TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 /* misc utils */
37
38 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
39 int next_frag_len)
40 {
41 int rate, mrate, erp, dur, i;
42 struct ieee80211_rate *txrate;
43 struct ieee80211_local *local = tx->local;
44 struct ieee80211_supported_band *sband;
45 struct ieee80211_hdr *hdr;
46 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
47
48 /* assume HW handles this */
49 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
50 return 0;
51
52 /* uh huh? */
53 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
54 return 0;
55
56 sband = local->hw.wiphy->bands[tx->channel->band];
57 txrate = &sband->bitrates[info->control.rates[0].idx];
58
59 erp = txrate->flags & IEEE80211_RATE_ERP_G;
60
61 /*
62 * data and mgmt (except PS Poll):
63 * - during CFP: 32768
64 * - during contention period:
65 * if addr1 is group address: 0
66 * if more fragments = 0 and addr1 is individual address: time to
67 * transmit one ACK plus SIFS
68 * if more fragments = 1 and addr1 is individual address: time to
69 * transmit next fragment plus 2 x ACK plus 3 x SIFS
70 *
71 * IEEE 802.11, 9.6:
72 * - control response frame (CTS or ACK) shall be transmitted using the
73 * same rate as the immediately previous frame in the frame exchange
74 * sequence, if this rate belongs to the PHY mandatory rates, or else
75 * at the highest possible rate belonging to the PHY rates in the
76 * BSSBasicRateSet
77 */
78 hdr = (struct ieee80211_hdr *)tx->skb->data;
79 if (ieee80211_is_ctl(hdr->frame_control)) {
80 /* TODO: These control frames are not currently sent by
81 * mac80211, but should they be implemented, this function
82 * needs to be updated to support duration field calculation.
83 *
84 * RTS: time needed to transmit pending data/mgmt frame plus
85 * one CTS frame plus one ACK frame plus 3 x SIFS
86 * CTS: duration of immediately previous RTS minus time
87 * required to transmit CTS and its SIFS
88 * ACK: 0 if immediately previous directed data/mgmt had
89 * more=0, with more=1 duration in ACK frame is duration
90 * from previous frame minus time needed to transmit ACK
91 * and its SIFS
92 * PS Poll: BIT(15) | BIT(14) | aid
93 */
94 return 0;
95 }
96
97 /* data/mgmt */
98 if (0 /* FIX: data/mgmt during CFP */)
99 return cpu_to_le16(32768);
100
101 if (group_addr) /* Group address as the destination - no ACK */
102 return 0;
103
104 /* Individual destination address:
105 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
106 * CTS and ACK frames shall be transmitted using the highest rate in
107 * basic rate set that is less than or equal to the rate of the
108 * immediately previous frame and that is using the same modulation
109 * (CCK or OFDM). If no basic rate set matches with these requirements,
110 * the highest mandatory rate of the PHY that is less than or equal to
111 * the rate of the previous frame is used.
112 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
113 */
114 rate = -1;
115 /* use lowest available if everything fails */
116 mrate = sband->bitrates[0].bitrate;
117 for (i = 0; i < sband->n_bitrates; i++) {
118 struct ieee80211_rate *r = &sband->bitrates[i];
119
120 if (r->bitrate > txrate->bitrate)
121 break;
122
123 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
124 rate = r->bitrate;
125
126 switch (sband->band) {
127 case IEEE80211_BAND_2GHZ: {
128 u32 flag;
129 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
130 flag = IEEE80211_RATE_MANDATORY_G;
131 else
132 flag = IEEE80211_RATE_MANDATORY_B;
133 if (r->flags & flag)
134 mrate = r->bitrate;
135 break;
136 }
137 case IEEE80211_BAND_5GHZ:
138 if (r->flags & IEEE80211_RATE_MANDATORY_A)
139 mrate = r->bitrate;
140 break;
141 case IEEE80211_NUM_BANDS:
142 WARN_ON(1);
143 break;
144 }
145 }
146 if (rate == -1) {
147 /* No matching basic rate found; use highest suitable mandatory
148 * PHY rate */
149 rate = mrate;
150 }
151
152 /* Time needed to transmit ACK
153 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
154 * to closest integer */
155
156 dur = ieee80211_frame_duration(local, 10, rate, erp,
157 tx->sdata->vif.bss_conf.use_short_preamble);
158
159 if (next_frag_len) {
160 /* Frame is fragmented: duration increases with time needed to
161 * transmit next fragment plus ACK and 2 x SIFS. */
162 dur *= 2; /* ACK + SIFS */
163 /* next fragment */
164 dur += ieee80211_frame_duration(local, next_frag_len,
165 txrate->bitrate, erp,
166 tx->sdata->vif.bss_conf.use_short_preamble);
167 }
168
169 return cpu_to_le16(dur);
170 }
171
172 static inline int is_ieee80211_device(struct ieee80211_local *local,
173 struct net_device *dev)
174 {
175 return local == wdev_priv(dev->ieee80211_ptr);
176 }
177
178 /* tx handlers */
179 static ieee80211_tx_result debug_noinline
180 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
181 {
182 struct ieee80211_local *local = tx->local;
183 struct ieee80211_if_managed *ifmgd;
184
185 /* driver doesn't support power save */
186 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
187 return TX_CONTINUE;
188
189 /* hardware does dynamic power save */
190 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
191 return TX_CONTINUE;
192
193 /* dynamic power save disabled */
194 if (local->hw.conf.dynamic_ps_timeout <= 0)
195 return TX_CONTINUE;
196
197 /* we are scanning, don't enable power save */
198 if (local->scanning)
199 return TX_CONTINUE;
200
201 if (!local->ps_sdata)
202 return TX_CONTINUE;
203
204 /* No point if we're going to suspend */
205 if (local->quiescing)
206 return TX_CONTINUE;
207
208 /* dynamic ps is supported only in managed mode */
209 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
210 return TX_CONTINUE;
211
212 ifmgd = &tx->sdata->u.mgd;
213
214 /*
215 * Don't wakeup from power save if u-apsd is enabled, voip ac has
216 * u-apsd enabled and the frame is in voip class. This effectively
217 * means that even if all access categories have u-apsd enabled, in
218 * practise u-apsd is only used with the voip ac. This is a
219 * workaround for the case when received voip class packets do not
220 * have correct qos tag for some reason, due the network or the
221 * peer application.
222 *
223 * Note: local->uapsd_queues access is racy here. If the value is
224 * changed via debugfs, user needs to reassociate manually to have
225 * everything in sync.
226 */
227 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
228 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
229 && skb_get_queue_mapping(tx->skb) == 0)
230 return TX_CONTINUE;
231
232 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
233 ieee80211_stop_queues_by_reason(&local->hw,
234 IEEE80211_QUEUE_STOP_REASON_PS);
235 ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED;
236 ieee80211_queue_work(&local->hw,
237 &local->dynamic_ps_disable_work);
238 }
239
240 mod_timer(&local->dynamic_ps_timer, jiffies +
241 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
242
243 return TX_CONTINUE;
244 }
245
246 static ieee80211_tx_result debug_noinline
247 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
248 {
249
250 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
251 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
252 u32 sta_flags;
253
254 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
255 return TX_CONTINUE;
256
257 if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) &&
258 test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) &&
259 !ieee80211_is_probe_req(hdr->frame_control) &&
260 !ieee80211_is_nullfunc(hdr->frame_control))
261 /*
262 * When software scanning only nullfunc frames (to notify
263 * the sleep state to the AP) and probe requests (for the
264 * active scan) are allowed, all other frames should not be
265 * sent and we should not get here, but if we do
266 * nonetheless, drop them to avoid sending them
267 * off-channel. See the link below and
268 * ieee80211_start_scan() for more.
269 *
270 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
271 */
272 return TX_DROP;
273
274 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS)
275 return TX_CONTINUE;
276
277 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
278 return TX_CONTINUE;
279
280 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
281 return TX_CONTINUE;
282
283 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
284
285 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
286 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
287 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
288 ieee80211_is_data(hdr->frame_control))) {
289 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
290 printk(KERN_DEBUG "%s: dropped data frame to not "
291 "associated station %pM\n",
292 tx->sdata->name, hdr->addr1);
293 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
294 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
295 return TX_DROP;
296 }
297 } else {
298 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
299 tx->local->num_sta == 0 &&
300 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
301 /*
302 * No associated STAs - no need to send multicast
303 * frames.
304 */
305 return TX_DROP;
306 }
307 return TX_CONTINUE;
308 }
309
310 return TX_CONTINUE;
311 }
312
313 /* This function is called whenever the AP is about to exceed the maximum limit
314 * of buffered frames for power saving STAs. This situation should not really
315 * happen often during normal operation, so dropping the oldest buffered packet
316 * from each queue should be OK to make some room for new frames. */
317 static void purge_old_ps_buffers(struct ieee80211_local *local)
318 {
319 int total = 0, purged = 0;
320 struct sk_buff *skb;
321 struct ieee80211_sub_if_data *sdata;
322 struct sta_info *sta;
323
324 /*
325 * virtual interfaces are protected by RCU
326 */
327 rcu_read_lock();
328
329 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
330 struct ieee80211_if_ap *ap;
331 if (sdata->vif.type != NL80211_IFTYPE_AP)
332 continue;
333 ap = &sdata->u.ap;
334 skb = skb_dequeue(&ap->ps_bc_buf);
335 if (skb) {
336 purged++;
337 dev_kfree_skb(skb);
338 }
339 total += skb_queue_len(&ap->ps_bc_buf);
340 }
341
342 list_for_each_entry_rcu(sta, &local->sta_list, list) {
343 skb = skb_dequeue(&sta->ps_tx_buf);
344 if (skb) {
345 purged++;
346 dev_kfree_skb(skb);
347 }
348 total += skb_queue_len(&sta->ps_tx_buf);
349 }
350
351 rcu_read_unlock();
352
353 local->total_ps_buffered = total;
354 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
355 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n",
356 purged);
357 #endif
358 }
359
360 static ieee80211_tx_result
361 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
362 {
363 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
364 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
365
366 /*
367 * broadcast/multicast frame
368 *
369 * If any of the associated stations is in power save mode,
370 * the frame is buffered to be sent after DTIM beacon frame.
371 * This is done either by the hardware or us.
372 */
373
374 /* powersaving STAs only in AP/VLAN mode */
375 if (!tx->sdata->bss)
376 return TX_CONTINUE;
377
378 /* no buffering for ordered frames */
379 if (ieee80211_has_order(hdr->frame_control))
380 return TX_CONTINUE;
381
382 /* no stations in PS mode */
383 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
384 return TX_CONTINUE;
385
386 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
387
388 /* device releases frame after DTIM beacon */
389 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
390 return TX_CONTINUE;
391
392 /* buffered in mac80211 */
393 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
394 purge_old_ps_buffers(tx->local);
395
396 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
397 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
398 if (net_ratelimit())
399 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
400 tx->sdata->name);
401 #endif
402 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
403 } else
404 tx->local->total_ps_buffered++;
405
406 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
407
408 return TX_QUEUED;
409 }
410
411 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
412 struct sk_buff *skb)
413 {
414 if (!ieee80211_is_mgmt(fc))
415 return 0;
416
417 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
418 return 0;
419
420 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
421 skb->data))
422 return 0;
423
424 return 1;
425 }
426
427 static ieee80211_tx_result
428 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
429 {
430 struct sta_info *sta = tx->sta;
431 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
433 struct ieee80211_local *local = tx->local;
434 u32 staflags;
435
436 if (unlikely(!sta ||
437 ieee80211_is_probe_resp(hdr->frame_control) ||
438 ieee80211_is_auth(hdr->frame_control) ||
439 ieee80211_is_assoc_resp(hdr->frame_control) ||
440 ieee80211_is_reassoc_resp(hdr->frame_control)))
441 return TX_CONTINUE;
442
443 staflags = get_sta_flags(sta);
444
445 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
446 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
447 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
448 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
449 "before %d)\n",
450 sta->sta.addr, sta->sta.aid,
451 skb_queue_len(&sta->ps_tx_buf));
452 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
453 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
454 purge_old_ps_buffers(tx->local);
455 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
456 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
457 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
458 if (net_ratelimit()) {
459 printk(KERN_DEBUG "%s: STA %pM TX "
460 "buffer full - dropping oldest frame\n",
461 tx->sdata->name, sta->sta.addr);
462 }
463 #endif
464 dev_kfree_skb(old);
465 } else
466 tx->local->total_ps_buffered++;
467
468 /*
469 * Queue frame to be sent after STA wakes up/polls,
470 * but don't set the TIM bit if the driver is blocking
471 * wakeup or poll response transmissions anyway.
472 */
473 if (skb_queue_empty(&sta->ps_tx_buf) &&
474 !(staflags & WLAN_STA_PS_DRIVER))
475 sta_info_set_tim_bit(sta);
476
477 info->control.jiffies = jiffies;
478 info->control.vif = &tx->sdata->vif;
479 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
480 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
481
482 if (!timer_pending(&local->sta_cleanup))
483 mod_timer(&local->sta_cleanup,
484 round_jiffies(jiffies +
485 STA_INFO_CLEANUP_INTERVAL));
486
487 return TX_QUEUED;
488 }
489 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
490 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
491 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
492 "set -> send frame\n", tx->sdata->name,
493 sta->sta.addr);
494 }
495 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
496
497 return TX_CONTINUE;
498 }
499
500 static ieee80211_tx_result debug_noinline
501 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
502 {
503 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
504 return TX_CONTINUE;
505
506 if (tx->flags & IEEE80211_TX_UNICAST)
507 return ieee80211_tx_h_unicast_ps_buf(tx);
508 else
509 return ieee80211_tx_h_multicast_ps_buf(tx);
510 }
511
512 static ieee80211_tx_result debug_noinline
513 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx)
514 {
515 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
516
517 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol &&
518 tx->sdata->control_port_no_encrypt))
519 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
520
521 return TX_CONTINUE;
522 }
523
524 static ieee80211_tx_result debug_noinline
525 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
526 {
527 struct ieee80211_key *key = NULL;
528 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
529 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
530
531 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
532 tx->key = NULL;
533 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk)))
534 tx->key = key;
535 else if (ieee80211_is_mgmt(hdr->frame_control) &&
536 is_multicast_ether_addr(hdr->addr1) &&
537 ieee80211_is_robust_mgmt_frame(hdr) &&
538 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
539 tx->key = key;
540 else if (is_multicast_ether_addr(hdr->addr1) &&
541 (key = rcu_dereference(tx->sdata->default_multicast_key)))
542 tx->key = key;
543 else if (!is_multicast_ether_addr(hdr->addr1) &&
544 (key = rcu_dereference(tx->sdata->default_unicast_key)))
545 tx->key = key;
546 else if (tx->sdata->drop_unencrypted &&
547 (tx->skb->protocol != tx->sdata->control_port_protocol) &&
548 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
549 (!ieee80211_is_robust_mgmt_frame(hdr) ||
550 (ieee80211_is_action(hdr->frame_control) &&
551 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
552 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
553 return TX_DROP;
554 } else
555 tx->key = NULL;
556
557 if (tx->key) {
558 bool skip_hw = false;
559
560 tx->key->tx_rx_count++;
561 /* TODO: add threshold stuff again */
562
563 switch (tx->key->conf.cipher) {
564 case WLAN_CIPHER_SUITE_WEP40:
565 case WLAN_CIPHER_SUITE_WEP104:
566 if (ieee80211_is_auth(hdr->frame_control))
567 break;
568 case WLAN_CIPHER_SUITE_TKIP:
569 if (!ieee80211_is_data_present(hdr->frame_control))
570 tx->key = NULL;
571 break;
572 case WLAN_CIPHER_SUITE_CCMP:
573 if (!ieee80211_is_data_present(hdr->frame_control) &&
574 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
575 tx->skb))
576 tx->key = NULL;
577 else
578 skip_hw = (tx->key->conf.flags &
579 IEEE80211_KEY_FLAG_SW_MGMT) &&
580 ieee80211_is_mgmt(hdr->frame_control);
581 break;
582 case WLAN_CIPHER_SUITE_AES_CMAC:
583 if (!ieee80211_is_mgmt(hdr->frame_control))
584 tx->key = NULL;
585 break;
586 }
587
588 if (!skip_hw && tx->key &&
589 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
590 info->control.hw_key = &tx->key->conf;
591 }
592
593 return TX_CONTINUE;
594 }
595
596 static ieee80211_tx_result debug_noinline
597 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
598 {
599 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
600 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
601 struct ieee80211_supported_band *sband;
602 struct ieee80211_rate *rate;
603 int i;
604 u32 len;
605 bool inval = false, rts = false, short_preamble = false;
606 struct ieee80211_tx_rate_control txrc;
607 u32 sta_flags;
608
609 memset(&txrc, 0, sizeof(txrc));
610
611 sband = tx->local->hw.wiphy->bands[tx->channel->band];
612
613 len = min_t(u32, tx->skb->len + FCS_LEN,
614 tx->local->hw.wiphy->frag_threshold);
615
616 /* set up the tx rate control struct we give the RC algo */
617 txrc.hw = local_to_hw(tx->local);
618 txrc.sband = sband;
619 txrc.bss_conf = &tx->sdata->vif.bss_conf;
620 txrc.skb = tx->skb;
621 txrc.reported_rate.idx = -1;
622 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
623 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
624 txrc.max_rate_idx = -1;
625 else
626 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
627 txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP ||
628 tx->sdata->vif.type == NL80211_IFTYPE_ADHOC);
629
630 /* set up RTS protection if desired */
631 if (len > tx->local->hw.wiphy->rts_threshold) {
632 txrc.rts = rts = true;
633 }
634
635 /*
636 * Use short preamble if the BSS can handle it, but not for
637 * management frames unless we know the receiver can handle
638 * that -- the management frame might be to a station that
639 * just wants a probe response.
640 */
641 if (tx->sdata->vif.bss_conf.use_short_preamble &&
642 (ieee80211_is_data(hdr->frame_control) ||
643 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
644 txrc.short_preamble = short_preamble = true;
645
646 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
647
648 /*
649 * Lets not bother rate control if we're associated and cannot
650 * talk to the sta. This should not happen.
651 */
652 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
653 (sta_flags & WLAN_STA_ASSOC) &&
654 !rate_usable_index_exists(sband, &tx->sta->sta),
655 "%s: Dropped data frame as no usable bitrate found while "
656 "scanning and associated. Target station: "
657 "%pM on %d GHz band\n",
658 tx->sdata->name, hdr->addr1,
659 tx->channel->band ? 5 : 2))
660 return TX_DROP;
661
662 /*
663 * If we're associated with the sta at this point we know we can at
664 * least send the frame at the lowest bit rate.
665 */
666 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
667
668 if (unlikely(info->control.rates[0].idx < 0))
669 return TX_DROP;
670
671 if (txrc.reported_rate.idx < 0) {
672 txrc.reported_rate = info->control.rates[0];
673 if (tx->sta && ieee80211_is_data(hdr->frame_control))
674 tx->sta->last_tx_rate = txrc.reported_rate;
675 } else if (tx->sta)
676 tx->sta->last_tx_rate = txrc.reported_rate;
677
678 if (unlikely(!info->control.rates[0].count))
679 info->control.rates[0].count = 1;
680
681 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
682 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
683 info->control.rates[0].count = 1;
684
685 if (is_multicast_ether_addr(hdr->addr1)) {
686 /*
687 * XXX: verify the rate is in the basic rateset
688 */
689 return TX_CONTINUE;
690 }
691
692 /*
693 * set up the RTS/CTS rate as the fastest basic rate
694 * that is not faster than the data rate
695 *
696 * XXX: Should this check all retry rates?
697 */
698 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
699 s8 baserate = 0;
700
701 rate = &sband->bitrates[info->control.rates[0].idx];
702
703 for (i = 0; i < sband->n_bitrates; i++) {
704 /* must be a basic rate */
705 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
706 continue;
707 /* must not be faster than the data rate */
708 if (sband->bitrates[i].bitrate > rate->bitrate)
709 continue;
710 /* maximum */
711 if (sband->bitrates[baserate].bitrate <
712 sband->bitrates[i].bitrate)
713 baserate = i;
714 }
715
716 info->control.rts_cts_rate_idx = baserate;
717 }
718
719 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
720 /*
721 * make sure there's no valid rate following
722 * an invalid one, just in case drivers don't
723 * take the API seriously to stop at -1.
724 */
725 if (inval) {
726 info->control.rates[i].idx = -1;
727 continue;
728 }
729 if (info->control.rates[i].idx < 0) {
730 inval = true;
731 continue;
732 }
733
734 /*
735 * For now assume MCS is already set up correctly, this
736 * needs to be fixed.
737 */
738 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
739 WARN_ON(info->control.rates[i].idx > 76);
740 continue;
741 }
742
743 /* set up RTS protection if desired */
744 if (rts)
745 info->control.rates[i].flags |=
746 IEEE80211_TX_RC_USE_RTS_CTS;
747
748 /* RC is busted */
749 if (WARN_ON_ONCE(info->control.rates[i].idx >=
750 sband->n_bitrates)) {
751 info->control.rates[i].idx = -1;
752 continue;
753 }
754
755 rate = &sband->bitrates[info->control.rates[i].idx];
756
757 /* set up short preamble */
758 if (short_preamble &&
759 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
760 info->control.rates[i].flags |=
761 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
762
763 /* set up G protection */
764 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
765 rate->flags & IEEE80211_RATE_ERP_G)
766 info->control.rates[i].flags |=
767 IEEE80211_TX_RC_USE_CTS_PROTECT;
768 }
769
770 return TX_CONTINUE;
771 }
772
773 static ieee80211_tx_result debug_noinline
774 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
775 {
776 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
777 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
778 u16 *seq;
779 u8 *qc;
780 int tid;
781
782 /*
783 * Packet injection may want to control the sequence
784 * number, if we have no matching interface then we
785 * neither assign one ourselves nor ask the driver to.
786 */
787 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
788 return TX_CONTINUE;
789
790 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
791 return TX_CONTINUE;
792
793 if (ieee80211_hdrlen(hdr->frame_control) < 24)
794 return TX_CONTINUE;
795
796 /*
797 * Anything but QoS data that has a sequence number field
798 * (is long enough) gets a sequence number from the global
799 * counter.
800 */
801 if (!ieee80211_is_data_qos(hdr->frame_control)) {
802 /* driver should assign sequence number */
803 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
804 /* for pure STA mode without beacons, we can do it */
805 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
806 tx->sdata->sequence_number += 0x10;
807 return TX_CONTINUE;
808 }
809
810 /*
811 * This should be true for injected/management frames only, for
812 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
813 * above since they are not QoS-data frames.
814 */
815 if (!tx->sta)
816 return TX_CONTINUE;
817
818 /* include per-STA, per-TID sequence counter */
819
820 qc = ieee80211_get_qos_ctl(hdr);
821 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
822 seq = &tx->sta->tid_seq[tid];
823
824 hdr->seq_ctrl = cpu_to_le16(*seq);
825
826 /* Increase the sequence number. */
827 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
828
829 return TX_CONTINUE;
830 }
831
832 static int ieee80211_fragment(struct ieee80211_local *local,
833 struct sk_buff *skb, int hdrlen,
834 int frag_threshold)
835 {
836 struct sk_buff *tail = skb, *tmp;
837 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
838 int pos = hdrlen + per_fragm;
839 int rem = skb->len - hdrlen - per_fragm;
840
841 if (WARN_ON(rem < 0))
842 return -EINVAL;
843
844 while (rem) {
845 int fraglen = per_fragm;
846
847 if (fraglen > rem)
848 fraglen = rem;
849 rem -= fraglen;
850 tmp = dev_alloc_skb(local->tx_headroom +
851 frag_threshold +
852 IEEE80211_ENCRYPT_HEADROOM +
853 IEEE80211_ENCRYPT_TAILROOM);
854 if (!tmp)
855 return -ENOMEM;
856 tail->next = tmp;
857 tail = tmp;
858 skb_reserve(tmp, local->tx_headroom +
859 IEEE80211_ENCRYPT_HEADROOM);
860 /* copy control information */
861 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
862 skb_copy_queue_mapping(tmp, skb);
863 tmp->priority = skb->priority;
864 tmp->dev = skb->dev;
865
866 /* copy header and data */
867 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
868 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
869
870 pos += fraglen;
871 }
872
873 skb->len = hdrlen + per_fragm;
874 return 0;
875 }
876
877 static ieee80211_tx_result debug_noinline
878 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
879 {
880 struct sk_buff *skb = tx->skb;
881 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
882 struct ieee80211_hdr *hdr = (void *)skb->data;
883 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
884 int hdrlen;
885 int fragnum;
886
887 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
888 return TX_CONTINUE;
889
890 /*
891 * Warn when submitting a fragmented A-MPDU frame and drop it.
892 * This scenario is handled in ieee80211_tx_prepare but extra
893 * caution taken here as fragmented ampdu may cause Tx stop.
894 */
895 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
896 return TX_DROP;
897
898 hdrlen = ieee80211_hdrlen(hdr->frame_control);
899
900 /* internal error, why is TX_FRAGMENTED set? */
901 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
902 return TX_DROP;
903
904 /*
905 * Now fragment the frame. This will allocate all the fragments and
906 * chain them (using skb as the first fragment) to skb->next.
907 * During transmission, we will remove the successfully transmitted
908 * fragments from this list. When the low-level driver rejects one
909 * of the fragments then we will simply pretend to accept the skb
910 * but store it away as pending.
911 */
912 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
913 return TX_DROP;
914
915 /* update duration/seq/flags of fragments */
916 fragnum = 0;
917 do {
918 int next_len;
919 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
920
921 hdr = (void *)skb->data;
922 info = IEEE80211_SKB_CB(skb);
923
924 if (skb->next) {
925 hdr->frame_control |= morefrags;
926 next_len = skb->next->len;
927 /*
928 * No multi-rate retries for fragmented frames, that
929 * would completely throw off the NAV at other STAs.
930 */
931 info->control.rates[1].idx = -1;
932 info->control.rates[2].idx = -1;
933 info->control.rates[3].idx = -1;
934 info->control.rates[4].idx = -1;
935 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
936 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
937 } else {
938 hdr->frame_control &= ~morefrags;
939 next_len = 0;
940 }
941 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
942 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
943 fragnum++;
944 } while ((skb = skb->next));
945
946 return TX_CONTINUE;
947 }
948
949 static ieee80211_tx_result debug_noinline
950 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
951 {
952 struct sk_buff *skb = tx->skb;
953
954 if (!tx->sta)
955 return TX_CONTINUE;
956
957 tx->sta->tx_packets++;
958 do {
959 tx->sta->tx_fragments++;
960 tx->sta->tx_bytes += skb->len;
961 } while ((skb = skb->next));
962
963 return TX_CONTINUE;
964 }
965
966 static ieee80211_tx_result debug_noinline
967 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
968 {
969 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
970
971 if (!tx->key)
972 return TX_CONTINUE;
973
974 switch (tx->key->conf.cipher) {
975 case WLAN_CIPHER_SUITE_WEP40:
976 case WLAN_CIPHER_SUITE_WEP104:
977 return ieee80211_crypto_wep_encrypt(tx);
978 case WLAN_CIPHER_SUITE_TKIP:
979 return ieee80211_crypto_tkip_encrypt(tx);
980 case WLAN_CIPHER_SUITE_CCMP:
981 return ieee80211_crypto_ccmp_encrypt(tx);
982 case WLAN_CIPHER_SUITE_AES_CMAC:
983 return ieee80211_crypto_aes_cmac_encrypt(tx);
984 default:
985 /* handle hw-only algorithm */
986 if (info->control.hw_key) {
987 ieee80211_tx_set_protected(tx);
988 return TX_CONTINUE;
989 }
990 break;
991
992 }
993
994 return TX_DROP;
995 }
996
997 static ieee80211_tx_result debug_noinline
998 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
999 {
1000 struct sk_buff *skb = tx->skb;
1001 struct ieee80211_hdr *hdr;
1002 int next_len;
1003 bool group_addr;
1004
1005 do {
1006 hdr = (void *) skb->data;
1007 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
1008 break; /* must not overwrite AID */
1009 next_len = skb->next ? skb->next->len : 0;
1010 group_addr = is_multicast_ether_addr(hdr->addr1);
1011
1012 hdr->duration_id =
1013 ieee80211_duration(tx, group_addr, next_len);
1014 } while ((skb = skb->next));
1015
1016 return TX_CONTINUE;
1017 }
1018
1019 /* actual transmit path */
1020
1021 /*
1022 * deal with packet injection down monitor interface
1023 * with Radiotap Header -- only called for monitor mode interface
1024 */
1025 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
1026 struct sk_buff *skb)
1027 {
1028 /*
1029 * this is the moment to interpret and discard the radiotap header that
1030 * must be at the start of the packet injected in Monitor mode
1031 *
1032 * Need to take some care with endian-ness since radiotap
1033 * args are little-endian
1034 */
1035
1036 struct ieee80211_radiotap_iterator iterator;
1037 struct ieee80211_radiotap_header *rthdr =
1038 (struct ieee80211_radiotap_header *) skb->data;
1039 struct ieee80211_supported_band *sband;
1040 bool hw_frag;
1041 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1042 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
1043 NULL);
1044
1045 sband = tx->local->hw.wiphy->bands[tx->channel->band];
1046
1047 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1048 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1049
1050 /* packet is fragmented in HW if we have a non-NULL driver callback */
1051 hw_frag = (tx->local->ops->set_frag_threshold != NULL);
1052
1053 /*
1054 * for every radiotap entry that is present
1055 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1056 * entries present, or -EINVAL on error)
1057 */
1058
1059 while (!ret) {
1060 ret = ieee80211_radiotap_iterator_next(&iterator);
1061
1062 if (ret)
1063 continue;
1064
1065 /* see if this argument is something we can use */
1066 switch (iterator.this_arg_index) {
1067 /*
1068 * You must take care when dereferencing iterator.this_arg
1069 * for multibyte types... the pointer is not aligned. Use
1070 * get_unaligned((type *)iterator.this_arg) to dereference
1071 * iterator.this_arg for type "type" safely on all arches.
1072 */
1073 case IEEE80211_RADIOTAP_FLAGS:
1074 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1075 /*
1076 * this indicates that the skb we have been
1077 * handed has the 32-bit FCS CRC at the end...
1078 * we should react to that by snipping it off
1079 * because it will be recomputed and added
1080 * on transmission
1081 */
1082 if (skb->len < (iterator._max_length + FCS_LEN))
1083 return false;
1084
1085 skb_trim(skb, skb->len - FCS_LEN);
1086 }
1087 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1088 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1089 if ((*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) &&
1090 !hw_frag)
1091 tx->flags |= IEEE80211_TX_FRAGMENTED;
1092 break;
1093
1094 /*
1095 * Please update the file
1096 * Documentation/networking/mac80211-injection.txt
1097 * when parsing new fields here.
1098 */
1099
1100 default:
1101 break;
1102 }
1103 }
1104
1105 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1106 return false;
1107
1108 /*
1109 * remove the radiotap header
1110 * iterator->_max_length was sanity-checked against
1111 * skb->len by iterator init
1112 */
1113 skb_pull(skb, iterator._max_length);
1114
1115 return true;
1116 }
1117
1118 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
1119 struct sk_buff *skb,
1120 struct ieee80211_tx_info *info,
1121 struct tid_ampdu_tx *tid_tx,
1122 int tid)
1123 {
1124 bool queued = false;
1125
1126 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1127 info->flags |= IEEE80211_TX_CTL_AMPDU;
1128 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
1129 /*
1130 * nothing -- this aggregation session is being started
1131 * but that might still fail with the driver
1132 */
1133 } else {
1134 spin_lock(&tx->sta->lock);
1135 /*
1136 * Need to re-check now, because we may get here
1137 *
1138 * 1) in the window during which the setup is actually
1139 * already done, but not marked yet because not all
1140 * packets are spliced over to the driver pending
1141 * queue yet -- if this happened we acquire the lock
1142 * either before or after the splice happens, but
1143 * need to recheck which of these cases happened.
1144 *
1145 * 2) during session teardown, if the OPERATIONAL bit
1146 * was cleared due to the teardown but the pointer
1147 * hasn't been assigned NULL yet (or we loaded it
1148 * before it was assigned) -- in this case it may
1149 * now be NULL which means we should just let the
1150 * packet pass through because splicing the frames
1151 * back is already done.
1152 */
1153 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1154
1155 if (!tid_tx) {
1156 /* do nothing, let packet pass through */
1157 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1158 info->flags |= IEEE80211_TX_CTL_AMPDU;
1159 } else {
1160 queued = true;
1161 info->control.vif = &tx->sdata->vif;
1162 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1163 __skb_queue_tail(&tid_tx->pending, skb);
1164 }
1165 spin_unlock(&tx->sta->lock);
1166 }
1167
1168 return queued;
1169 }
1170
1171 /*
1172 * initialises @tx
1173 */
1174 static ieee80211_tx_result
1175 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1176 struct ieee80211_tx_data *tx,
1177 struct sk_buff *skb)
1178 {
1179 struct ieee80211_local *local = sdata->local;
1180 struct ieee80211_hdr *hdr;
1181 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1182 int hdrlen, tid;
1183 u8 *qc;
1184
1185 memset(tx, 0, sizeof(*tx));
1186 tx->skb = skb;
1187 tx->local = local;
1188 tx->sdata = sdata;
1189 tx->channel = local->hw.conf.channel;
1190 /*
1191 * Set this flag (used below to indicate "automatic fragmentation"),
1192 * it will be cleared/left by radiotap as desired.
1193 * Only valid when fragmentation is done by the stack.
1194 */
1195 if (!local->ops->set_frag_threshold)
1196 tx->flags |= IEEE80211_TX_FRAGMENTED;
1197
1198 /* process and remove the injection radiotap header */
1199 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1200 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1201 return TX_DROP;
1202
1203 /*
1204 * __ieee80211_parse_tx_radiotap has now removed
1205 * the radiotap header that was present and pre-filled
1206 * 'tx' with tx control information.
1207 */
1208 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1209 }
1210
1211 /*
1212 * If this flag is set to true anywhere, and we get here,
1213 * we are doing the needed processing, so remove the flag
1214 * now.
1215 */
1216 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1217
1218 hdr = (struct ieee80211_hdr *) skb->data;
1219
1220 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1221 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1222 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1223 return TX_DROP;
1224 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1225 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1226 }
1227 if (!tx->sta)
1228 tx->sta = sta_info_get(sdata, hdr->addr1);
1229
1230 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1231 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1232 struct tid_ampdu_tx *tid_tx;
1233
1234 qc = ieee80211_get_qos_ctl(hdr);
1235 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1236
1237 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
1238 if (tid_tx) {
1239 bool queued;
1240
1241 queued = ieee80211_tx_prep_agg(tx, skb, info,
1242 tid_tx, tid);
1243
1244 if (unlikely(queued))
1245 return TX_QUEUED;
1246 }
1247 }
1248
1249 if (is_multicast_ether_addr(hdr->addr1)) {
1250 tx->flags &= ~IEEE80211_TX_UNICAST;
1251 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1252 } else {
1253 tx->flags |= IEEE80211_TX_UNICAST;
1254 if (unlikely(local->wifi_wme_noack_test))
1255 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1256 else
1257 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1258 }
1259
1260 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1261 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1262 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1263 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1264 tx->flags |= IEEE80211_TX_FRAGMENTED;
1265 else
1266 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1267 }
1268
1269 if (!tx->sta)
1270 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1271 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1272 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1273
1274 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1275 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1276 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1277 tx->ethertype = (pos[0] << 8) | pos[1];
1278 }
1279 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1280
1281 return TX_CONTINUE;
1282 }
1283
1284 /*
1285 * Returns false if the frame couldn't be transmitted but was queued instead.
1286 */
1287 static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff **skbp,
1288 struct sta_info *sta, bool txpending)
1289 {
1290 struct sk_buff *skb = *skbp, *next;
1291 struct ieee80211_tx_info *info;
1292 struct ieee80211_sub_if_data *sdata;
1293 unsigned long flags;
1294 int len;
1295 bool fragm = false;
1296
1297 while (skb) {
1298 int q = skb_get_queue_mapping(skb);
1299 __le16 fc;
1300
1301 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1302 if (local->queue_stop_reasons[q] ||
1303 (!txpending && !skb_queue_empty(&local->pending[q]))) {
1304 /*
1305 * Since queue is stopped, queue up frames for later
1306 * transmission from the tx-pending tasklet when the
1307 * queue is woken again.
1308 */
1309
1310 do {
1311 next = skb->next;
1312 skb->next = NULL;
1313 /*
1314 * NB: If txpending is true, next must already
1315 * be NULL since we must've gone through this
1316 * loop before already; therefore we can just
1317 * queue the frame to the head without worrying
1318 * about reordering of fragments.
1319 */
1320 if (unlikely(txpending))
1321 __skb_queue_head(&local->pending[q],
1322 skb);
1323 else
1324 __skb_queue_tail(&local->pending[q],
1325 skb);
1326 } while ((skb = next));
1327
1328 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1329 flags);
1330 return false;
1331 }
1332 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1333
1334 info = IEEE80211_SKB_CB(skb);
1335
1336 if (fragm)
1337 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1338 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1339
1340 next = skb->next;
1341 len = skb->len;
1342
1343 if (next)
1344 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1345
1346 sdata = vif_to_sdata(info->control.vif);
1347
1348 switch (sdata->vif.type) {
1349 case NL80211_IFTYPE_MONITOR:
1350 info->control.vif = NULL;
1351 break;
1352 case NL80211_IFTYPE_AP_VLAN:
1353 info->control.vif = &container_of(sdata->bss,
1354 struct ieee80211_sub_if_data, u.ap)->vif;
1355 break;
1356 default:
1357 /* keep */
1358 break;
1359 }
1360
1361 if (sta && sta->uploaded)
1362 info->control.sta = &sta->sta;
1363 else
1364 info->control.sta = NULL;
1365
1366 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
1367 drv_tx(local, skb);
1368
1369 ieee80211_tpt_led_trig_tx(local, fc, len);
1370 *skbp = skb = next;
1371 ieee80211_led_tx(local, 1);
1372 fragm = true;
1373 }
1374
1375 return true;
1376 }
1377
1378 /*
1379 * Invoke TX handlers, return 0 on success and non-zero if the
1380 * frame was dropped or queued.
1381 */
1382 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1383 {
1384 struct sk_buff *skb = tx->skb;
1385 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1386 ieee80211_tx_result res = TX_DROP;
1387
1388 #define CALL_TXH(txh) \
1389 do { \
1390 res = txh(tx); \
1391 if (res != TX_CONTINUE) \
1392 goto txh_done; \
1393 } while (0)
1394
1395 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1396 CALL_TXH(ieee80211_tx_h_check_assoc);
1397 CALL_TXH(ieee80211_tx_h_ps_buf);
1398 CALL_TXH(ieee80211_tx_h_check_control_port_protocol);
1399 CALL_TXH(ieee80211_tx_h_select_key);
1400 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1401 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1402
1403 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1404 goto txh_done;
1405
1406 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1407 CALL_TXH(ieee80211_tx_h_sequence);
1408 CALL_TXH(ieee80211_tx_h_fragment);
1409 /* handlers after fragment must be aware of tx info fragmentation! */
1410 CALL_TXH(ieee80211_tx_h_stats);
1411 CALL_TXH(ieee80211_tx_h_encrypt);
1412 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1413 CALL_TXH(ieee80211_tx_h_calculate_duration);
1414 #undef CALL_TXH
1415
1416 txh_done:
1417 if (unlikely(res == TX_DROP)) {
1418 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1419 while (skb) {
1420 struct sk_buff *next;
1421
1422 next = skb->next;
1423 dev_kfree_skb(skb);
1424 skb = next;
1425 }
1426 return -1;
1427 } else if (unlikely(res == TX_QUEUED)) {
1428 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1429 return -1;
1430 }
1431
1432 return 0;
1433 }
1434
1435 /*
1436 * Returns false if the frame couldn't be transmitted but was queued instead.
1437 */
1438 static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1439 struct sk_buff *skb, bool txpending)
1440 {
1441 struct ieee80211_local *local = sdata->local;
1442 struct ieee80211_tx_data tx;
1443 ieee80211_tx_result res_prepare;
1444 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1445 u16 queue;
1446 bool result = true;
1447
1448 queue = skb_get_queue_mapping(skb);
1449
1450 if (unlikely(skb->len < 10)) {
1451 dev_kfree_skb(skb);
1452 return true;
1453 }
1454
1455 rcu_read_lock();
1456
1457 /* initialises tx */
1458 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1459
1460 if (unlikely(res_prepare == TX_DROP)) {
1461 dev_kfree_skb(skb);
1462 goto out;
1463 } else if (unlikely(res_prepare == TX_QUEUED)) {
1464 goto out;
1465 }
1466
1467 tx.channel = local->hw.conf.channel;
1468 info->band = tx.channel->band;
1469
1470 if (!invoke_tx_handlers(&tx))
1471 result = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1472 out:
1473 rcu_read_unlock();
1474 return result;
1475 }
1476
1477 /* device xmit handlers */
1478
1479 static int ieee80211_skb_resize(struct ieee80211_local *local,
1480 struct sk_buff *skb,
1481 int head_need, bool may_encrypt)
1482 {
1483 int tail_need = 0;
1484
1485 /*
1486 * This could be optimised, devices that do full hardware
1487 * crypto (including TKIP MMIC) need no tailroom... But we
1488 * have no drivers for such devices currently.
1489 */
1490 if (may_encrypt) {
1491 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1492 tail_need -= skb_tailroom(skb);
1493 tail_need = max_t(int, tail_need, 0);
1494 }
1495
1496 if (head_need || tail_need) {
1497 /* Sorry. Can't account for this any more */
1498 skb_orphan(skb);
1499 }
1500
1501 if (skb_cloned(skb))
1502 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1503 else if (head_need || tail_need)
1504 I802_DEBUG_INC(local->tx_expand_skb_head);
1505 else
1506 return 0;
1507
1508 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1509 wiphy_debug(local->hw.wiphy,
1510 "failed to reallocate TX buffer\n");
1511 return -ENOMEM;
1512 }
1513
1514 /* update truesize too */
1515 skb->truesize += head_need + tail_need;
1516
1517 return 0;
1518 }
1519
1520 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1521 struct sk_buff *skb)
1522 {
1523 struct ieee80211_local *local = sdata->local;
1524 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1525 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1526 struct ieee80211_sub_if_data *tmp_sdata;
1527 int headroom;
1528 bool may_encrypt;
1529
1530 rcu_read_lock();
1531
1532 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1533 int hdrlen;
1534 u16 len_rthdr;
1535
1536 info->flags |= IEEE80211_TX_CTL_INJECTED |
1537 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1538
1539 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1540 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1541 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1542
1543 /* check the header is complete in the frame */
1544 if (likely(skb->len >= len_rthdr + hdrlen)) {
1545 /*
1546 * We process outgoing injected frames that have a
1547 * local address we handle as though they are our
1548 * own frames.
1549 * This code here isn't entirely correct, the local
1550 * MAC address is not necessarily enough to find
1551 * the interface to use; for that proper VLAN/WDS
1552 * support we will need a different mechanism.
1553 */
1554
1555 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1556 list) {
1557 if (!ieee80211_sdata_running(tmp_sdata))
1558 continue;
1559 if (tmp_sdata->vif.type ==
1560 NL80211_IFTYPE_MONITOR ||
1561 tmp_sdata->vif.type ==
1562 NL80211_IFTYPE_AP_VLAN ||
1563 tmp_sdata->vif.type ==
1564 NL80211_IFTYPE_WDS)
1565 continue;
1566 if (compare_ether_addr(tmp_sdata->vif.addr,
1567 hdr->addr2) == 0) {
1568 sdata = tmp_sdata;
1569 break;
1570 }
1571 }
1572 }
1573 }
1574
1575 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1576
1577 headroom = local->tx_headroom;
1578 if (may_encrypt)
1579 headroom += IEEE80211_ENCRYPT_HEADROOM;
1580 headroom -= skb_headroom(skb);
1581 headroom = max_t(int, 0, headroom);
1582
1583 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1584 dev_kfree_skb(skb);
1585 rcu_read_unlock();
1586 return;
1587 }
1588
1589 hdr = (struct ieee80211_hdr *) skb->data;
1590 info->control.vif = &sdata->vif;
1591
1592 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1593 ieee80211_is_data(hdr->frame_control) &&
1594 !is_multicast_ether_addr(hdr->addr1))
1595 if (mesh_nexthop_lookup(skb, sdata)) {
1596 /* skb queued: don't free */
1597 rcu_read_unlock();
1598 return;
1599 }
1600
1601 ieee80211_set_qos_hdr(local, skb);
1602 ieee80211_tx(sdata, skb, false);
1603 rcu_read_unlock();
1604 }
1605
1606 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1607 struct net_device *dev)
1608 {
1609 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1610 struct ieee80211_channel *chan = local->hw.conf.channel;
1611 struct ieee80211_radiotap_header *prthdr =
1612 (struct ieee80211_radiotap_header *)skb->data;
1613 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1614 u16 len_rthdr;
1615
1616 /*
1617 * Frame injection is not allowed if beaconing is not allowed
1618 * or if we need radar detection. Beaconing is usually not allowed when
1619 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1620 * Passive scan is also used in world regulatory domains where
1621 * your country is not known and as such it should be treated as
1622 * NO TX unless the channel is explicitly allowed in which case
1623 * your current regulatory domain would not have the passive scan
1624 * flag.
1625 *
1626 * Since AP mode uses monitor interfaces to inject/TX management
1627 * frames we can make AP mode the exception to this rule once it
1628 * supports radar detection as its implementation can deal with
1629 * radar detection by itself. We can do that later by adding a
1630 * monitor flag interfaces used for AP support.
1631 */
1632 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1633 IEEE80211_CHAN_PASSIVE_SCAN)))
1634 goto fail;
1635
1636 /* check for not even having the fixed radiotap header part */
1637 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1638 goto fail; /* too short to be possibly valid */
1639
1640 /* is it a header version we can trust to find length from? */
1641 if (unlikely(prthdr->it_version))
1642 goto fail; /* only version 0 is supported */
1643
1644 /* then there must be a radiotap header with a length we can use */
1645 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1646
1647 /* does the skb contain enough to deliver on the alleged length? */
1648 if (unlikely(skb->len < len_rthdr))
1649 goto fail; /* skb too short for claimed rt header extent */
1650
1651 /*
1652 * fix up the pointers accounting for the radiotap
1653 * header still being in there. We are being given
1654 * a precooked IEEE80211 header so no need for
1655 * normal processing
1656 */
1657 skb_set_mac_header(skb, len_rthdr);
1658 /*
1659 * these are just fixed to the end of the rt area since we
1660 * don't have any better information and at this point, nobody cares
1661 */
1662 skb_set_network_header(skb, len_rthdr);
1663 skb_set_transport_header(skb, len_rthdr);
1664
1665 memset(info, 0, sizeof(*info));
1666
1667 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1668
1669 /* pass the radiotap header up to xmit */
1670 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1671 return NETDEV_TX_OK;
1672
1673 fail:
1674 dev_kfree_skb(skb);
1675 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1676 }
1677
1678 /**
1679 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1680 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1681 * @skb: packet to be sent
1682 * @dev: incoming interface
1683 *
1684 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1685 * not be freed, and caller is responsible for either retrying later or freeing
1686 * skb).
1687 *
1688 * This function takes in an Ethernet header and encapsulates it with suitable
1689 * IEEE 802.11 header based on which interface the packet is coming in. The
1690 * encapsulated packet will then be passed to master interface, wlan#.11, for
1691 * transmission (through low-level driver).
1692 */
1693 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1694 struct net_device *dev)
1695 {
1696 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1697 struct ieee80211_local *local = sdata->local;
1698 struct ieee80211_tx_info *info;
1699 int ret = NETDEV_TX_BUSY, head_need;
1700 u16 ethertype, hdrlen, meshhdrlen = 0;
1701 __le16 fc;
1702 struct ieee80211_hdr hdr;
1703 struct ieee80211s_hdr mesh_hdr __maybe_unused;
1704 struct mesh_path __maybe_unused *mppath = NULL;
1705 const u8 *encaps_data;
1706 int encaps_len, skip_header_bytes;
1707 int nh_pos, h_pos;
1708 struct sta_info *sta = NULL;
1709 u32 sta_flags = 0;
1710 struct sk_buff *tmp_skb;
1711
1712 if (unlikely(skb->len < ETH_HLEN)) {
1713 ret = NETDEV_TX_OK;
1714 goto fail;
1715 }
1716
1717 /* convert Ethernet header to proper 802.11 header (based on
1718 * operation mode) */
1719 ethertype = (skb->data[12] << 8) | skb->data[13];
1720 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1721
1722 switch (sdata->vif.type) {
1723 case NL80211_IFTYPE_AP_VLAN:
1724 rcu_read_lock();
1725 sta = rcu_dereference(sdata->u.vlan.sta);
1726 if (sta) {
1727 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1728 /* RA TA DA SA */
1729 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1730 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1731 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1732 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1733 hdrlen = 30;
1734 sta_flags = get_sta_flags(sta);
1735 }
1736 rcu_read_unlock();
1737 if (sta)
1738 break;
1739 /* fall through */
1740 case NL80211_IFTYPE_AP:
1741 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1742 /* DA BSSID SA */
1743 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1744 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1745 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1746 hdrlen = 24;
1747 break;
1748 case NL80211_IFTYPE_WDS:
1749 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1750 /* RA TA DA SA */
1751 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1752 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1753 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1754 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1755 hdrlen = 30;
1756 break;
1757 #ifdef CONFIG_MAC80211_MESH
1758 case NL80211_IFTYPE_MESH_POINT:
1759 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1760 /* Do not send frames with mesh_ttl == 0 */
1761 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1762 ret = NETDEV_TX_OK;
1763 goto fail;
1764 }
1765 if (!is_multicast_ether_addr(skb->data))
1766 mppath = mpp_path_lookup(skb->data, sdata);
1767
1768 /*
1769 * Use address extension if it is a packet from
1770 * another interface or if we know the destination
1771 * is being proxied by a portal (i.e. portal address
1772 * differs from proxied address)
1773 */
1774 if (compare_ether_addr(sdata->vif.addr,
1775 skb->data + ETH_ALEN) == 0 &&
1776 !(mppath && compare_ether_addr(mppath->mpp, skb->data))) {
1777 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1778 skb->data, skb->data + ETH_ALEN);
1779 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1780 sdata, NULL, NULL);
1781 } else {
1782 int is_mesh_mcast = 1;
1783 const u8 *mesh_da;
1784
1785 rcu_read_lock();
1786 if (is_multicast_ether_addr(skb->data))
1787 /* DA TA mSA AE:SA */
1788 mesh_da = skb->data;
1789 else {
1790 static const u8 bcast[ETH_ALEN] =
1791 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1792 if (mppath) {
1793 /* RA TA mDA mSA AE:DA SA */
1794 mesh_da = mppath->mpp;
1795 is_mesh_mcast = 0;
1796 } else {
1797 /* DA TA mSA AE:SA */
1798 mesh_da = bcast;
1799 }
1800 }
1801 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1802 mesh_da, sdata->vif.addr);
1803 rcu_read_unlock();
1804 if (is_mesh_mcast)
1805 meshhdrlen =
1806 ieee80211_new_mesh_header(&mesh_hdr,
1807 sdata,
1808 skb->data + ETH_ALEN,
1809 NULL);
1810 else
1811 meshhdrlen =
1812 ieee80211_new_mesh_header(&mesh_hdr,
1813 sdata,
1814 skb->data,
1815 skb->data + ETH_ALEN);
1816
1817 }
1818 break;
1819 #endif
1820 case NL80211_IFTYPE_STATION:
1821 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1822 if (sdata->u.mgd.use_4addr &&
1823 cpu_to_be16(ethertype) != sdata->control_port_protocol) {
1824 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1825 /* RA TA DA SA */
1826 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1827 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1828 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1829 hdrlen = 30;
1830 } else {
1831 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1832 /* BSSID SA DA */
1833 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1834 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1835 hdrlen = 24;
1836 }
1837 break;
1838 case NL80211_IFTYPE_ADHOC:
1839 /* DA SA BSSID */
1840 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1841 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1842 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1843 hdrlen = 24;
1844 break;
1845 default:
1846 ret = NETDEV_TX_OK;
1847 goto fail;
1848 }
1849
1850 /*
1851 * There's no need to try to look up the destination
1852 * if it is a multicast address (which can only happen
1853 * in AP mode)
1854 */
1855 if (!is_multicast_ether_addr(hdr.addr1)) {
1856 rcu_read_lock();
1857 sta = sta_info_get(sdata, hdr.addr1);
1858 if (sta)
1859 sta_flags = get_sta_flags(sta);
1860 rcu_read_unlock();
1861 }
1862
1863 /* receiver and we are QoS enabled, use a QoS type frame */
1864 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1865 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1866 hdrlen += 2;
1867 }
1868
1869 /*
1870 * Drop unicast frames to unauthorised stations unless they are
1871 * EAPOL frames from the local station.
1872 */
1873 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1874 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1875 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1876 !(cpu_to_be16(ethertype) == sdata->control_port_protocol &&
1877 compare_ether_addr(sdata->vif.addr,
1878 skb->data + ETH_ALEN) == 0))) {
1879 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1880 if (net_ratelimit())
1881 printk(KERN_DEBUG "%s: dropped frame to %pM"
1882 " (unauthorized port)\n", dev->name,
1883 hdr.addr1);
1884 #endif
1885
1886 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1887
1888 ret = NETDEV_TX_OK;
1889 goto fail;
1890 }
1891
1892 /*
1893 * If the skb is shared we need to obtain our own copy.
1894 */
1895 if (skb_shared(skb)) {
1896 tmp_skb = skb;
1897 skb = skb_clone(skb, GFP_ATOMIC);
1898 kfree_skb(tmp_skb);
1899
1900 if (!skb) {
1901 ret = NETDEV_TX_OK;
1902 goto fail;
1903 }
1904 }
1905
1906 hdr.frame_control = fc;
1907 hdr.duration_id = 0;
1908 hdr.seq_ctrl = 0;
1909
1910 skip_header_bytes = ETH_HLEN;
1911 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1912 encaps_data = bridge_tunnel_header;
1913 encaps_len = sizeof(bridge_tunnel_header);
1914 skip_header_bytes -= 2;
1915 } else if (ethertype >= 0x600) {
1916 encaps_data = rfc1042_header;
1917 encaps_len = sizeof(rfc1042_header);
1918 skip_header_bytes -= 2;
1919 } else {
1920 encaps_data = NULL;
1921 encaps_len = 0;
1922 }
1923
1924 nh_pos = skb_network_header(skb) - skb->data;
1925 h_pos = skb_transport_header(skb) - skb->data;
1926
1927 skb_pull(skb, skip_header_bytes);
1928 nh_pos -= skip_header_bytes;
1929 h_pos -= skip_header_bytes;
1930
1931 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1932
1933 /*
1934 * So we need to modify the skb header and hence need a copy of
1935 * that. The head_need variable above doesn't, so far, include
1936 * the needed header space that we don't need right away. If we
1937 * can, then we don't reallocate right now but only after the
1938 * frame arrives at the master device (if it does...)
1939 *
1940 * If we cannot, however, then we will reallocate to include all
1941 * the ever needed space. Also, if we need to reallocate it anyway,
1942 * make it big enough for everything we may ever need.
1943 */
1944
1945 if (head_need > 0 || skb_cloned(skb)) {
1946 head_need += IEEE80211_ENCRYPT_HEADROOM;
1947 head_need += local->tx_headroom;
1948 head_need = max_t(int, 0, head_need);
1949 if (ieee80211_skb_resize(local, skb, head_need, true))
1950 goto fail;
1951 }
1952
1953 if (encaps_data) {
1954 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1955 nh_pos += encaps_len;
1956 h_pos += encaps_len;
1957 }
1958
1959 #ifdef CONFIG_MAC80211_MESH
1960 if (meshhdrlen > 0) {
1961 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1962 nh_pos += meshhdrlen;
1963 h_pos += meshhdrlen;
1964 }
1965 #endif
1966
1967 if (ieee80211_is_data_qos(fc)) {
1968 __le16 *qos_control;
1969
1970 qos_control = (__le16*) skb_push(skb, 2);
1971 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1972 /*
1973 * Maybe we could actually set some fields here, for now just
1974 * initialise to zero to indicate no special operation.
1975 */
1976 *qos_control = 0;
1977 } else
1978 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1979
1980 nh_pos += hdrlen;
1981 h_pos += hdrlen;
1982
1983 dev->stats.tx_packets++;
1984 dev->stats.tx_bytes += skb->len;
1985
1986 /* Update skb pointers to various headers since this modified frame
1987 * is going to go through Linux networking code that may potentially
1988 * need things like pointer to IP header. */
1989 skb_set_mac_header(skb, 0);
1990 skb_set_network_header(skb, nh_pos);
1991 skb_set_transport_header(skb, h_pos);
1992
1993 info = IEEE80211_SKB_CB(skb);
1994 memset(info, 0, sizeof(*info));
1995
1996 dev->trans_start = jiffies;
1997 ieee80211_xmit(sdata, skb);
1998
1999 return NETDEV_TX_OK;
2000
2001 fail:
2002 if (ret == NETDEV_TX_OK)
2003 dev_kfree_skb(skb);
2004
2005 return ret;
2006 }
2007
2008
2009 /*
2010 * ieee80211_clear_tx_pending may not be called in a context where
2011 * it is possible that it packets could come in again.
2012 */
2013 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
2014 {
2015 int i;
2016
2017 for (i = 0; i < local->hw.queues; i++)
2018 skb_queue_purge(&local->pending[i]);
2019 }
2020
2021 /*
2022 * Returns false if the frame couldn't be transmitted but was queued instead,
2023 * which in this case means re-queued -- take as an indication to stop sending
2024 * more pending frames.
2025 */
2026 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
2027 struct sk_buff *skb)
2028 {
2029 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2030 struct ieee80211_sub_if_data *sdata;
2031 struct sta_info *sta;
2032 struct ieee80211_hdr *hdr;
2033 bool result;
2034
2035 sdata = vif_to_sdata(info->control.vif);
2036
2037 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
2038 result = ieee80211_tx(sdata, skb, true);
2039 } else {
2040 hdr = (struct ieee80211_hdr *)skb->data;
2041 sta = sta_info_get(sdata, hdr->addr1);
2042
2043 result = __ieee80211_tx(local, &skb, sta, true);
2044 }
2045
2046 return result;
2047 }
2048
2049 /*
2050 * Transmit all pending packets. Called from tasklet.
2051 */
2052 void ieee80211_tx_pending(unsigned long data)
2053 {
2054 struct ieee80211_local *local = (struct ieee80211_local *)data;
2055 struct ieee80211_sub_if_data *sdata;
2056 unsigned long flags;
2057 int i;
2058 bool txok;
2059
2060 rcu_read_lock();
2061
2062 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2063 for (i = 0; i < local->hw.queues; i++) {
2064 /*
2065 * If queue is stopped by something other than due to pending
2066 * frames, or we have no pending frames, proceed to next queue.
2067 */
2068 if (local->queue_stop_reasons[i] ||
2069 skb_queue_empty(&local->pending[i]))
2070 continue;
2071
2072 while (!skb_queue_empty(&local->pending[i])) {
2073 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2074 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2075
2076 if (WARN_ON(!info->control.vif)) {
2077 kfree_skb(skb);
2078 continue;
2079 }
2080
2081 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2082 flags);
2083
2084 txok = ieee80211_tx_pending_skb(local, skb);
2085 spin_lock_irqsave(&local->queue_stop_reason_lock,
2086 flags);
2087 if (!txok)
2088 break;
2089 }
2090
2091 if (skb_queue_empty(&local->pending[i]))
2092 list_for_each_entry_rcu(sdata, &local->interfaces, list)
2093 netif_wake_subqueue(sdata->dev, i);
2094 }
2095 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2096
2097 rcu_read_unlock();
2098 }
2099
2100 /* functions for drivers to get certain frames */
2101
2102 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2103 struct sk_buff *skb,
2104 struct beacon_data *beacon)
2105 {
2106 u8 *pos, *tim;
2107 int aid0 = 0;
2108 int i, have_bits = 0, n1, n2;
2109
2110 /* Generate bitmap for TIM only if there are any STAs in power save
2111 * mode. */
2112 if (atomic_read(&bss->num_sta_ps) > 0)
2113 /* in the hope that this is faster than
2114 * checking byte-for-byte */
2115 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2116 IEEE80211_MAX_AID+1);
2117
2118 if (bss->dtim_count == 0)
2119 bss->dtim_count = beacon->dtim_period - 1;
2120 else
2121 bss->dtim_count--;
2122
2123 tim = pos = (u8 *) skb_put(skb, 6);
2124 *pos++ = WLAN_EID_TIM;
2125 *pos++ = 4;
2126 *pos++ = bss->dtim_count;
2127 *pos++ = beacon->dtim_period;
2128
2129 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2130 aid0 = 1;
2131
2132 bss->dtim_bc_mc = aid0 == 1;
2133
2134 if (have_bits) {
2135 /* Find largest even number N1 so that bits numbered 1 through
2136 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2137 * (N2 + 1) x 8 through 2007 are 0. */
2138 n1 = 0;
2139 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2140 if (bss->tim[i]) {
2141 n1 = i & 0xfe;
2142 break;
2143 }
2144 }
2145 n2 = n1;
2146 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2147 if (bss->tim[i]) {
2148 n2 = i;
2149 break;
2150 }
2151 }
2152
2153 /* Bitmap control */
2154 *pos++ = n1 | aid0;
2155 /* Part Virt Bitmap */
2156 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2157
2158 tim[1] = n2 - n1 + 4;
2159 skb_put(skb, n2 - n1);
2160 } else {
2161 *pos++ = aid0; /* Bitmap control */
2162 *pos++ = 0; /* Part Virt Bitmap */
2163 }
2164 }
2165
2166 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2167 struct ieee80211_vif *vif,
2168 u16 *tim_offset, u16 *tim_length)
2169 {
2170 struct ieee80211_local *local = hw_to_local(hw);
2171 struct sk_buff *skb = NULL;
2172 struct ieee80211_tx_info *info;
2173 struct ieee80211_sub_if_data *sdata = NULL;
2174 struct ieee80211_if_ap *ap = NULL;
2175 struct beacon_data *beacon;
2176 struct ieee80211_supported_band *sband;
2177 enum ieee80211_band band = local->hw.conf.channel->band;
2178 struct ieee80211_tx_rate_control txrc;
2179
2180 sband = local->hw.wiphy->bands[band];
2181
2182 rcu_read_lock();
2183
2184 sdata = vif_to_sdata(vif);
2185
2186 if (!ieee80211_sdata_running(sdata))
2187 goto out;
2188
2189 if (tim_offset)
2190 *tim_offset = 0;
2191 if (tim_length)
2192 *tim_length = 0;
2193
2194 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2195 ap = &sdata->u.ap;
2196 beacon = rcu_dereference(ap->beacon);
2197 if (beacon) {
2198 /*
2199 * headroom, head length,
2200 * tail length and maximum TIM length
2201 */
2202 skb = dev_alloc_skb(local->tx_headroom +
2203 beacon->head_len +
2204 beacon->tail_len + 256);
2205 if (!skb)
2206 goto out;
2207
2208 skb_reserve(skb, local->tx_headroom);
2209 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2210 beacon->head_len);
2211
2212 /*
2213 * Not very nice, but we want to allow the driver to call
2214 * ieee80211_beacon_get() as a response to the set_tim()
2215 * callback. That, however, is already invoked under the
2216 * sta_lock to guarantee consistent and race-free update
2217 * of the tim bitmap in mac80211 and the driver.
2218 */
2219 if (local->tim_in_locked_section) {
2220 ieee80211_beacon_add_tim(ap, skb, beacon);
2221 } else {
2222 unsigned long flags;
2223
2224 spin_lock_irqsave(&local->sta_lock, flags);
2225 ieee80211_beacon_add_tim(ap, skb, beacon);
2226 spin_unlock_irqrestore(&local->sta_lock, flags);
2227 }
2228
2229 if (tim_offset)
2230 *tim_offset = beacon->head_len;
2231 if (tim_length)
2232 *tim_length = skb->len - beacon->head_len;
2233
2234 if (beacon->tail)
2235 memcpy(skb_put(skb, beacon->tail_len),
2236 beacon->tail, beacon->tail_len);
2237 } else
2238 goto out;
2239 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2240 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2241 struct ieee80211_hdr *hdr;
2242 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2243
2244 if (!presp)
2245 goto out;
2246
2247 skb = skb_copy(presp, GFP_ATOMIC);
2248 if (!skb)
2249 goto out;
2250
2251 hdr = (struct ieee80211_hdr *) skb->data;
2252 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2253 IEEE80211_STYPE_BEACON);
2254 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2255 struct ieee80211_mgmt *mgmt;
2256 u8 *pos;
2257
2258 #ifdef CONFIG_MAC80211_MESH
2259 if (!sdata->u.mesh.mesh_id_len)
2260 goto out;
2261 #endif
2262
2263 /* headroom, head length, tail length and maximum TIM length */
2264 skb = dev_alloc_skb(local->tx_headroom + 400 +
2265 sdata->u.mesh.vendor_ie_len);
2266 if (!skb)
2267 goto out;
2268
2269 skb_reserve(skb, local->hw.extra_tx_headroom);
2270 mgmt = (struct ieee80211_mgmt *)
2271 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2272 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2273 mgmt->frame_control =
2274 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2275 memset(mgmt->da, 0xff, ETH_ALEN);
2276 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2277 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2278 mgmt->u.beacon.beacon_int =
2279 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2280 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2281
2282 pos = skb_put(skb, 2);
2283 *pos++ = WLAN_EID_SSID;
2284 *pos++ = 0x0;
2285
2286 mesh_mgmt_ies_add(skb, sdata);
2287 } else {
2288 WARN_ON(1);
2289 goto out;
2290 }
2291
2292 info = IEEE80211_SKB_CB(skb);
2293
2294 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2295 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2296 info->band = band;
2297
2298 memset(&txrc, 0, sizeof(txrc));
2299 txrc.hw = hw;
2300 txrc.sband = sband;
2301 txrc.bss_conf = &sdata->vif.bss_conf;
2302 txrc.skb = skb;
2303 txrc.reported_rate.idx = -1;
2304 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2305 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2306 txrc.max_rate_idx = -1;
2307 else
2308 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2309 txrc.bss = true;
2310 rate_control_get_rate(sdata, NULL, &txrc);
2311
2312 info->control.vif = vif;
2313
2314 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
2315 IEEE80211_TX_CTL_ASSIGN_SEQ |
2316 IEEE80211_TX_CTL_FIRST_FRAGMENT;
2317 out:
2318 rcu_read_unlock();
2319 return skb;
2320 }
2321 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2322
2323 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2324 struct ieee80211_vif *vif)
2325 {
2326 struct ieee80211_sub_if_data *sdata;
2327 struct ieee80211_if_managed *ifmgd;
2328 struct ieee80211_pspoll *pspoll;
2329 struct ieee80211_local *local;
2330 struct sk_buff *skb;
2331
2332 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2333 return NULL;
2334
2335 sdata = vif_to_sdata(vif);
2336 ifmgd = &sdata->u.mgd;
2337 local = sdata->local;
2338
2339 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2340 if (!skb) {
2341 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2342 "pspoll template\n", sdata->name);
2343 return NULL;
2344 }
2345 skb_reserve(skb, local->hw.extra_tx_headroom);
2346
2347 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2348 memset(pspoll, 0, sizeof(*pspoll));
2349 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2350 IEEE80211_STYPE_PSPOLL);
2351 pspoll->aid = cpu_to_le16(ifmgd->aid);
2352
2353 /* aid in PS-Poll has its two MSBs each set to 1 */
2354 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2355
2356 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2357 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2358
2359 return skb;
2360 }
2361 EXPORT_SYMBOL(ieee80211_pspoll_get);
2362
2363 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2364 struct ieee80211_vif *vif)
2365 {
2366 struct ieee80211_hdr_3addr *nullfunc;
2367 struct ieee80211_sub_if_data *sdata;
2368 struct ieee80211_if_managed *ifmgd;
2369 struct ieee80211_local *local;
2370 struct sk_buff *skb;
2371
2372 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2373 return NULL;
2374
2375 sdata = vif_to_sdata(vif);
2376 ifmgd = &sdata->u.mgd;
2377 local = sdata->local;
2378
2379 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2380 if (!skb) {
2381 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2382 "template\n", sdata->name);
2383 return NULL;
2384 }
2385 skb_reserve(skb, local->hw.extra_tx_headroom);
2386
2387 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2388 sizeof(*nullfunc));
2389 memset(nullfunc, 0, sizeof(*nullfunc));
2390 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2391 IEEE80211_STYPE_NULLFUNC |
2392 IEEE80211_FCTL_TODS);
2393 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2394 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2395 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2396
2397 return skb;
2398 }
2399 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2400
2401 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2402 struct ieee80211_vif *vif,
2403 const u8 *ssid, size_t ssid_len,
2404 const u8 *ie, size_t ie_len)
2405 {
2406 struct ieee80211_sub_if_data *sdata;
2407 struct ieee80211_local *local;
2408 struct ieee80211_hdr_3addr *hdr;
2409 struct sk_buff *skb;
2410 size_t ie_ssid_len;
2411 u8 *pos;
2412
2413 sdata = vif_to_sdata(vif);
2414 local = sdata->local;
2415 ie_ssid_len = 2 + ssid_len;
2416
2417 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2418 ie_ssid_len + ie_len);
2419 if (!skb) {
2420 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2421 "request template\n", sdata->name);
2422 return NULL;
2423 }
2424
2425 skb_reserve(skb, local->hw.extra_tx_headroom);
2426
2427 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2428 memset(hdr, 0, sizeof(*hdr));
2429 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2430 IEEE80211_STYPE_PROBE_REQ);
2431 memset(hdr->addr1, 0xff, ETH_ALEN);
2432 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2433 memset(hdr->addr3, 0xff, ETH_ALEN);
2434
2435 pos = skb_put(skb, ie_ssid_len);
2436 *pos++ = WLAN_EID_SSID;
2437 *pos++ = ssid_len;
2438 if (ssid)
2439 memcpy(pos, ssid, ssid_len);
2440 pos += ssid_len;
2441
2442 if (ie) {
2443 pos = skb_put(skb, ie_len);
2444 memcpy(pos, ie, ie_len);
2445 }
2446
2447 return skb;
2448 }
2449 EXPORT_SYMBOL(ieee80211_probereq_get);
2450
2451 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2452 const void *frame, size_t frame_len,
2453 const struct ieee80211_tx_info *frame_txctl,
2454 struct ieee80211_rts *rts)
2455 {
2456 const struct ieee80211_hdr *hdr = frame;
2457
2458 rts->frame_control =
2459 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2460 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2461 frame_txctl);
2462 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2463 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2464 }
2465 EXPORT_SYMBOL(ieee80211_rts_get);
2466
2467 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2468 const void *frame, size_t frame_len,
2469 const struct ieee80211_tx_info *frame_txctl,
2470 struct ieee80211_cts *cts)
2471 {
2472 const struct ieee80211_hdr *hdr = frame;
2473
2474 cts->frame_control =
2475 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2476 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2477 frame_len, frame_txctl);
2478 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2479 }
2480 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2481
2482 struct sk_buff *
2483 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2484 struct ieee80211_vif *vif)
2485 {
2486 struct ieee80211_local *local = hw_to_local(hw);
2487 struct sk_buff *skb = NULL;
2488 struct sta_info *sta;
2489 struct ieee80211_tx_data tx;
2490 struct ieee80211_sub_if_data *sdata;
2491 struct ieee80211_if_ap *bss = NULL;
2492 struct beacon_data *beacon;
2493 struct ieee80211_tx_info *info;
2494
2495 sdata = vif_to_sdata(vif);
2496 bss = &sdata->u.ap;
2497
2498 rcu_read_lock();
2499 beacon = rcu_dereference(bss->beacon);
2500
2501 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2502 goto out;
2503
2504 if (bss->dtim_count != 0 || !bss->dtim_bc_mc)
2505 goto out; /* send buffered bc/mc only after DTIM beacon */
2506
2507 while (1) {
2508 skb = skb_dequeue(&bss->ps_bc_buf);
2509 if (!skb)
2510 goto out;
2511 local->total_ps_buffered--;
2512
2513 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2514 struct ieee80211_hdr *hdr =
2515 (struct ieee80211_hdr *) skb->data;
2516 /* more buffered multicast/broadcast frames ==> set
2517 * MoreData flag in IEEE 802.11 header to inform PS
2518 * STAs */
2519 hdr->frame_control |=
2520 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2521 }
2522
2523 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2524 break;
2525 dev_kfree_skb_any(skb);
2526 }
2527
2528 info = IEEE80211_SKB_CB(skb);
2529
2530 sta = tx.sta;
2531 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2532 tx.channel = local->hw.conf.channel;
2533 info->band = tx.channel->band;
2534
2535 if (invoke_tx_handlers(&tx))
2536 skb = NULL;
2537 out:
2538 rcu_read_unlock();
2539
2540 return skb;
2541 }
2542 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2543
2544 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2545 {
2546 skb_set_mac_header(skb, 0);
2547 skb_set_network_header(skb, 0);
2548 skb_set_transport_header(skb, 0);
2549
2550 /* send all internal mgmt frames on VO */
2551 skb_set_queue_mapping(skb, 0);
2552
2553 /*
2554 * The other path calling ieee80211_xmit is from the tasklet,
2555 * and while we can handle concurrent transmissions locking
2556 * requirements are that we do not come into tx with bhs on.
2557 */
2558 local_bh_disable();
2559 ieee80211_xmit(sdata, skb);
2560 local_bh_enable();
2561 }