Fix common misspellings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l3proto.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_nat.h>
48 #include <net/netfilter/nf_nat_core.h>
49
50 #define NF_CONNTRACK_VERSION "0.5.0"
51
52 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
53 enum nf_nat_manip_type manip,
54 const struct nlattr *attr) __read_mostly;
55 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
56
57 DEFINE_SPINLOCK(nf_conntrack_lock);
58 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
59
60 unsigned int nf_conntrack_htable_size __read_mostly;
61 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
62
63 unsigned int nf_conntrack_max __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_max);
65
66 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
67 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
68
69 unsigned int nf_conntrack_hash_rnd __read_mostly;
70
71 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
72 {
73 unsigned int n;
74
75 /* The direction must be ignored, so we hash everything up to the
76 * destination ports (which is a multiple of 4) and treat the last
77 * three bytes manually.
78 */
79 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
80 return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
81 (((__force __u16)tuple->dst.u.all << 16) |
82 tuple->dst.protonum));
83 }
84
85 static u32 __hash_bucket(u32 hash, unsigned int size)
86 {
87 return ((u64)hash * size) >> 32;
88 }
89
90 static u32 hash_bucket(u32 hash, const struct net *net)
91 {
92 return __hash_bucket(hash, net->ct.htable_size);
93 }
94
95 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
96 u16 zone, unsigned int size)
97 {
98 return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
99 }
100
101 static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
102 const struct nf_conntrack_tuple *tuple)
103 {
104 return __hash_conntrack(tuple, zone, net->ct.htable_size);
105 }
106
107 bool
108 nf_ct_get_tuple(const struct sk_buff *skb,
109 unsigned int nhoff,
110 unsigned int dataoff,
111 u_int16_t l3num,
112 u_int8_t protonum,
113 struct nf_conntrack_tuple *tuple,
114 const struct nf_conntrack_l3proto *l3proto,
115 const struct nf_conntrack_l4proto *l4proto)
116 {
117 memset(tuple, 0, sizeof(*tuple));
118
119 tuple->src.l3num = l3num;
120 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
121 return false;
122
123 tuple->dst.protonum = protonum;
124 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
125
126 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
127 }
128 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
129
130 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
131 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
132 {
133 struct nf_conntrack_l3proto *l3proto;
134 struct nf_conntrack_l4proto *l4proto;
135 unsigned int protoff;
136 u_int8_t protonum;
137 int ret;
138
139 rcu_read_lock();
140
141 l3proto = __nf_ct_l3proto_find(l3num);
142 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
143 if (ret != NF_ACCEPT) {
144 rcu_read_unlock();
145 return false;
146 }
147
148 l4proto = __nf_ct_l4proto_find(l3num, protonum);
149
150 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
151 l3proto, l4proto);
152
153 rcu_read_unlock();
154 return ret;
155 }
156 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
157
158 bool
159 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
160 const struct nf_conntrack_tuple *orig,
161 const struct nf_conntrack_l3proto *l3proto,
162 const struct nf_conntrack_l4proto *l4proto)
163 {
164 memset(inverse, 0, sizeof(*inverse));
165
166 inverse->src.l3num = orig->src.l3num;
167 if (l3proto->invert_tuple(inverse, orig) == 0)
168 return false;
169
170 inverse->dst.dir = !orig->dst.dir;
171
172 inverse->dst.protonum = orig->dst.protonum;
173 return l4proto->invert_tuple(inverse, orig);
174 }
175 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
176
177 static void
178 clean_from_lists(struct nf_conn *ct)
179 {
180 pr_debug("clean_from_lists(%p)\n", ct);
181 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
182 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
183
184 /* Destroy all pending expectations */
185 nf_ct_remove_expectations(ct);
186 }
187
188 static void
189 destroy_conntrack(struct nf_conntrack *nfct)
190 {
191 struct nf_conn *ct = (struct nf_conn *)nfct;
192 struct net *net = nf_ct_net(ct);
193 struct nf_conntrack_l4proto *l4proto;
194
195 pr_debug("destroy_conntrack(%p)\n", ct);
196 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
197 NF_CT_ASSERT(!timer_pending(&ct->timeout));
198
199 /* To make sure we don't get any weird locking issues here:
200 * destroy_conntrack() MUST NOT be called with a write lock
201 * to nf_conntrack_lock!!! -HW */
202 rcu_read_lock();
203 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
204 if (l4proto && l4proto->destroy)
205 l4proto->destroy(ct);
206
207 rcu_read_unlock();
208
209 spin_lock_bh(&nf_conntrack_lock);
210 /* Expectations will have been removed in clean_from_lists,
211 * except TFTP can create an expectation on the first packet,
212 * before connection is in the list, so we need to clean here,
213 * too. */
214 nf_ct_remove_expectations(ct);
215
216 /* We overload first tuple to link into unconfirmed list. */
217 if (!nf_ct_is_confirmed(ct)) {
218 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
219 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
220 }
221
222 NF_CT_STAT_INC(net, delete);
223 spin_unlock_bh(&nf_conntrack_lock);
224
225 if (ct->master)
226 nf_ct_put(ct->master);
227
228 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
229 nf_conntrack_free(ct);
230 }
231
232 void nf_ct_delete_from_lists(struct nf_conn *ct)
233 {
234 struct net *net = nf_ct_net(ct);
235
236 nf_ct_helper_destroy(ct);
237 spin_lock_bh(&nf_conntrack_lock);
238 /* Inside lock so preempt is disabled on module removal path.
239 * Otherwise we can get spurious warnings. */
240 NF_CT_STAT_INC(net, delete_list);
241 clean_from_lists(ct);
242 spin_unlock_bh(&nf_conntrack_lock);
243 }
244 EXPORT_SYMBOL_GPL(nf_ct_delete_from_lists);
245
246 static void death_by_event(unsigned long ul_conntrack)
247 {
248 struct nf_conn *ct = (void *)ul_conntrack;
249 struct net *net = nf_ct_net(ct);
250
251 if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
252 /* bad luck, let's retry again */
253 ct->timeout.expires = jiffies +
254 (random32() % net->ct.sysctl_events_retry_timeout);
255 add_timer(&ct->timeout);
256 return;
257 }
258 /* we've got the event delivered, now it's dying */
259 set_bit(IPS_DYING_BIT, &ct->status);
260 spin_lock(&nf_conntrack_lock);
261 hlist_nulls_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
262 spin_unlock(&nf_conntrack_lock);
263 nf_ct_put(ct);
264 }
265
266 void nf_ct_insert_dying_list(struct nf_conn *ct)
267 {
268 struct net *net = nf_ct_net(ct);
269
270 /* add this conntrack to the dying list */
271 spin_lock_bh(&nf_conntrack_lock);
272 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
273 &net->ct.dying);
274 spin_unlock_bh(&nf_conntrack_lock);
275 /* set a new timer to retry event delivery */
276 setup_timer(&ct->timeout, death_by_event, (unsigned long)ct);
277 ct->timeout.expires = jiffies +
278 (random32() % net->ct.sysctl_events_retry_timeout);
279 add_timer(&ct->timeout);
280 }
281 EXPORT_SYMBOL_GPL(nf_ct_insert_dying_list);
282
283 static void death_by_timeout(unsigned long ul_conntrack)
284 {
285 struct nf_conn *ct = (void *)ul_conntrack;
286 struct nf_conn_tstamp *tstamp;
287
288 tstamp = nf_conn_tstamp_find(ct);
289 if (tstamp && tstamp->stop == 0)
290 tstamp->stop = ktime_to_ns(ktime_get_real());
291
292 if (!test_bit(IPS_DYING_BIT, &ct->status) &&
293 unlikely(nf_conntrack_event(IPCT_DESTROY, ct) < 0)) {
294 /* destroy event was not delivered */
295 nf_ct_delete_from_lists(ct);
296 nf_ct_insert_dying_list(ct);
297 return;
298 }
299 set_bit(IPS_DYING_BIT, &ct->status);
300 nf_ct_delete_from_lists(ct);
301 nf_ct_put(ct);
302 }
303
304 /*
305 * Warning :
306 * - Caller must take a reference on returned object
307 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
308 * OR
309 * - Caller must lock nf_conntrack_lock before calling this function
310 */
311 static struct nf_conntrack_tuple_hash *
312 ____nf_conntrack_find(struct net *net, u16 zone,
313 const struct nf_conntrack_tuple *tuple, u32 hash)
314 {
315 struct nf_conntrack_tuple_hash *h;
316 struct hlist_nulls_node *n;
317 unsigned int bucket = hash_bucket(hash, net);
318
319 /* Disable BHs the entire time since we normally need to disable them
320 * at least once for the stats anyway.
321 */
322 local_bh_disable();
323 begin:
324 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
325 if (nf_ct_tuple_equal(tuple, &h->tuple) &&
326 nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)) == zone) {
327 NF_CT_STAT_INC(net, found);
328 local_bh_enable();
329 return h;
330 }
331 NF_CT_STAT_INC(net, searched);
332 }
333 /*
334 * if the nulls value we got at the end of this lookup is
335 * not the expected one, we must restart lookup.
336 * We probably met an item that was moved to another chain.
337 */
338 if (get_nulls_value(n) != bucket) {
339 NF_CT_STAT_INC(net, search_restart);
340 goto begin;
341 }
342 local_bh_enable();
343
344 return NULL;
345 }
346
347 struct nf_conntrack_tuple_hash *
348 __nf_conntrack_find(struct net *net, u16 zone,
349 const struct nf_conntrack_tuple *tuple)
350 {
351 return ____nf_conntrack_find(net, zone, tuple,
352 hash_conntrack_raw(tuple, zone));
353 }
354 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
355
356 /* Find a connection corresponding to a tuple. */
357 static struct nf_conntrack_tuple_hash *
358 __nf_conntrack_find_get(struct net *net, u16 zone,
359 const struct nf_conntrack_tuple *tuple, u32 hash)
360 {
361 struct nf_conntrack_tuple_hash *h;
362 struct nf_conn *ct;
363
364 rcu_read_lock();
365 begin:
366 h = ____nf_conntrack_find(net, zone, tuple, hash);
367 if (h) {
368 ct = nf_ct_tuplehash_to_ctrack(h);
369 if (unlikely(nf_ct_is_dying(ct) ||
370 !atomic_inc_not_zero(&ct->ct_general.use)))
371 h = NULL;
372 else {
373 if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple) ||
374 nf_ct_zone(ct) != zone)) {
375 nf_ct_put(ct);
376 goto begin;
377 }
378 }
379 }
380 rcu_read_unlock();
381
382 return h;
383 }
384
385 struct nf_conntrack_tuple_hash *
386 nf_conntrack_find_get(struct net *net, u16 zone,
387 const struct nf_conntrack_tuple *tuple)
388 {
389 return __nf_conntrack_find_get(net, zone, tuple,
390 hash_conntrack_raw(tuple, zone));
391 }
392 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
393
394 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
395 unsigned int hash,
396 unsigned int repl_hash)
397 {
398 struct net *net = nf_ct_net(ct);
399
400 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
401 &net->ct.hash[hash]);
402 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
403 &net->ct.hash[repl_hash]);
404 }
405
406 void nf_conntrack_hash_insert(struct nf_conn *ct)
407 {
408 struct net *net = nf_ct_net(ct);
409 unsigned int hash, repl_hash;
410 u16 zone;
411
412 zone = nf_ct_zone(ct);
413 hash = hash_conntrack(net, zone, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
414 repl_hash = hash_conntrack(net, zone, &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
415
416 __nf_conntrack_hash_insert(ct, hash, repl_hash);
417 }
418 EXPORT_SYMBOL_GPL(nf_conntrack_hash_insert);
419
420 /* Confirm a connection given skb; places it in hash table */
421 int
422 __nf_conntrack_confirm(struct sk_buff *skb)
423 {
424 unsigned int hash, repl_hash;
425 struct nf_conntrack_tuple_hash *h;
426 struct nf_conn *ct;
427 struct nf_conn_help *help;
428 struct nf_conn_tstamp *tstamp;
429 struct hlist_nulls_node *n;
430 enum ip_conntrack_info ctinfo;
431 struct net *net;
432 u16 zone;
433
434 ct = nf_ct_get(skb, &ctinfo);
435 net = nf_ct_net(ct);
436
437 /* ipt_REJECT uses nf_conntrack_attach to attach related
438 ICMP/TCP RST packets in other direction. Actual packet
439 which created connection will be IP_CT_NEW or for an
440 expected connection, IP_CT_RELATED. */
441 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
442 return NF_ACCEPT;
443
444 zone = nf_ct_zone(ct);
445 /* reuse the hash saved before */
446 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
447 hash = hash_bucket(hash, net);
448 repl_hash = hash_conntrack(net, zone,
449 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
450
451 /* We're not in hash table, and we refuse to set up related
452 connections for unconfirmed conns. But packet copies and
453 REJECT will give spurious warnings here. */
454 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
455
456 /* No external references means no one else could have
457 confirmed us. */
458 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
459 pr_debug("Confirming conntrack %p\n", ct);
460
461 spin_lock_bh(&nf_conntrack_lock);
462
463 /* We have to check the DYING flag inside the lock to prevent
464 a race against nf_ct_get_next_corpse() possibly called from
465 user context, else we insert an already 'dead' hash, blocking
466 further use of that particular connection -JM */
467
468 if (unlikely(nf_ct_is_dying(ct))) {
469 spin_unlock_bh(&nf_conntrack_lock);
470 return NF_ACCEPT;
471 }
472
473 /* See if there's one in the list already, including reverse:
474 NAT could have grabbed it without realizing, since we're
475 not in the hash. If there is, we lost race. */
476 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
477 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
478 &h->tuple) &&
479 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
480 goto out;
481 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
482 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
483 &h->tuple) &&
484 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
485 goto out;
486
487 /* Remove from unconfirmed list */
488 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
489
490 /* Timer relative to confirmation time, not original
491 setting time, otherwise we'd get timer wrap in
492 weird delay cases. */
493 ct->timeout.expires += jiffies;
494 add_timer(&ct->timeout);
495 atomic_inc(&ct->ct_general.use);
496 ct->status |= IPS_CONFIRMED;
497
498 /* set conntrack timestamp, if enabled. */
499 tstamp = nf_conn_tstamp_find(ct);
500 if (tstamp) {
501 if (skb->tstamp.tv64 == 0)
502 __net_timestamp((struct sk_buff *)skb);
503
504 tstamp->start = ktime_to_ns(skb->tstamp);
505 }
506 /* Since the lookup is lockless, hash insertion must be done after
507 * starting the timer and setting the CONFIRMED bit. The RCU barriers
508 * guarantee that no other CPU can find the conntrack before the above
509 * stores are visible.
510 */
511 __nf_conntrack_hash_insert(ct, hash, repl_hash);
512 NF_CT_STAT_INC(net, insert);
513 spin_unlock_bh(&nf_conntrack_lock);
514
515 help = nfct_help(ct);
516 if (help && help->helper)
517 nf_conntrack_event_cache(IPCT_HELPER, ct);
518
519 nf_conntrack_event_cache(master_ct(ct) ?
520 IPCT_RELATED : IPCT_NEW, ct);
521 return NF_ACCEPT;
522
523 out:
524 NF_CT_STAT_INC(net, insert_failed);
525 spin_unlock_bh(&nf_conntrack_lock);
526 return NF_DROP;
527 }
528 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
529
530 /* Returns true if a connection correspondings to the tuple (required
531 for NAT). */
532 int
533 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
534 const struct nf_conn *ignored_conntrack)
535 {
536 struct net *net = nf_ct_net(ignored_conntrack);
537 struct nf_conntrack_tuple_hash *h;
538 struct hlist_nulls_node *n;
539 struct nf_conn *ct;
540 u16 zone = nf_ct_zone(ignored_conntrack);
541 unsigned int hash = hash_conntrack(net, zone, tuple);
542
543 /* Disable BHs the entire time since we need to disable them at
544 * least once for the stats anyway.
545 */
546 rcu_read_lock_bh();
547 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
548 ct = nf_ct_tuplehash_to_ctrack(h);
549 if (ct != ignored_conntrack &&
550 nf_ct_tuple_equal(tuple, &h->tuple) &&
551 nf_ct_zone(ct) == zone) {
552 NF_CT_STAT_INC(net, found);
553 rcu_read_unlock_bh();
554 return 1;
555 }
556 NF_CT_STAT_INC(net, searched);
557 }
558 rcu_read_unlock_bh();
559
560 return 0;
561 }
562 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
563
564 #define NF_CT_EVICTION_RANGE 8
565
566 /* There's a small race here where we may free a just-assured
567 connection. Too bad: we're in trouble anyway. */
568 static noinline int early_drop(struct net *net, unsigned int hash)
569 {
570 /* Use oldest entry, which is roughly LRU */
571 struct nf_conntrack_tuple_hash *h;
572 struct nf_conn *ct = NULL, *tmp;
573 struct hlist_nulls_node *n;
574 unsigned int i, cnt = 0;
575 int dropped = 0;
576
577 rcu_read_lock();
578 for (i = 0; i < net->ct.htable_size; i++) {
579 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
580 hnnode) {
581 tmp = nf_ct_tuplehash_to_ctrack(h);
582 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
583 ct = tmp;
584 cnt++;
585 }
586
587 if (ct != NULL) {
588 if (likely(!nf_ct_is_dying(ct) &&
589 atomic_inc_not_zero(&ct->ct_general.use)))
590 break;
591 else
592 ct = NULL;
593 }
594
595 if (cnt >= NF_CT_EVICTION_RANGE)
596 break;
597
598 hash = (hash + 1) % net->ct.htable_size;
599 }
600 rcu_read_unlock();
601
602 if (!ct)
603 return dropped;
604
605 if (del_timer(&ct->timeout)) {
606 death_by_timeout((unsigned long)ct);
607 dropped = 1;
608 NF_CT_STAT_INC_ATOMIC(net, early_drop);
609 }
610 nf_ct_put(ct);
611 return dropped;
612 }
613
614 void init_nf_conntrack_hash_rnd(void)
615 {
616 unsigned int rand;
617
618 /*
619 * Why not initialize nf_conntrack_rnd in a "init()" function ?
620 * Because there isn't enough entropy when system initializing,
621 * and we initialize it as late as possible.
622 */
623 do {
624 get_random_bytes(&rand, sizeof(rand));
625 } while (!rand);
626 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
627 }
628
629 static struct nf_conn *
630 __nf_conntrack_alloc(struct net *net, u16 zone,
631 const struct nf_conntrack_tuple *orig,
632 const struct nf_conntrack_tuple *repl,
633 gfp_t gfp, u32 hash)
634 {
635 struct nf_conn *ct;
636
637 if (unlikely(!nf_conntrack_hash_rnd)) {
638 init_nf_conntrack_hash_rnd();
639 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
640 hash = hash_conntrack_raw(orig, zone);
641 }
642
643 /* We don't want any race condition at early drop stage */
644 atomic_inc(&net->ct.count);
645
646 if (nf_conntrack_max &&
647 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
648 if (!early_drop(net, hash_bucket(hash, net))) {
649 atomic_dec(&net->ct.count);
650 if (net_ratelimit())
651 printk(KERN_WARNING
652 "nf_conntrack: table full, dropping"
653 " packet.\n");
654 return ERR_PTR(-ENOMEM);
655 }
656 }
657
658 /*
659 * Do not use kmem_cache_zalloc(), as this cache uses
660 * SLAB_DESTROY_BY_RCU.
661 */
662 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
663 if (ct == NULL) {
664 pr_debug("nf_conntrack_alloc: Can't alloc conntrack.\n");
665 atomic_dec(&net->ct.count);
666 return ERR_PTR(-ENOMEM);
667 }
668 /*
669 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
670 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
671 */
672 memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
673 offsetof(struct nf_conn, proto) -
674 offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
675 spin_lock_init(&ct->lock);
676 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
677 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
678 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
679 /* save hash for reusing when confirming */
680 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
681 /* Don't set timer yet: wait for confirmation */
682 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
683 write_pnet(&ct->ct_net, net);
684 #ifdef CONFIG_NF_CONNTRACK_ZONES
685 if (zone) {
686 struct nf_conntrack_zone *nf_ct_zone;
687
688 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
689 if (!nf_ct_zone)
690 goto out_free;
691 nf_ct_zone->id = zone;
692 }
693 #endif
694 /*
695 * changes to lookup keys must be done before setting refcnt to 1
696 */
697 smp_wmb();
698 atomic_set(&ct->ct_general.use, 1);
699 return ct;
700
701 #ifdef CONFIG_NF_CONNTRACK_ZONES
702 out_free:
703 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
704 return ERR_PTR(-ENOMEM);
705 #endif
706 }
707
708 struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
709 const struct nf_conntrack_tuple *orig,
710 const struct nf_conntrack_tuple *repl,
711 gfp_t gfp)
712 {
713 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
714 }
715 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
716
717 void nf_conntrack_free(struct nf_conn *ct)
718 {
719 struct net *net = nf_ct_net(ct);
720
721 nf_ct_ext_destroy(ct);
722 atomic_dec(&net->ct.count);
723 nf_ct_ext_free(ct);
724 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
725 }
726 EXPORT_SYMBOL_GPL(nf_conntrack_free);
727
728 /* Allocate a new conntrack: we return -ENOMEM if classification
729 failed due to stress. Otherwise it really is unclassifiable. */
730 static struct nf_conntrack_tuple_hash *
731 init_conntrack(struct net *net, struct nf_conn *tmpl,
732 const struct nf_conntrack_tuple *tuple,
733 struct nf_conntrack_l3proto *l3proto,
734 struct nf_conntrack_l4proto *l4proto,
735 struct sk_buff *skb,
736 unsigned int dataoff, u32 hash)
737 {
738 struct nf_conn *ct;
739 struct nf_conn_help *help;
740 struct nf_conntrack_tuple repl_tuple;
741 struct nf_conntrack_ecache *ecache;
742 struct nf_conntrack_expect *exp;
743 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
744
745 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
746 pr_debug("Can't invert tuple.\n");
747 return NULL;
748 }
749
750 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
751 hash);
752 if (IS_ERR(ct)) {
753 pr_debug("Can't allocate conntrack.\n");
754 return (struct nf_conntrack_tuple_hash *)ct;
755 }
756
757 if (!l4proto->new(ct, skb, dataoff)) {
758 nf_conntrack_free(ct);
759 pr_debug("init conntrack: can't track with proto module\n");
760 return NULL;
761 }
762
763 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
764 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
765
766 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
767 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
768 ecache ? ecache->expmask : 0,
769 GFP_ATOMIC);
770
771 spin_lock_bh(&nf_conntrack_lock);
772 exp = nf_ct_find_expectation(net, zone, tuple);
773 if (exp) {
774 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
775 ct, exp);
776 /* Welcome, Mr. Bond. We've been expecting you... */
777 __set_bit(IPS_EXPECTED_BIT, &ct->status);
778 ct->master = exp->master;
779 if (exp->helper) {
780 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
781 if (help)
782 rcu_assign_pointer(help->helper, exp->helper);
783 }
784
785 #ifdef CONFIG_NF_CONNTRACK_MARK
786 ct->mark = exp->master->mark;
787 #endif
788 #ifdef CONFIG_NF_CONNTRACK_SECMARK
789 ct->secmark = exp->master->secmark;
790 #endif
791 nf_conntrack_get(&ct->master->ct_general);
792 NF_CT_STAT_INC(net, expect_new);
793 } else {
794 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
795 NF_CT_STAT_INC(net, new);
796 }
797
798 /* Overload tuple linked list to put us in unconfirmed list. */
799 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
800 &net->ct.unconfirmed);
801
802 spin_unlock_bh(&nf_conntrack_lock);
803
804 if (exp) {
805 if (exp->expectfn)
806 exp->expectfn(ct, exp);
807 nf_ct_expect_put(exp);
808 }
809
810 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
811 }
812
813 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
814 static inline struct nf_conn *
815 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
816 struct sk_buff *skb,
817 unsigned int dataoff,
818 u_int16_t l3num,
819 u_int8_t protonum,
820 struct nf_conntrack_l3proto *l3proto,
821 struct nf_conntrack_l4proto *l4proto,
822 int *set_reply,
823 enum ip_conntrack_info *ctinfo)
824 {
825 struct nf_conntrack_tuple tuple;
826 struct nf_conntrack_tuple_hash *h;
827 struct nf_conn *ct;
828 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
829 u32 hash;
830
831 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
832 dataoff, l3num, protonum, &tuple, l3proto,
833 l4proto)) {
834 pr_debug("resolve_normal_ct: Can't get tuple\n");
835 return NULL;
836 }
837
838 /* look for tuple match */
839 hash = hash_conntrack_raw(&tuple, zone);
840 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
841 if (!h) {
842 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
843 skb, dataoff, hash);
844 if (!h)
845 return NULL;
846 if (IS_ERR(h))
847 return (void *)h;
848 }
849 ct = nf_ct_tuplehash_to_ctrack(h);
850
851 /* It exists; we have (non-exclusive) reference. */
852 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
853 *ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
854 /* Please set reply bit if this packet OK */
855 *set_reply = 1;
856 } else {
857 /* Once we've had two way comms, always ESTABLISHED. */
858 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
859 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
860 *ctinfo = IP_CT_ESTABLISHED;
861 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
862 pr_debug("nf_conntrack_in: related packet for %p\n",
863 ct);
864 *ctinfo = IP_CT_RELATED;
865 } else {
866 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
867 *ctinfo = IP_CT_NEW;
868 }
869 *set_reply = 0;
870 }
871 skb->nfct = &ct->ct_general;
872 skb->nfctinfo = *ctinfo;
873 return ct;
874 }
875
876 unsigned int
877 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
878 struct sk_buff *skb)
879 {
880 struct nf_conn *ct, *tmpl = NULL;
881 enum ip_conntrack_info ctinfo;
882 struct nf_conntrack_l3proto *l3proto;
883 struct nf_conntrack_l4proto *l4proto;
884 unsigned int dataoff;
885 u_int8_t protonum;
886 int set_reply = 0;
887 int ret;
888
889 if (skb->nfct) {
890 /* Previously seen (loopback or untracked)? Ignore. */
891 tmpl = (struct nf_conn *)skb->nfct;
892 if (!nf_ct_is_template(tmpl)) {
893 NF_CT_STAT_INC_ATOMIC(net, ignore);
894 return NF_ACCEPT;
895 }
896 skb->nfct = NULL;
897 }
898
899 /* rcu_read_lock()ed by nf_hook_slow */
900 l3proto = __nf_ct_l3proto_find(pf);
901 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
902 &dataoff, &protonum);
903 if (ret <= 0) {
904 pr_debug("not prepared to track yet or error occurred\n");
905 NF_CT_STAT_INC_ATOMIC(net, error);
906 NF_CT_STAT_INC_ATOMIC(net, invalid);
907 ret = -ret;
908 goto out;
909 }
910
911 l4proto = __nf_ct_l4proto_find(pf, protonum);
912
913 /* It may be an special packet, error, unclean...
914 * inverse of the return code tells to the netfilter
915 * core what to do with the packet. */
916 if (l4proto->error != NULL) {
917 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
918 pf, hooknum);
919 if (ret <= 0) {
920 NF_CT_STAT_INC_ATOMIC(net, error);
921 NF_CT_STAT_INC_ATOMIC(net, invalid);
922 ret = -ret;
923 goto out;
924 }
925 }
926
927 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
928 l3proto, l4proto, &set_reply, &ctinfo);
929 if (!ct) {
930 /* Not valid part of a connection */
931 NF_CT_STAT_INC_ATOMIC(net, invalid);
932 ret = NF_ACCEPT;
933 goto out;
934 }
935
936 if (IS_ERR(ct)) {
937 /* Too stressed to deal. */
938 NF_CT_STAT_INC_ATOMIC(net, drop);
939 ret = NF_DROP;
940 goto out;
941 }
942
943 NF_CT_ASSERT(skb->nfct);
944
945 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum);
946 if (ret <= 0) {
947 /* Invalid: inverse of the return code tells
948 * the netfilter core what to do */
949 pr_debug("nf_conntrack_in: Can't track with proto module\n");
950 nf_conntrack_put(skb->nfct);
951 skb->nfct = NULL;
952 NF_CT_STAT_INC_ATOMIC(net, invalid);
953 if (ret == -NF_DROP)
954 NF_CT_STAT_INC_ATOMIC(net, drop);
955 ret = -ret;
956 goto out;
957 }
958
959 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
960 nf_conntrack_event_cache(IPCT_REPLY, ct);
961 out:
962 if (tmpl) {
963 /* Special case: we have to repeat this hook, assign the
964 * template again to this packet. We assume that this packet
965 * has no conntrack assigned. This is used by nf_ct_tcp. */
966 if (ret == NF_REPEAT)
967 skb->nfct = (struct nf_conntrack *)tmpl;
968 else
969 nf_ct_put(tmpl);
970 }
971
972 return ret;
973 }
974 EXPORT_SYMBOL_GPL(nf_conntrack_in);
975
976 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
977 const struct nf_conntrack_tuple *orig)
978 {
979 bool ret;
980
981 rcu_read_lock();
982 ret = nf_ct_invert_tuple(inverse, orig,
983 __nf_ct_l3proto_find(orig->src.l3num),
984 __nf_ct_l4proto_find(orig->src.l3num,
985 orig->dst.protonum));
986 rcu_read_unlock();
987 return ret;
988 }
989 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
990
991 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
992 implicitly racy: see __nf_conntrack_confirm */
993 void nf_conntrack_alter_reply(struct nf_conn *ct,
994 const struct nf_conntrack_tuple *newreply)
995 {
996 struct nf_conn_help *help = nfct_help(ct);
997
998 /* Should be unconfirmed, so not in hash table yet */
999 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1000
1001 pr_debug("Altering reply tuple of %p to ", ct);
1002 nf_ct_dump_tuple(newreply);
1003
1004 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1005 if (ct->master || (help && !hlist_empty(&help->expectations)))
1006 return;
1007
1008 rcu_read_lock();
1009 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1010 rcu_read_unlock();
1011 }
1012 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1013
1014 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1015 void __nf_ct_refresh_acct(struct nf_conn *ct,
1016 enum ip_conntrack_info ctinfo,
1017 const struct sk_buff *skb,
1018 unsigned long extra_jiffies,
1019 int do_acct)
1020 {
1021 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1022 NF_CT_ASSERT(skb);
1023
1024 /* Only update if this is not a fixed timeout */
1025 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1026 goto acct;
1027
1028 /* If not in hash table, timer will not be active yet */
1029 if (!nf_ct_is_confirmed(ct)) {
1030 ct->timeout.expires = extra_jiffies;
1031 } else {
1032 unsigned long newtime = jiffies + extra_jiffies;
1033
1034 /* Only update the timeout if the new timeout is at least
1035 HZ jiffies from the old timeout. Need del_timer for race
1036 avoidance (may already be dying). */
1037 if (newtime - ct->timeout.expires >= HZ)
1038 mod_timer_pending(&ct->timeout, newtime);
1039 }
1040
1041 acct:
1042 if (do_acct) {
1043 struct nf_conn_counter *acct;
1044
1045 acct = nf_conn_acct_find(ct);
1046 if (acct) {
1047 spin_lock_bh(&ct->lock);
1048 acct[CTINFO2DIR(ctinfo)].packets++;
1049 acct[CTINFO2DIR(ctinfo)].bytes += skb->len;
1050 spin_unlock_bh(&ct->lock);
1051 }
1052 }
1053 }
1054 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1055
1056 bool __nf_ct_kill_acct(struct nf_conn *ct,
1057 enum ip_conntrack_info ctinfo,
1058 const struct sk_buff *skb,
1059 int do_acct)
1060 {
1061 if (do_acct) {
1062 struct nf_conn_counter *acct;
1063
1064 acct = nf_conn_acct_find(ct);
1065 if (acct) {
1066 spin_lock_bh(&ct->lock);
1067 acct[CTINFO2DIR(ctinfo)].packets++;
1068 acct[CTINFO2DIR(ctinfo)].bytes +=
1069 skb->len - skb_network_offset(skb);
1070 spin_unlock_bh(&ct->lock);
1071 }
1072 }
1073
1074 if (del_timer(&ct->timeout)) {
1075 ct->timeout.function((unsigned long)ct);
1076 return true;
1077 }
1078 return false;
1079 }
1080 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1081
1082 #ifdef CONFIG_NF_CONNTRACK_ZONES
1083 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1084 .len = sizeof(struct nf_conntrack_zone),
1085 .align = __alignof__(struct nf_conntrack_zone),
1086 .id = NF_CT_EXT_ZONE,
1087 };
1088 #endif
1089
1090 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
1091
1092 #include <linux/netfilter/nfnetlink.h>
1093 #include <linux/netfilter/nfnetlink_conntrack.h>
1094 #include <linux/mutex.h>
1095
1096 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1097 * in ip_conntrack_core, since we don't want the protocols to autoload
1098 * or depend on ctnetlink */
1099 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1100 const struct nf_conntrack_tuple *tuple)
1101 {
1102 NLA_PUT_BE16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port);
1103 NLA_PUT_BE16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port);
1104 return 0;
1105
1106 nla_put_failure:
1107 return -1;
1108 }
1109 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1110
1111 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1112 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1113 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1114 };
1115 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1116
1117 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1118 struct nf_conntrack_tuple *t)
1119 {
1120 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1121 return -EINVAL;
1122
1123 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1124 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1125
1126 return 0;
1127 }
1128 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1129
1130 int nf_ct_port_nlattr_tuple_size(void)
1131 {
1132 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1133 }
1134 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1135 #endif
1136
1137 /* Used by ipt_REJECT and ip6t_REJECT. */
1138 static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1139 {
1140 struct nf_conn *ct;
1141 enum ip_conntrack_info ctinfo;
1142
1143 /* This ICMP is in reverse direction to the packet which caused it */
1144 ct = nf_ct_get(skb, &ctinfo);
1145 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1146 ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
1147 else
1148 ctinfo = IP_CT_RELATED;
1149
1150 /* Attach to new skbuff, and increment count */
1151 nskb->nfct = &ct->ct_general;
1152 nskb->nfctinfo = ctinfo;
1153 nf_conntrack_get(nskb->nfct);
1154 }
1155
1156 /* Bring out ya dead! */
1157 static struct nf_conn *
1158 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1159 void *data, unsigned int *bucket)
1160 {
1161 struct nf_conntrack_tuple_hash *h;
1162 struct nf_conn *ct;
1163 struct hlist_nulls_node *n;
1164
1165 spin_lock_bh(&nf_conntrack_lock);
1166 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1167 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1168 ct = nf_ct_tuplehash_to_ctrack(h);
1169 if (iter(ct, data))
1170 goto found;
1171 }
1172 }
1173 hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
1174 ct = nf_ct_tuplehash_to_ctrack(h);
1175 if (iter(ct, data))
1176 set_bit(IPS_DYING_BIT, &ct->status);
1177 }
1178 spin_unlock_bh(&nf_conntrack_lock);
1179 return NULL;
1180 found:
1181 atomic_inc(&ct->ct_general.use);
1182 spin_unlock_bh(&nf_conntrack_lock);
1183 return ct;
1184 }
1185
1186 void nf_ct_iterate_cleanup(struct net *net,
1187 int (*iter)(struct nf_conn *i, void *data),
1188 void *data)
1189 {
1190 struct nf_conn *ct;
1191 unsigned int bucket = 0;
1192
1193 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1194 /* Time to push up daises... */
1195 if (del_timer(&ct->timeout))
1196 death_by_timeout((unsigned long)ct);
1197 /* ... else the timer will get him soon. */
1198
1199 nf_ct_put(ct);
1200 }
1201 }
1202 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1203
1204 struct __nf_ct_flush_report {
1205 u32 pid;
1206 int report;
1207 };
1208
1209 static int kill_report(struct nf_conn *i, void *data)
1210 {
1211 struct __nf_ct_flush_report *fr = (struct __nf_ct_flush_report *)data;
1212 struct nf_conn_tstamp *tstamp;
1213
1214 tstamp = nf_conn_tstamp_find(i);
1215 if (tstamp && tstamp->stop == 0)
1216 tstamp->stop = ktime_to_ns(ktime_get_real());
1217
1218 /* If we fail to deliver the event, death_by_timeout() will retry */
1219 if (nf_conntrack_event_report(IPCT_DESTROY, i,
1220 fr->pid, fr->report) < 0)
1221 return 1;
1222
1223 /* Avoid the delivery of the destroy event in death_by_timeout(). */
1224 set_bit(IPS_DYING_BIT, &i->status);
1225 return 1;
1226 }
1227
1228 static int kill_all(struct nf_conn *i, void *data)
1229 {
1230 return 1;
1231 }
1232
1233 void nf_ct_free_hashtable(void *hash, unsigned int size)
1234 {
1235 if (is_vmalloc_addr(hash))
1236 vfree(hash);
1237 else
1238 free_pages((unsigned long)hash,
1239 get_order(sizeof(struct hlist_head) * size));
1240 }
1241 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1242
1243 void nf_conntrack_flush_report(struct net *net, u32 pid, int report)
1244 {
1245 struct __nf_ct_flush_report fr = {
1246 .pid = pid,
1247 .report = report,
1248 };
1249 nf_ct_iterate_cleanup(net, kill_report, &fr);
1250 }
1251 EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1252
1253 static void nf_ct_release_dying_list(struct net *net)
1254 {
1255 struct nf_conntrack_tuple_hash *h;
1256 struct nf_conn *ct;
1257 struct hlist_nulls_node *n;
1258
1259 spin_lock_bh(&nf_conntrack_lock);
1260 hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
1261 ct = nf_ct_tuplehash_to_ctrack(h);
1262 /* never fails to remove them, no listeners at this point */
1263 nf_ct_kill(ct);
1264 }
1265 spin_unlock_bh(&nf_conntrack_lock);
1266 }
1267
1268 static int untrack_refs(void)
1269 {
1270 int cnt = 0, cpu;
1271
1272 for_each_possible_cpu(cpu) {
1273 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1274
1275 cnt += atomic_read(&ct->ct_general.use) - 1;
1276 }
1277 return cnt;
1278 }
1279
1280 static void nf_conntrack_cleanup_init_net(void)
1281 {
1282 while (untrack_refs() > 0)
1283 schedule();
1284
1285 nf_conntrack_helper_fini();
1286 nf_conntrack_proto_fini();
1287 #ifdef CONFIG_NF_CONNTRACK_ZONES
1288 nf_ct_extend_unregister(&nf_ct_zone_extend);
1289 #endif
1290 }
1291
1292 static void nf_conntrack_cleanup_net(struct net *net)
1293 {
1294 i_see_dead_people:
1295 nf_ct_iterate_cleanup(net, kill_all, NULL);
1296 nf_ct_release_dying_list(net);
1297 if (atomic_read(&net->ct.count) != 0) {
1298 schedule();
1299 goto i_see_dead_people;
1300 }
1301
1302 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1303 nf_conntrack_ecache_fini(net);
1304 nf_conntrack_tstamp_fini(net);
1305 nf_conntrack_acct_fini(net);
1306 nf_conntrack_expect_fini(net);
1307 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1308 kfree(net->ct.slabname);
1309 free_percpu(net->ct.stat);
1310 }
1311
1312 /* Mishearing the voices in his head, our hero wonders how he's
1313 supposed to kill the mall. */
1314 void nf_conntrack_cleanup(struct net *net)
1315 {
1316 if (net_eq(net, &init_net))
1317 rcu_assign_pointer(ip_ct_attach, NULL);
1318
1319 /* This makes sure all current packets have passed through
1320 netfilter framework. Roll on, two-stage module
1321 delete... */
1322 synchronize_net();
1323
1324 nf_conntrack_cleanup_net(net);
1325
1326 if (net_eq(net, &init_net)) {
1327 rcu_assign_pointer(nf_ct_destroy, NULL);
1328 nf_conntrack_cleanup_init_net();
1329 }
1330 }
1331
1332 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1333 {
1334 struct hlist_nulls_head *hash;
1335 unsigned int nr_slots, i;
1336 size_t sz;
1337
1338 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1339 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1340 sz = nr_slots * sizeof(struct hlist_nulls_head);
1341 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1342 get_order(sz));
1343 if (!hash) {
1344 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1345 hash = __vmalloc(sz, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1346 PAGE_KERNEL);
1347 }
1348
1349 if (hash && nulls)
1350 for (i = 0; i < nr_slots; i++)
1351 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1352
1353 return hash;
1354 }
1355 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1356
1357 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1358 {
1359 int i, bucket;
1360 unsigned int hashsize, old_size;
1361 struct hlist_nulls_head *hash, *old_hash;
1362 struct nf_conntrack_tuple_hash *h;
1363 struct nf_conn *ct;
1364
1365 if (current->nsproxy->net_ns != &init_net)
1366 return -EOPNOTSUPP;
1367
1368 /* On boot, we can set this without any fancy locking. */
1369 if (!nf_conntrack_htable_size)
1370 return param_set_uint(val, kp);
1371
1372 hashsize = simple_strtoul(val, NULL, 0);
1373 if (!hashsize)
1374 return -EINVAL;
1375
1376 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1377 if (!hash)
1378 return -ENOMEM;
1379
1380 /* Lookups in the old hash might happen in parallel, which means we
1381 * might get false negatives during connection lookup. New connections
1382 * created because of a false negative won't make it into the hash
1383 * though since that required taking the lock.
1384 */
1385 spin_lock_bh(&nf_conntrack_lock);
1386 for (i = 0; i < init_net.ct.htable_size; i++) {
1387 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1388 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1389 struct nf_conntrack_tuple_hash, hnnode);
1390 ct = nf_ct_tuplehash_to_ctrack(h);
1391 hlist_nulls_del_rcu(&h->hnnode);
1392 bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1393 hashsize);
1394 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1395 }
1396 }
1397 old_size = init_net.ct.htable_size;
1398 old_hash = init_net.ct.hash;
1399
1400 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1401 init_net.ct.hash = hash;
1402 spin_unlock_bh(&nf_conntrack_lock);
1403
1404 nf_ct_free_hashtable(old_hash, old_size);
1405 return 0;
1406 }
1407 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1408
1409 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1410 &nf_conntrack_htable_size, 0600);
1411
1412 void nf_ct_untracked_status_or(unsigned long bits)
1413 {
1414 int cpu;
1415
1416 for_each_possible_cpu(cpu)
1417 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1418 }
1419 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1420
1421 static int nf_conntrack_init_init_net(void)
1422 {
1423 int max_factor = 8;
1424 int ret, cpu;
1425
1426 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1427 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1428 if (!nf_conntrack_htable_size) {
1429 nf_conntrack_htable_size
1430 = (((totalram_pages << PAGE_SHIFT) / 16384)
1431 / sizeof(struct hlist_head));
1432 if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1433 nf_conntrack_htable_size = 16384;
1434 if (nf_conntrack_htable_size < 32)
1435 nf_conntrack_htable_size = 32;
1436
1437 /* Use a max. factor of four by default to get the same max as
1438 * with the old struct list_heads. When a table size is given
1439 * we use the old value of 8 to avoid reducing the max.
1440 * entries. */
1441 max_factor = 4;
1442 }
1443 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1444
1445 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1446 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1447 nf_conntrack_max);
1448
1449 ret = nf_conntrack_proto_init();
1450 if (ret < 0)
1451 goto err_proto;
1452
1453 ret = nf_conntrack_helper_init();
1454 if (ret < 0)
1455 goto err_helper;
1456
1457 #ifdef CONFIG_NF_CONNTRACK_ZONES
1458 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1459 if (ret < 0)
1460 goto err_extend;
1461 #endif
1462 /* Set up fake conntrack: to never be deleted, not in any hashes */
1463 for_each_possible_cpu(cpu) {
1464 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1465 write_pnet(&ct->ct_net, &init_net);
1466 atomic_set(&ct->ct_general.use, 1);
1467 }
1468 /* - and look it like as a confirmed connection */
1469 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1470 return 0;
1471
1472 #ifdef CONFIG_NF_CONNTRACK_ZONES
1473 err_extend:
1474 nf_conntrack_helper_fini();
1475 #endif
1476 err_helper:
1477 nf_conntrack_proto_fini();
1478 err_proto:
1479 return ret;
1480 }
1481
1482 /*
1483 * We need to use special "null" values, not used in hash table
1484 */
1485 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1486 #define DYING_NULLS_VAL ((1<<30)+1)
1487
1488 static int nf_conntrack_init_net(struct net *net)
1489 {
1490 int ret;
1491
1492 atomic_set(&net->ct.count, 0);
1493 INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
1494 INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
1495 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1496 if (!net->ct.stat) {
1497 ret = -ENOMEM;
1498 goto err_stat;
1499 }
1500
1501 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1502 if (!net->ct.slabname) {
1503 ret = -ENOMEM;
1504 goto err_slabname;
1505 }
1506
1507 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1508 sizeof(struct nf_conn), 0,
1509 SLAB_DESTROY_BY_RCU, NULL);
1510 if (!net->ct.nf_conntrack_cachep) {
1511 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1512 ret = -ENOMEM;
1513 goto err_cache;
1514 }
1515
1516 net->ct.htable_size = nf_conntrack_htable_size;
1517 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1518 if (!net->ct.hash) {
1519 ret = -ENOMEM;
1520 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1521 goto err_hash;
1522 }
1523 ret = nf_conntrack_expect_init(net);
1524 if (ret < 0)
1525 goto err_expect;
1526 ret = nf_conntrack_acct_init(net);
1527 if (ret < 0)
1528 goto err_acct;
1529 ret = nf_conntrack_tstamp_init(net);
1530 if (ret < 0)
1531 goto err_tstamp;
1532 ret = nf_conntrack_ecache_init(net);
1533 if (ret < 0)
1534 goto err_ecache;
1535
1536 return 0;
1537
1538 err_ecache:
1539 nf_conntrack_tstamp_fini(net);
1540 err_tstamp:
1541 nf_conntrack_acct_fini(net);
1542 err_acct:
1543 nf_conntrack_expect_fini(net);
1544 err_expect:
1545 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1546 err_hash:
1547 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1548 err_cache:
1549 kfree(net->ct.slabname);
1550 err_slabname:
1551 free_percpu(net->ct.stat);
1552 err_stat:
1553 return ret;
1554 }
1555
1556 s16 (*nf_ct_nat_offset)(const struct nf_conn *ct,
1557 enum ip_conntrack_dir dir,
1558 u32 seq);
1559 EXPORT_SYMBOL_GPL(nf_ct_nat_offset);
1560
1561 int nf_conntrack_init(struct net *net)
1562 {
1563 int ret;
1564
1565 if (net_eq(net, &init_net)) {
1566 ret = nf_conntrack_init_init_net();
1567 if (ret < 0)
1568 goto out_init_net;
1569 }
1570 ret = nf_conntrack_init_net(net);
1571 if (ret < 0)
1572 goto out_net;
1573
1574 if (net_eq(net, &init_net)) {
1575 /* For use by REJECT target */
1576 rcu_assign_pointer(ip_ct_attach, nf_conntrack_attach);
1577 rcu_assign_pointer(nf_ct_destroy, destroy_conntrack);
1578
1579 /* Howto get NAT offsets */
1580 rcu_assign_pointer(nf_ct_nat_offset, NULL);
1581 }
1582 return 0;
1583
1584 out_net:
1585 if (net_eq(net, &init_net))
1586 nf_conntrack_cleanup_init_net();
1587 out_init_net:
1588 return ret;
1589 }