb(skb);
877 }
878 }
879
880 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
881 struct sw_flow_key *key, const struct nlattr *attr,
882 const struct nlattr *actions, int actions_len,
883 uint32_t cutlen)
884 {
885 struct dp_upcall_info upcall;
886 const struct nlattr *a;
887 int rem;
888
889 memset(&upcall, 0, sizeof(upcall));
890 upcall.cmd = OVS_PACKET_CMD_ACTION;
891 upcall.mru = OVS_CB(skb)->mru;
892
893 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
894 a = nla_next(a, &rem)) {
895 switch (nla_type(a)) {
896 case OVS_USERSPACE_ATTR_USERDATA:
897 upcall.userdata = a;
898 break;
899
900 case OVS_USERSPACE_ATTR_PID:
901 upcall.portid = nla_get_u32(a);
902 break;
903
904 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
905 /* Get out tunnel info. */
906 struct vport *vport;
907
908 vport = ovs_vport_rcu(dp, nla_get_u32(a));
909 if (vport) {
910 int err;
911
912 err = dev_fill_metadata_dst(vport->dev, skb);
913 if (!err)
914 upcall.egress_tun_info = skb_tunnel_info(skb);
915 }
916
917 break;
918 }
919
920 case OVS_USERSPACE_ATTR_ACTIONS: {
921 /* Include actions. */
922 upcall.actions = actions;
923 upcall.actions_len = actions_len;
924 break;
925 }
926
927 } /* End of switch. */
928 }
929
930 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
931 }
932
933 /* When 'last' is true, sample() should always consume the 'skb'.
934 * Otherwise, sample() should keep 'skb' intact regardless what
935 * actions are executed within sample().
936 */
937 static int sample(struct datapath *dp, struct sk_buff *skb,
938 struct sw_flow_key *key, const struct nlattr *attr,
939 bool last)
940 {
941 struct nlattr *actions;
942 struct nlattr *sample_arg;
943 int rem = nla_len(attr);
944 const struct sample_arg *arg;
945 bool clone_flow_key;
946
947 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
948 sample_arg = nla_data(attr);
949 arg = nla_data(sample_arg);
950 actions = nla_next(sample_arg, &rem);
951
952 if ((arg->probability != U32_MAX) &&
953 (!arg->probability || prandom_u32() > arg->probability)) {
954 if (last)
955 consume_skb(skb);
956 return 0;
957 }
958
959 clone_flow_key = !arg->exec;
960 return clone_execute(dp, skb, key, 0, actions, rem, last,
961 clone_flow_key);
962 }
963
964 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
965 const struct nlattr *attr)
966 {
967 struct ovs_action_hash *hash_act = nla_data(attr);
968 u32 hash = 0;
969
970 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
971 hash = skb_get_hash(skb);
972 hash = jhash_1word(hash, hash_act->hash_basis);
973 if (!hash)
974 hash = 0x1;
975
976 key->ovs_flow_hash = hash;
977 }
978
979 static int execute_set_action(struct sk_buff *skb,
980 struct sw_flow_key *flow_key,
981 const struct nlattr *a)
982 {
983 /* Only tunnel set execution is supported without a mask. */
984 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
985 struct ovs_tunnel_info *tun = nla_data(a);
986
987 skb_dst_drop(skb);
988 dst_hold((struct dst_entry *)tun->tun_dst);
989 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
990 return 0;
991 }
992
993 return -EINVAL;
994 }
995
996 /* Mask is at the midpoint of the data. */
997 #define get_mask(a, type) ((const type)nla_data(a) + 1)
998
999 static int execute_masked_set_action(struct sk_buff *skb,
1000 struct sw_flow_key *flow_key,
1001 const struct nlattr *a)
1002 {
1003 int err = 0;
1004
1005 switch (nla_type(a)) {
1006 case OVS_KEY_ATTR_PRIORITY:
1007 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1008 *get_mask(a, u32 *));
1009 flow_key->phy.priority = skb->priority;
1010 break;
1011
1012 case OVS_KEY_ATTR_SKB_MARK:
1013 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1014 flow_key->phy.skb_mark = skb->mark;
1015 break;
1016
1017 case OVS_KEY_ATTR_TUNNEL_INFO:
1018 /* Masked data not supported for tunnel. */
1019 err = -EINVAL;
1020 break;
1021
1022 case OVS_KEY_ATTR_ETHERNET:
1023 err = set_eth_addr(skb, flow_key, nla_data(a),
1024 get_mask(a, struct ovs_key_ethernet *));
1025 break;
1026
1027 case OVS_KEY_ATTR_IPV4:
1028 err = set_ipv4(skb, flow_key, nla_data(a),
1029 get_mask(a, struct ovs_key_ipv4 *));
1030 break;
1031
1032 case OVS_KEY_ATTR_IPV6:
1033 err = set_ipv6(skb, flow_key, nla_data(a),
1034 get_mask(a, struct ovs_key_ipv6 *));
1035 break;
1036
1037 case OVS_KEY_ATTR_TCP:
1038 err = set_tcp(skb, flow_key, nla_data(a),
1039 get_mask(a, struct ovs_key_tcp *));
1040 break;
1041
1042 case OVS_KEY_ATTR_UDP:
1043 err = set_udp(skb, flow_key, nla_data(a),
1044 get_mask(a, struct ovs_key_udp *));
1045 break;
1046
1047 case OVS_KEY_ATTR_SCTP:
1048 err = set_sctp(skb, flow_key, nla_data(a),
1049 get_mask(a, struct ovs_key_sctp *));
1050 break;
1051
1052 case OVS_KEY_ATTR_MPLS:
1053 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1054 __be32 *));
1055 break;
1056
1057 case OVS_KEY_ATTR_CT_STATE:
1058 case OVS_KEY_ATTR_CT_ZONE:
1059 case OVS_KEY_ATTR_CT_MARK:
1060 case OVS_KEY_ATTR_CT_LABELS:
1061 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1062 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1063 err = -EINVAL;
1064 break;
1065 }
1066
1067 return err;
1068 }
1069
1070 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1071 struct sw_flow_key *key,
1072 const struct nlattr *a, bool last)
1073 {
1074 u32 recirc_id;
1075
1076 if (!is_flow_key_valid(key)) {
1077 int err;
1078
1079 err = ovs_flow_key_update(skb, key);
1080 if (err)
1081 return err;
1082 }
1083 BUG_ON(!is_flow_key_valid(key));
1084
1085 recirc_id = nla_get_u32(a);
1086 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1087 }
1088
1089 /* Execute a list of actions against 'skb'. */
1090 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1091 struct sw_flow_key *key,
1092 const struct nlattr *attr, int len)
1093 {
1094 const struct nlattr *a;
1095 int rem;
1096
1097 for (a = attr, rem = len; rem > 0;
1098 a = nla_next(a, &rem)) {
1099 int err = 0;
1100
1101 switch (nla_type(a)) {
1102 case OVS_ACTION_ATTR_OUTPUT: {
1103 int port = nla_get_u32(a);
1104 struct sk_buff *clone;
1105
1106 /* Every output action needs a separate clone
1107 * of 'skb', In case the output action is the
1108 * last action, cloning can be avoided.
1109 */
1110 if (nla_is_last(a, rem)) {
1111 do_output(dp, skb, port, key);
1112 /* 'skb' has been used for output.
1113 */
1114 return 0;
1115 }
1116
1117 clone = skb_clone(skb, GFP_ATOMIC);
1118 if (clone)
1119 do_output(dp, clone, port, key);
1120 OVS_CB(skb)->cutlen = 0;
1121 break;
1122 }
1123
1124 case OVS_ACTION_ATTR_TRUNC: {
1125 struct ovs_action_trunc *trunc = nla_data(a);
1126
1127 if (skb->len > trunc->max_len)
1128 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1129 break;
1130 }
1131
1132 case OVS_ACTION_ATTR_USERSPACE:
1133 output_userspace(dp, skb, key, a, attr,
1134 len, OVS_CB(skb)->cutlen);
1135 OVS_CB(skb)->cutlen = 0;
1136 break;
1137
1138 case OVS_ACTION_ATTR_HASH:
1139 execute_hash(skb, key, a);
1140 break;
1141
1142 case OVS_ACTION_ATTR_PUSH_MPLS:
1143 err = push_mpls(skb, key, nla_data(a));
1144 break;
1145
1146 case OVS_ACTION_ATTR_POP_MPLS:
1147 err = pop_mpls(skb, key, nla_get_be16(a));
1148 break;
1149
1150 case OVS_ACTION_ATTR_PUSH_VLAN:
1151 err = push_vlan(skb, key, nla_data(a));
1152 break;
1153
1154 case OVS_ACTION_ATTR_POP_VLAN:
1155 err = pop_vlan(skb, key);
1156 break;
1157
1158 case OVS_ACTION_ATTR_RECIRC: {
1159 bool last = nla_is_last(a, rem);
1160
1161 err = execute_recirc(dp, skb, key, a, last);
1162 if (last) {
1163 /* If this is the last action, the skb has
1164 * been consumed or freed.
1165 * Return immediately.
1166 */
1167 return err;
1168 }
1169 break;
1170 }
1171
1172 case OVS_ACTION_ATTR_SET:
1173 err = execute_set_action(skb, key, nla_data(a));
1174 break;
1175
1176 case OVS_ACTION_ATTR_SET_MASKED:
1177 case OVS_ACTION_ATTR_SET_TO_MASKED:
1178 err = execute_masked_set_action(skb, key, nla_data(a));
1179 break;
1180
1181 case OVS_ACTION_ATTR_SAMPLE: {
1182 bool last = nla_is_last(a, rem);
1183
1184 err = sample(dp, skb, key, a, last);
1185 if (last)
1186 return err;
1187
1188 break;
1189 }
1190
1191 case OVS_ACTION_ATTR_CT:
1192 if (!is_flow_key_valid(key)) {
1193 err = ovs_flow_key_update(skb, key);
1194 if (err)
1195 return err;
1196 }
1197
1198 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1199 nla_data(a));
1200
1201 /* Hide stolen IP fragments from user space. */
1202 if (err)
1203 return err == -EINPROGRESS ? 0 : err;
1204 break;
1205
1206 case OVS_ACTION_ATTR_PUSH_ETH:
1207 err = push_eth(skb, key, nla_data(a));
1208 break;
1209
1210 case OVS_ACTION_ATTR_POP_ETH:
1211 err = pop_eth(skb, key);
1212 break;
1213 }
1214
1215 if (unlikely(err)) {
1216 kfree_skb(skb);
1217 return err;
1218 }
1219 }
1220
1221 consume_skb(skb);
1222 return 0;
1223 }
1224
1225 /* Execute the actions on the clone of the packet. The effect of the
1226 * execution does not affect the original 'skb' nor the original 'key'.
1227 *
1228 * The execution may be deferred in case the actions can not be executed
1229 * immediately.
1230 */
1231 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1232 struct sw_flow_key *key, u32 recirc_id,
1233 const struct nlattr *actions, int len,
1234 bool last, bool clone_flow_key)
1235 {
1236 struct deferred_action *da;
1237 struct sw_flow_key *clone;
1238
1239 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1240 if (!skb) {
1241 /* Out of memory, skip this action.
1242 */
1243 return 0;
1244 }
1245
1246 /* When clone_flow_key is false, the 'key' will not be change
1247 * by the actions, then the 'key' can be used directly.
1248 * Otherwise, try to clone key from the next recursion level of
1249 * 'flow_keys'. If clone is successful, execute the actions
1250 * without deferring.
1251 */
1252 clone = clone_flow_key ? clone_key(key) : key;
1253 if (clone) {
1254 int err = 0;
1255
1256 if (actions) { /* Sample action */
1257 if (clone_flow_key)
1258 __this_cpu_inc(exec_actions_level);
1259
1260 err = do_execute_actions(dp, skb, clone,
1261 actions, len);
1262
1263 if (clone_flow_key)
1264 __this_cpu_dec(exec_actions_level);
1265 } else { /* Recirc action */
1266 clone->recirc_id = recirc_id;
1267 ovs_dp_process_packet(skb, clone);
1268 }
1269 return err;
1270 }
1271
1272 /* Out of 'flow_keys' space. Defer actions */
1273 da = add_deferred_actions(skb, key, actions, len);
1274 if (da) {
1275 if (!actions) { /* Recirc action */
1276 key = &da->pkt_key;
1277 key->recirc_id = recirc_id;
1278 }
1279 } else {
1280 /* Out of per CPU action FIFO space. Drop the 'skb' and
1281 * log an error.
1282 */
1283 kfree_skb(skb);
1284
1285 if (net_ratelimit()) {
1286 if (actions) { /* Sample action */
1287 pr_warn("%s: deferred action limit reached, drop sample action\n",
1288 ovs_dp_name(dp));
1289 } else { /* Recirc action */
1290 pr_warn("%s: deferred action limit reached, drop recirc action\n",
1291 ovs_dp_name(dp));
1292 }
1293 }
1294 }
1295 return 0;
1296 }
1297
1298 static void process_deferred_actions(struct datapath *dp)
1299 {
1300 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1301
1302 /* Do not touch the FIFO in case there is no deferred actions. */
1303 if (action_fifo_is_empty(fifo))
1304 return;
1305
1306 /* Finishing executing all deferred actions. */
1307 do {
1308 struct deferred_action *da = action_fifo_get(fifo);
1309 struct sk_buff *skb = da->skb;
1310 struct sw_flow_key *key = &da->pkt_key;
1311 const struct nlattr *actions = da->actions;
1312 int actions_len = da->actions_len;
1313
1314 if (actions)
1315 do_execute_actions(dp, skb, key, actions, actions_len);
1316 else
1317 ovs_dp_process_packet(skb, key);
1318 } while (!action_fifo_is_empty(fifo));
1319
1320 /* Reset FIFO for the next packet. */
1321 action_fifo_init(fifo);
1322 }
1323
1324 /* Execute a list of actions against 'skb'. */
1325 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1326 const struct sw_flow_actions *acts,
1327 struct sw_flow_key *key)
1328 {
1329 int err, level;
1330
1331 level = __this_cpu_inc_return(exec_actions_level);
1332 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1333 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1334 ovs_dp_name(dp));
1335 kfree_skb(skb);
1336 err = -ENETDOWN;
1337 goto out;
1338 }
1339
1340 OVS_CB(skb)->acts_origlen = acts->orig_len;
1341 err = do_execute_actions(dp, skb, key,
1342 acts->actions, acts->actions_len);
1343
1344 if (level == 1)
1345 process_deferred_actions(dp);
1346
1347 out:
1348 __this_cpu_dec(exec_actions_level);
1349 return err;
1350 }
1351
1352 int action_fifos_init(void)
1353 {
1354 action_fifos = alloc_percpu(struct action_fifo);
1355 if (!action_fifos)
1356 return -ENOMEM;
1357
1358 flow_keys = alloc_percpu(struct action_flow_keys);
1359 if (!flow_keys) {
1360 free_percpu(action_fifos);
1361 return -ENOMEM;
1362 }
1363
1364 return 0;
1365 }
1366
1367 void action_fifos_exit(void)
1368 {
1369 free_percpu(action_fifos);
1370 free_percpu(flow_keys);
1371 }