Merge branches 'upstream' and 'upstream-fixes' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
185 {
186 struct ieee80211_local *local = tx->local;
187 struct ieee80211_if_managed *ifmgd;
188
189 /* driver doesn't support power save */
190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
191 return TX_CONTINUE;
192
193 /* hardware does dynamic power save */
194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
195 return TX_CONTINUE;
196
197 /* dynamic power save disabled */
198 if (local->hw.conf.dynamic_ps_timeout <= 0)
199 return TX_CONTINUE;
200
201 /* we are scanning, don't enable power save */
202 if (local->scanning)
203 return TX_CONTINUE;
204
205 if (!local->ps_sdata)
206 return TX_CONTINUE;
207
208 /* No point if we're going to suspend */
209 if (local->quiescing)
210 return TX_CONTINUE;
211
212 /* dynamic ps is supported only in managed mode */
213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
214 return TX_CONTINUE;
215
216 ifmgd = &tx->sdata->u.mgd;
217
218 /*
219 * Don't wakeup from power save if u-apsd is enabled, voip ac has
220 * u-apsd enabled and the frame is in voip class. This effectively
221 * means that even if all access categories have u-apsd enabled, in
222 * practise u-apsd is only used with the voip ac. This is a
223 * workaround for the case when received voip class packets do not
224 * have correct qos tag for some reason, due the network or the
225 * peer application.
226 *
227 * Note: local->uapsd_queues access is racy here. If the value is
228 * changed via debugfs, user needs to reassociate manually to have
229 * everything in sync.
230 */
231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
233 && skb_get_queue_mapping(tx->skb) == 0)
234 return TX_CONTINUE;
235
236 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
237 ieee80211_stop_queues_by_reason(&local->hw,
238 IEEE80211_QUEUE_STOP_REASON_PS);
239 ieee80211_queue_work(&local->hw,
240 &local->dynamic_ps_disable_work);
241 }
242
243 mod_timer(&local->dynamic_ps_timer, jiffies +
244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
245
246 return TX_CONTINUE;
247 }
248
249 static ieee80211_tx_result debug_noinline
250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
251 {
252
253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
255 u32 sta_flags;
256
257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
258 return TX_CONTINUE;
259
260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
261 !ieee80211_is_probe_req(hdr->frame_control) &&
262 !ieee80211_is_nullfunc(hdr->frame_control))
263 /*
264 * When software scanning only nullfunc frames (to notify
265 * the sleep state to the AP) and probe requests (for the
266 * active scan) are allowed, all other frames should not be
267 * sent and we should not get here, but if we do
268 * nonetheless, drop them to avoid sending them
269 * off-channel. See the link below and
270 * ieee80211_start_scan() for more.
271 *
272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
273 */
274 return TX_DROP;
275
276 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS)
277 return TX_CONTINUE;
278
279 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
280 return TX_CONTINUE;
281
282 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
283 return TX_CONTINUE;
284
285 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
286
287 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
288 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
289 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
290 ieee80211_is_data(hdr->frame_control))) {
291 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
292 printk(KERN_DEBUG "%s: dropped data frame to not "
293 "associated station %pM\n",
294 tx->sdata->name, hdr->addr1);
295 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
296 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
297 return TX_DROP;
298 }
299 } else {
300 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
301 tx->local->num_sta == 0 &&
302 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
303 /*
304 * No associated STAs - no need to send multicast
305 * frames.
306 */
307 return TX_DROP;
308 }
309 return TX_CONTINUE;
310 }
311
312 return TX_CONTINUE;
313 }
314
315 /* This function is called whenever the AP is about to exceed the maximum limit
316 * of buffered frames for power saving STAs. This situation should not really
317 * happen often during normal operation, so dropping the oldest buffered packet
318 * from each queue should be OK to make some room for new frames. */
319 static void purge_old_ps_buffers(struct ieee80211_local *local)
320 {
321 int total = 0, purged = 0;
322 struct sk_buff *skb;
323 struct ieee80211_sub_if_data *sdata;
324 struct sta_info *sta;
325
326 /*
327 * virtual interfaces are protected by RCU
328 */
329 rcu_read_lock();
330
331 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
332 struct ieee80211_if_ap *ap;
333 if (sdata->vif.type != NL80211_IFTYPE_AP)
334 continue;
335 ap = &sdata->u.ap;
336 skb = skb_dequeue(&ap->ps_bc_buf);
337 if (skb) {
338 purged++;
339 dev_kfree_skb(skb);
340 }
341 total += skb_queue_len(&ap->ps_bc_buf);
342 }
343
344 list_for_each_entry_rcu(sta, &local->sta_list, list) {
345 skb = skb_dequeue(&sta->ps_tx_buf);
346 if (skb) {
347 purged++;
348 dev_kfree_skb(skb);
349 }
350 total += skb_queue_len(&sta->ps_tx_buf);
351 }
352
353 rcu_read_unlock();
354
355 local->total_ps_buffered = total;
356 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
357 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n",
358 purged);
359 #endif
360 }
361
362 static ieee80211_tx_result
363 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
364 {
365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
367
368 /*
369 * broadcast/multicast frame
370 *
371 * If any of the associated stations is in power save mode,
372 * the frame is buffered to be sent after DTIM beacon frame.
373 * This is done either by the hardware or us.
374 */
375
376 /* powersaving STAs only in AP/VLAN mode */
377 if (!tx->sdata->bss)
378 return TX_CONTINUE;
379
380 /* no buffering for ordered frames */
381 if (ieee80211_has_order(hdr->frame_control))
382 return TX_CONTINUE;
383
384 /* no stations in PS mode */
385 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
386 return TX_CONTINUE;
387
388 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
389
390 /* device releases frame after DTIM beacon */
391 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
392 return TX_CONTINUE;
393
394 /* buffered in mac80211 */
395 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
396 purge_old_ps_buffers(tx->local);
397
398 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
399 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
400 if (net_ratelimit())
401 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
402 tx->sdata->name);
403 #endif
404 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
405 } else
406 tx->local->total_ps_buffered++;
407
408 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
409
410 return TX_QUEUED;
411 }
412
413 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
414 struct sk_buff *skb)
415 {
416 if (!ieee80211_is_mgmt(fc))
417 return 0;
418
419 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
420 return 0;
421
422 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
423 skb->data))
424 return 0;
425
426 return 1;
427 }
428
429 static ieee80211_tx_result
430 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
431 {
432 struct sta_info *sta = tx->sta;
433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
435 struct ieee80211_local *local = tx->local;
436 u32 staflags;
437
438 if (unlikely(!sta ||
439 ieee80211_is_probe_resp(hdr->frame_control) ||
440 ieee80211_is_auth(hdr->frame_control) ||
441 ieee80211_is_assoc_resp(hdr->frame_control) ||
442 ieee80211_is_reassoc_resp(hdr->frame_control)))
443 return TX_CONTINUE;
444
445 staflags = get_sta_flags(sta);
446
447 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
448 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
449 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
450 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
451 "before %d)\n",
452 sta->sta.addr, sta->sta.aid,
453 skb_queue_len(&sta->ps_tx_buf));
454 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
455 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
456 purge_old_ps_buffers(tx->local);
457 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
458 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
459 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
460 if (net_ratelimit()) {
461 printk(KERN_DEBUG "%s: STA %pM TX "
462 "buffer full - dropping oldest frame\n",
463 tx->sdata->name, sta->sta.addr);
464 }
465 #endif
466 dev_kfree_skb(old);
467 } else
468 tx->local->total_ps_buffered++;
469
470 /*
471 * Queue frame to be sent after STA wakes up/polls,
472 * but don't set the TIM bit if the driver is blocking
473 * wakeup or poll response transmissions anyway.
474 */
475 if (skb_queue_empty(&sta->ps_tx_buf) &&
476 !(staflags & WLAN_STA_PS_DRIVER))
477 sta_info_set_tim_bit(sta);
478
479 info->control.jiffies = jiffies;
480 info->control.vif = &tx->sdata->vif;
481 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
482 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
483
484 if (!timer_pending(&local->sta_cleanup))
485 mod_timer(&local->sta_cleanup,
486 round_jiffies(jiffies +
487 STA_INFO_CLEANUP_INTERVAL));
488
489 return TX_QUEUED;
490 }
491 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
492 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
493 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
494 "set -> send frame\n", tx->sdata->name,
495 sta->sta.addr);
496 }
497 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
498
499 return TX_CONTINUE;
500 }
501
502 static ieee80211_tx_result debug_noinline
503 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
504 {
505 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
506 return TX_CONTINUE;
507
508 if (tx->flags & IEEE80211_TX_UNICAST)
509 return ieee80211_tx_h_unicast_ps_buf(tx);
510 else
511 return ieee80211_tx_h_multicast_ps_buf(tx);
512 }
513
514 static ieee80211_tx_result debug_noinline
515 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx)
516 {
517 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
518
519 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol &&
520 tx->sdata->control_port_no_encrypt))
521 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
522
523 return TX_CONTINUE;
524 }
525
526 static ieee80211_tx_result debug_noinline
527 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
528 {
529 struct ieee80211_key *key = NULL;
530 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
531 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
532
533 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
534 tx->key = NULL;
535 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk)))
536 tx->key = key;
537 else if (ieee80211_is_mgmt(hdr->frame_control) &&
538 is_multicast_ether_addr(hdr->addr1) &&
539 ieee80211_is_robust_mgmt_frame(hdr) &&
540 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
541 tx->key = key;
542 else if ((key = rcu_dereference(tx->sdata->default_key)))
543 tx->key = key;
544 else if (tx->sdata->drop_unencrypted &&
545 (tx->skb->protocol != tx->sdata->control_port_protocol) &&
546 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
547 (!ieee80211_is_robust_mgmt_frame(hdr) ||
548 (ieee80211_is_action(hdr->frame_control) &&
549 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
550 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
551 return TX_DROP;
552 } else
553 tx->key = NULL;
554
555 if (tx->key) {
556 bool skip_hw = false;
557
558 tx->key->tx_rx_count++;
559 /* TODO: add threshold stuff again */
560
561 switch (tx->key->conf.cipher) {
562 case WLAN_CIPHER_SUITE_WEP40:
563 case WLAN_CIPHER_SUITE_WEP104:
564 if (ieee80211_is_auth(hdr->frame_control))
565 break;
566 case WLAN_CIPHER_SUITE_TKIP:
567 if (!ieee80211_is_data_present(hdr->frame_control))
568 tx->key = NULL;
569 break;
570 case WLAN_CIPHER_SUITE_CCMP:
571 if (!ieee80211_is_data_present(hdr->frame_control) &&
572 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
573 tx->skb))
574 tx->key = NULL;
575 else
576 skip_hw = (tx->key->conf.flags &
577 IEEE80211_KEY_FLAG_SW_MGMT) &&
578 ieee80211_is_mgmt(hdr->frame_control);
579 break;
580 case WLAN_CIPHER_SUITE_AES_CMAC:
581 if (!ieee80211_is_mgmt(hdr->frame_control))
582 tx->key = NULL;
583 break;
584 }
585
586 if (!skip_hw && tx->key &&
587 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
588 info->control.hw_key = &tx->key->conf;
589 }
590
591 return TX_CONTINUE;
592 }
593
594 static ieee80211_tx_result debug_noinline
595 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
596 {
597 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
598 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
599 struct ieee80211_supported_band *sband;
600 struct ieee80211_rate *rate;
601 int i;
602 u32 len;
603 bool inval = false, rts = false, short_preamble = false;
604 struct ieee80211_tx_rate_control txrc;
605 u32 sta_flags;
606
607 memset(&txrc, 0, sizeof(txrc));
608
609 sband = tx->local->hw.wiphy->bands[tx->channel->band];
610
611 len = min_t(u32, tx->skb->len + FCS_LEN,
612 tx->local->hw.wiphy->frag_threshold);
613
614 /* set up the tx rate control struct we give the RC algo */
615 txrc.hw = local_to_hw(tx->local);
616 txrc.sband = sband;
617 txrc.bss_conf = &tx->sdata->vif.bss_conf;
618 txrc.skb = tx->skb;
619 txrc.reported_rate.idx = -1;
620 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
621 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
622 txrc.max_rate_idx = -1;
623 else
624 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
625 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
626
627 /* set up RTS protection if desired */
628 if (len > tx->local->hw.wiphy->rts_threshold) {
629 txrc.rts = rts = true;
630 }
631
632 /*
633 * Use short preamble if the BSS can handle it, but not for
634 * management frames unless we know the receiver can handle
635 * that -- the management frame might be to a station that
636 * just wants a probe response.
637 */
638 if (tx->sdata->vif.bss_conf.use_short_preamble &&
639 (ieee80211_is_data(hdr->frame_control) ||
640 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
641 txrc.short_preamble = short_preamble = true;
642
643 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
644
645 /*
646 * Lets not bother rate control if we're associated and cannot
647 * talk to the sta. This should not happen.
648 */
649 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
650 (sta_flags & WLAN_STA_ASSOC) &&
651 !rate_usable_index_exists(sband, &tx->sta->sta),
652 "%s: Dropped data frame as no usable bitrate found while "
653 "scanning and associated. Target station: "
654 "%pM on %d GHz band\n",
655 tx->sdata->name, hdr->addr1,
656 tx->channel->band ? 5 : 2))
657 return TX_DROP;
658
659 /*
660 * If we're associated with the sta at this point we know we can at
661 * least send the frame at the lowest bit rate.
662 */
663 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
664
665 if (unlikely(info->control.rates[0].idx < 0))
666 return TX_DROP;
667
668 if (txrc.reported_rate.idx < 0)
669 txrc.reported_rate = info->control.rates[0];
670
671 if (tx->sta)
672 tx->sta->last_tx_rate = txrc.reported_rate;
673
674 if (unlikely(!info->control.rates[0].count))
675 info->control.rates[0].count = 1;
676
677 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
678 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
679 info->control.rates[0].count = 1;
680
681 if (is_multicast_ether_addr(hdr->addr1)) {
682 /*
683 * XXX: verify the rate is in the basic rateset
684 */
685 return TX_CONTINUE;
686 }
687
688 /*
689 * set up the RTS/CTS rate as the fastest basic rate
690 * that is not faster than the data rate
691 *
692 * XXX: Should this check all retry rates?
693 */
694 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
695 s8 baserate = 0;
696
697 rate = &sband->bitrates[info->control.rates[0].idx];
698
699 for (i = 0; i < sband->n_bitrates; i++) {
700 /* must be a basic rate */
701 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
702 continue;
703 /* must not be faster than the data rate */
704 if (sband->bitrates[i].bitrate > rate->bitrate)
705 continue;
706 /* maximum */
707 if (sband->bitrates[baserate].bitrate <
708 sband->bitrates[i].bitrate)
709 baserate = i;
710 }
711
712 info->control.rts_cts_rate_idx = baserate;
713 }
714
715 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
716 /*
717 * make sure there's no valid rate following
718 * an invalid one, just in case drivers don't
719 * take the API seriously to stop at -1.
720 */
721 if (inval) {
722 info->control.rates[i].idx = -1;
723 continue;
724 }
725 if (info->control.rates[i].idx < 0) {
726 inval = true;
727 continue;
728 }
729
730 /*
731 * For now assume MCS is already set up correctly, this
732 * needs to be fixed.
733 */
734 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
735 WARN_ON(info->control.rates[i].idx > 76);
736 continue;
737 }
738
739 /* set up RTS protection if desired */
740 if (rts)
741 info->control.rates[i].flags |=
742 IEEE80211_TX_RC_USE_RTS_CTS;
743
744 /* RC is busted */
745 if (WARN_ON_ONCE(info->control.rates[i].idx >=
746 sband->n_bitrates)) {
747 info->control.rates[i].idx = -1;
748 continue;
749 }
750
751 rate = &sband->bitrates[info->control.rates[i].idx];
752
753 /* set up short preamble */
754 if (short_preamble &&
755 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
756 info->control.rates[i].flags |=
757 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
758
759 /* set up G protection */
760 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
761 rate->flags & IEEE80211_RATE_ERP_G)
762 info->control.rates[i].flags |=
763 IEEE80211_TX_RC_USE_CTS_PROTECT;
764 }
765
766 return TX_CONTINUE;
767 }
768
769 static ieee80211_tx_result debug_noinline
770 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
771 {
772 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
773 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
774 u16 *seq;
775 u8 *qc;
776 int tid;
777
778 /*
779 * Packet injection may want to control the sequence
780 * number, if we have no matching interface then we
781 * neither assign one ourselves nor ask the driver to.
782 */
783 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
784 return TX_CONTINUE;
785
786 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
787 return TX_CONTINUE;
788
789 if (ieee80211_hdrlen(hdr->frame_control) < 24)
790 return TX_CONTINUE;
791
792 /*
793 * Anything but QoS data that has a sequence number field
794 * (is long enough) gets a sequence number from the global
795 * counter.
796 */
797 if (!ieee80211_is_data_qos(hdr->frame_control)) {
798 /* driver should assign sequence number */
799 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
800 /* for pure STA mode without beacons, we can do it */
801 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
802 tx->sdata->sequence_number += 0x10;
803 return TX_CONTINUE;
804 }
805
806 /*
807 * This should be true for injected/management frames only, for
808 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
809 * above since they are not QoS-data frames.
810 */
811 if (!tx->sta)
812 return TX_CONTINUE;
813
814 /* include per-STA, per-TID sequence counter */
815
816 qc = ieee80211_get_qos_ctl(hdr);
817 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
818 seq = &tx->sta->tid_seq[tid];
819
820 hdr->seq_ctrl = cpu_to_le16(*seq);
821
822 /* Increase the sequence number. */
823 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
824
825 return TX_CONTINUE;
826 }
827
828 static int ieee80211_fragment(struct ieee80211_local *local,
829 struct sk_buff *skb, int hdrlen,
830 int frag_threshold)
831 {
832 struct sk_buff *tail = skb, *tmp;
833 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
834 int pos = hdrlen + per_fragm;
835 int rem = skb->len - hdrlen - per_fragm;
836
837 if (WARN_ON(rem < 0))
838 return -EINVAL;
839
840 while (rem) {
841 int fraglen = per_fragm;
842
843 if (fraglen > rem)
844 fraglen = rem;
845 rem -= fraglen;
846 tmp = dev_alloc_skb(local->tx_headroom +
847 frag_threshold +
848 IEEE80211_ENCRYPT_HEADROOM +
849 IEEE80211_ENCRYPT_TAILROOM);
850 if (!tmp)
851 return -ENOMEM;
852 tail->next = tmp;
853 tail = tmp;
854 skb_reserve(tmp, local->tx_headroom +
855 IEEE80211_ENCRYPT_HEADROOM);
856 /* copy control information */
857 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
858 skb_copy_queue_mapping(tmp, skb);
859 tmp->priority = skb->priority;
860 tmp->dev = skb->dev;
861
862 /* copy header and data */
863 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
864 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
865
866 pos += fraglen;
867 }
868
869 skb->len = hdrlen + per_fragm;
870 return 0;
871 }
872
873 static ieee80211_tx_result debug_noinline
874 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
875 {
876 struct sk_buff *skb = tx->skb;
877 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
878 struct ieee80211_hdr *hdr = (void *)skb->data;
879 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
880 int hdrlen;
881 int fragnum;
882
883 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
884 return TX_CONTINUE;
885
886 /*
887 * Warn when submitting a fragmented A-MPDU frame and drop it.
888 * This scenario is handled in ieee80211_tx_prepare but extra
889 * caution taken here as fragmented ampdu may cause Tx stop.
890 */
891 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
892 return TX_DROP;
893
894 hdrlen = ieee80211_hdrlen(hdr->frame_control);
895
896 /* internal error, why is TX_FRAGMENTED set? */
897 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
898 return TX_DROP;
899
900 /*
901 * Now fragment the frame. This will allocate all the fragments and
902 * chain them (using skb as the first fragment) to skb->next.
903 * During transmission, we will remove the successfully transmitted
904 * fragments from this list. When the low-level driver rejects one
905 * of the fragments then we will simply pretend to accept the skb
906 * but store it away as pending.
907 */
908 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
909 return TX_DROP;
910
911 /* update duration/seq/flags of fragments */
912 fragnum = 0;
913 do {
914 int next_len;
915 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
916
917 hdr = (void *)skb->data;
918 info = IEEE80211_SKB_CB(skb);
919
920 if (skb->next) {
921 hdr->frame_control |= morefrags;
922 next_len = skb->next->len;
923 /*
924 * No multi-rate retries for fragmented frames, that
925 * would completely throw off the NAV at other STAs.
926 */
927 info->control.rates[1].idx = -1;
928 info->control.rates[2].idx = -1;
929 info->control.rates[3].idx = -1;
930 info->control.rates[4].idx = -1;
931 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
932 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
933 } else {
934 hdr->frame_control &= ~morefrags;
935 next_len = 0;
936 }
937 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
938 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
939 fragnum++;
940 } while ((skb = skb->next));
941
942 return TX_CONTINUE;
943 }
944
945 static ieee80211_tx_result debug_noinline
946 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
947 {
948 struct sk_buff *skb = tx->skb;
949
950 if (!tx->sta)
951 return TX_CONTINUE;
952
953 tx->sta->tx_packets++;
954 do {
955 tx->sta->tx_fragments++;
956 tx->sta->tx_bytes += skb->len;
957 } while ((skb = skb->next));
958
959 return TX_CONTINUE;
960 }
961
962 static ieee80211_tx_result debug_noinline
963 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
964 {
965 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
966
967 if (!tx->key)
968 return TX_CONTINUE;
969
970 switch (tx->key->conf.cipher) {
971 case WLAN_CIPHER_SUITE_WEP40:
972 case WLAN_CIPHER_SUITE_WEP104:
973 return ieee80211_crypto_wep_encrypt(tx);
974 case WLAN_CIPHER_SUITE_TKIP:
975 return ieee80211_crypto_tkip_encrypt(tx);
976 case WLAN_CIPHER_SUITE_CCMP:
977 return ieee80211_crypto_ccmp_encrypt(tx);
978 case WLAN_CIPHER_SUITE_AES_CMAC:
979 return ieee80211_crypto_aes_cmac_encrypt(tx);
980 default:
981 /* handle hw-only algorithm */
982 if (info->control.hw_key) {
983 ieee80211_tx_set_protected(tx);
984 return TX_CONTINUE;
985 }
986 break;
987
988 }
989
990 return TX_DROP;
991 }
992
993 static ieee80211_tx_result debug_noinline
994 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
995 {
996 struct sk_buff *skb = tx->skb;
997 struct ieee80211_hdr *hdr;
998 int next_len;
999 bool group_addr;
1000
1001 do {
1002 hdr = (void *) skb->data;
1003 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
1004 break; /* must not overwrite AID */
1005 next_len = skb->next ? skb->next->len : 0;
1006 group_addr = is_multicast_ether_addr(hdr->addr1);
1007
1008 hdr->duration_id =
1009 ieee80211_duration(tx, group_addr, next_len);
1010 } while ((skb = skb->next));
1011
1012 return TX_CONTINUE;
1013 }
1014
1015 /* actual transmit path */
1016
1017 /*
1018 * deal with packet injection down monitor interface
1019 * with Radiotap Header -- only called for monitor mode interface
1020 */
1021 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
1022 struct sk_buff *skb)
1023 {
1024 /*
1025 * this is the moment to interpret and discard the radiotap header that
1026 * must be at the start of the packet injected in Monitor mode
1027 *
1028 * Need to take some care with endian-ness since radiotap
1029 * args are little-endian
1030 */
1031
1032 struct ieee80211_radiotap_iterator iterator;
1033 struct ieee80211_radiotap_header *rthdr =
1034 (struct ieee80211_radiotap_header *) skb->data;
1035 struct ieee80211_supported_band *sband;
1036 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1037 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
1038 NULL);
1039
1040 sband = tx->local->hw.wiphy->bands[tx->channel->band];
1041
1042 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1043 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1044
1045 /*
1046 * for every radiotap entry that is present
1047 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1048 * entries present, or -EINVAL on error)
1049 */
1050
1051 while (!ret) {
1052 ret = ieee80211_radiotap_iterator_next(&iterator);
1053
1054 if (ret)
1055 continue;
1056
1057 /* see if this argument is something we can use */
1058 switch (iterator.this_arg_index) {
1059 /*
1060 * You must take care when dereferencing iterator.this_arg
1061 * for multibyte types... the pointer is not aligned. Use
1062 * get_unaligned((type *)iterator.this_arg) to dereference
1063 * iterator.this_arg for type "type" safely on all arches.
1064 */
1065 case IEEE80211_RADIOTAP_FLAGS:
1066 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1067 /*
1068 * this indicates that the skb we have been
1069 * handed has the 32-bit FCS CRC at the end...
1070 * we should react to that by snipping it off
1071 * because it will be recomputed and added
1072 * on transmission
1073 */
1074 if (skb->len < (iterator._max_length + FCS_LEN))
1075 return false;
1076
1077 skb_trim(skb, skb->len - FCS_LEN);
1078 }
1079 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1080 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1081 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
1082 tx->flags |= IEEE80211_TX_FRAGMENTED;
1083 break;
1084
1085 /*
1086 * Please update the file
1087 * Documentation/networking/mac80211-injection.txt
1088 * when parsing new fields here.
1089 */
1090
1091 default:
1092 break;
1093 }
1094 }
1095
1096 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1097 return false;
1098
1099 /*
1100 * remove the radiotap header
1101 * iterator->_max_length was sanity-checked against
1102 * skb->len by iterator init
1103 */
1104 skb_pull(skb, iterator._max_length);
1105
1106 return true;
1107 }
1108
1109 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
1110 struct sk_buff *skb,
1111 struct ieee80211_tx_info *info,
1112 struct tid_ampdu_tx *tid_tx,
1113 int tid)
1114 {
1115 bool queued = false;
1116
1117 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1118 info->flags |= IEEE80211_TX_CTL_AMPDU;
1119 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
1120 /*
1121 * nothing -- this aggregation session is being started
1122 * but that might still fail with the driver
1123 */
1124 } else {
1125 spin_lock(&tx->sta->lock);
1126 /*
1127 * Need to re-check now, because we may get here
1128 *
1129 * 1) in the window during which the setup is actually
1130 * already done, but not marked yet because not all
1131 * packets are spliced over to the driver pending
1132 * queue yet -- if this happened we acquire the lock
1133 * either before or after the splice happens, but
1134 * need to recheck which of these cases happened.
1135 *
1136 * 2) during session teardown, if the OPERATIONAL bit
1137 * was cleared due to the teardown but the pointer
1138 * hasn't been assigned NULL yet (or we loaded it
1139 * before it was assigned) -- in this case it may
1140 * now be NULL which means we should just let the
1141 * packet pass through because splicing the frames
1142 * back is already done.
1143 */
1144 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1145
1146 if (!tid_tx) {
1147 /* do nothing, let packet pass through */
1148 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1149 info->flags |= IEEE80211_TX_CTL_AMPDU;
1150 } else {
1151 queued = true;
1152 info->control.vif = &tx->sdata->vif;
1153 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1154 __skb_queue_tail(&tid_tx->pending, skb);
1155 }
1156 spin_unlock(&tx->sta->lock);
1157 }
1158
1159 return queued;
1160 }
1161
1162 /*
1163 * initialises @tx
1164 */
1165 static ieee80211_tx_result
1166 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1167 struct ieee80211_tx_data *tx,
1168 struct sk_buff *skb)
1169 {
1170 struct ieee80211_local *local = sdata->local;
1171 struct ieee80211_hdr *hdr;
1172 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1173 int hdrlen, tid;
1174 u8 *qc;
1175
1176 memset(tx, 0, sizeof(*tx));
1177 tx->skb = skb;
1178 tx->local = local;
1179 tx->sdata = sdata;
1180 tx->channel = local->hw.conf.channel;
1181 /*
1182 * Set this flag (used below to indicate "automatic fragmentation"),
1183 * it will be cleared/left by radiotap as desired.
1184 */
1185 tx->flags |= IEEE80211_TX_FRAGMENTED;
1186
1187 /* process and remove the injection radiotap header */
1188 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1189 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1190 return TX_DROP;
1191
1192 /*
1193 * __ieee80211_parse_tx_radiotap has now removed
1194 * the radiotap header that was present and pre-filled
1195 * 'tx' with tx control information.
1196 */
1197 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1198 }
1199
1200 /*
1201 * If this flag is set to true anywhere, and we get here,
1202 * we are doing the needed processing, so remove the flag
1203 * now.
1204 */
1205 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1206
1207 hdr = (struct ieee80211_hdr *) skb->data;
1208
1209 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1210 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1211 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1212 return TX_DROP;
1213 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1214 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1215 }
1216 if (!tx->sta)
1217 tx->sta = sta_info_get(sdata, hdr->addr1);
1218
1219 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1220 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1221 struct tid_ampdu_tx *tid_tx;
1222
1223 qc = ieee80211_get_qos_ctl(hdr);
1224 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1225
1226 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
1227 if (tid_tx) {
1228 bool queued;
1229
1230 queued = ieee80211_tx_prep_agg(tx, skb, info,
1231 tid_tx, tid);
1232
1233 if (unlikely(queued))
1234 return TX_QUEUED;
1235 }
1236 }
1237
1238 if (is_multicast_ether_addr(hdr->addr1)) {
1239 tx->flags &= ~IEEE80211_TX_UNICAST;
1240 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1241 } else {
1242 tx->flags |= IEEE80211_TX_UNICAST;
1243 if (unlikely(local->wifi_wme_noack_test))
1244 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1245 else
1246 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1247 }
1248
1249 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1250 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1251 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1252 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1253 tx->flags |= IEEE80211_TX_FRAGMENTED;
1254 else
1255 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1256 }
1257
1258 if (!tx->sta)
1259 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1260 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1261 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1262
1263 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1264 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1265 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1266 tx->ethertype = (pos[0] << 8) | pos[1];
1267 }
1268 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1269
1270 return TX_CONTINUE;
1271 }
1272
1273 static int __ieee80211_tx(struct ieee80211_local *local,
1274 struct sk_buff **skbp,
1275 struct sta_info *sta,
1276 bool txpending)
1277 {
1278 struct sk_buff *skb = *skbp, *next;
1279 struct ieee80211_tx_info *info;
1280 struct ieee80211_sub_if_data *sdata;
1281 unsigned long flags;
1282 int ret, len;
1283 bool fragm = false;
1284
1285 while (skb) {
1286 int q = skb_get_queue_mapping(skb);
1287
1288 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1289 ret = IEEE80211_TX_OK;
1290 if (local->queue_stop_reasons[q] ||
1291 (!txpending && !skb_queue_empty(&local->pending[q])))
1292 ret = IEEE80211_TX_PENDING;
1293 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1294 if (ret != IEEE80211_TX_OK)
1295 return ret;
1296
1297 info = IEEE80211_SKB_CB(skb);
1298
1299 if (fragm)
1300 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1301 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1302
1303 next = skb->next;
1304 len = skb->len;
1305
1306 if (next)
1307 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1308
1309 sdata = vif_to_sdata(info->control.vif);
1310
1311 switch (sdata->vif.type) {
1312 case NL80211_IFTYPE_MONITOR:
1313 info->control.vif = NULL;
1314 break;
1315 case NL80211_IFTYPE_AP_VLAN:
1316 info->control.vif = &container_of(sdata->bss,
1317 struct ieee80211_sub_if_data, u.ap)->vif;
1318 break;
1319 default:
1320 /* keep */
1321 break;
1322 }
1323
1324 if (sta && sta->uploaded)
1325 info->control.sta = &sta->sta;
1326 else
1327 info->control.sta = NULL;
1328
1329 ret = drv_tx(local, skb);
1330 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1331 dev_kfree_skb(skb);
1332 ret = NETDEV_TX_OK;
1333 }
1334 if (ret != NETDEV_TX_OK) {
1335 info->control.vif = &sdata->vif;
1336 return IEEE80211_TX_AGAIN;
1337 }
1338
1339 *skbp = skb = next;
1340 ieee80211_led_tx(local, 1);
1341 fragm = true;
1342 }
1343
1344 return IEEE80211_TX_OK;
1345 }
1346
1347 /*
1348 * Invoke TX handlers, return 0 on success and non-zero if the
1349 * frame was dropped or queued.
1350 */
1351 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1352 {
1353 struct sk_buff *skb = tx->skb;
1354 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1355 ieee80211_tx_result res = TX_DROP;
1356
1357 #define CALL_TXH(txh) \
1358 do { \
1359 res = txh(tx); \
1360 if (res != TX_CONTINUE) \
1361 goto txh_done; \
1362 } while (0)
1363
1364 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1365 CALL_TXH(ieee80211_tx_h_check_assoc);
1366 CALL_TXH(ieee80211_tx_h_ps_buf);
1367 CALL_TXH(ieee80211_tx_h_check_control_port_protocol);
1368 CALL_TXH(ieee80211_tx_h_select_key);
1369 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1370 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1371
1372 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1373 goto txh_done;
1374
1375 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1376 CALL_TXH(ieee80211_tx_h_sequence);
1377 CALL_TXH(ieee80211_tx_h_fragment);
1378 /* handlers after fragment must be aware of tx info fragmentation! */
1379 CALL_TXH(ieee80211_tx_h_stats);
1380 CALL_TXH(ieee80211_tx_h_encrypt);
1381 CALL_TXH(ieee80211_tx_h_calculate_duration);
1382 #undef CALL_TXH
1383
1384 txh_done:
1385 if (unlikely(res == TX_DROP)) {
1386 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1387 while (skb) {
1388 struct sk_buff *next;
1389
1390 next = skb->next;
1391 dev_kfree_skb(skb);
1392 skb = next;
1393 }
1394 return -1;
1395 } else if (unlikely(res == TX_QUEUED)) {
1396 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1397 return -1;
1398 }
1399
1400 return 0;
1401 }
1402
1403 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1404 struct sk_buff *skb, bool txpending)
1405 {
1406 struct ieee80211_local *local = sdata->local;
1407 struct ieee80211_tx_data tx;
1408 ieee80211_tx_result res_prepare;
1409 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1410 struct sk_buff *next;
1411 unsigned long flags;
1412 int ret, retries;
1413 u16 queue;
1414
1415 queue = skb_get_queue_mapping(skb);
1416
1417 if (unlikely(skb->len < 10)) {
1418 dev_kfree_skb(skb);
1419 return;
1420 }
1421
1422 rcu_read_lock();
1423
1424 /* initialises tx */
1425 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1426
1427 if (unlikely(res_prepare == TX_DROP)) {
1428 dev_kfree_skb(skb);
1429 rcu_read_unlock();
1430 return;
1431 } else if (unlikely(res_prepare == TX_QUEUED)) {
1432 rcu_read_unlock();
1433 return;
1434 }
1435
1436 tx.channel = local->hw.conf.channel;
1437 info->band = tx.channel->band;
1438
1439 if (invoke_tx_handlers(&tx))
1440 goto out;
1441
1442 retries = 0;
1443 retry:
1444 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1445 switch (ret) {
1446 case IEEE80211_TX_OK:
1447 break;
1448 case IEEE80211_TX_AGAIN:
1449 /*
1450 * Since there are no fragmented frames on A-MPDU
1451 * queues, there's no reason for a driver to reject
1452 * a frame there, warn and drop it.
1453 */
1454 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1455 goto drop;
1456 /* fall through */
1457 case IEEE80211_TX_PENDING:
1458 skb = tx.skb;
1459
1460 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1461
1462 if (local->queue_stop_reasons[queue] ||
1463 !skb_queue_empty(&local->pending[queue])) {
1464 /*
1465 * if queue is stopped, queue up frames for later
1466 * transmission from the tasklet
1467 */
1468 do {
1469 next = skb->next;
1470 skb->next = NULL;
1471 if (unlikely(txpending))
1472 __skb_queue_head(&local->pending[queue],
1473 skb);
1474 else
1475 __skb_queue_tail(&local->pending[queue],
1476 skb);
1477 } while ((skb = next));
1478
1479 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1480 flags);
1481 } else {
1482 /*
1483 * otherwise retry, but this is a race condition or
1484 * a driver bug (which we warn about if it persists)
1485 */
1486 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1487 flags);
1488
1489 retries++;
1490 if (WARN(retries > 10, "tx refused but queue active\n"))
1491 goto drop;
1492 goto retry;
1493 }
1494 }
1495 out:
1496 rcu_read_unlock();
1497 return;
1498
1499 drop:
1500 rcu_read_unlock();
1501
1502 skb = tx.skb;
1503 while (skb) {
1504 next = skb->next;
1505 dev_kfree_skb(skb);
1506 skb = next;
1507 }
1508 }
1509
1510 /* device xmit handlers */
1511
1512 static int ieee80211_skb_resize(struct ieee80211_local *local,
1513 struct sk_buff *skb,
1514 int head_need, bool may_encrypt)
1515 {
1516 int tail_need = 0;
1517
1518 /*
1519 * This could be optimised, devices that do full hardware
1520 * crypto (including TKIP MMIC) need no tailroom... But we
1521 * have no drivers for such devices currently.
1522 */
1523 if (may_encrypt) {
1524 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1525 tail_need -= skb_tailroom(skb);
1526 tail_need = max_t(int, tail_need, 0);
1527 }
1528
1529 if (head_need || tail_need) {
1530 /* Sorry. Can't account for this any more */
1531 skb_orphan(skb);
1532 }
1533
1534 if (skb_header_cloned(skb))
1535 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1536 else
1537 I802_DEBUG_INC(local->tx_expand_skb_head);
1538
1539 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1540 wiphy_debug(local->hw.wiphy,
1541 "failed to reallocate TX buffer\n");
1542 return -ENOMEM;
1543 }
1544
1545 /* update truesize too */
1546 skb->truesize += head_need + tail_need;
1547
1548 return 0;
1549 }
1550
1551 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1552 struct sk_buff *skb)
1553 {
1554 struct ieee80211_local *local = sdata->local;
1555 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1556 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1557 struct ieee80211_sub_if_data *tmp_sdata;
1558 int headroom;
1559 bool may_encrypt;
1560
1561 rcu_read_lock();
1562
1563 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1564 int hdrlen;
1565 u16 len_rthdr;
1566
1567 info->flags |= IEEE80211_TX_CTL_INJECTED |
1568 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1569
1570 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1571 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1572 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1573
1574 /* check the header is complete in the frame */
1575 if (likely(skb->len >= len_rthdr + hdrlen)) {
1576 /*
1577 * We process outgoing injected frames that have a
1578 * local address we handle as though they are our
1579 * own frames.
1580 * This code here isn't entirely correct, the local
1581 * MAC address is not necessarily enough to find
1582 * the interface to use; for that proper VLAN/WDS
1583 * support we will need a different mechanism.
1584 */
1585
1586 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1587 list) {
1588 if (!ieee80211_sdata_running(tmp_sdata))
1589 continue;
1590 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1591 continue;
1592 if (compare_ether_addr(tmp_sdata->vif.addr,
1593 hdr->addr2) == 0) {
1594 sdata = tmp_sdata;
1595 break;
1596 }
1597 }
1598 }
1599 }
1600
1601 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1602
1603 headroom = local->tx_headroom;
1604 if (may_encrypt)
1605 headroom += IEEE80211_ENCRYPT_HEADROOM;
1606 headroom -= skb_headroom(skb);
1607 headroom = max_t(int, 0, headroom);
1608
1609 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1610 dev_kfree_skb(skb);
1611 rcu_read_unlock();
1612 return;
1613 }
1614
1615 hdr = (struct ieee80211_hdr *) skb->data;
1616 info->control.vif = &sdata->vif;
1617
1618 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1619 ieee80211_is_data(hdr->frame_control) &&
1620 !is_multicast_ether_addr(hdr->addr1))
1621 if (mesh_nexthop_lookup(skb, sdata)) {
1622 /* skb queued: don't free */
1623 rcu_read_unlock();
1624 return;
1625 }
1626
1627 ieee80211_set_qos_hdr(local, skb);
1628 ieee80211_tx(sdata, skb, false);
1629 rcu_read_unlock();
1630 }
1631
1632 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1633 struct net_device *dev)
1634 {
1635 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1636 struct ieee80211_channel *chan = local->hw.conf.channel;
1637 struct ieee80211_radiotap_header *prthdr =
1638 (struct ieee80211_radiotap_header *)skb->data;
1639 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1640 u16 len_rthdr;
1641
1642 /*
1643 * Frame injection is not allowed if beaconing is not allowed
1644 * or if we need radar detection. Beaconing is usually not allowed when
1645 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1646 * Passive scan is also used in world regulatory domains where
1647 * your country is not known and as such it should be treated as
1648 * NO TX unless the channel is explicitly allowed in which case
1649 * your current regulatory domain would not have the passive scan
1650 * flag.
1651 *
1652 * Since AP mode uses monitor interfaces to inject/TX management
1653 * frames we can make AP mode the exception to this rule once it
1654 * supports radar detection as its implementation can deal with
1655 * radar detection by itself. We can do that later by adding a
1656 * monitor flag interfaces used for AP support.
1657 */
1658 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1659 IEEE80211_CHAN_PASSIVE_SCAN)))
1660 goto fail;
1661
1662 /* check for not even having the fixed radiotap header part */
1663 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1664 goto fail; /* too short to be possibly valid */
1665
1666 /* is it a header version we can trust to find length from? */
1667 if (unlikely(prthdr->it_version))
1668 goto fail; /* only version 0 is supported */
1669
1670 /* then there must be a radiotap header with a length we can use */
1671 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1672
1673 /* does the skb contain enough to deliver on the alleged length? */
1674 if (unlikely(skb->len < len_rthdr))
1675 goto fail; /* skb too short for claimed rt header extent */
1676
1677 /*
1678 * fix up the pointers accounting for the radiotap
1679 * header still being in there. We are being given
1680 * a precooked IEEE80211 header so no need for
1681 * normal processing
1682 */
1683 skb_set_mac_header(skb, len_rthdr);
1684 /*
1685 * these are just fixed to the end of the rt area since we
1686 * don't have any better information and at this point, nobody cares
1687 */
1688 skb_set_network_header(skb, len_rthdr);
1689 skb_set_transport_header(skb, len_rthdr);
1690
1691 memset(info, 0, sizeof(*info));
1692
1693 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1694
1695 /* pass the radiotap header up to xmit */
1696 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1697 return NETDEV_TX_OK;
1698
1699 fail:
1700 dev_kfree_skb(skb);
1701 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1702 }
1703
1704 /**
1705 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1706 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1707 * @skb: packet to be sent
1708 * @dev: incoming interface
1709 *
1710 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1711 * not be freed, and caller is responsible for either retrying later or freeing
1712 * skb).
1713 *
1714 * This function takes in an Ethernet header and encapsulates it with suitable
1715 * IEEE 802.11 header based on which interface the packet is coming in. The
1716 * encapsulated packet will then be passed to master interface, wlan#.11, for
1717 * transmission (through low-level driver).
1718 */
1719 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1720 struct net_device *dev)
1721 {
1722 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1723 struct ieee80211_local *local = sdata->local;
1724 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1725 int ret = NETDEV_TX_BUSY, head_need;
1726 u16 ethertype, hdrlen, meshhdrlen = 0;
1727 __le16 fc;
1728 struct ieee80211_hdr hdr;
1729 struct ieee80211s_hdr mesh_hdr __maybe_unused;
1730 const u8 *encaps_data;
1731 int encaps_len, skip_header_bytes;
1732 int nh_pos, h_pos;
1733 struct sta_info *sta = NULL;
1734 u32 sta_flags = 0;
1735
1736 if (unlikely(skb->len < ETH_HLEN)) {
1737 ret = NETDEV_TX_OK;
1738 goto fail;
1739 }
1740
1741 nh_pos = skb_network_header(skb) - skb->data;
1742 h_pos = skb_transport_header(skb) - skb->data;
1743
1744 /* convert Ethernet header to proper 802.11 header (based on
1745 * operation mode) */
1746 ethertype = (skb->data[12] << 8) | skb->data[13];
1747 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1748
1749 switch (sdata->vif.type) {
1750 case NL80211_IFTYPE_AP_VLAN:
1751 rcu_read_lock();
1752 sta = rcu_dereference(sdata->u.vlan.sta);
1753 if (sta) {
1754 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1755 /* RA TA DA SA */
1756 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1757 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1758 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1759 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1760 hdrlen = 30;
1761 sta_flags = get_sta_flags(sta);
1762 }
1763 rcu_read_unlock();
1764 if (sta)
1765 break;
1766 /* fall through */
1767 case NL80211_IFTYPE_AP:
1768 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1769 /* DA BSSID SA */
1770 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1771 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1772 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1773 hdrlen = 24;
1774 break;
1775 case NL80211_IFTYPE_WDS:
1776 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1777 /* RA TA DA SA */
1778 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1779 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1780 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1781 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1782 hdrlen = 30;
1783 break;
1784 #ifdef CONFIG_MAC80211_MESH
1785 case NL80211_IFTYPE_MESH_POINT:
1786 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1787 /* Do not send frames with mesh_ttl == 0 */
1788 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1789 ret = NETDEV_TX_OK;
1790 goto fail;
1791 }
1792
1793 if (compare_ether_addr(sdata->vif.addr,
1794 skb->data + ETH_ALEN) == 0) {
1795 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1796 skb->data, skb->data + ETH_ALEN);
1797 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1798 sdata, NULL, NULL, NULL);
1799 } else {
1800 /* packet from other interface */
1801 struct mesh_path *mppath;
1802 int is_mesh_mcast = 1;
1803 const u8 *mesh_da;
1804
1805 rcu_read_lock();
1806 if (is_multicast_ether_addr(skb->data))
1807 /* DA TA mSA AE:SA */
1808 mesh_da = skb->data;
1809 else {
1810 static const u8 bcast[ETH_ALEN] =
1811 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1812
1813 mppath = mpp_path_lookup(skb->data, sdata);
1814 if (mppath) {
1815 /* RA TA mDA mSA AE:DA SA */
1816 mesh_da = mppath->mpp;
1817 is_mesh_mcast = 0;
1818 } else {
1819 /* DA TA mSA AE:SA */
1820 mesh_da = bcast;
1821 }
1822 }
1823 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1824 mesh_da, sdata->vif.addr);
1825 rcu_read_unlock();
1826 if (is_mesh_mcast)
1827 meshhdrlen =
1828 ieee80211_new_mesh_header(&mesh_hdr,
1829 sdata,
1830 skb->data + ETH_ALEN,
1831 NULL,
1832 NULL);
1833 else
1834 meshhdrlen =
1835 ieee80211_new_mesh_header(&mesh_hdr,
1836 sdata,
1837 NULL,
1838 skb->data,
1839 skb->data + ETH_ALEN);
1840
1841 }
1842 break;
1843 #endif
1844 case NL80211_IFTYPE_STATION:
1845 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1846 if (sdata->u.mgd.use_4addr &&
1847 cpu_to_be16(ethertype) != sdata->control_port_protocol) {
1848 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1849 /* RA TA DA SA */
1850 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1851 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1852 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1853 hdrlen = 30;
1854 } else {
1855 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1856 /* BSSID SA DA */
1857 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1858 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1859 hdrlen = 24;
1860 }
1861 break;
1862 case NL80211_IFTYPE_ADHOC:
1863 /* DA SA BSSID */
1864 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1865 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1866 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1867 hdrlen = 24;
1868 break;
1869 default:
1870 ret = NETDEV_TX_OK;
1871 goto fail;
1872 }
1873
1874 /*
1875 * There's no need to try to look up the destination
1876 * if it is a multicast address (which can only happen
1877 * in AP mode)
1878 */
1879 if (!is_multicast_ether_addr(hdr.addr1)) {
1880 rcu_read_lock();
1881 sta = sta_info_get(sdata, hdr.addr1);
1882 if (sta)
1883 sta_flags = get_sta_flags(sta);
1884 rcu_read_unlock();
1885 }
1886
1887 /* receiver and we are QoS enabled, use a QoS type frame */
1888 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1889 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1890 hdrlen += 2;
1891 }
1892
1893 /*
1894 * Drop unicast frames to unauthorised stations unless they are
1895 * EAPOL frames from the local station.
1896 */
1897 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1898 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1899 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1900 !(cpu_to_be16(ethertype) == sdata->control_port_protocol &&
1901 compare_ether_addr(sdata->vif.addr,
1902 skb->data + ETH_ALEN) == 0))) {
1903 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1904 if (net_ratelimit())
1905 printk(KERN_DEBUG "%s: dropped frame to %pM"
1906 " (unauthorized port)\n", dev->name,
1907 hdr.addr1);
1908 #endif
1909
1910 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1911
1912 ret = NETDEV_TX_OK;
1913 goto fail;
1914 }
1915
1916 hdr.frame_control = fc;
1917 hdr.duration_id = 0;
1918 hdr.seq_ctrl = 0;
1919
1920 skip_header_bytes = ETH_HLEN;
1921 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1922 encaps_data = bridge_tunnel_header;
1923 encaps_len = sizeof(bridge_tunnel_header);
1924 skip_header_bytes -= 2;
1925 } else if (ethertype >= 0x600) {
1926 encaps_data = rfc1042_header;
1927 encaps_len = sizeof(rfc1042_header);
1928 skip_header_bytes -= 2;
1929 } else {
1930 encaps_data = NULL;
1931 encaps_len = 0;
1932 }
1933
1934 skb_pull(skb, skip_header_bytes);
1935 nh_pos -= skip_header_bytes;
1936 h_pos -= skip_header_bytes;
1937
1938 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1939
1940 /*
1941 * So we need to modify the skb header and hence need a copy of
1942 * that. The head_need variable above doesn't, so far, include
1943 * the needed header space that we don't need right away. If we
1944 * can, then we don't reallocate right now but only after the
1945 * frame arrives at the master device (if it does...)
1946 *
1947 * If we cannot, however, then we will reallocate to include all
1948 * the ever needed space. Also, if we need to reallocate it anyway,
1949 * make it big enough for everything we may ever need.
1950 */
1951
1952 if (head_need > 0 || skb_cloned(skb)) {
1953 head_need += IEEE80211_ENCRYPT_HEADROOM;
1954 head_need += local->tx_headroom;
1955 head_need = max_t(int, 0, head_need);
1956 if (ieee80211_skb_resize(local, skb, head_need, true))
1957 goto fail;
1958 }
1959
1960 if (encaps_data) {
1961 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1962 nh_pos += encaps_len;
1963 h_pos += encaps_len;
1964 }
1965
1966 #ifdef CONFIG_MAC80211_MESH
1967 if (meshhdrlen > 0) {
1968 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1969 nh_pos += meshhdrlen;
1970 h_pos += meshhdrlen;
1971 }
1972 #endif
1973
1974 if (ieee80211_is_data_qos(fc)) {
1975 __le16 *qos_control;
1976
1977 qos_control = (__le16*) skb_push(skb, 2);
1978 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1979 /*
1980 * Maybe we could actually set some fields here, for now just
1981 * initialise to zero to indicate no special operation.
1982 */
1983 *qos_control = 0;
1984 } else
1985 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1986
1987 nh_pos += hdrlen;
1988 h_pos += hdrlen;
1989
1990 dev->stats.tx_packets++;
1991 dev->stats.tx_bytes += skb->len;
1992
1993 /* Update skb pointers to various headers since this modified frame
1994 * is going to go through Linux networking code that may potentially
1995 * need things like pointer to IP header. */
1996 skb_set_mac_header(skb, 0);
1997 skb_set_network_header(skb, nh_pos);
1998 skb_set_transport_header(skb, h_pos);
1999
2000 memset(info, 0, sizeof(*info));
2001
2002 dev->trans_start = jiffies;
2003 ieee80211_xmit(sdata, skb);
2004
2005 return NETDEV_TX_OK;
2006
2007 fail:
2008 if (ret == NETDEV_TX_OK)
2009 dev_kfree_skb(skb);
2010
2011 return ret;
2012 }
2013
2014
2015 /*
2016 * ieee80211_clear_tx_pending may not be called in a context where
2017 * it is possible that it packets could come in again.
2018 */
2019 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
2020 {
2021 int i;
2022
2023 for (i = 0; i < local->hw.queues; i++)
2024 skb_queue_purge(&local->pending[i]);
2025 }
2026
2027 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
2028 struct sk_buff *skb)
2029 {
2030 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2031 struct ieee80211_sub_if_data *sdata;
2032 struct sta_info *sta;
2033 struct ieee80211_hdr *hdr;
2034 int ret;
2035 bool result = true;
2036
2037 sdata = vif_to_sdata(info->control.vif);
2038
2039 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
2040 ieee80211_tx(sdata, skb, true);
2041 } else {
2042 hdr = (struct ieee80211_hdr *)skb->data;
2043 sta = sta_info_get(sdata, hdr->addr1);
2044
2045 ret = __ieee80211_tx(local, &skb, sta, true);
2046 if (ret != IEEE80211_TX_OK)
2047 result = false;
2048 }
2049
2050 return result;
2051 }
2052
2053 /*
2054 * Transmit all pending packets. Called from tasklet.
2055 */
2056 void ieee80211_tx_pending(unsigned long data)
2057 {
2058 struct ieee80211_local *local = (struct ieee80211_local *)data;
2059 struct ieee80211_sub_if_data *sdata;
2060 unsigned long flags;
2061 int i;
2062 bool txok;
2063
2064 rcu_read_lock();
2065
2066 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2067 for (i = 0; i < local->hw.queues; i++) {
2068 /*
2069 * If queue is stopped by something other than due to pending
2070 * frames, or we have no pending frames, proceed to next queue.
2071 */
2072 if (local->queue_stop_reasons[i] ||
2073 skb_queue_empty(&local->pending[i]))
2074 continue;
2075
2076 while (!skb_queue_empty(&local->pending[i])) {
2077 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2078 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2079
2080 if (WARN_ON(!info->control.vif)) {
2081 kfree_skb(skb);
2082 continue;
2083 }
2084
2085 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2086 flags);
2087
2088 txok = ieee80211_tx_pending_skb(local, skb);
2089 if (!txok)
2090 __skb_queue_head(&local->pending[i], skb);
2091 spin_lock_irqsave(&local->queue_stop_reason_lock,
2092 flags);
2093 if (!txok)
2094 break;
2095 }
2096
2097 if (skb_queue_empty(&local->pending[i]))
2098 list_for_each_entry_rcu(sdata, &local->interfaces, list)
2099 netif_wake_subqueue(sdata->dev, i);
2100 }
2101 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2102
2103 rcu_read_unlock();
2104 }
2105
2106 /* functions for drivers to get certain frames */
2107
2108 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2109 struct sk_buff *skb,
2110 struct beacon_data *beacon)
2111 {
2112 u8 *pos, *tim;
2113 int aid0 = 0;
2114 int i, have_bits = 0, n1, n2;
2115
2116 /* Generate bitmap for TIM only if there are any STAs in power save
2117 * mode. */
2118 if (atomic_read(&bss->num_sta_ps) > 0)
2119 /* in the hope that this is faster than
2120 * checking byte-for-byte */
2121 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2122 IEEE80211_MAX_AID+1);
2123
2124 if (bss->dtim_count == 0)
2125 bss->dtim_count = beacon->dtim_period - 1;
2126 else
2127 bss->dtim_count--;
2128
2129 tim = pos = (u8 *) skb_put(skb, 6);
2130 *pos++ = WLAN_EID_TIM;
2131 *pos++ = 4;
2132 *pos++ = bss->dtim_count;
2133 *pos++ = beacon->dtim_period;
2134
2135 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2136 aid0 = 1;
2137
2138 if (have_bits) {
2139 /* Find largest even number N1 so that bits numbered 1 through
2140 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2141 * (N2 + 1) x 8 through 2007 are 0. */
2142 n1 = 0;
2143 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2144 if (bss->tim[i]) {
2145 n1 = i & 0xfe;
2146 break;
2147 }
2148 }
2149 n2 = n1;
2150 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2151 if (bss->tim[i]) {
2152 n2 = i;
2153 break;
2154 }
2155 }
2156
2157 /* Bitmap control */
2158 *pos++ = n1 | aid0;
2159 /* Part Virt Bitmap */
2160 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2161
2162 tim[1] = n2 - n1 + 4;
2163 skb_put(skb, n2 - n1);
2164 } else {
2165 *pos++ = aid0; /* Bitmap control */
2166 *pos++ = 0; /* Part Virt Bitmap */
2167 }
2168 }
2169
2170 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2171 struct ieee80211_vif *vif,
2172 u16 *tim_offset, u16 *tim_length)
2173 {
2174 struct ieee80211_local *local = hw_to_local(hw);
2175 struct sk_buff *skb = NULL;
2176 struct ieee80211_tx_info *info;
2177 struct ieee80211_sub_if_data *sdata = NULL;
2178 struct ieee80211_if_ap *ap = NULL;
2179 struct beacon_data *beacon;
2180 struct ieee80211_supported_band *sband;
2181 enum ieee80211_band band = local->hw.conf.channel->band;
2182 struct ieee80211_tx_rate_control txrc;
2183
2184 sband = local->hw.wiphy->bands[band];
2185
2186 rcu_read_lock();
2187
2188 sdata = vif_to_sdata(vif);
2189
2190 if (tim_offset)
2191 *tim_offset = 0;
2192 if (tim_length)
2193 *tim_length = 0;
2194
2195 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2196 ap = &sdata->u.ap;
2197 beacon = rcu_dereference(ap->beacon);
2198 if (ap && beacon) {
2199 /*
2200 * headroom, head length,
2201 * tail length and maximum TIM length
2202 */
2203 skb = dev_alloc_skb(local->tx_headroom +
2204 beacon->head_len +
2205 beacon->tail_len + 256);
2206 if (!skb)
2207 goto out;
2208
2209 skb_reserve(skb, local->tx_headroom);
2210 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2211 beacon->head_len);
2212
2213 /*
2214 * Not very nice, but we want to allow the driver to call
2215 * ieee80211_beacon_get() as a response to the set_tim()
2216 * callback. That, however, is already invoked under the
2217 * sta_lock to guarantee consistent and race-free update
2218 * of the tim bitmap in mac80211 and the driver.
2219 */
2220 if (local->tim_in_locked_section) {
2221 ieee80211_beacon_add_tim(ap, skb, beacon);
2222 } else {
2223 unsigned long flags;
2224
2225 spin_lock_irqsave(&local->sta_lock, flags);
2226 ieee80211_beacon_add_tim(ap, skb, beacon);
2227 spin_unlock_irqrestore(&local->sta_lock, flags);
2228 }
2229
2230 if (tim_offset)
2231 *tim_offset = beacon->head_len;
2232 if (tim_length)
2233 *tim_length = skb->len - beacon->head_len;
2234
2235 if (beacon->tail)
2236 memcpy(skb_put(skb, beacon->tail_len),
2237 beacon->tail, beacon->tail_len);
2238 } else
2239 goto out;
2240 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2241 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2242 struct ieee80211_hdr *hdr;
2243 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2244
2245 if (!presp)
2246 goto out;
2247
2248 skb = skb_copy(presp, GFP_ATOMIC);
2249 if (!skb)
2250 goto out;
2251
2252 hdr = (struct ieee80211_hdr *) skb->data;
2253 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2254 IEEE80211_STYPE_BEACON);
2255 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2256 struct ieee80211_mgmt *mgmt;
2257 u8 *pos;
2258
2259 /* headroom, head length, tail length and maximum TIM length */
2260 skb = dev_alloc_skb(local->tx_headroom + 400);
2261 if (!skb)
2262 goto out;
2263
2264 skb_reserve(skb, local->hw.extra_tx_headroom);
2265 mgmt = (struct ieee80211_mgmt *)
2266 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2267 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2268 mgmt->frame_control =
2269 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2270 memset(mgmt->da, 0xff, ETH_ALEN);
2271 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2272 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2273 mgmt->u.beacon.beacon_int =
2274 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2275 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2276
2277 pos = skb_put(skb, 2);
2278 *pos++ = WLAN_EID_SSID;
2279 *pos++ = 0x0;
2280
2281 mesh_mgmt_ies_add(skb, sdata);
2282 } else {
2283 WARN_ON(1);
2284 goto out;
2285 }
2286
2287 info = IEEE80211_SKB_CB(skb);
2288
2289 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2290 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2291 info->band = band;
2292
2293 memset(&txrc, 0, sizeof(txrc));
2294 txrc.hw = hw;
2295 txrc.sband = sband;
2296 txrc.bss_conf = &sdata->vif.bss_conf;
2297 txrc.skb = skb;
2298 txrc.reported_rate.idx = -1;
2299 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2300 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2301 txrc.max_rate_idx = -1;
2302 else
2303 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2304 txrc.ap = true;
2305 rate_control_get_rate(sdata, NULL, &txrc);
2306
2307 info->control.vif = vif;
2308
2309 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
2310 IEEE80211_TX_CTL_ASSIGN_SEQ |
2311 IEEE80211_TX_CTL_FIRST_FRAGMENT;
2312 out:
2313 rcu_read_unlock();
2314 return skb;
2315 }
2316 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2317
2318 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2319 struct ieee80211_vif *vif)
2320 {
2321 struct ieee80211_sub_if_data *sdata;
2322 struct ieee80211_if_managed *ifmgd;
2323 struct ieee80211_pspoll *pspoll;
2324 struct ieee80211_local *local;
2325 struct sk_buff *skb;
2326
2327 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2328 return NULL;
2329
2330 sdata = vif_to_sdata(vif);
2331 ifmgd = &sdata->u.mgd;
2332 local = sdata->local;
2333
2334 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2335 if (!skb) {
2336 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2337 "pspoll template\n", sdata->name);
2338 return NULL;
2339 }
2340 skb_reserve(skb, local->hw.extra_tx_headroom);
2341
2342 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2343 memset(pspoll, 0, sizeof(*pspoll));
2344 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2345 IEEE80211_STYPE_PSPOLL);
2346 pspoll->aid = cpu_to_le16(ifmgd->aid);
2347
2348 /* aid in PS-Poll has its two MSBs each set to 1 */
2349 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2350
2351 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2352 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2353
2354 return skb;
2355 }
2356 EXPORT_SYMBOL(ieee80211_pspoll_get);
2357
2358 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2359 struct ieee80211_vif *vif)
2360 {
2361 struct ieee80211_hdr_3addr *nullfunc;
2362 struct ieee80211_sub_if_data *sdata;
2363 struct ieee80211_if_managed *ifmgd;
2364 struct ieee80211_local *local;
2365 struct sk_buff *skb;
2366
2367 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2368 return NULL;
2369
2370 sdata = vif_to_sdata(vif);
2371 ifmgd = &sdata->u.mgd;
2372 local = sdata->local;
2373
2374 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2375 if (!skb) {
2376 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2377 "template\n", sdata->name);
2378 return NULL;
2379 }
2380 skb_reserve(skb, local->hw.extra_tx_headroom);
2381
2382 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2383 sizeof(*nullfunc));
2384 memset(nullfunc, 0, sizeof(*nullfunc));
2385 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2386 IEEE80211_STYPE_NULLFUNC |
2387 IEEE80211_FCTL_TODS);
2388 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2389 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2390 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2391
2392 return skb;
2393 }
2394 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2395
2396 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2397 struct ieee80211_vif *vif,
2398 const u8 *ssid, size_t ssid_len,
2399 const u8 *ie, size_t ie_len)
2400 {
2401 struct ieee80211_sub_if_data *sdata;
2402 struct ieee80211_local *local;
2403 struct ieee80211_hdr_3addr *hdr;
2404 struct sk_buff *skb;
2405 size_t ie_ssid_len;
2406 u8 *pos;
2407
2408 sdata = vif_to_sdata(vif);
2409 local = sdata->local;
2410 ie_ssid_len = 2 + ssid_len;
2411
2412 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2413 ie_ssid_len + ie_len);
2414 if (!skb) {
2415 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2416 "request template\n", sdata->name);
2417 return NULL;
2418 }
2419
2420 skb_reserve(skb, local->hw.extra_tx_headroom);
2421
2422 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2423 memset(hdr, 0, sizeof(*hdr));
2424 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2425 IEEE80211_STYPE_PROBE_REQ);
2426 memset(hdr->addr1, 0xff, ETH_ALEN);
2427 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2428 memset(hdr->addr3, 0xff, ETH_ALEN);
2429
2430 pos = skb_put(skb, ie_ssid_len);
2431 *pos++ = WLAN_EID_SSID;
2432 *pos++ = ssid_len;
2433 if (ssid)
2434 memcpy(pos, ssid, ssid_len);
2435 pos += ssid_len;
2436
2437 if (ie) {
2438 pos = skb_put(skb, ie_len);
2439 memcpy(pos, ie, ie_len);
2440 }
2441
2442 return skb;
2443 }
2444 EXPORT_SYMBOL(ieee80211_probereq_get);
2445
2446 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2447 const void *frame, size_t frame_len,
2448 const struct ieee80211_tx_info *frame_txctl,
2449 struct ieee80211_rts *rts)
2450 {
2451 const struct ieee80211_hdr *hdr = frame;
2452
2453 rts->frame_control =
2454 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2455 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2456 frame_txctl);
2457 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2458 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2459 }
2460 EXPORT_SYMBOL(ieee80211_rts_get);
2461
2462 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2463 const void *frame, size_t frame_len,
2464 const struct ieee80211_tx_info *frame_txctl,
2465 struct ieee80211_cts *cts)
2466 {
2467 const struct ieee80211_hdr *hdr = frame;
2468
2469 cts->frame_control =
2470 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2471 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2472 frame_len, frame_txctl);
2473 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2474 }
2475 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2476
2477 struct sk_buff *
2478 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2479 struct ieee80211_vif *vif)
2480 {
2481 struct ieee80211_local *local = hw_to_local(hw);
2482 struct sk_buff *skb = NULL;
2483 struct sta_info *sta;
2484 struct ieee80211_tx_data tx;
2485 struct ieee80211_sub_if_data *sdata;
2486 struct ieee80211_if_ap *bss = NULL;
2487 struct beacon_data *beacon;
2488 struct ieee80211_tx_info *info;
2489
2490 sdata = vif_to_sdata(vif);
2491 bss = &sdata->u.ap;
2492
2493 rcu_read_lock();
2494 beacon = rcu_dereference(bss->beacon);
2495
2496 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2497 goto out;
2498
2499 if (bss->dtim_count != 0)
2500 goto out; /* send buffered bc/mc only after DTIM beacon */
2501
2502 while (1) {
2503 skb = skb_dequeue(&bss->ps_bc_buf);
2504 if (!skb)
2505 goto out;
2506 local->total_ps_buffered--;
2507
2508 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2509 struct ieee80211_hdr *hdr =
2510 (struct ieee80211_hdr *) skb->data;
2511 /* more buffered multicast/broadcast frames ==> set
2512 * MoreData flag in IEEE 802.11 header to inform PS
2513 * STAs */
2514 hdr->frame_control |=
2515 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2516 }
2517
2518 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2519 break;
2520 dev_kfree_skb_any(skb);
2521 }
2522
2523 info = IEEE80211_SKB_CB(skb);
2524
2525 sta = tx.sta;
2526 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2527 tx.channel = local->hw.conf.channel;
2528 info->band = tx.channel->band;
2529
2530 if (invoke_tx_handlers(&tx))
2531 skb = NULL;
2532 out:
2533 rcu_read_unlock();
2534
2535 return skb;
2536 }
2537 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2538
2539 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2540 {
2541 skb_set_mac_header(skb, 0);
2542 skb_set_network_header(skb, 0);
2543 skb_set_transport_header(skb, 0);
2544
2545 /* send all internal mgmt frames on VO */
2546 skb_set_queue_mapping(skb, 0);
2547
2548 /*
2549 * The other path calling ieee80211_xmit is from the tasklet,
2550 * and while we can handle concurrent transmissions locking
2551 * requirements are that we do not come into tx with bhs on.
2552 */
2553 local_bh_disable();
2554 ieee80211_xmit(sdata, skb);
2555 local_bh_enable();
2556 }