Merge tag 'stable/for-linus-3.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_l3proto.h>
29 #include <net/netfilter/nf_conntrack_zones.h>
30 #include <linux/netfilter/nf_nat.h>
31
32 static DEFINE_SPINLOCK(nf_nat_lock);
33
34 static DEFINE_MUTEX(nf_nat_proto_mutex);
35 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
36 __read_mostly;
37 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
38 __read_mostly;
39
40
41 inline const struct nf_nat_l3proto *
42 __nf_nat_l3proto_find(u8 family)
43 {
44 return rcu_dereference(nf_nat_l3protos[family]);
45 }
46
47 inline const struct nf_nat_l4proto *
48 __nf_nat_l4proto_find(u8 family, u8 protonum)
49 {
50 return rcu_dereference(nf_nat_l4protos[family][protonum]);
51 }
52 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
53
54 #ifdef CONFIG_XFRM
55 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
56 {
57 const struct nf_nat_l3proto *l3proto;
58 const struct nf_conn *ct;
59 enum ip_conntrack_info ctinfo;
60 enum ip_conntrack_dir dir;
61 unsigned long statusbit;
62 u8 family;
63
64 ct = nf_ct_get(skb, &ctinfo);
65 if (ct == NULL)
66 return;
67
68 family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
69 rcu_read_lock();
70 l3proto = __nf_nat_l3proto_find(family);
71 if (l3proto == NULL)
72 goto out;
73
74 dir = CTINFO2DIR(ctinfo);
75 if (dir == IP_CT_DIR_ORIGINAL)
76 statusbit = IPS_DST_NAT;
77 else
78 statusbit = IPS_SRC_NAT;
79
80 l3proto->decode_session(skb, ct, dir, statusbit, fl);
81 out:
82 rcu_read_unlock();
83 }
84
85 int nf_xfrm_me_harder(struct sk_buff *skb, unsigned int family)
86 {
87 struct flowi fl;
88 unsigned int hh_len;
89 struct dst_entry *dst;
90
91 if (xfrm_decode_session(skb, &fl, family) < 0)
92 return -1;
93
94 dst = skb_dst(skb);
95 if (dst->xfrm)
96 dst = ((struct xfrm_dst *)dst)->route;
97 dst_hold(dst);
98
99 dst = xfrm_lookup(dev_net(dst->dev), dst, &fl, skb->sk, 0);
100 if (IS_ERR(dst))
101 return -1;
102
103 skb_dst_drop(skb);
104 skb_dst_set(skb, dst);
105
106 /* Change in oif may mean change in hh_len. */
107 hh_len = skb_dst(skb)->dev->hard_header_len;
108 if (skb_headroom(skb) < hh_len &&
109 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
110 return -1;
111 return 0;
112 }
113 EXPORT_SYMBOL(nf_xfrm_me_harder);
114 #endif /* CONFIG_XFRM */
115
116 /* We keep an extra hash for each conntrack, for fast searching. */
117 static inline unsigned int
118 hash_by_src(const struct net *net, u16 zone,
119 const struct nf_conntrack_tuple *tuple)
120 {
121 unsigned int hash;
122
123 /* Original src, to ensure we map it consistently if poss. */
124 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
125 tuple->dst.protonum ^ zone ^ nf_conntrack_hash_rnd);
126 return ((u64)hash * net->ct.nat_htable_size) >> 32;
127 }
128
129 /* Is this tuple already taken? (not by us) */
130 int
131 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
132 const struct nf_conn *ignored_conntrack)
133 {
134 /* Conntrack tracking doesn't keep track of outgoing tuples; only
135 * incoming ones. NAT means they don't have a fixed mapping,
136 * so we invert the tuple and look for the incoming reply.
137 *
138 * We could keep a separate hash if this proves too slow.
139 */
140 struct nf_conntrack_tuple reply;
141
142 nf_ct_invert_tuplepr(&reply, tuple);
143 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
144 }
145 EXPORT_SYMBOL(nf_nat_used_tuple);
146
147 /* If we source map this tuple so reply looks like reply_tuple, will
148 * that meet the constraints of range.
149 */
150 static int in_range(const struct nf_nat_l3proto *l3proto,
151 const struct nf_nat_l4proto *l4proto,
152 const struct nf_conntrack_tuple *tuple,
153 const struct nf_nat_range *range)
154 {
155 /* If we are supposed to map IPs, then we must be in the
156 * range specified, otherwise let this drag us onto a new src IP.
157 */
158 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
159 !l3proto->in_range(tuple, range))
160 return 0;
161
162 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
163 l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
164 &range->min_proto, &range->max_proto))
165 return 1;
166
167 return 0;
168 }
169
170 static inline int
171 same_src(const struct nf_conn *ct,
172 const struct nf_conntrack_tuple *tuple)
173 {
174 const struct nf_conntrack_tuple *t;
175
176 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
177 return (t->dst.protonum == tuple->dst.protonum &&
178 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
179 t->src.u.all == tuple->src.u.all);
180 }
181
182 /* Only called for SRC manip */
183 static int
184 find_appropriate_src(struct net *net, u16 zone,
185 const struct nf_nat_l3proto *l3proto,
186 const struct nf_nat_l4proto *l4proto,
187 const struct nf_conntrack_tuple *tuple,
188 struct nf_conntrack_tuple *result,
189 const struct nf_nat_range *range)
190 {
191 unsigned int h = hash_by_src(net, zone, tuple);
192 const struct nf_conn_nat *nat;
193 const struct nf_conn *ct;
194
195 hlist_for_each_entry_rcu(nat, &net->ct.nat_bysource[h], bysource) {
196 ct = nat->ct;
197 if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
198 /* Copy source part from reply tuple. */
199 nf_ct_invert_tuplepr(result,
200 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
201 result->dst = tuple->dst;
202
203 if (in_range(l3proto, l4proto, result, range))
204 return 1;
205 }
206 }
207 return 0;
208 }
209
210 /* For [FUTURE] fragmentation handling, we want the least-used
211 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
212 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
213 * 1-65535, we don't do pro-rata allocation based on ports; we choose
214 * the ip with the lowest src-ip/dst-ip/proto usage.
215 */
216 static void
217 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
218 const struct nf_nat_range *range,
219 const struct nf_conn *ct,
220 enum nf_nat_manip_type maniptype)
221 {
222 union nf_inet_addr *var_ipp;
223 unsigned int i, max;
224 /* Host order */
225 u32 minip, maxip, j, dist;
226 bool full_range;
227
228 /* No IP mapping? Do nothing. */
229 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
230 return;
231
232 if (maniptype == NF_NAT_MANIP_SRC)
233 var_ipp = &tuple->src.u3;
234 else
235 var_ipp = &tuple->dst.u3;
236
237 /* Fast path: only one choice. */
238 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
239 *var_ipp = range->min_addr;
240 return;
241 }
242
243 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
244 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
245 else
246 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
247
248 /* Hashing source and destination IPs gives a fairly even
249 * spread in practice (if there are a small number of IPs
250 * involved, there usually aren't that many connections
251 * anyway). The consistency means that servers see the same
252 * client coming from the same IP (some Internet Banking sites
253 * like this), even across reboots.
254 */
255 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
256 range->flags & NF_NAT_RANGE_PERSISTENT ?
257 0 : (__force u32)tuple->dst.u3.all[max] ^ zone);
258
259 full_range = false;
260 for (i = 0; i <= max; i++) {
261 /* If first bytes of the address are at the maximum, use the
262 * distance. Otherwise use the full range.
263 */
264 if (!full_range) {
265 minip = ntohl((__force __be32)range->min_addr.all[i]);
266 maxip = ntohl((__force __be32)range->max_addr.all[i]);
267 dist = maxip - minip + 1;
268 } else {
269 minip = 0;
270 dist = ~0;
271 }
272
273 var_ipp->all[i] = (__force __u32)
274 htonl(minip + (((u64)j * dist) >> 32));
275 if (var_ipp->all[i] != range->max_addr.all[i])
276 full_range = true;
277
278 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
279 j ^= (__force u32)tuple->dst.u3.all[i];
280 }
281 }
282
283 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
284 * we change the source to map into the range. For NF_INET_PRE_ROUTING
285 * and NF_INET_LOCAL_OUT, we change the destination to map into the
286 * range. It might not be possible to get a unique tuple, but we try.
287 * At worst (or if we race), we will end up with a final duplicate in
288 * __ip_conntrack_confirm and drop the packet. */
289 static void
290 get_unique_tuple(struct nf_conntrack_tuple *tuple,
291 const struct nf_conntrack_tuple *orig_tuple,
292 const struct nf_nat_range *range,
293 struct nf_conn *ct,
294 enum nf_nat_manip_type maniptype)
295 {
296 const struct nf_nat_l3proto *l3proto;
297 const struct nf_nat_l4proto *l4proto;
298 struct net *net = nf_ct_net(ct);
299 u16 zone = nf_ct_zone(ct);
300
301 rcu_read_lock();
302 l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
303 l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
304 orig_tuple->dst.protonum);
305
306 /* 1) If this srcip/proto/src-proto-part is currently mapped,
307 * and that same mapping gives a unique tuple within the given
308 * range, use that.
309 *
310 * This is only required for source (ie. NAT/masq) mappings.
311 * So far, we don't do local source mappings, so multiple
312 * manips not an issue.
313 */
314 if (maniptype == NF_NAT_MANIP_SRC &&
315 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
316 /* try the original tuple first */
317 if (in_range(l3proto, l4proto, orig_tuple, range)) {
318 if (!nf_nat_used_tuple(orig_tuple, ct)) {
319 *tuple = *orig_tuple;
320 goto out;
321 }
322 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
323 orig_tuple, tuple, range)) {
324 pr_debug("get_unique_tuple: Found current src map\n");
325 if (!nf_nat_used_tuple(tuple, ct))
326 goto out;
327 }
328 }
329
330 /* 2) Select the least-used IP/proto combination in the given range */
331 *tuple = *orig_tuple;
332 find_best_ips_proto(zone, tuple, range, ct, maniptype);
333
334 /* 3) The per-protocol part of the manip is made to map into
335 * the range to make a unique tuple.
336 */
337
338 /* Only bother mapping if it's not already in range and unique */
339 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
340 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
341 if (l4proto->in_range(tuple, maniptype,
342 &range->min_proto,
343 &range->max_proto) &&
344 (range->min_proto.all == range->max_proto.all ||
345 !nf_nat_used_tuple(tuple, ct)))
346 goto out;
347 } else if (!nf_nat_used_tuple(tuple, ct)) {
348 goto out;
349 }
350 }
351
352 /* Last change: get protocol to try to obtain unique tuple. */
353 l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
354 out:
355 rcu_read_unlock();
356 }
357
358 unsigned int
359 nf_nat_setup_info(struct nf_conn *ct,
360 const struct nf_nat_range *range,
361 enum nf_nat_manip_type maniptype)
362 {
363 struct net *net = nf_ct_net(ct);
364 struct nf_conntrack_tuple curr_tuple, new_tuple;
365 struct nf_conn_nat *nat;
366
367 /* nat helper or nfctnetlink also setup binding */
368 nat = nfct_nat(ct);
369 if (!nat) {
370 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
371 if (nat == NULL) {
372 pr_debug("failed to add NAT extension\n");
373 return NF_ACCEPT;
374 }
375 }
376
377 NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
378 maniptype == NF_NAT_MANIP_DST);
379 BUG_ON(nf_nat_initialized(ct, maniptype));
380
381 /* What we've got will look like inverse of reply. Normally
382 * this is what is in the conntrack, except for prior
383 * manipulations (future optimization: if num_manips == 0,
384 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
385 */
386 nf_ct_invert_tuplepr(&curr_tuple,
387 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
388
389 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
390
391 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
392 struct nf_conntrack_tuple reply;
393
394 /* Alter conntrack table so will recognize replies. */
395 nf_ct_invert_tuplepr(&reply, &new_tuple);
396 nf_conntrack_alter_reply(ct, &reply);
397
398 /* Non-atomic: we own this at the moment. */
399 if (maniptype == NF_NAT_MANIP_SRC)
400 ct->status |= IPS_SRC_NAT;
401 else
402 ct->status |= IPS_DST_NAT;
403 }
404
405 if (maniptype == NF_NAT_MANIP_SRC) {
406 unsigned int srchash;
407
408 srchash = hash_by_src(net, nf_ct_zone(ct),
409 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
410 spin_lock_bh(&nf_nat_lock);
411 /* nf_conntrack_alter_reply might re-allocate extension aera */
412 nat = nfct_nat(ct);
413 nat->ct = ct;
414 hlist_add_head_rcu(&nat->bysource,
415 &net->ct.nat_bysource[srchash]);
416 spin_unlock_bh(&nf_nat_lock);
417 }
418
419 /* It's done. */
420 if (maniptype == NF_NAT_MANIP_DST)
421 ct->status |= IPS_DST_NAT_DONE;
422 else
423 ct->status |= IPS_SRC_NAT_DONE;
424
425 return NF_ACCEPT;
426 }
427 EXPORT_SYMBOL(nf_nat_setup_info);
428
429 /* Do packet manipulations according to nf_nat_setup_info. */
430 unsigned int nf_nat_packet(struct nf_conn *ct,
431 enum ip_conntrack_info ctinfo,
432 unsigned int hooknum,
433 struct sk_buff *skb)
434 {
435 const struct nf_nat_l3proto *l3proto;
436 const struct nf_nat_l4proto *l4proto;
437 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
438 unsigned long statusbit;
439 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
440
441 if (mtype == NF_NAT_MANIP_SRC)
442 statusbit = IPS_SRC_NAT;
443 else
444 statusbit = IPS_DST_NAT;
445
446 /* Invert if this is reply dir. */
447 if (dir == IP_CT_DIR_REPLY)
448 statusbit ^= IPS_NAT_MASK;
449
450 /* Non-atomic: these bits don't change. */
451 if (ct->status & statusbit) {
452 struct nf_conntrack_tuple target;
453
454 /* We are aiming to look like inverse of other direction. */
455 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
456
457 l3proto = __nf_nat_l3proto_find(target.src.l3num);
458 l4proto = __nf_nat_l4proto_find(target.src.l3num,
459 target.dst.protonum);
460 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
461 return NF_DROP;
462 }
463 return NF_ACCEPT;
464 }
465 EXPORT_SYMBOL_GPL(nf_nat_packet);
466
467 struct nf_nat_proto_clean {
468 u8 l3proto;
469 u8 l4proto;
470 bool hash;
471 };
472
473 /* Clear NAT section of all conntracks, in case we're loaded again. */
474 static int nf_nat_proto_clean(struct nf_conn *i, void *data)
475 {
476 const struct nf_nat_proto_clean *clean = data;
477 struct nf_conn_nat *nat = nfct_nat(i);
478
479 if (!nat)
480 return 0;
481 if (!(i->status & IPS_SRC_NAT_DONE))
482 return 0;
483 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
484 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
485 return 0;
486
487 if (clean->hash) {
488 spin_lock_bh(&nf_nat_lock);
489 hlist_del_rcu(&nat->bysource);
490 spin_unlock_bh(&nf_nat_lock);
491 } else {
492 memset(nat, 0, sizeof(*nat));
493 i->status &= ~(IPS_NAT_MASK | IPS_NAT_DONE_MASK |
494 IPS_SEQ_ADJUST);
495 }
496 return 0;
497 }
498
499 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
500 {
501 struct nf_nat_proto_clean clean = {
502 .l3proto = l3proto,
503 .l4proto = l4proto,
504 };
505 struct net *net;
506
507 rtnl_lock();
508 /* Step 1 - remove from bysource hash */
509 clean.hash = true;
510 for_each_net(net)
511 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
512 synchronize_rcu();
513
514 /* Step 2 - clean NAT section */
515 clean.hash = false;
516 for_each_net(net)
517 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
518 rtnl_unlock();
519 }
520
521 static void nf_nat_l3proto_clean(u8 l3proto)
522 {
523 struct nf_nat_proto_clean clean = {
524 .l3proto = l3proto,
525 };
526 struct net *net;
527
528 rtnl_lock();
529 /* Step 1 - remove from bysource hash */
530 clean.hash = true;
531 for_each_net(net)
532 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
533 synchronize_rcu();
534
535 /* Step 2 - clean NAT section */
536 clean.hash = false;
537 for_each_net(net)
538 nf_ct_iterate_cleanup(net, nf_nat_proto_clean, &clean);
539 rtnl_unlock();
540 }
541
542 /* Protocol registration. */
543 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
544 {
545 const struct nf_nat_l4proto **l4protos;
546 unsigned int i;
547 int ret = 0;
548
549 mutex_lock(&nf_nat_proto_mutex);
550 if (nf_nat_l4protos[l3proto] == NULL) {
551 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
552 GFP_KERNEL);
553 if (l4protos == NULL) {
554 ret = -ENOMEM;
555 goto out;
556 }
557
558 for (i = 0; i < IPPROTO_MAX; i++)
559 RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
560
561 /* Before making proto_array visible to lockless readers,
562 * we must make sure its content is committed to memory.
563 */
564 smp_wmb();
565
566 nf_nat_l4protos[l3proto] = l4protos;
567 }
568
569 if (rcu_dereference_protected(
570 nf_nat_l4protos[l3proto][l4proto->l4proto],
571 lockdep_is_held(&nf_nat_proto_mutex)
572 ) != &nf_nat_l4proto_unknown) {
573 ret = -EBUSY;
574 goto out;
575 }
576 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
577 out:
578 mutex_unlock(&nf_nat_proto_mutex);
579 return ret;
580 }
581 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
582
583 /* No one stores the protocol anywhere; simply delete it. */
584 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
585 {
586 mutex_lock(&nf_nat_proto_mutex);
587 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
588 &nf_nat_l4proto_unknown);
589 mutex_unlock(&nf_nat_proto_mutex);
590 synchronize_rcu();
591
592 nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
593 }
594 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
595
596 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
597 {
598 int err;
599
600 err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
601 if (err < 0)
602 return err;
603
604 mutex_lock(&nf_nat_proto_mutex);
605 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
606 &nf_nat_l4proto_tcp);
607 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
608 &nf_nat_l4proto_udp);
609 mutex_unlock(&nf_nat_proto_mutex);
610
611 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
612 return 0;
613 }
614 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
615
616 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
617 {
618 mutex_lock(&nf_nat_proto_mutex);
619 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
620 mutex_unlock(&nf_nat_proto_mutex);
621 synchronize_rcu();
622
623 nf_nat_l3proto_clean(l3proto->l3proto);
624 nf_ct_l3proto_module_put(l3proto->l3proto);
625 }
626 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
627
628 /* No one using conntrack by the time this called. */
629 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
630 {
631 struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
632
633 if (nat == NULL || nat->ct == NULL)
634 return;
635
636 NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
637
638 spin_lock_bh(&nf_nat_lock);
639 hlist_del_rcu(&nat->bysource);
640 spin_unlock_bh(&nf_nat_lock);
641 }
642
643 static void nf_nat_move_storage(void *new, void *old)
644 {
645 struct nf_conn_nat *new_nat = new;
646 struct nf_conn_nat *old_nat = old;
647 struct nf_conn *ct = old_nat->ct;
648
649 if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
650 return;
651
652 spin_lock_bh(&nf_nat_lock);
653 hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
654 spin_unlock_bh(&nf_nat_lock);
655 }
656
657 static struct nf_ct_ext_type nat_extend __read_mostly = {
658 .len = sizeof(struct nf_conn_nat),
659 .align = __alignof__(struct nf_conn_nat),
660 .destroy = nf_nat_cleanup_conntrack,
661 .move = nf_nat_move_storage,
662 .id = NF_CT_EXT_NAT,
663 .flags = NF_CT_EXT_F_PREALLOC,
664 };
665
666 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
667
668 #include <linux/netfilter/nfnetlink.h>
669 #include <linux/netfilter/nfnetlink_conntrack.h>
670
671 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
672 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
673 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
674 };
675
676 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
677 const struct nf_conn *ct,
678 struct nf_nat_range *range)
679 {
680 struct nlattr *tb[CTA_PROTONAT_MAX+1];
681 const struct nf_nat_l4proto *l4proto;
682 int err;
683
684 err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
685 if (err < 0)
686 return err;
687
688 l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
689 if (l4proto->nlattr_to_range)
690 err = l4proto->nlattr_to_range(tb, range);
691
692 return err;
693 }
694
695 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
696 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
697 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
698 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
699 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
700 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
701 };
702
703 static int
704 nfnetlink_parse_nat(const struct nlattr *nat,
705 const struct nf_conn *ct, struct nf_nat_range *range)
706 {
707 const struct nf_nat_l3proto *l3proto;
708 struct nlattr *tb[CTA_NAT_MAX+1];
709 int err;
710
711 memset(range, 0, sizeof(*range));
712
713 err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
714 if (err < 0)
715 return err;
716
717 rcu_read_lock();
718 l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
719 if (l3proto == NULL) {
720 err = -EAGAIN;
721 goto out;
722 }
723 err = l3proto->nlattr_to_range(tb, range);
724 if (err < 0)
725 goto out;
726
727 if (!tb[CTA_NAT_PROTO])
728 goto out;
729
730 err = nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
731 out:
732 rcu_read_unlock();
733 return err;
734 }
735
736 static int
737 nfnetlink_parse_nat_setup(struct nf_conn *ct,
738 enum nf_nat_manip_type manip,
739 const struct nlattr *attr)
740 {
741 struct nf_nat_range range;
742 int err;
743
744 err = nfnetlink_parse_nat(attr, ct, &range);
745 if (err < 0)
746 return err;
747 if (nf_nat_initialized(ct, manip))
748 return -EEXIST;
749
750 return nf_nat_setup_info(ct, &range, manip);
751 }
752 #else
753 static int
754 nfnetlink_parse_nat_setup(struct nf_conn *ct,
755 enum nf_nat_manip_type manip,
756 const struct nlattr *attr)
757 {
758 return -EOPNOTSUPP;
759 }
760 #endif
761
762 static int __net_init nf_nat_net_init(struct net *net)
763 {
764 /* Leave them the same for the moment. */
765 net->ct.nat_htable_size = net->ct.htable_size;
766 net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
767 if (!net->ct.nat_bysource)
768 return -ENOMEM;
769 return 0;
770 }
771
772 static void __net_exit nf_nat_net_exit(struct net *net)
773 {
774 struct nf_nat_proto_clean clean = {};
775
776 nf_ct_iterate_cleanup(net, &nf_nat_proto_clean, &clean);
777 synchronize_rcu();
778 nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
779 }
780
781 static struct pernet_operations nf_nat_net_ops = {
782 .init = nf_nat_net_init,
783 .exit = nf_nat_net_exit,
784 };
785
786 static struct nf_ct_helper_expectfn follow_master_nat = {
787 .name = "nat-follow-master",
788 .expectfn = nf_nat_follow_master,
789 };
790
791 static struct nfq_ct_nat_hook nfq_ct_nat = {
792 .seq_adjust = nf_nat_tcp_seq_adjust,
793 };
794
795 static int __init nf_nat_init(void)
796 {
797 int ret;
798
799 ret = nf_ct_extend_register(&nat_extend);
800 if (ret < 0) {
801 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
802 return ret;
803 }
804
805 ret = register_pernet_subsys(&nf_nat_net_ops);
806 if (ret < 0)
807 goto cleanup_extend;
808
809 nf_ct_helper_expectfn_register(&follow_master_nat);
810
811 /* Initialize fake conntrack so that NAT will skip it */
812 nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
813
814 BUG_ON(nf_nat_seq_adjust_hook != NULL);
815 RCU_INIT_POINTER(nf_nat_seq_adjust_hook, nf_nat_seq_adjust);
816 BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
817 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
818 nfnetlink_parse_nat_setup);
819 BUG_ON(nf_ct_nat_offset != NULL);
820 RCU_INIT_POINTER(nf_ct_nat_offset, nf_nat_get_offset);
821 RCU_INIT_POINTER(nfq_ct_nat_hook, &nfq_ct_nat);
822 #ifdef CONFIG_XFRM
823 BUG_ON(nf_nat_decode_session_hook != NULL);
824 RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
825 #endif
826 return 0;
827
828 cleanup_extend:
829 nf_ct_extend_unregister(&nat_extend);
830 return ret;
831 }
832
833 static void __exit nf_nat_cleanup(void)
834 {
835 unsigned int i;
836
837 unregister_pernet_subsys(&nf_nat_net_ops);
838 nf_ct_extend_unregister(&nat_extend);
839 nf_ct_helper_expectfn_unregister(&follow_master_nat);
840 RCU_INIT_POINTER(nf_nat_seq_adjust_hook, NULL);
841 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
842 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
843 RCU_INIT_POINTER(nfq_ct_nat_hook, NULL);
844 #ifdef CONFIG_XFRM
845 RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
846 #endif
847 for (i = 0; i < NFPROTO_NUMPROTO; i++)
848 kfree(nf_nat_l4protos[i]);
849 synchronize_net();
850 }
851
852 MODULE_LICENSE("GPL");
853
854 module_init(nf_nat_init);
855 module_exit(nf_nat_cleanup);