a401b1e31028018c1a005798f0e20ee06d860cf9
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
14 * - new API and handling of conntrack/nat helpers
15 * - now capable of multiple expectations for one master
16 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
17 * - add usage/reference counts to ip_conntrack_expect
18 * - export ip_conntrack[_expect]_{find_get,put} functions
19 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
20 * - generalize L3 protocol denendent part.
21 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
22 * - add support various size of conntrack structures.
23 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
24 * - restructure nf_conn (introduce nf_conn_help)
25 * - redesign 'features' how they were originally intended
26 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
27 * - add support for L3 protocol module load on demand.
28 *
29 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
30 */
31
32 #include <linux/types.h>
33 #include <linux/netfilter.h>
34 #include <linux/module.h>
35 #include <linux/skbuff.h>
36 #include <linux/proc_fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/stddef.h>
39 #include <linux/slab.h>
40 #include <linux/random.h>
41 #include <linux/jhash.h>
42 #include <linux/err.h>
43 #include <linux/percpu.h>
44 #include <linux/moduleparam.h>
45 #include <linux/notifier.h>
46 #include <linux/kernel.h>
47 #include <linux/netdevice.h>
48 #include <linux/socket.h>
49
50 #include <net/netfilter/nf_conntrack.h>
51 #include <net/netfilter/nf_conntrack_l3proto.h>
52 #include <net/netfilter/nf_conntrack_l4proto.h>
53 #include <net/netfilter/nf_conntrack_expect.h>
54 #include <net/netfilter/nf_conntrack_helper.h>
55 #include <net/netfilter/nf_conntrack_core.h>
56
57 #define NF_CONNTRACK_VERSION "0.5.0"
58
59 #if 0
60 #define DEBUGP printk
61 #else
62 #define DEBUGP(format, args...)
63 #endif
64
65 DEFINE_RWLOCK(nf_conntrack_lock);
66
67 /* nf_conntrack_standalone needs this */
68 atomic_t nf_conntrack_count = ATOMIC_INIT(0);
69 EXPORT_SYMBOL_GPL(nf_conntrack_count);
70
71 void (*nf_conntrack_destroyed)(struct nf_conn *conntrack) = NULL;
72 unsigned int nf_conntrack_htable_size __read_mostly;
73 int nf_conntrack_max __read_mostly;
74 EXPORT_SYMBOL_GPL(nf_conntrack_max);
75 struct list_head *nf_conntrack_hash __read_mostly;
76 struct nf_conn nf_conntrack_untracked __read_mostly;
77 unsigned int nf_ct_log_invalid __read_mostly;
78 LIST_HEAD(unconfirmed);
79 static int nf_conntrack_vmalloc __read_mostly;
80
81 static unsigned int nf_conntrack_next_id;
82
83 DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
84 EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
85
86 /*
87 * This scheme offers various size of "struct nf_conn" dependent on
88 * features(helper, nat, ...)
89 */
90
91 #define NF_CT_FEATURES_NAMELEN 256
92 static struct {
93 /* name of slab cache. printed in /proc/slabinfo */
94 char *name;
95
96 /* size of slab cache */
97 size_t size;
98
99 /* slab cache pointer */
100 kmem_cache_t *cachep;
101
102 /* allocated slab cache + modules which uses this slab cache */
103 int use;
104
105 } nf_ct_cache[NF_CT_F_NUM];
106
107 /* protect members of nf_ct_cache except of "use" */
108 DEFINE_RWLOCK(nf_ct_cache_lock);
109
110 /* This avoids calling kmem_cache_create() with same name simultaneously */
111 static DEFINE_MUTEX(nf_ct_cache_mutex);
112
113 static int nf_conntrack_hash_rnd_initted;
114 static unsigned int nf_conntrack_hash_rnd;
115
116 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
117 unsigned int size, unsigned int rnd)
118 {
119 unsigned int a, b;
120 a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
121 ((tuple->src.l3num) << 16) | tuple->dst.protonum);
122 b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
123 (tuple->src.u.all << 16) | tuple->dst.u.all);
124
125 return jhash_2words(a, b, rnd) % size;
126 }
127
128 static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
129 {
130 return __hash_conntrack(tuple, nf_conntrack_htable_size,
131 nf_conntrack_hash_rnd);
132 }
133
134 int nf_conntrack_register_cache(u_int32_t features, const char *name,
135 size_t size)
136 {
137 int ret = 0;
138 char *cache_name;
139 kmem_cache_t *cachep;
140
141 DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
142 features, name, size);
143
144 if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
145 DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
146 features);
147 return -EINVAL;
148 }
149
150 mutex_lock(&nf_ct_cache_mutex);
151
152 write_lock_bh(&nf_ct_cache_lock);
153 /* e.g: multiple helpers are loaded */
154 if (nf_ct_cache[features].use > 0) {
155 DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
156 if ((!strncmp(nf_ct_cache[features].name, name,
157 NF_CT_FEATURES_NAMELEN))
158 && nf_ct_cache[features].size == size) {
159 DEBUGP("nf_conntrack_register_cache: reusing.\n");
160 nf_ct_cache[features].use++;
161 ret = 0;
162 } else
163 ret = -EBUSY;
164
165 write_unlock_bh(&nf_ct_cache_lock);
166 mutex_unlock(&nf_ct_cache_mutex);
167 return ret;
168 }
169 write_unlock_bh(&nf_ct_cache_lock);
170
171 /*
172 * The memory space for name of slab cache must be alive until
173 * cache is destroyed.
174 */
175 cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
176 if (cache_name == NULL) {
177 DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
178 ret = -ENOMEM;
179 goto out_up_mutex;
180 }
181
182 if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
183 >= NF_CT_FEATURES_NAMELEN) {
184 printk("nf_conntrack_register_cache: name too long\n");
185 ret = -EINVAL;
186 goto out_free_name;
187 }
188
189 cachep = kmem_cache_create(cache_name, size, 0, 0,
190 NULL, NULL);
191 if (!cachep) {
192 printk("nf_conntrack_register_cache: Can't create slab cache "
193 "for the features = 0x%x\n", features);
194 ret = -ENOMEM;
195 goto out_free_name;
196 }
197
198 write_lock_bh(&nf_ct_cache_lock);
199 nf_ct_cache[features].use = 1;
200 nf_ct_cache[features].size = size;
201 nf_ct_cache[features].cachep = cachep;
202 nf_ct_cache[features].name = cache_name;
203 write_unlock_bh(&nf_ct_cache_lock);
204
205 goto out_up_mutex;
206
207 out_free_name:
208 kfree(cache_name);
209 out_up_mutex:
210 mutex_unlock(&nf_ct_cache_mutex);
211 return ret;
212 }
213
214 /* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
215 void nf_conntrack_unregister_cache(u_int32_t features)
216 {
217 kmem_cache_t *cachep;
218 char *name;
219
220 /*
221 * This assures that kmem_cache_create() isn't called before destroying
222 * slab cache.
223 */
224 DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
225 mutex_lock(&nf_ct_cache_mutex);
226
227 write_lock_bh(&nf_ct_cache_lock);
228 if (--nf_ct_cache[features].use > 0) {
229 write_unlock_bh(&nf_ct_cache_lock);
230 mutex_unlock(&nf_ct_cache_mutex);
231 return;
232 }
233 cachep = nf_ct_cache[features].cachep;
234 name = nf_ct_cache[features].name;
235 nf_ct_cache[features].cachep = NULL;
236 nf_ct_cache[features].name = NULL;
237 nf_ct_cache[features].size = 0;
238 write_unlock_bh(&nf_ct_cache_lock);
239
240 synchronize_net();
241
242 kmem_cache_destroy(cachep);
243 kfree(name);
244
245 mutex_unlock(&nf_ct_cache_mutex);
246 }
247
248 int
249 nf_ct_get_tuple(const struct sk_buff *skb,
250 unsigned int nhoff,
251 unsigned int dataoff,
252 u_int16_t l3num,
253 u_int8_t protonum,
254 struct nf_conntrack_tuple *tuple,
255 const struct nf_conntrack_l3proto *l3proto,
256 const struct nf_conntrack_l4proto *l4proto)
257 {
258 NF_CT_TUPLE_U_BLANK(tuple);
259
260 tuple->src.l3num = l3num;
261 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
262 return 0;
263
264 tuple->dst.protonum = protonum;
265 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
266
267 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
268 }
269
270 int
271 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
272 const struct nf_conntrack_tuple *orig,
273 const struct nf_conntrack_l3proto *l3proto,
274 const struct nf_conntrack_l4proto *l4proto)
275 {
276 NF_CT_TUPLE_U_BLANK(inverse);
277
278 inverse->src.l3num = orig->src.l3num;
279 if (l3proto->invert_tuple(inverse, orig) == 0)
280 return 0;
281
282 inverse->dst.dir = !orig->dst.dir;
283
284 inverse->dst.protonum = orig->dst.protonum;
285 return l4proto->invert_tuple(inverse, orig);
286 }
287
288 static void
289 clean_from_lists(struct nf_conn *ct)
290 {
291 DEBUGP("clean_from_lists(%p)\n", ct);
292 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
293 list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
294
295 /* Destroy all pending expectations */
296 nf_ct_remove_expectations(ct);
297 }
298
299 static void
300 destroy_conntrack(struct nf_conntrack *nfct)
301 {
302 struct nf_conn *ct = (struct nf_conn *)nfct;
303 struct nf_conntrack_l3proto *l3proto;
304 struct nf_conntrack_l4proto *l4proto;
305
306 DEBUGP("destroy_conntrack(%p)\n", ct);
307 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
308 NF_CT_ASSERT(!timer_pending(&ct->timeout));
309
310 nf_conntrack_event(IPCT_DESTROY, ct);
311 set_bit(IPS_DYING_BIT, &ct->status);
312
313 /* To make sure we don't get any weird locking issues here:
314 * destroy_conntrack() MUST NOT be called with a write lock
315 * to nf_conntrack_lock!!! -HW */
316 l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
317 if (l3proto && l3proto->destroy)
318 l3proto->destroy(ct);
319
320 l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num, ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
321 if (l4proto && l4proto->destroy)
322 l4proto->destroy(ct);
323
324 if (nf_conntrack_destroyed)
325 nf_conntrack_destroyed(ct);
326
327 write_lock_bh(&nf_conntrack_lock);
328 /* Expectations will have been removed in clean_from_lists,
329 * except TFTP can create an expectation on the first packet,
330 * before connection is in the list, so we need to clean here,
331 * too. */
332 nf_ct_remove_expectations(ct);
333
334 /* We overload first tuple to link into unconfirmed list. */
335 if (!nf_ct_is_confirmed(ct)) {
336 BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
337 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
338 }
339
340 NF_CT_STAT_INC(delete);
341 write_unlock_bh(&nf_conntrack_lock);
342
343 if (ct->master)
344 nf_ct_put(ct->master);
345
346 DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
347 nf_conntrack_free(ct);
348 }
349
350 static void death_by_timeout(unsigned long ul_conntrack)
351 {
352 struct nf_conn *ct = (void *)ul_conntrack;
353
354 write_lock_bh(&nf_conntrack_lock);
355 /* Inside lock so preempt is disabled on module removal path.
356 * Otherwise we can get spurious warnings. */
357 NF_CT_STAT_INC(delete_list);
358 clean_from_lists(ct);
359 write_unlock_bh(&nf_conntrack_lock);
360 nf_ct_put(ct);
361 }
362
363 struct nf_conntrack_tuple_hash *
364 __nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
365 const struct nf_conn *ignored_conntrack)
366 {
367 struct nf_conntrack_tuple_hash *h;
368 unsigned int hash = hash_conntrack(tuple);
369
370 list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
371 if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
372 nf_ct_tuple_equal(tuple, &h->tuple)) {
373 NF_CT_STAT_INC(found);
374 return h;
375 }
376 NF_CT_STAT_INC(searched);
377 }
378
379 return NULL;
380 }
381
382 /* Find a connection corresponding to a tuple. */
383 struct nf_conntrack_tuple_hash *
384 nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
385 const struct nf_conn *ignored_conntrack)
386 {
387 struct nf_conntrack_tuple_hash *h;
388
389 read_lock_bh(&nf_conntrack_lock);
390 h = __nf_conntrack_find(tuple, ignored_conntrack);
391 if (h)
392 atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
393 read_unlock_bh(&nf_conntrack_lock);
394
395 return h;
396 }
397
398 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
399 unsigned int hash,
400 unsigned int repl_hash)
401 {
402 ct->id = ++nf_conntrack_next_id;
403 list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
404 &nf_conntrack_hash[hash]);
405 list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
406 &nf_conntrack_hash[repl_hash]);
407 }
408
409 void nf_conntrack_hash_insert(struct nf_conn *ct)
410 {
411 unsigned int hash, repl_hash;
412
413 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
414 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
415
416 write_lock_bh(&nf_conntrack_lock);
417 __nf_conntrack_hash_insert(ct, hash, repl_hash);
418 write_unlock_bh(&nf_conntrack_lock);
419 }
420
421 /* Confirm a connection given skb; places it in hash table */
422 int
423 __nf_conntrack_confirm(struct sk_buff **pskb)
424 {
425 unsigned int hash, repl_hash;
426 struct nf_conntrack_tuple_hash *h;
427 struct nf_conn *ct;
428 struct nf_conn_help *help;
429 enum ip_conntrack_info ctinfo;
430
431 ct = nf_ct_get(*pskb, &ctinfo);
432
433 /* ipt_REJECT uses nf_conntrack_attach to attach related
434 ICMP/TCP RST packets in other direction. Actual packet
435 which created connection will be IP_CT_NEW or for an
436 expected connection, IP_CT_RELATED. */
437 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
438 return NF_ACCEPT;
439
440 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
441 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
442
443 /* We're not in hash table, and we refuse to set up related
444 connections for unconfirmed conns. But packet copies and
445 REJECT will give spurious warnings here. */
446 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
447
448 /* No external references means noone else could have
449 confirmed us. */
450 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
451 DEBUGP("Confirming conntrack %p\n", ct);
452
453 write_lock_bh(&nf_conntrack_lock);
454
455 /* See if there's one in the list already, including reverse:
456 NAT could have grabbed it without realizing, since we're
457 not in the hash. If there is, we lost race. */
458 list_for_each_entry(h, &nf_conntrack_hash[hash], list)
459 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
460 &h->tuple))
461 goto out;
462 list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
463 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
464 &h->tuple))
465 goto out;
466
467 /* Remove from unconfirmed list */
468 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
469
470 __nf_conntrack_hash_insert(ct, hash, repl_hash);
471 /* Timer relative to confirmation time, not original
472 setting time, otherwise we'd get timer wrap in
473 weird delay cases. */
474 ct->timeout.expires += jiffies;
475 add_timer(&ct->timeout);
476 atomic_inc(&ct->ct_general.use);
477 set_bit(IPS_CONFIRMED_BIT, &ct->status);
478 NF_CT_STAT_INC(insert);
479 write_unlock_bh(&nf_conntrack_lock);
480 help = nfct_help(ct);
481 if (help && help->helper)
482 nf_conntrack_event_cache(IPCT_HELPER, *pskb);
483 #ifdef CONFIG_NF_NAT_NEEDED
484 if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
485 test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
486 nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
487 #endif
488 nf_conntrack_event_cache(master_ct(ct) ?
489 IPCT_RELATED : IPCT_NEW, *pskb);
490 return NF_ACCEPT;
491
492 out:
493 NF_CT_STAT_INC(insert_failed);
494 write_unlock_bh(&nf_conntrack_lock);
495 return NF_DROP;
496 }
497
498 /* Returns true if a connection correspondings to the tuple (required
499 for NAT). */
500 int
501 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
502 const struct nf_conn *ignored_conntrack)
503 {
504 struct nf_conntrack_tuple_hash *h;
505
506 read_lock_bh(&nf_conntrack_lock);
507 h = __nf_conntrack_find(tuple, ignored_conntrack);
508 read_unlock_bh(&nf_conntrack_lock);
509
510 return h != NULL;
511 }
512
513 /* There's a small race here where we may free a just-assured
514 connection. Too bad: we're in trouble anyway. */
515 static int early_drop(struct list_head *chain)
516 {
517 /* Traverse backwards: gives us oldest, which is roughly LRU */
518 struct nf_conntrack_tuple_hash *h;
519 struct nf_conn *ct = NULL, *tmp;
520 int dropped = 0;
521
522 read_lock_bh(&nf_conntrack_lock);
523 list_for_each_entry_reverse(h, chain, list) {
524 tmp = nf_ct_tuplehash_to_ctrack(h);
525 if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
526 ct = tmp;
527 atomic_inc(&ct->ct_general.use);
528 break;
529 }
530 }
531 read_unlock_bh(&nf_conntrack_lock);
532
533 if (!ct)
534 return dropped;
535
536 if (del_timer(&ct->timeout)) {
537 death_by_timeout((unsigned long)ct);
538 dropped = 1;
539 NF_CT_STAT_INC(early_drop);
540 }
541 nf_ct_put(ct);
542 return dropped;
543 }
544
545 static struct nf_conn *
546 __nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
547 const struct nf_conntrack_tuple *repl,
548 const struct nf_conntrack_l3proto *l3proto)
549 {
550 struct nf_conn *conntrack = NULL;
551 u_int32_t features = 0;
552 struct nf_conntrack_helper *helper;
553
554 if (unlikely(!nf_conntrack_hash_rnd_initted)) {
555 get_random_bytes(&nf_conntrack_hash_rnd, 4);
556 nf_conntrack_hash_rnd_initted = 1;
557 }
558
559 /* We don't want any race condition at early drop stage */
560 atomic_inc(&nf_conntrack_count);
561
562 if (nf_conntrack_max
563 && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
564 unsigned int hash = hash_conntrack(orig);
565 /* Try dropping from this hash chain. */
566 if (!early_drop(&nf_conntrack_hash[hash])) {
567 atomic_dec(&nf_conntrack_count);
568 if (net_ratelimit())
569 printk(KERN_WARNING
570 "nf_conntrack: table full, dropping"
571 " packet.\n");
572 return ERR_PTR(-ENOMEM);
573 }
574 }
575
576 /* find features needed by this conntrack. */
577 features = l3proto->get_features(orig);
578
579 /* FIXME: protect helper list per RCU */
580 read_lock_bh(&nf_conntrack_lock);
581 helper = __nf_ct_helper_find(repl);
582 if (helper)
583 features |= NF_CT_F_HELP;
584 read_unlock_bh(&nf_conntrack_lock);
585
586 DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);
587
588 read_lock_bh(&nf_ct_cache_lock);
589
590 if (unlikely(!nf_ct_cache[features].use)) {
591 DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
592 features);
593 goto out;
594 }
595
596 conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
597 if (conntrack == NULL) {
598 DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
599 goto out;
600 }
601
602 memset(conntrack, 0, nf_ct_cache[features].size);
603 conntrack->features = features;
604 atomic_set(&conntrack->ct_general.use, 1);
605 conntrack->ct_general.destroy = destroy_conntrack;
606 conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
607 conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
608 /* Don't set timer yet: wait for confirmation */
609 init_timer(&conntrack->timeout);
610 conntrack->timeout.data = (unsigned long)conntrack;
611 conntrack->timeout.function = death_by_timeout;
612 read_unlock_bh(&nf_ct_cache_lock);
613
614 return conntrack;
615 out:
616 read_unlock_bh(&nf_ct_cache_lock);
617 atomic_dec(&nf_conntrack_count);
618 return conntrack;
619 }
620
621 struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
622 const struct nf_conntrack_tuple *repl)
623 {
624 struct nf_conntrack_l3proto *l3proto;
625
626 l3proto = __nf_ct_l3proto_find(orig->src.l3num);
627 return __nf_conntrack_alloc(orig, repl, l3proto);
628 }
629
630 void nf_conntrack_free(struct nf_conn *conntrack)
631 {
632 u_int32_t features = conntrack->features;
633 NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
634 DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
635 conntrack);
636 kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
637 atomic_dec(&nf_conntrack_count);
638 }
639
640 /* Allocate a new conntrack: we return -ENOMEM if classification
641 failed due to stress. Otherwise it really is unclassifiable. */
642 static struct nf_conntrack_tuple_hash *
643 init_conntrack(const struct nf_conntrack_tuple *tuple,
644 struct nf_conntrack_l3proto *l3proto,
645 struct nf_conntrack_l4proto *l4proto,
646 struct sk_buff *skb,
647 unsigned int dataoff)
648 {
649 struct nf_conn *conntrack;
650 struct nf_conntrack_tuple repl_tuple;
651 struct nf_conntrack_expect *exp;
652
653 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
654 DEBUGP("Can't invert tuple.\n");
655 return NULL;
656 }
657
658 conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto);
659 if (conntrack == NULL || IS_ERR(conntrack)) {
660 DEBUGP("Can't allocate conntrack.\n");
661 return (struct nf_conntrack_tuple_hash *)conntrack;
662 }
663
664 if (!l4proto->new(conntrack, skb, dataoff)) {
665 nf_conntrack_free(conntrack);
666 DEBUGP("init conntrack: can't track with proto module\n");
667 return NULL;
668 }
669
670 write_lock_bh(&nf_conntrack_lock);
671 exp = find_expectation(tuple);
672
673 if (exp) {
674 DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
675 conntrack, exp);
676 /* Welcome, Mr. Bond. We've been expecting you... */
677 __set_bit(IPS_EXPECTED_BIT, &conntrack->status);
678 conntrack->master = exp->master;
679 #ifdef CONFIG_NF_CONNTRACK_MARK
680 conntrack->mark = exp->master->mark;
681 #endif
682 #ifdef CONFIG_NF_CONNTRACK_SECMARK
683 conntrack->secmark = exp->master->secmark;
684 #endif
685 nf_conntrack_get(&conntrack->master->ct_general);
686 NF_CT_STAT_INC(expect_new);
687 } else {
688 struct nf_conn_help *help = nfct_help(conntrack);
689
690 if (help)
691 help->helper = __nf_ct_helper_find(&repl_tuple);
692 NF_CT_STAT_INC(new);
693 }
694
695 /* Overload tuple linked list to put us in unconfirmed list. */
696 list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);
697
698 write_unlock_bh(&nf_conntrack_lock);
699
700 if (exp) {
701 if (exp->expectfn)
702 exp->expectfn(conntrack, exp);
703 nf_conntrack_expect_put(exp);
704 }
705
706 return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
707 }
708
709 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
710 static inline struct nf_conn *
711 resolve_normal_ct(struct sk_buff *skb,
712 unsigned int dataoff,
713 u_int16_t l3num,
714 u_int8_t protonum,
715 struct nf_conntrack_l3proto *l3proto,
716 struct nf_conntrack_l4proto *l4proto,
717 int *set_reply,
718 enum ip_conntrack_info *ctinfo)
719 {
720 struct nf_conntrack_tuple tuple;
721 struct nf_conntrack_tuple_hash *h;
722 struct nf_conn *ct;
723
724 if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
725 dataoff, l3num, protonum, &tuple, l3proto,
726 l4proto)) {
727 DEBUGP("resolve_normal_ct: Can't get tuple\n");
728 return NULL;
729 }
730
731 /* look for tuple match */
732 h = nf_conntrack_find_get(&tuple, NULL);
733 if (!h) {
734 h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
735 if (!h)
736 return NULL;
737 if (IS_ERR(h))
738 return (void *)h;
739 }
740 ct = nf_ct_tuplehash_to_ctrack(h);
741
742 /* It exists; we have (non-exclusive) reference. */
743 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
744 *ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
745 /* Please set reply bit if this packet OK */
746 *set_reply = 1;
747 } else {
748 /* Once we've had two way comms, always ESTABLISHED. */
749 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
750 DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
751 *ctinfo = IP_CT_ESTABLISHED;
752 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
753 DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
754 *ctinfo = IP_CT_RELATED;
755 } else {
756 DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
757 *ctinfo = IP_CT_NEW;
758 }
759 *set_reply = 0;
760 }
761 skb->nfct = &ct->ct_general;
762 skb->nfctinfo = *ctinfo;
763 return ct;
764 }
765
766 unsigned int
767 nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
768 {
769 struct nf_conn *ct;
770 enum ip_conntrack_info ctinfo;
771 struct nf_conntrack_l3proto *l3proto;
772 struct nf_conntrack_l4proto *l4proto;
773 unsigned int dataoff;
774 u_int8_t protonum;
775 int set_reply = 0;
776 int ret;
777
778 /* Previously seen (loopback or untracked)? Ignore. */
779 if ((*pskb)->nfct) {
780 NF_CT_STAT_INC(ignore);
781 return NF_ACCEPT;
782 }
783
784 l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
785 if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
786 DEBUGP("not prepared to track yet or error occured\n");
787 return -ret;
788 }
789
790 l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
791
792 /* It may be an special packet, error, unclean...
793 * inverse of the return code tells to the netfilter
794 * core what to do with the packet. */
795 if (l4proto->error != NULL &&
796 (ret = l4proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
797 NF_CT_STAT_INC(error);
798 NF_CT_STAT_INC(invalid);
799 return -ret;
800 }
801
802 ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, l4proto,
803 &set_reply, &ctinfo);
804 if (!ct) {
805 /* Not valid part of a connection */
806 NF_CT_STAT_INC(invalid);
807 return NF_ACCEPT;
808 }
809
810 if (IS_ERR(ct)) {
811 /* Too stressed to deal. */
812 NF_CT_STAT_INC(drop);
813 return NF_DROP;
814 }
815
816 NF_CT_ASSERT((*pskb)->nfct);
817
818 ret = l4proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
819 if (ret < 0) {
820 /* Invalid: inverse of the return code tells
821 * the netfilter core what to do */
822 DEBUGP("nf_conntrack_in: Can't track with proto module\n");
823 nf_conntrack_put((*pskb)->nfct);
824 (*pskb)->nfct = NULL;
825 NF_CT_STAT_INC(invalid);
826 return -ret;
827 }
828
829 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
830 nf_conntrack_event_cache(IPCT_STATUS, *pskb);
831
832 return ret;
833 }
834
835 int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
836 const struct nf_conntrack_tuple *orig)
837 {
838 return nf_ct_invert_tuple(inverse, orig,
839 __nf_ct_l3proto_find(orig->src.l3num),
840 __nf_ct_l4proto_find(orig->src.l3num,
841 orig->dst.protonum));
842 }
843
844 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
845 void __nf_ct_refresh_acct(struct nf_conn *ct,
846 enum ip_conntrack_info ctinfo,
847 const struct sk_buff *skb,
848 unsigned long extra_jiffies,
849 int do_acct)
850 {
851 int event = 0;
852
853 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
854 NF_CT_ASSERT(skb);
855
856 write_lock_bh(&nf_conntrack_lock);
857
858 /* Only update if this is not a fixed timeout */
859 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
860 write_unlock_bh(&nf_conntrack_lock);
861 return;
862 }
863
864 /* If not in hash table, timer will not be active yet */
865 if (!nf_ct_is_confirmed(ct)) {
866 ct->timeout.expires = extra_jiffies;
867 event = IPCT_REFRESH;
868 } else {
869 unsigned long newtime = jiffies + extra_jiffies;
870
871 /* Only update the timeout if the new timeout is at least
872 HZ jiffies from the old timeout. Need del_timer for race
873 avoidance (may already be dying). */
874 if (newtime - ct->timeout.expires >= HZ
875 && del_timer(&ct->timeout)) {
876 ct->timeout.expires = newtime;
877 add_timer(&ct->timeout);
878 event = IPCT_REFRESH;
879 }
880 }
881
882 #ifdef CONFIG_NF_CT_ACCT
883 if (do_acct) {
884 ct->counters[CTINFO2DIR(ctinfo)].packets++;
885 ct->counters[CTINFO2DIR(ctinfo)].bytes +=
886 skb->len - (unsigned int)(skb->nh.raw - skb->data);
887
888 if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
889 || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
890 event |= IPCT_COUNTER_FILLING;
891 }
892 #endif
893
894 write_unlock_bh(&nf_conntrack_lock);
895
896 /* must be unlocked when calling event cache */
897 if (event)
898 nf_conntrack_event_cache(event, skb);
899 }
900
901 #if defined(CONFIG_NF_CT_NETLINK) || \
902 defined(CONFIG_NF_CT_NETLINK_MODULE)
903
904 #include <linux/netfilter/nfnetlink.h>
905 #include <linux/netfilter/nfnetlink_conntrack.h>
906 #include <linux/mutex.h>
907
908
909 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
910 * in ip_conntrack_core, since we don't want the protocols to autoload
911 * or depend on ctnetlink */
912 int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
913 const struct nf_conntrack_tuple *tuple)
914 {
915 NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
916 &tuple->src.u.tcp.port);
917 NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
918 &tuple->dst.u.tcp.port);
919 return 0;
920
921 nfattr_failure:
922 return -1;
923 }
924
925 static const size_t cta_min_proto[CTA_PROTO_MAX] = {
926 [CTA_PROTO_SRC_PORT-1] = sizeof(u_int16_t),
927 [CTA_PROTO_DST_PORT-1] = sizeof(u_int16_t)
928 };
929
930 int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
931 struct nf_conntrack_tuple *t)
932 {
933 if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
934 return -EINVAL;
935
936 if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
937 return -EINVAL;
938
939 t->src.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
940 t->dst.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);
941
942 return 0;
943 }
944 #endif
945
946 /* Used by ipt_REJECT and ip6t_REJECT. */
947 void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
948 {
949 struct nf_conn *ct;
950 enum ip_conntrack_info ctinfo;
951
952 /* This ICMP is in reverse direction to the packet which caused it */
953 ct = nf_ct_get(skb, &ctinfo);
954 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
955 ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
956 else
957 ctinfo = IP_CT_RELATED;
958
959 /* Attach to new skbuff, and increment count */
960 nskb->nfct = &ct->ct_general;
961 nskb->nfctinfo = ctinfo;
962 nf_conntrack_get(nskb->nfct);
963 }
964
965 static inline int
966 do_iter(const struct nf_conntrack_tuple_hash *i,
967 int (*iter)(struct nf_conn *i, void *data),
968 void *data)
969 {
970 return iter(nf_ct_tuplehash_to_ctrack(i), data);
971 }
972
973 /* Bring out ya dead! */
974 static struct nf_conn *
975 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
976 void *data, unsigned int *bucket)
977 {
978 struct nf_conntrack_tuple_hash *h;
979 struct nf_conn *ct;
980
981 write_lock_bh(&nf_conntrack_lock);
982 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
983 list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
984 ct = nf_ct_tuplehash_to_ctrack(h);
985 if (iter(ct, data))
986 goto found;
987 }
988 }
989 list_for_each_entry(h, &unconfirmed, list) {
990 ct = nf_ct_tuplehash_to_ctrack(h);
991 if (iter(ct, data))
992 goto found;
993 }
994 write_unlock_bh(&nf_conntrack_lock);
995 return NULL;
996 found:
997 atomic_inc(&ct->ct_general.use);
998 write_unlock_bh(&nf_conntrack_lock);
999 return ct;
1000 }
1001
1002 void
1003 nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
1004 {
1005 struct nf_conn *ct;
1006 unsigned int bucket = 0;
1007
1008 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1009 /* Time to push up daises... */
1010 if (del_timer(&ct->timeout))
1011 death_by_timeout((unsigned long)ct);
1012 /* ... else the timer will get him soon. */
1013
1014 nf_ct_put(ct);
1015 }
1016 }
1017
1018 static int kill_all(struct nf_conn *i, void *data)
1019 {
1020 return 1;
1021 }
1022
1023 static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
1024 {
1025 if (vmalloced)
1026 vfree(hash);
1027 else
1028 free_pages((unsigned long)hash,
1029 get_order(sizeof(struct list_head) * size));
1030 }
1031
1032 void nf_conntrack_flush()
1033 {
1034 nf_ct_iterate_cleanup(kill_all, NULL);
1035 }
1036
1037 /* Mishearing the voices in his head, our hero wonders how he's
1038 supposed to kill the mall. */
1039 void nf_conntrack_cleanup(void)
1040 {
1041 int i;
1042
1043 ip_ct_attach = NULL;
1044
1045 /* This makes sure all current packets have passed through
1046 netfilter framework. Roll on, two-stage module
1047 delete... */
1048 synchronize_net();
1049
1050 nf_ct_event_cache_flush();
1051 i_see_dead_people:
1052 nf_conntrack_flush();
1053 if (atomic_read(&nf_conntrack_count) != 0) {
1054 schedule();
1055 goto i_see_dead_people;
1056 }
1057 /* wait until all references to nf_conntrack_untracked are dropped */
1058 while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1059 schedule();
1060
1061 for (i = 0; i < NF_CT_F_NUM; i++) {
1062 if (nf_ct_cache[i].use == 0)
1063 continue;
1064
1065 NF_CT_ASSERT(nf_ct_cache[i].use == 1);
1066 nf_ct_cache[i].use = 1;
1067 nf_conntrack_unregister_cache(i);
1068 }
1069 kmem_cache_destroy(nf_conntrack_expect_cachep);
1070 free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1071 nf_conntrack_htable_size);
1072
1073 nf_conntrack_l4proto_unregister(&nf_conntrack_l4proto_generic);
1074
1075 /* free l3proto protocol tables */
1076 for (i = 0; i < PF_MAX; i++)
1077 if (nf_ct_protos[i]) {
1078 kfree(nf_ct_protos[i]);
1079 nf_ct_protos[i] = NULL;
1080 }
1081 }
1082
1083 static struct list_head *alloc_hashtable(int size, int *vmalloced)
1084 {
1085 struct list_head *hash;
1086 unsigned int i;
1087
1088 *vmalloced = 0;
1089 hash = (void*)__get_free_pages(GFP_KERNEL,
1090 get_order(sizeof(struct list_head)
1091 * size));
1092 if (!hash) {
1093 *vmalloced = 1;
1094 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1095 hash = vmalloc(sizeof(struct list_head) * size);
1096 }
1097
1098 if (hash)
1099 for (i = 0; i < size; i++)
1100 INIT_LIST_HEAD(&hash[i]);
1101
1102 return hash;
1103 }
1104
1105 int set_hashsize(const char *val, struct kernel_param *kp)
1106 {
1107 int i, bucket, hashsize, vmalloced;
1108 int old_vmalloced, old_size;
1109 int rnd;
1110 struct list_head *hash, *old_hash;
1111 struct nf_conntrack_tuple_hash *h;
1112
1113 /* On boot, we can set this without any fancy locking. */
1114 if (!nf_conntrack_htable_size)
1115 return param_set_uint(val, kp);
1116
1117 hashsize = simple_strtol(val, NULL, 0);
1118 if (!hashsize)
1119 return -EINVAL;
1120
1121 hash = alloc_hashtable(hashsize, &vmalloced);
1122 if (!hash)
1123 return -ENOMEM;
1124
1125 /* We have to rehahs for the new table anyway, so we also can
1126 * use a newrandom seed */
1127 get_random_bytes(&rnd, 4);
1128
1129 write_lock_bh(&nf_conntrack_lock);
1130 for (i = 0; i < nf_conntrack_htable_size; i++) {
1131 while (!list_empty(&nf_conntrack_hash[i])) {
1132 h = list_entry(nf_conntrack_hash[i].next,
1133 struct nf_conntrack_tuple_hash, list);
1134 list_del(&h->list);
1135 bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1136 list_add_tail(&h->list, &hash[bucket]);
1137 }
1138 }
1139 old_size = nf_conntrack_htable_size;
1140 old_vmalloced = nf_conntrack_vmalloc;
1141 old_hash = nf_conntrack_hash;
1142
1143 nf_conntrack_htable_size = hashsize;
1144 nf_conntrack_vmalloc = vmalloced;
1145 nf_conntrack_hash = hash;
1146 nf_conntrack_hash_rnd = rnd;
1147 write_unlock_bh(&nf_conntrack_lock);
1148
1149 free_conntrack_hash(old_hash, old_vmalloced, old_size);
1150 return 0;
1151 }
1152
1153 module_param_call(hashsize, set_hashsize, param_get_uint,
1154 &nf_conntrack_htable_size, 0600);
1155
1156 int __init nf_conntrack_init(void)
1157 {
1158 unsigned int i;
1159 int ret;
1160
1161 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1162 * machine has 256 buckets. >= 1GB machines have 8192 buckets. */
1163 if (!nf_conntrack_htable_size) {
1164 nf_conntrack_htable_size
1165 = (((num_physpages << PAGE_SHIFT) / 16384)
1166 / sizeof(struct list_head));
1167 if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1168 nf_conntrack_htable_size = 8192;
1169 if (nf_conntrack_htable_size < 16)
1170 nf_conntrack_htable_size = 16;
1171 }
1172 nf_conntrack_max = 8 * nf_conntrack_htable_size;
1173
1174 printk("nf_conntrack version %s (%u buckets, %d max)\n",
1175 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1176 nf_conntrack_max);
1177
1178 nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
1179 &nf_conntrack_vmalloc);
1180 if (!nf_conntrack_hash) {
1181 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1182 goto err_out;
1183 }
1184
1185 ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1186 sizeof(struct nf_conn));
1187 if (ret < 0) {
1188 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1189 goto err_free_hash;
1190 }
1191
1192 nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
1193 sizeof(struct nf_conntrack_expect),
1194 0, 0, NULL, NULL);
1195 if (!nf_conntrack_expect_cachep) {
1196 printk(KERN_ERR "Unable to create nf_expect slab cache\n");
1197 goto err_free_conntrack_slab;
1198 }
1199
1200 ret = nf_conntrack_l4proto_register(&nf_conntrack_l4proto_generic);
1201 if (ret < 0)
1202 goto out_free_expect_slab;
1203
1204 /* Don't NEED lock here, but good form anyway. */
1205 write_lock_bh(&nf_conntrack_lock);
1206 for (i = 0; i < AF_MAX; i++)
1207 nf_ct_l3protos[i] = &nf_conntrack_l3proto_generic;
1208 write_unlock_bh(&nf_conntrack_lock);
1209
1210 /* For use by REJECT target */
1211 ip_ct_attach = __nf_conntrack_attach;
1212
1213 /* Set up fake conntrack:
1214 - to never be deleted, not in any hashes */
1215 atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1216 /* - and look it like as a confirmed connection */
1217 set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1218
1219 return ret;
1220
1221 out_free_expect_slab:
1222 kmem_cache_destroy(nf_conntrack_expect_cachep);
1223 err_free_conntrack_slab:
1224 nf_conntrack_unregister_cache(NF_CT_F_BASIC);
1225 err_free_hash:
1226 free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1227 nf_conntrack_htable_size);
1228 err_out:
1229 return -ENOMEM;
1230 }