Merge branches 'fixes-for-37', 'ec' and 'thermal' into release
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_l3proto.h>
29 #include <net/netfilter/nf_conntrack_zones.h>
30 #include <linux/netfilter/nf_nat.h>
31
32 static DEFINE_SPINLOCK(nf_nat_lock);
33
34 static DEFINE_MUTEX(nf_nat_proto_mutex);
35 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
36 __read_mostly;
37 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
38 __read_mostly;
39
40
41 inline const struct nf_nat_l3proto *
42 __nf_nat_l3proto_find(u8 family)
43 {
44 return rcu_dereference(nf_nat_l3protos[family]);
45 }
46
47 inline const struct nf_nat_l4proto *
48 __nf_nat_l4proto_find(u8 family, u8 protonum)
49 {
50 return rcu_dereference(nf_nat_l4protos[family][protonum]);
51 }
52 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
53
54 #ifdef CONFIG_XFRM
55 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
56 {
57 const struct nf_nat_l3proto *l3proto;
58 const struct nf_conn *ct;
59 enum ip_conntrack_info ctinfo;
60 enum ip_conntrack_dir dir;
61 unsigned long statusbit;
62 u8 family;
63
64 ct = nf_ct_get(skb, &ctinfo);
65 if (ct == NULL)
66 return;
67
68 family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
69 rcu_read_lock();
70 l3proto = __nf_nat_l3proto_find(family);
71 if (l3proto == NULL)
72 goto out;
73
74 dir = CTINFO2DIR(ctinfo);
75 if (dir == IP_CT_DIR_ORIGINAL)
76 statusbit = IPS_DST_NAT;
77 else
78 statusbit = IPS_SRC_NAT;
79
80 l3proto->decode_session(skb, ct, dir, statusbit, fl);
81 out:
82 rcu_read_unlock();
83 }
84
85 int nf_xfrm_me_harder(struct sk_buff *skb, unsigned int family)
86 {
87 struct flowi fl;
88 unsigned int hh_len;
89 struct dst_entry *dst;
90
91 if (xfrm_decode_session(skb, &fl, family) < 0)
92 return -1;
93
94 dst = skb_dst(skb);
95 if (dst->xfrm)
96 dst = ((struct xfrm_dst *)dst)->route;
97 dst_hold(dst);
98
99 dst = xfrm_lookup(dev_net(dst->dev), dst, &fl, skb->sk, 0);
100 if (IS_ERR(dst))
101 return -1;
102
103 skb_dst_drop(skb);
104 skb_dst_set(skb, dst);
105
106 /* Change in oif may mean change in hh_len. */
107 hh_len = skb_dst(skb)->dev->hard_header_len;
108 if (skb_headroom(skb) < hh_len &&
109 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
110 return -1;
111 return 0;
112 }
113 EXPORT_SYMBOL(nf_xfrm_me_harder);
114 #endif /* CONFIG_XFRM */
115
116 /* We keep an extra hash for each conntrack, for fast searching. */
117 static inline unsigned int
118 hash_by_src(const struct net *net, u16 zone,
119 const struct nf_conntrack_tuple *tuple)
120 {
121 unsigned int hash;
122
123 /* Original src, to ensure we map it consistently if poss. */
124 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
125 tuple->dst.protonum ^ zone ^ nf_conntrack_hash_rnd);
126 return ((u64)hash * net->ct.nat_htable_size) >> 32;
127 }
128
129 /* Is this tuple already taken? (not by us) */
130 int
131 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
132 const struct nf_conn *ignored_conntrack)
133 {
134 /* Conntrack tracking doesn't keep track of outgoing tuples; only
135 * incoming ones. NAT means they don't have a fixed mapping,
136 * so we invert the tuple and look for the incoming reply.
137 *
138 * We could keep a separate hash if this proves too slow.
139 */
140 struct nf_conntrack_tuple reply;
141
142 nf_ct_invert_tuplepr(&reply, tuple);
143 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
144 }
145 EXPORT_SYMBOL(nf_nat_used_tuple);
146
147 /* If we source map this tuple so reply looks like reply_tuple, will
148 * that meet the constraints of range.
149 */
150 static int in_range(const struct nf_nat_l3proto *l3proto,
151 const struct nf_nat_l4proto *l4proto,
152 const struct nf_conntrack_tuple *tuple,
153 const struct nf_nat_range *range)
154 {
155 /* If we are supposed to map IPs, then we must be in the
156 * range specified, otherwise let this drag us onto a new src IP.
157 */
158 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
159 !l3proto->in_range(tuple, range))
160 return 0;
161
162 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
163 l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
164 &range->min_proto, &range->max_proto))
165 return 1;
166
167 return 0;
168 }
169
170 static inline int
171 same_src(const struct nf_conn *ct,
172 const struct nf_conntrack_tuple *tuple)
173 {
174 const struct nf_conntrack_tuple *t;
175
176 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
177 return (t->dst.protonum == tuple->dst.protonum &&
178 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
179 t->src.u.all == tuple->src.u.all);
180 }
181
182 /* Only called for SRC manip */
183 static int
184 find_appropriate_src(struct net *net, u16 zone,
185 const struct nf_nat_l3proto *l3proto,
186 const struct nf_nat_l4proto *l4proto,
187 const struct nf_conntrack_tuple *tuple,
188 struct nf_conntrack_tuple *result,
189 const struct nf_nat_range *range)
190 {
191 unsigned int h = hash_by_src(net, zone, tuple);
192 const struct nf_conn_nat *nat;
193 const struct nf_conn *ct;
194 const struct hlist_node *n;
195
196 hlist_for_each_entry_rcu(nat, n, &net->ct.nat_bysource[h], bysource) {
197 ct = nat->ct;
198 if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
199 /* Copy source part from reply tuple. */
200 nf_ct_invert_tuplepr(result,
201 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
202 result->dst = tuple->dst;
203
204 if (in_range(l3proto, l4proto, result, range))
205 return 1;
206 }
207 }
208 return 0;
209 }
210
211 /* For [FUTURE] fragmentation handling, we want the least-used
212 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
213 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
214 * 1-65535, we don't do pro-rata allocation based on ports; we choose
215 * the ip with the lowest src-ip/dst-ip/proto usage.
216 */
217 static void
218 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
219 const struct nf_nat_range *range,
220 const struct nf_conn *ct,
221 enum nf_nat_manip_type maniptype)
222 {
223 union nf_inet_addr *var_ipp;
224 unsigned int i, max;
225 /* Host order */
226 u32 minip, maxip, j, dist;
227 bool full_range;
228
229 /* No IP mapping? Do nothing. */
230 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
231 return;
232
233 if (maniptype == NF_NAT_MANIP_SRC)
234 var_ipp = &tuple->src.u3;
235 else
236 var_ipp = &tuple->dst.u3;
237
238 /* Fast path: only one choice. */
239 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
240 *var_ipp = range->min_addr;
241 return;
242 }
243
244 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
245 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
246 else
247 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
248
249 /* Hashing source and destination IPs gives a fairly even
250 * spread in practice (if there are a small number of IPs
251 * involved, there usually aren't that many connections
252 * anyway). The consistency means that servers see the same
253 * client coming from the same IP (some Internet Banking sites
254 * like this), even across reboots.
255 */
256 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
257 range->flags & NF_NAT_RANGE_PERSISTENT ?
258 0 : (__force u32)tuple->dst.u3.all[max] ^ zone);
259
260 full_range = false;
261 for (i = 0; i <= max; i++) {
262 /* If first bytes of the address are at the maximum, use the
263 * distance. Otherwise use the full range.
264 */
265 if (!full_range) {
266 minip = ntohl((__force __be32)range->min_addr.all[i]);
267 maxip = ntohl((__force __be32)range->max_addr.all[i]);
268 dist = maxip - minip + 1;
269 } else {
270 minip = 0;
271 dist = ~0;
272 }
273
274 var_ipp->all[i] = (__force __u32)
275 htonl(minip + (((u64)j * dist) >> 32));
276 if (var_ipp->all[i] != range->max_addr.all[i])
277 full_range = true;
278
279 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
280 j ^= (__force u32)tuple->dst.u3.all[i];
281 }
282 }
283
284 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
285 * we change the source to map into the range. For NF_INET_PRE_ROUTING
286 * and NF_INET_LOCAL_OUT, we change the destination to map into the
287 * range. It might not be possible to get a unique tuple, but we try.
288 * At worst (or if we race), we will end up with a final duplicate in
289 * __ip_conntrack_confirm and drop the packet. */
290 static void
291 get_unique_tuple(struct nf_conntrack_tuple *tuple,
292 const struct nf_conntrack_tuple *orig_tuple,
293 const struct nf_nat_range *range,
294 struct nf_conn *ct,
295 enum nf_nat_manip_type maniptype)
296 {
297 const struct nf_nat_l3proto *l3proto;
298 const struct nf_nat_l4proto *l4proto;
299 struct net *net = nf_ct_net(ct);
300 u16 zone = nf_ct_zone(ct);
301
302 rcu_read_lock();
303 l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
304 l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
305 orig_tuple->dst.protonum);
306
307 /* 1) If this srcip/proto/src-proto-part is currently mapped,
308 * and that same mapping gives a unique tuple within the given
309 * range, use that.
310 *
311 * This is only required for source (ie. NAT/masq) mappings.
312 * So far, we don't do local source mappings, so multiple
313 * manips not an issue.
314 */
315 if (maniptype == NF_NAT_MANIP_SRC &&
316 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
317 /* try the original tuple first */
318 if (in_range(l3proto, l4proto, orig_tuple, range)) {
319 if (!nf_nat_used_tuple(orig_tuple, ct)) {
320 *tuple = *orig_tuple;
321 goto out;
322 }
323 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
324 orig_tuple, tuple, range)) {
325 pr_debug("get_unique_tuple: Found current src map\n");
326 if (!nf_nat_used_tuple(tuple, ct))
327 goto out;
328 }
329 }
330
331 /* 2) Select the least-used IP/proto combination in the given range */
332 *tuple = *orig_tuple;
333 find_best_ips_proto(zone, tuple, range, ct, maniptype);
334
335 /* 3) The per-protocol part of the manip is made to map into
336 * the range to make a unique tuple.
337 */
338
339 /* Only bother mapping if it's not already in range and unique */
340 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
341 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
342 if (l4proto->in_range(tuple, maniptype,
343 &range->min_proto,
344 &range->max_proto) &&
345 (range->min_proto.all == range->max_proto.all ||
346 !nf_nat_used_tuple(tuple, ct)))
347 goto out;
348 } else if (!nf_nat_used_tuple(tuple, ct)) {
349 goto out;
350 }
351 }
352
353 /* Last change: get protocol to try to obtain unique tuple. */
354 l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
355 out:
356 rcu_read_unlock();
357 }
358
359 unsigned int
360 nf_nat_setup_info(struct nf_conn *ct,
361 const struct nf_nat_range *range,
362 enum nf_nat_manip_type maniptype)
363 {
364 struct net *net = nf_ct_net(ct);
365 struct nf_conntrack_tuple curr_tuple, new_tuple;
366 struct nf_conn_nat *nat;
367
368 /* nat helper or nfctnetlink also setup binding */
369 nat = nfct_nat(ct);
370 if (!nat) {
371 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
372 if (nat == NULL) {
373 pr_debug("failed to add NAT extension\n");
374 return NF_ACCEPT;
375 }
376 }
377
378 NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
379 maniptype == NF_NAT_MANIP_DST);
380 BUG_ON(nf_nat_initialized(ct, maniptype));
381
382 /* What we've got will look like inverse of reply. Normally
383 * this is what is in the conntrack, except for prior
384 * manipulations (future optimization: if num_manips == 0,
385 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
386 */
387 nf_ct_invert_tuplepr(&curr_tuple,
388 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
389
390 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
391
392 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
393 struct nf_conntrack_tuple reply;
394
395 /* Alter conntrack table so will recognize replies. */
396 nf_ct_invert_tuplepr(&reply, &new_tuple);
397 nf_conntrack_alter_reply(ct, &reply);
398
399 /* Non-atomic: we own this at the moment. */
400 if (maniptype == NF_NAT_MANIP_SRC)
401 ct->status |= IPS_SRC_NAT;
402 else
403 ct->status |= IPS_DST_NAT;
404 }
405
406 if (maniptype == NF_NAT_MANIP_SRC) {
407 unsigned int srchash;
408
409 srchash = hash_by_src(net, nf_ct_zone(ct),
410 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
411 spin_lock_bh(&nf_nat_lock);
412 /* nf_conntrack_alter_reply might re-allocate extension aera */
413 nat = nfct_nat(ct);
414 nat->ct = ct;
415 hlist_add_head_rcu(&nat->bysource,
416 &net->ct.nat_bysource[srchash]);
417 spin_unlock_bh(&nf_nat_lock);
418 }
419
420 /* It's done. */
421 if (maniptype == NF_NAT_MANIP_DST)
422 ct->status |= IPS_DST_NAT_DONE;
423 else
424 ct->status |= IPS_SRC_NAT_DONE;
425
426 return NF_ACCEPT;
427 }
428 EXPORT_SYMBOL(nf_nat_setup_info);
429
430 /* Do packet manipulations according to nf_nat_setup_info. */
431 unsigned int nf_nat_packet(struct nf_conn *ct,
432 enum ip_conntrack_info ctinfo,
433 unsigned int hooknum,
434 struct sk_buff *skb)
435 {
436 const struct nf_nat_l3proto *l3proto;
437 const struct nf_nat_l4proto *l4proto;
438 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
439 unsigned long statusbit;
440 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
441
442 if (mtype == NF_NAT_MANIP_SRC)
443 statusbit = IPS_SRC_NAT;
444 else
445 statusbit = IPS_DST_NAT;
446
447 /* Invert if this is reply dir. */
448 if (dir == IP_CT_DIR_REPLY)
449 statusbit ^= IPS_NAT_MASK;
450
451 /* Non-atomic: these bits don't change. */
452 if (ct->status & statusbit) {
453 struct nf_conntrack_tuple target;
454
455 /* We are aiming to look like inverse of other direction. */
456 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
457
458 l3proto = __nf_nat_l3proto_find(target.src.l3num);
459 l4proto = __nf_nat_l4proto_find(target.src.l3num,
460 target.dst.protonum);
461 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
462 return NF_DROP;
463 }
464 return NF_ACCEPT;
465 }
466 EXPORT_SYMBOL_GPL(nf_nat_packet);
467
468 struct nf_nat_proto_clean {
469 u8 l3proto;
470 u8 l4proto;
471 bool hash;
472 };
473
474 /* Clear NAT section of all conntracks, in case we're loaded again. */
475 static int nf_nat_proto_clean(struct nf_conn *i, void *data)
476 {
477 const struct nf_nat_proto_clean *clean = data;
478 struct nf_conn_nat *nat = nfct_nat(i);
479
480 if (!nat)
481 return 0;
482 if (!(i->status & IPS_SRC_NAT_DONE))
483 return 0;
484 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
485 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
486 return 0;
487
488 if (clean->hash) {
489 spin_lock_bh(&nf_nat_lock);
490 hlist_del_rcu(&nat->bysource);
491 spin_unlock_bh(&nf_nat_lock);
492 } else {
493 memset(nat, 0, sizeof(*nat));
494 i->status &= ~(IPS_NAT_MASK | IPS_NAT_DONE_MASK |
495 IPS_SEQ_ADJUST);
496 }
497 return 0;
498 }
499
500 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
501 {
502 struct nf_nat_proto_clean clean = {
503 .l3proto = l3proto,
504 .l4proto = l4proto,
505 };
506 struct net *net;
507
508 rtnl_lock();
509 /* Step 1 - remove from bysource hash */
510 clean.hash = true;
511 for_each_net(net)
512 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
513 synchronize_rcu();
514
515 /* Step 2 - clean NAT section */
516 clean.hash = false;
517 for_each_net(net)
518 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
519 rtnl_unlock();
520 }
521
522 static void nf_nat_l3proto_clean(u8 l3proto)
523 {
524 struct nf_nat_proto_clean clean = {
525 .l3proto = l3proto,
526 };
527 struct net *net;
528
529 rtnl_lock();
530 /* Step 1 - remove from bysource hash */
531 clean.hash = true;
532 for_each_net(net)
533 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
534 synchronize_rcu();
535
536 /* Step 2 - clean NAT section */
537 clean.hash = false;
538 for_each_net(net)
539 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
540 rtnl_unlock();
541 }
542
543 /* Protocol registration. */
544 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
545 {
546 const struct nf_nat_l4proto **l4protos;
547 unsigned int i;
548 int ret = 0;
549
550 mutex_lock(&nf_nat_proto_mutex);
551 if (nf_nat_l4protos[l3proto] == NULL) {
552 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
553 GFP_KERNEL);
554 if (l4protos == NULL) {
555 ret = -ENOMEM;
556 goto out;
557 }
558
559 for (i = 0; i < IPPROTO_MAX; i++)
560 RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
561
562 /* Before making proto_array visible to lockless readers,
563 * we must make sure its content is committed to memory.
564 */
565 smp_wmb();
566
567 nf_nat_l4protos[l3proto] = l4protos;
568 }
569
570 if (rcu_dereference_protected(
571 nf_nat_l4protos[l3proto][l4proto->l4proto],
572 lockdep_is_held(&nf_nat_proto_mutex)
573 ) != &nf_nat_l4proto_unknown) {
574 ret = -EBUSY;
575 goto out;
576 }
577 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
578 out:
579 mutex_unlock(&nf_nat_proto_mutex);
580 return ret;
581 }
582 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
583
584 /* No one stores the protocol anywhere; simply delete it. */
585 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
586 {
587 mutex_lock(&nf_nat_proto_mutex);
588 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
589 &nf_nat_l4proto_unknown);
590 mutex_unlock(&nf_nat_proto_mutex);
591 synchronize_rcu();
592
593 nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
594 }
595 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
596
597 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
598 {
599 int err;
600
601 err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
602 if (err < 0)
603 return err;
604
605 mutex_lock(&nf_nat_proto_mutex);
606 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
607 &nf_nat_l4proto_tcp);
608 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
609 &nf_nat_l4proto_udp);
610 mutex_unlock(&nf_nat_proto_mutex);
611
612 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
613 return 0;
614 }
615 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
616
617 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
618 {
619 mutex_lock(&nf_nat_proto_mutex);
620 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
621 mutex_unlock(&nf_nat_proto_mutex);
622 synchronize_rcu();
623
624 nf_nat_l3proto_clean(l3proto->l3proto);
625 nf_ct_l3proto_module_put(l3proto->l3proto);
626 }
627 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
628
629 /* No one using conntrack by the time this called. */
630 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
631 {
632 struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
633
634 if (nat == NULL || nat->ct == NULL)
635 return;
636
637 NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
638
639 spin_lock_bh(&nf_nat_lock);
640 hlist_del_rcu(&nat->bysource);
641 spin_unlock_bh(&nf_nat_lock);
642 }
643
644 static void nf_nat_move_storage(void *new, void *old)
645 {
646 struct nf_conn_nat *new_nat = new;
647 struct nf_conn_nat *old_nat = old;
648 struct nf_conn *ct = old_nat->ct;
649
650 if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
651 return;
652
653 spin_lock_bh(&nf_nat_lock);
654 hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
655 spin_unlock_bh(&nf_nat_lock);
656 }
657
658 static struct nf_ct_ext_type nat_extend __read_mostly = {
659 .len = sizeof(struct nf_conn_nat),
660 .align = __alignof__(struct nf_conn_nat),
661 .destroy = nf_nat_cleanup_conntrack,
662 .move = nf_nat_move_storage,
663 .id = NF_CT_EXT_NAT,
664 .flags = NF_CT_EXT_F_PREALLOC,
665 };
666
667 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
668
669 #include <linux/netfilter/nfnetlink.h>
670 #include <linux/netfilter/nfnetlink_conntrack.h>
671
672 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
673 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
674 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
675 };
676
677 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
678 const struct nf_conn *ct,
679 struct nf_nat_range *range)
680 {
681 struct nlattr *tb[CTA_PROTONAT_MAX+1];
682 const struct nf_nat_l4proto *l4proto;
683 int err;
684
685 err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
686 if (err < 0)
687 return err;
688
689 l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
690 if (l4proto->nlattr_to_range)
691 err = l4proto->nlattr_to_range(tb, range);
692
693 return err;
694 }
695
696 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
697 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
698 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
699 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
700 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
701 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
702 };
703
704 static int
705 nfnetlink_parse_nat(const struct nlattr *nat,
706 const struct nf_conn *ct, struct nf_nat_range *range)
707 {
708 const struct nf_nat_l3proto *l3proto;
709 struct nlattr *tb[CTA_NAT_MAX+1];
710 int err;
711
712 memset(range, 0, sizeof(*range));
713
714 err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
715 if (err < 0)
716 return err;
717
718 rcu_read_lock();
719 l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
720 if (l3proto == NULL) {
721 err = -EAGAIN;
722 goto out;
723 }
724 err = l3proto->nlattr_to_range(tb, range);
725 if (err < 0)
726 goto out;
727
728 if (!tb[CTA_NAT_PROTO])
729 goto out;
730
731 err = nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
732 out:
733 rcu_read_unlock();
734 return err;
735 }
736
737 static int
738 nfnetlink_parse_nat_setup(struct nf_conn *ct,
739 enum nf_nat_manip_type manip,
740 const struct nlattr *attr)
741 {
742 struct nf_nat_range range;
743 int err;
744
745 err = nfnetlink_parse_nat(attr, ct, &range);
746 if (err < 0)
747 return err;
748 if (nf_nat_initialized(ct, manip))
749 return -EEXIST;
750
751 return nf_nat_setup_info(ct, &range, manip);
752 }
753 #else
754 static int
755 nfnetlink_parse_nat_setup(struct nf_conn *ct,
756 enum nf_nat_manip_type manip,
757 const struct nlattr *attr)
758 {
759 return -EOPNOTSUPP;
760 }
761 #endif
762
763 static int __net_init nf_nat_net_init(struct net *net)
764 {
765 /* Leave them the same for the moment. */
766 net->ct.nat_htable_size = net->ct.htable_size;
767 net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
768 if (!net->ct.nat_bysource)
769 return -ENOMEM;
770 return 0;
771 }
772
773 static void __net_exit nf_nat_net_exit(struct net *net)
774 {
775 struct nf_nat_proto_clean clean = {};
776
777 nf_ct_iterate_cleanup(net, &nf_nat_proto_clean, &clean);
778 synchronize_rcu();
779 nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
780 }
781
782 static struct pernet_operations nf_nat_net_ops = {
783 .init = nf_nat_net_init,
784 .exit = nf_nat_net_exit,
785 };
786
787 static struct nf_ct_helper_expectfn follow_master_nat = {
788 .name = "nat-follow-master",
789 .expectfn = nf_nat_follow_master,
790 };
791
792 static struct nfq_ct_nat_hook nfq_ct_nat = {
793 .seq_adjust = nf_nat_tcp_seq_adjust,
794 };
795
796 static int __init nf_nat_init(void)
797 {
798 int ret;
799
800 ret = nf_ct_extend_register(&nat_extend);
801 if (ret < 0) {
802 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
803 return ret;
804 }
805
806 ret = register_pernet_subsys(&nf_nat_net_ops);
807 if (ret < 0)
808 goto cleanup_extend;
809
810 nf_ct_helper_expectfn_register(&follow_master_nat);
811
812 /* Initialize fake conntrack so that NAT will skip it */
813 nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
814
815 BUG_ON(nf_nat_seq_adjust_hook != NULL);
816 RCU_INIT_POINTER(nf_nat_seq_adjust_hook, nf_nat_seq_adjust);
817 BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
818 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
819 nfnetlink_parse_nat_setup);
820 BUG_ON(nf_ct_nat_offset != NULL);
821 RCU_INIT_POINTER(nf_ct_nat_offset, nf_nat_get_offset);
822 RCU_INIT_POINTER(nfq_ct_nat_hook, &nfq_ct_nat);
823 #ifdef CONFIG_XFRM
824 BUG_ON(nf_nat_decode_session_hook != NULL);
825 RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
826 #endif
827 return 0;
828
829 cleanup_extend:
830 nf_ct_extend_unregister(&nat_extend);
831 return ret;
832 }
833
834 static void __exit nf_nat_cleanup(void)
835 {
836 unsigned int i;
837
838 unregister_pernet_subsys(&nf_nat_net_ops);
839 nf_ct_extend_unregister(&nat_extend);
840 nf_ct_helper_expectfn_unregister(&follow_master_nat);
841 RCU_INIT_POINTER(nf_nat_seq_adjust_hook, NULL);
842 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
843 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
844 RCU_INIT_POINTER(nfq_ct_nat_hook, NULL);
845 #ifdef CONFIG_XFRM
846 RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
847 #endif
848 for (i = 0; i < NFPROTO_NUMPROTO; i++)
849 kfree(nf_nat_l4protos[i]);
850 synchronize_net();
851 }
852
853 MODULE_LICENSE("GPL");
854
855 module_init(nf_nat_init);
856 module_exit(nf_nat_cleanup);