Merge branch 'bind_unbind' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / net / mac80211 / sta_info.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/etherdevice.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <linux/rtnetlink.h>
22
23 #include <net/mac80211.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "rate.h"
27 #include "sta_info.h"
28 #include "debugfs_sta.h"
29 #include "mesh.h"
30 #include "wme.h"
31
32 /**
33 * DOC: STA information lifetime rules
34 *
35 * STA info structures (&struct sta_info) are managed in a hash table
36 * for faster lookup and a list for iteration. They are managed using
37 * RCU, i.e. access to the list and hash table is protected by RCU.
38 *
39 * Upon allocating a STA info structure with sta_info_alloc(), the caller
40 * owns that structure. It must then insert it into the hash table using
41 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
42 * case (which acquires an rcu read section but must not be called from
43 * within one) will the pointer still be valid after the call. Note that
44 * the caller may not do much with the STA info before inserting it, in
45 * particular, it may not start any mesh peer link management or add
46 * encryption keys.
47 *
48 * When the insertion fails (sta_info_insert()) returns non-zero), the
49 * structure will have been freed by sta_info_insert()!
50 *
51 * Station entries are added by mac80211 when you establish a link with a
52 * peer. This means different things for the different type of interfaces
53 * we support. For a regular station this mean we add the AP sta when we
54 * receive an association response from the AP. For IBSS this occurs when
55 * get to know about a peer on the same IBSS. For WDS we add the sta for
56 * the peer immediately upon device open. When using AP mode we add stations
57 * for each respective station upon request from userspace through nl80211.
58 *
59 * In order to remove a STA info structure, various sta_info_destroy_*()
60 * calls are available.
61 *
62 * There is no concept of ownership on a STA entry, each structure is
63 * owned by the global hash table/list until it is removed. All users of
64 * the structure need to be RCU protected so that the structure won't be
65 * freed before they are done using it.
66 */
67
68 static const struct rhashtable_params sta_rht_params = {
69 .nelem_hint = 3, /* start small */
70 .automatic_shrinking = true,
71 .head_offset = offsetof(struct sta_info, hash_node),
72 .key_offset = offsetof(struct sta_info, addr),
73 .key_len = ETH_ALEN,
74 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
75 };
76
77 /* Caller must hold local->sta_mtx */
78 static int sta_info_hash_del(struct ieee80211_local *local,
79 struct sta_info *sta)
80 {
81 return rhltable_remove(&local->sta_hash, &sta->hash_node,
82 sta_rht_params);
83 }
84
85 static void __cleanup_single_sta(struct sta_info *sta)
86 {
87 int ac, i;
88 struct tid_ampdu_tx *tid_tx;
89 struct ieee80211_sub_if_data *sdata = sta->sdata;
90 struct ieee80211_local *local = sdata->local;
91 struct fq *fq = &local->fq;
92 struct ps_data *ps;
93
94 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
95 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
96 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
97 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
98 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
99 ps = &sdata->bss->ps;
100 else if (ieee80211_vif_is_mesh(&sdata->vif))
101 ps = &sdata->u.mesh.ps;
102 else
103 return;
104
105 clear_sta_flag(sta, WLAN_STA_PS_STA);
106 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
107 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
108
109 atomic_dec(&ps->num_sta_ps);
110 }
111
112 if (sta->sta.txq[0]) {
113 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
114 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
115
116 spin_lock_bh(&fq->lock);
117 ieee80211_txq_purge(local, txqi);
118 spin_unlock_bh(&fq->lock);
119 }
120 }
121
122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
126 }
127
128 if (ieee80211_vif_is_mesh(&sdata->vif))
129 mesh_sta_cleanup(sta);
130
131 cancel_work_sync(&sta->drv_deliver_wk);
132
133 /*
134 * Destroy aggregation state here. It would be nice to wait for the
135 * driver to finish aggregation stop and then clean up, but for now
136 * drivers have to handle aggregation stop being requested, followed
137 * directly by station destruction.
138 */
139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
140 kfree(sta->ampdu_mlme.tid_start_tx[i]);
141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
142 if (!tid_tx)
143 continue;
144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
145 kfree(tid_tx);
146 }
147 }
148
149 static void cleanup_single_sta(struct sta_info *sta)
150 {
151 struct ieee80211_sub_if_data *sdata = sta->sdata;
152 struct ieee80211_local *local = sdata->local;
153
154 __cleanup_single_sta(sta);
155 sta_info_free(local, sta);
156 }
157
158 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
159 const u8 *addr)
160 {
161 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
162 }
163
164 /* protected by RCU */
165 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
166 const u8 *addr)
167 {
168 struct ieee80211_local *local = sdata->local;
169 struct rhlist_head *tmp;
170 struct sta_info *sta;
171
172 rcu_read_lock();
173 for_each_sta_info(local, addr, sta, tmp) {
174 if (sta->sdata == sdata) {
175 rcu_read_unlock();
176 /* this is safe as the caller must already hold
177 * another rcu read section or the mutex
178 */
179 return sta;
180 }
181 }
182 rcu_read_unlock();
183 return NULL;
184 }
185
186 /*
187 * Get sta info either from the specified interface
188 * or from one of its vlans
189 */
190 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
191 const u8 *addr)
192 {
193 struct ieee80211_local *local = sdata->local;
194 struct rhlist_head *tmp;
195 struct sta_info *sta;
196
197 rcu_read_lock();
198 for_each_sta_info(local, addr, sta, tmp) {
199 if (sta->sdata == sdata ||
200 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
201 rcu_read_unlock();
202 /* this is safe as the caller must already hold
203 * another rcu read section or the mutex
204 */
205 return sta;
206 }
207 }
208 rcu_read_unlock();
209 return NULL;
210 }
211
212 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
213 int idx)
214 {
215 struct ieee80211_local *local = sdata->local;
216 struct sta_info *sta;
217 int i = 0;
218
219 list_for_each_entry_rcu(sta, &local->sta_list, list) {
220 if (sdata != sta->sdata)
221 continue;
222 if (i < idx) {
223 ++i;
224 continue;
225 }
226 return sta;
227 }
228
229 return NULL;
230 }
231
232 /**
233 * sta_info_free - free STA
234 *
235 * @local: pointer to the global information
236 * @sta: STA info to free
237 *
238 * This function must undo everything done by sta_info_alloc()
239 * that may happen before sta_info_insert(). It may only be
240 * called when sta_info_insert() has not been attempted (and
241 * if that fails, the station is freed anyway.)
242 */
243 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
244 {
245 if (sta->rate_ctrl)
246 rate_control_free_sta(sta);
247
248 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
249
250 if (sta->sta.txq[0])
251 kfree(to_txq_info(sta->sta.txq[0]));
252 kfree(rcu_dereference_raw(sta->sta.rates));
253 #ifdef CONFIG_MAC80211_MESH
254 kfree(sta->mesh);
255 #endif
256 free_percpu(sta->pcpu_rx_stats);
257 kfree(sta);
258 }
259
260 /* Caller must hold local->sta_mtx */
261 static int sta_info_hash_add(struct ieee80211_local *local,
262 struct sta_info *sta)
263 {
264 return rhltable_insert(&local->sta_hash, &sta->hash_node,
265 sta_rht_params);
266 }
267
268 static void sta_deliver_ps_frames(struct work_struct *wk)
269 {
270 struct sta_info *sta;
271
272 sta = container_of(wk, struct sta_info, drv_deliver_wk);
273
274 if (sta->dead)
275 return;
276
277 local_bh_disable();
278 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
279 ieee80211_sta_ps_deliver_wakeup(sta);
280 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
281 ieee80211_sta_ps_deliver_poll_response(sta);
282 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
283 ieee80211_sta_ps_deliver_uapsd(sta);
284 local_bh_enable();
285 }
286
287 static int sta_prepare_rate_control(struct ieee80211_local *local,
288 struct sta_info *sta, gfp_t gfp)
289 {
290 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
291 return 0;
292
293 sta->rate_ctrl = local->rate_ctrl;
294 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
295 sta, gfp);
296 if (!sta->rate_ctrl_priv)
297 return -ENOMEM;
298
299 return 0;
300 }
301
302 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
303 const u8 *addr, gfp_t gfp)
304 {
305 struct ieee80211_local *local = sdata->local;
306 struct ieee80211_hw *hw = &local->hw;
307 struct sta_info *sta;
308 int i;
309
310 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
311 if (!sta)
312 return NULL;
313
314 if (ieee80211_hw_check(hw, USES_RSS)) {
315 sta->pcpu_rx_stats =
316 alloc_percpu(struct ieee80211_sta_rx_stats);
317 if (!sta->pcpu_rx_stats)
318 goto free;
319 }
320
321 spin_lock_init(&sta->lock);
322 spin_lock_init(&sta->ps_lock);
323 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
324 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
325 mutex_init(&sta->ampdu_mlme.mtx);
326 #ifdef CONFIG_MAC80211_MESH
327 if (ieee80211_vif_is_mesh(&sdata->vif)) {
328 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
329 if (!sta->mesh)
330 goto free;
331 spin_lock_init(&sta->mesh->plink_lock);
332 if (ieee80211_vif_is_mesh(&sdata->vif) &&
333 !sdata->u.mesh.user_mpm)
334 init_timer(&sta->mesh->plink_timer);
335 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
336 }
337 #endif
338
339 memcpy(sta->addr, addr, ETH_ALEN);
340 memcpy(sta->sta.addr, addr, ETH_ALEN);
341 sta->sta.max_rx_aggregation_subframes =
342 local->hw.max_rx_aggregation_subframes;
343
344 sta->local = local;
345 sta->sdata = sdata;
346 sta->rx_stats.last_rx = jiffies;
347
348 u64_stats_init(&sta->rx_stats.syncp);
349
350 sta->sta_state = IEEE80211_STA_NONE;
351
352 /* Mark TID as unreserved */
353 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
354
355 sta->last_connected = ktime_get_seconds();
356 ewma_signal_init(&sta->rx_stats_avg.signal);
357 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
358 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
359
360 if (local->ops->wake_tx_queue) {
361 void *txq_data;
362 int size = sizeof(struct txq_info) +
363 ALIGN(hw->txq_data_size, sizeof(void *));
364
365 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
366 if (!txq_data)
367 goto free;
368
369 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
370 struct txq_info *txq = txq_data + i * size;
371
372 ieee80211_txq_init(sdata, sta, txq, i);
373 }
374 }
375
376 if (sta_prepare_rate_control(local, sta, gfp))
377 goto free_txq;
378
379 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
380 /*
381 * timer_to_tid must be initialized with identity mapping
382 * to enable session_timer's data differentiation. See
383 * sta_rx_agg_session_timer_expired for usage.
384 */
385 sta->timer_to_tid[i] = i;
386 }
387 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
388 skb_queue_head_init(&sta->ps_tx_buf[i]);
389 skb_queue_head_init(&sta->tx_filtered[i]);
390 }
391
392 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
393 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
394
395 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
396 if (sdata->vif.type == NL80211_IFTYPE_AP ||
397 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
398 struct ieee80211_supported_band *sband;
399 u8 smps;
400
401 sband = ieee80211_get_sband(sdata);
402 if (!sband)
403 goto free_txq;
404
405 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
406 IEEE80211_HT_CAP_SM_PS_SHIFT;
407 /*
408 * Assume that hostapd advertises our caps in the beacon and
409 * this is the known_smps_mode for a station that just assciated
410 */
411 switch (smps) {
412 case WLAN_HT_SMPS_CONTROL_DISABLED:
413 sta->known_smps_mode = IEEE80211_SMPS_OFF;
414 break;
415 case WLAN_HT_SMPS_CONTROL_STATIC:
416 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
417 break;
418 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
419 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
420 break;
421 default:
422 WARN_ON(1);
423 }
424 }
425
426 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
427
428 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
429
430 return sta;
431
432 free_txq:
433 if (sta->sta.txq[0])
434 kfree(to_txq_info(sta->sta.txq[0]));
435 free:
436 #ifdef CONFIG_MAC80211_MESH
437 kfree(sta->mesh);
438 #endif
439 kfree(sta);
440 return NULL;
441 }
442
443 static int sta_info_insert_check(struct sta_info *sta)
444 {
445 struct ieee80211_sub_if_data *sdata = sta->sdata;
446
447 /*
448 * Can't be a WARN_ON because it can be triggered through a race:
449 * something inserts a STA (on one CPU) without holding the RTNL
450 * and another CPU turns off the net device.
451 */
452 if (unlikely(!ieee80211_sdata_running(sdata)))
453 return -ENETDOWN;
454
455 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
456 is_multicast_ether_addr(sta->sta.addr)))
457 return -EINVAL;
458
459 /* The RCU read lock is required by rhashtable due to
460 * asynchronous resize/rehash. We also require the mutex
461 * for correctness.
462 */
463 rcu_read_lock();
464 lockdep_assert_held(&sdata->local->sta_mtx);
465 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
466 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
467 rcu_read_unlock();
468 return -ENOTUNIQ;
469 }
470 rcu_read_unlock();
471
472 return 0;
473 }
474
475 static int sta_info_insert_drv_state(struct ieee80211_local *local,
476 struct ieee80211_sub_if_data *sdata,
477 struct sta_info *sta)
478 {
479 enum ieee80211_sta_state state;
480 int err = 0;
481
482 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
483 err = drv_sta_state(local, sdata, sta, state, state + 1);
484 if (err)
485 break;
486 }
487
488 if (!err) {
489 /*
490 * Drivers using legacy sta_add/sta_remove callbacks only
491 * get uploaded set to true after sta_add is called.
492 */
493 if (!local->ops->sta_add)
494 sta->uploaded = true;
495 return 0;
496 }
497
498 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
499 sdata_info(sdata,
500 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
501 sta->sta.addr, state + 1, err);
502 err = 0;
503 }
504
505 /* unwind on error */
506 for (; state > IEEE80211_STA_NOTEXIST; state--)
507 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
508
509 return err;
510 }
511
512 /*
513 * should be called with sta_mtx locked
514 * this function replaces the mutex lock
515 * with a RCU lock
516 */
517 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
518 {
519 struct ieee80211_local *local = sta->local;
520 struct ieee80211_sub_if_data *sdata = sta->sdata;
521 struct station_info *sinfo = NULL;
522 int err = 0;
523
524 lockdep_assert_held(&local->sta_mtx);
525
526 /* check if STA exists already */
527 if (sta_info_get_bss(sdata, sta->sta.addr)) {
528 err = -EEXIST;
529 goto out_err;
530 }
531
532 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
533 if (!sinfo) {
534 err = -ENOMEM;
535 goto out_err;
536 }
537
538 local->num_sta++;
539 local->sta_generation++;
540 smp_mb();
541
542 /* simplify things and don't accept BA sessions yet */
543 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
544
545 /* make the station visible */
546 err = sta_info_hash_add(local, sta);
547 if (err)
548 goto out_drop_sta;
549
550 list_add_tail_rcu(&sta->list, &local->sta_list);
551
552 /* notify driver */
553 err = sta_info_insert_drv_state(local, sdata, sta);
554 if (err)
555 goto out_remove;
556
557 set_sta_flag(sta, WLAN_STA_INSERTED);
558 /* accept BA sessions now */
559 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
560
561 ieee80211_sta_debugfs_add(sta);
562 rate_control_add_sta_debugfs(sta);
563
564 sinfo->generation = local->sta_generation;
565 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
566 kfree(sinfo);
567
568 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
569
570 /* move reference to rcu-protected */
571 rcu_read_lock();
572 mutex_unlock(&local->sta_mtx);
573
574 if (ieee80211_vif_is_mesh(&sdata->vif))
575 mesh_accept_plinks_update(sdata);
576
577 return 0;
578 out_remove:
579 sta_info_hash_del(local, sta);
580 list_del_rcu(&sta->list);
581 out_drop_sta:
582 local->num_sta--;
583 synchronize_net();
584 __cleanup_single_sta(sta);
585 out_err:
586 mutex_unlock(&local->sta_mtx);
587 kfree(sinfo);
588 rcu_read_lock();
589 return err;
590 }
591
592 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
593 {
594 struct ieee80211_local *local = sta->local;
595 int err;
596
597 might_sleep();
598
599 mutex_lock(&local->sta_mtx);
600
601 err = sta_info_insert_check(sta);
602 if (err) {
603 mutex_unlock(&local->sta_mtx);
604 rcu_read_lock();
605 goto out_free;
606 }
607
608 err = sta_info_insert_finish(sta);
609 if (err)
610 goto out_free;
611
612 return 0;
613 out_free:
614 sta_info_free(local, sta);
615 return err;
616 }
617
618 int sta_info_insert(struct sta_info *sta)
619 {
620 int err = sta_info_insert_rcu(sta);
621
622 rcu_read_unlock();
623
624 return err;
625 }
626
627 static inline void __bss_tim_set(u8 *tim, u16 id)
628 {
629 /*
630 * This format has been mandated by the IEEE specifications,
631 * so this line may not be changed to use the __set_bit() format.
632 */
633 tim[id / 8] |= (1 << (id % 8));
634 }
635
636 static inline void __bss_tim_clear(u8 *tim, u16 id)
637 {
638 /*
639 * This format has been mandated by the IEEE specifications,
640 * so this line may not be changed to use the __clear_bit() format.
641 */
642 tim[id / 8] &= ~(1 << (id % 8));
643 }
644
645 static inline bool __bss_tim_get(u8 *tim, u16 id)
646 {
647 /*
648 * This format has been mandated by the IEEE specifications,
649 * so this line may not be changed to use the test_bit() format.
650 */
651 return tim[id / 8] & (1 << (id % 8));
652 }
653
654 static unsigned long ieee80211_tids_for_ac(int ac)
655 {
656 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
657 switch (ac) {
658 case IEEE80211_AC_VO:
659 return BIT(6) | BIT(7);
660 case IEEE80211_AC_VI:
661 return BIT(4) | BIT(5);
662 case IEEE80211_AC_BE:
663 return BIT(0) | BIT(3);
664 case IEEE80211_AC_BK:
665 return BIT(1) | BIT(2);
666 default:
667 WARN_ON(1);
668 return 0;
669 }
670 }
671
672 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
673 {
674 struct ieee80211_local *local = sta->local;
675 struct ps_data *ps;
676 bool indicate_tim = false;
677 u8 ignore_for_tim = sta->sta.uapsd_queues;
678 int ac;
679 u16 id = sta->sta.aid;
680
681 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
682 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
683 if (WARN_ON_ONCE(!sta->sdata->bss))
684 return;
685
686 ps = &sta->sdata->bss->ps;
687 #ifdef CONFIG_MAC80211_MESH
688 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
689 ps = &sta->sdata->u.mesh.ps;
690 #endif
691 } else {
692 return;
693 }
694
695 /* No need to do anything if the driver does all */
696 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
697 return;
698
699 if (sta->dead)
700 goto done;
701
702 /*
703 * If all ACs are delivery-enabled then we should build
704 * the TIM bit for all ACs anyway; if only some are then
705 * we ignore those and build the TIM bit using only the
706 * non-enabled ones.
707 */
708 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
709 ignore_for_tim = 0;
710
711 if (ignore_pending)
712 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
713
714 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
715 unsigned long tids;
716
717 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
718 continue;
719
720 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
721 !skb_queue_empty(&sta->ps_tx_buf[ac]);
722 if (indicate_tim)
723 break;
724
725 tids = ieee80211_tids_for_ac(ac);
726
727 indicate_tim |=
728 sta->driver_buffered_tids & tids;
729 indicate_tim |=
730 sta->txq_buffered_tids & tids;
731 }
732
733 done:
734 spin_lock_bh(&local->tim_lock);
735
736 if (indicate_tim == __bss_tim_get(ps->tim, id))
737 goto out_unlock;
738
739 if (indicate_tim)
740 __bss_tim_set(ps->tim, id);
741 else
742 __bss_tim_clear(ps->tim, id);
743
744 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
745 local->tim_in_locked_section = true;
746 drv_set_tim(local, &sta->sta, indicate_tim);
747 local->tim_in_locked_section = false;
748 }
749
750 out_unlock:
751 spin_unlock_bh(&local->tim_lock);
752 }
753
754 void sta_info_recalc_tim(struct sta_info *sta)
755 {
756 __sta_info_recalc_tim(sta, false);
757 }
758
759 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
760 {
761 struct ieee80211_tx_info *info;
762 int timeout;
763
764 if (!skb)
765 return false;
766
767 info = IEEE80211_SKB_CB(skb);
768
769 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
770 timeout = (sta->listen_interval *
771 sta->sdata->vif.bss_conf.beacon_int *
772 32 / 15625) * HZ;
773 if (timeout < STA_TX_BUFFER_EXPIRE)
774 timeout = STA_TX_BUFFER_EXPIRE;
775 return time_after(jiffies, info->control.jiffies + timeout);
776 }
777
778
779 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
780 struct sta_info *sta, int ac)
781 {
782 unsigned long flags;
783 struct sk_buff *skb;
784
785 /*
786 * First check for frames that should expire on the filtered
787 * queue. Frames here were rejected by the driver and are on
788 * a separate queue to avoid reordering with normal PS-buffered
789 * frames. They also aren't accounted for right now in the
790 * total_ps_buffered counter.
791 */
792 for (;;) {
793 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
794 skb = skb_peek(&sta->tx_filtered[ac]);
795 if (sta_info_buffer_expired(sta, skb))
796 skb = __skb_dequeue(&sta->tx_filtered[ac]);
797 else
798 skb = NULL;
799 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
800
801 /*
802 * Frames are queued in order, so if this one
803 * hasn't expired yet we can stop testing. If
804 * we actually reached the end of the queue we
805 * also need to stop, of course.
806 */
807 if (!skb)
808 break;
809 ieee80211_free_txskb(&local->hw, skb);
810 }
811
812 /*
813 * Now also check the normal PS-buffered queue, this will
814 * only find something if the filtered queue was emptied
815 * since the filtered frames are all before the normal PS
816 * buffered frames.
817 */
818 for (;;) {
819 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
820 skb = skb_peek(&sta->ps_tx_buf[ac]);
821 if (sta_info_buffer_expired(sta, skb))
822 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
823 else
824 skb = NULL;
825 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
826
827 /*
828 * frames are queued in order, so if this one
829 * hasn't expired yet (or we reached the end of
830 * the queue) we can stop testing
831 */
832 if (!skb)
833 break;
834
835 local->total_ps_buffered--;
836 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
837 sta->sta.addr);
838 ieee80211_free_txskb(&local->hw, skb);
839 }
840
841 /*
842 * Finally, recalculate the TIM bit for this station -- it might
843 * now be clear because the station was too slow to retrieve its
844 * frames.
845 */
846 sta_info_recalc_tim(sta);
847
848 /*
849 * Return whether there are any frames still buffered, this is
850 * used to check whether the cleanup timer still needs to run,
851 * if there are no frames we don't need to rearm the timer.
852 */
853 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
854 skb_queue_empty(&sta->tx_filtered[ac]));
855 }
856
857 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
858 struct sta_info *sta)
859 {
860 bool have_buffered = false;
861 int ac;
862
863 /* This is only necessary for stations on BSS/MBSS interfaces */
864 if (!sta->sdata->bss &&
865 !ieee80211_vif_is_mesh(&sta->sdata->vif))
866 return false;
867
868 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
869 have_buffered |=
870 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
871
872 return have_buffered;
873 }
874
875 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
876 {
877 struct ieee80211_local *local;
878 struct ieee80211_sub_if_data *sdata;
879 int ret;
880
881 might_sleep();
882
883 if (!sta)
884 return -ENOENT;
885
886 local = sta->local;
887 sdata = sta->sdata;
888
889 lockdep_assert_held(&local->sta_mtx);
890
891 /*
892 * Before removing the station from the driver and
893 * rate control, it might still start new aggregation
894 * sessions -- block that to make sure the tear-down
895 * will be sufficient.
896 */
897 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
898 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
899
900 /*
901 * Before removing the station from the driver there might be pending
902 * rx frames on RSS queues sent prior to the disassociation - wait for
903 * all such frames to be processed.
904 */
905 drv_sync_rx_queues(local, sta);
906
907 ret = sta_info_hash_del(local, sta);
908 if (WARN_ON(ret))
909 return ret;
910
911 /*
912 * for TDLS peers, make sure to return to the base channel before
913 * removal.
914 */
915 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
916 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
917 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
918 }
919
920 list_del_rcu(&sta->list);
921 sta->removed = true;
922
923 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
924
925 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
926 rcu_access_pointer(sdata->u.vlan.sta) == sta)
927 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
928
929 return 0;
930 }
931
932 static void __sta_info_destroy_part2(struct sta_info *sta)
933 {
934 struct ieee80211_local *local = sta->local;
935 struct ieee80211_sub_if_data *sdata = sta->sdata;
936 struct station_info *sinfo;
937 int ret;
938
939 /*
940 * NOTE: This assumes at least synchronize_net() was done
941 * after _part1 and before _part2!
942 */
943
944 might_sleep();
945 lockdep_assert_held(&local->sta_mtx);
946
947 /* now keys can no longer be reached */
948 ieee80211_free_sta_keys(local, sta);
949
950 /* disable TIM bit - last chance to tell driver */
951 __sta_info_recalc_tim(sta, true);
952
953 sta->dead = true;
954
955 local->num_sta--;
956 local->sta_generation++;
957
958 while (sta->sta_state > IEEE80211_STA_NONE) {
959 ret = sta_info_move_state(sta, sta->sta_state - 1);
960 if (ret) {
961 WARN_ON_ONCE(1);
962 break;
963 }
964 }
965
966 if (sta->uploaded) {
967 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
968 IEEE80211_STA_NOTEXIST);
969 WARN_ON_ONCE(ret != 0);
970 }
971
972 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
973
974 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
975 if (sinfo)
976 sta_set_sinfo(sta, sinfo);
977 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
978 kfree(sinfo);
979
980 rate_control_remove_sta_debugfs(sta);
981 ieee80211_sta_debugfs_remove(sta);
982
983 cleanup_single_sta(sta);
984 }
985
986 int __must_check __sta_info_destroy(struct sta_info *sta)
987 {
988 int err = __sta_info_destroy_part1(sta);
989
990 if (err)
991 return err;
992
993 synchronize_net();
994
995 __sta_info_destroy_part2(sta);
996
997 return 0;
998 }
999
1000 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1001 {
1002 struct sta_info *sta;
1003 int ret;
1004
1005 mutex_lock(&sdata->local->sta_mtx);
1006 sta = sta_info_get(sdata, addr);
1007 ret = __sta_info_destroy(sta);
1008 mutex_unlock(&sdata->local->sta_mtx);
1009
1010 return ret;
1011 }
1012
1013 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1014 const u8 *addr)
1015 {
1016 struct sta_info *sta;
1017 int ret;
1018
1019 mutex_lock(&sdata->local->sta_mtx);
1020 sta = sta_info_get_bss(sdata, addr);
1021 ret = __sta_info_destroy(sta);
1022 mutex_unlock(&sdata->local->sta_mtx);
1023
1024 return ret;
1025 }
1026
1027 static void sta_info_cleanup(unsigned long data)
1028 {
1029 struct ieee80211_local *local = (struct ieee80211_local *) data;
1030 struct sta_info *sta;
1031 bool timer_needed = false;
1032
1033 rcu_read_lock();
1034 list_for_each_entry_rcu(sta, &local->sta_list, list)
1035 if (sta_info_cleanup_expire_buffered(local, sta))
1036 timer_needed = true;
1037 rcu_read_unlock();
1038
1039 if (local->quiescing)
1040 return;
1041
1042 if (!timer_needed)
1043 return;
1044
1045 mod_timer(&local->sta_cleanup,
1046 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1047 }
1048
1049 int sta_info_init(struct ieee80211_local *local)
1050 {
1051 int err;
1052
1053 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1054 if (err)
1055 return err;
1056
1057 spin_lock_init(&local->tim_lock);
1058 mutex_init(&local->sta_mtx);
1059 INIT_LIST_HEAD(&local->sta_list);
1060
1061 setup_timer(&local->sta_cleanup, sta_info_cleanup,
1062 (unsigned long)local);
1063 return 0;
1064 }
1065
1066 void sta_info_stop(struct ieee80211_local *local)
1067 {
1068 del_timer_sync(&local->sta_cleanup);
1069 rhltable_destroy(&local->sta_hash);
1070 }
1071
1072
1073 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1074 {
1075 struct ieee80211_local *local = sdata->local;
1076 struct sta_info *sta, *tmp;
1077 LIST_HEAD(free_list);
1078 int ret = 0;
1079
1080 might_sleep();
1081
1082 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1083 WARN_ON(vlans && !sdata->bss);
1084
1085 mutex_lock(&local->sta_mtx);
1086 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1087 if (sdata == sta->sdata ||
1088 (vlans && sdata->bss == sta->sdata->bss)) {
1089 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1090 list_add(&sta->free_list, &free_list);
1091 ret++;
1092 }
1093 }
1094
1095 if (!list_empty(&free_list)) {
1096 synchronize_net();
1097 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1098 __sta_info_destroy_part2(sta);
1099 }
1100 mutex_unlock(&local->sta_mtx);
1101
1102 return ret;
1103 }
1104
1105 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1106 unsigned long exp_time)
1107 {
1108 struct ieee80211_local *local = sdata->local;
1109 struct sta_info *sta, *tmp;
1110
1111 mutex_lock(&local->sta_mtx);
1112
1113 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1114 unsigned long last_active = ieee80211_sta_last_active(sta);
1115
1116 if (sdata != sta->sdata)
1117 continue;
1118
1119 if (time_is_before_jiffies(last_active + exp_time)) {
1120 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1121 sta->sta.addr);
1122
1123 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1124 test_sta_flag(sta, WLAN_STA_PS_STA))
1125 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1126
1127 WARN_ON(__sta_info_destroy(sta));
1128 }
1129 }
1130
1131 mutex_unlock(&local->sta_mtx);
1132 }
1133
1134 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1135 const u8 *addr,
1136 const u8 *localaddr)
1137 {
1138 struct ieee80211_local *local = hw_to_local(hw);
1139 struct rhlist_head *tmp;
1140 struct sta_info *sta;
1141
1142 /*
1143 * Just return a random station if localaddr is NULL
1144 * ... first in list.
1145 */
1146 for_each_sta_info(local, addr, sta, tmp) {
1147 if (localaddr &&
1148 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1149 continue;
1150 if (!sta->uploaded)
1151 return NULL;
1152 return &sta->sta;
1153 }
1154
1155 return NULL;
1156 }
1157 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1158
1159 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1160 const u8 *addr)
1161 {
1162 struct sta_info *sta;
1163
1164 if (!vif)
1165 return NULL;
1166
1167 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1168 if (!sta)
1169 return NULL;
1170
1171 if (!sta->uploaded)
1172 return NULL;
1173
1174 return &sta->sta;
1175 }
1176 EXPORT_SYMBOL(ieee80211_find_sta);
1177
1178 /* powersave support code */
1179 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1180 {
1181 struct ieee80211_sub_if_data *sdata = sta->sdata;
1182 struct ieee80211_local *local = sdata->local;
1183 struct sk_buff_head pending;
1184 int filtered = 0, buffered = 0, ac, i;
1185 unsigned long flags;
1186 struct ps_data *ps;
1187
1188 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1189 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1190 u.ap);
1191
1192 if (sdata->vif.type == NL80211_IFTYPE_AP)
1193 ps = &sdata->bss->ps;
1194 else if (ieee80211_vif_is_mesh(&sdata->vif))
1195 ps = &sdata->u.mesh.ps;
1196 else
1197 return;
1198
1199 clear_sta_flag(sta, WLAN_STA_SP);
1200
1201 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1202 sta->driver_buffered_tids = 0;
1203 sta->txq_buffered_tids = 0;
1204
1205 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1206 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1207
1208 if (sta->sta.txq[0]) {
1209 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1210 if (!txq_has_queue(sta->sta.txq[i]))
1211 continue;
1212
1213 drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i]));
1214 }
1215 }
1216
1217 skb_queue_head_init(&pending);
1218
1219 /* sync with ieee80211_tx_h_unicast_ps_buf */
1220 spin_lock(&sta->ps_lock);
1221 /* Send all buffered frames to the station */
1222 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1223 int count = skb_queue_len(&pending), tmp;
1224
1225 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1226 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1227 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1228 tmp = skb_queue_len(&pending);
1229 filtered += tmp - count;
1230 count = tmp;
1231
1232 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1233 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1234 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1235 tmp = skb_queue_len(&pending);
1236 buffered += tmp - count;
1237 }
1238
1239 ieee80211_add_pending_skbs(local, &pending);
1240
1241 /* now we're no longer in the deliver code */
1242 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1243
1244 /* The station might have polled and then woken up before we responded,
1245 * so clear these flags now to avoid them sticking around.
1246 */
1247 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1248 clear_sta_flag(sta, WLAN_STA_UAPSD);
1249 spin_unlock(&sta->ps_lock);
1250
1251 atomic_dec(&ps->num_sta_ps);
1252
1253 /* This station just woke up and isn't aware of our SMPS state */
1254 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1255 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1256 sdata->smps_mode) &&
1257 sta->known_smps_mode != sdata->bss->req_smps &&
1258 sta_info_tx_streams(sta) != 1) {
1259 ht_dbg(sdata,
1260 "%pM just woke up and MIMO capable - update SMPS\n",
1261 sta->sta.addr);
1262 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1263 sta->sta.addr,
1264 sdata->vif.bss_conf.bssid);
1265 }
1266
1267 local->total_ps_buffered -= buffered;
1268
1269 sta_info_recalc_tim(sta);
1270
1271 ps_dbg(sdata,
1272 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1273 sta->sta.addr, sta->sta.aid, filtered, buffered);
1274
1275 ieee80211_check_fast_xmit(sta);
1276 }
1277
1278 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1279 enum ieee80211_frame_release_type reason,
1280 bool call_driver, bool more_data)
1281 {
1282 struct ieee80211_sub_if_data *sdata = sta->sdata;
1283 struct ieee80211_local *local = sdata->local;
1284 struct ieee80211_qos_hdr *nullfunc;
1285 struct sk_buff *skb;
1286 int size = sizeof(*nullfunc);
1287 __le16 fc;
1288 bool qos = sta->sta.wme;
1289 struct ieee80211_tx_info *info;
1290 struct ieee80211_chanctx_conf *chanctx_conf;
1291
1292 if (qos) {
1293 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1294 IEEE80211_STYPE_QOS_NULLFUNC |
1295 IEEE80211_FCTL_FROMDS);
1296 } else {
1297 size -= 2;
1298 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1299 IEEE80211_STYPE_NULLFUNC |
1300 IEEE80211_FCTL_FROMDS);
1301 }
1302
1303 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1304 if (!skb)
1305 return;
1306
1307 skb_reserve(skb, local->hw.extra_tx_headroom);
1308
1309 nullfunc = (void *) skb_put(skb, size);
1310 nullfunc->frame_control = fc;
1311 nullfunc->duration_id = 0;
1312 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1313 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1314 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1315 nullfunc->seq_ctrl = 0;
1316
1317 skb->priority = tid;
1318 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1319 if (qos) {
1320 nullfunc->qos_ctrl = cpu_to_le16(tid);
1321
1322 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1323 nullfunc->qos_ctrl |=
1324 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1325 if (more_data)
1326 nullfunc->frame_control |=
1327 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1328 }
1329 }
1330
1331 info = IEEE80211_SKB_CB(skb);
1332
1333 /*
1334 * Tell TX path to send this frame even though the
1335 * STA may still remain is PS mode after this frame
1336 * exchange. Also set EOSP to indicate this packet
1337 * ends the poll/service period.
1338 */
1339 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1340 IEEE80211_TX_STATUS_EOSP |
1341 IEEE80211_TX_CTL_REQ_TX_STATUS;
1342
1343 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1344
1345 if (call_driver)
1346 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1347 reason, false);
1348
1349 skb->dev = sdata->dev;
1350
1351 rcu_read_lock();
1352 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1353 if (WARN_ON(!chanctx_conf)) {
1354 rcu_read_unlock();
1355 kfree_skb(skb);
1356 return;
1357 }
1358
1359 info->band = chanctx_conf->def.chan->band;
1360 ieee80211_xmit(sdata, sta, skb);
1361 rcu_read_unlock();
1362 }
1363
1364 static int find_highest_prio_tid(unsigned long tids)
1365 {
1366 /* lower 3 TIDs aren't ordered perfectly */
1367 if (tids & 0xF8)
1368 return fls(tids) - 1;
1369 /* TID 0 is BE just like TID 3 */
1370 if (tids & BIT(0))
1371 return 0;
1372 return fls(tids) - 1;
1373 }
1374
1375 /* Indicates if the MORE_DATA bit should be set in the last
1376 * frame obtained by ieee80211_sta_ps_get_frames.
1377 * Note that driver_release_tids is relevant only if
1378 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1379 */
1380 static bool
1381 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1382 enum ieee80211_frame_release_type reason,
1383 unsigned long driver_release_tids)
1384 {
1385 int ac;
1386
1387 /* If the driver has data on more than one TID then
1388 * certainly there's more data if we release just a
1389 * single frame now (from a single TID). This will
1390 * only happen for PS-Poll.
1391 */
1392 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1393 hweight16(driver_release_tids) > 1)
1394 return true;
1395
1396 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1397 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1398 continue;
1399
1400 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1401 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1402 return true;
1403 }
1404
1405 return false;
1406 }
1407
1408 static void
1409 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1410 enum ieee80211_frame_release_type reason,
1411 struct sk_buff_head *frames,
1412 unsigned long *driver_release_tids)
1413 {
1414 struct ieee80211_sub_if_data *sdata = sta->sdata;
1415 struct ieee80211_local *local = sdata->local;
1416 int ac;
1417
1418 /* Get response frame(s) and more data bit for the last one. */
1419 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1420 unsigned long tids;
1421
1422 if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1423 continue;
1424
1425 tids = ieee80211_tids_for_ac(ac);
1426
1427 /* if we already have frames from software, then we can't also
1428 * release from hardware queues
1429 */
1430 if (skb_queue_empty(frames)) {
1431 *driver_release_tids |=
1432 sta->driver_buffered_tids & tids;
1433 *driver_release_tids |= sta->txq_buffered_tids & tids;
1434 }
1435
1436 if (!*driver_release_tids) {
1437 struct sk_buff *skb;
1438
1439 while (n_frames > 0) {
1440 skb = skb_dequeue(&sta->tx_filtered[ac]);
1441 if (!skb) {
1442 skb = skb_dequeue(
1443 &sta->ps_tx_buf[ac]);
1444 if (skb)
1445 local->total_ps_buffered--;
1446 }
1447 if (!skb)
1448 break;
1449 n_frames--;
1450 __skb_queue_tail(frames, skb);
1451 }
1452 }
1453
1454 /* If we have more frames buffered on this AC, then abort the
1455 * loop since we can't send more data from other ACs before
1456 * the buffered frames from this.
1457 */
1458 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1459 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1460 break;
1461 }
1462 }
1463
1464 static void
1465 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1466 int n_frames, u8 ignored_acs,
1467 enum ieee80211_frame_release_type reason)
1468 {
1469 struct ieee80211_sub_if_data *sdata = sta->sdata;
1470 struct ieee80211_local *local = sdata->local;
1471 unsigned long driver_release_tids = 0;
1472 struct sk_buff_head frames;
1473 bool more_data;
1474
1475 /* Service or PS-Poll period starts */
1476 set_sta_flag(sta, WLAN_STA_SP);
1477
1478 __skb_queue_head_init(&frames);
1479
1480 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1481 &frames, &driver_release_tids);
1482
1483 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1484
1485 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1486 driver_release_tids =
1487 BIT(find_highest_prio_tid(driver_release_tids));
1488
1489 if (skb_queue_empty(&frames) && !driver_release_tids) {
1490 int tid, ac;
1491
1492 /*
1493 * For PS-Poll, this can only happen due to a race condition
1494 * when we set the TIM bit and the station notices it, but
1495 * before it can poll for the frame we expire it.
1496 *
1497 * For uAPSD, this is said in the standard (11.2.1.5 h):
1498 * At each unscheduled SP for a non-AP STA, the AP shall
1499 * attempt to transmit at least one MSDU or MMPDU, but no
1500 * more than the value specified in the Max SP Length field
1501 * in the QoS Capability element from delivery-enabled ACs,
1502 * that are destined for the non-AP STA.
1503 *
1504 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1505 */
1506
1507 /* This will evaluate to 1, 3, 5 or 7. */
1508 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1509 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1510 break;
1511 tid = 7 - 2 * ac;
1512
1513 ieee80211_send_null_response(sta, tid, reason, true, false);
1514 } else if (!driver_release_tids) {
1515 struct sk_buff_head pending;
1516 struct sk_buff *skb;
1517 int num = 0;
1518 u16 tids = 0;
1519 bool need_null = false;
1520
1521 skb_queue_head_init(&pending);
1522
1523 while ((skb = __skb_dequeue(&frames))) {
1524 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1525 struct ieee80211_hdr *hdr = (void *) skb->data;
1526 u8 *qoshdr = NULL;
1527
1528 num++;
1529
1530 /*
1531 * Tell TX path to send this frame even though the
1532 * STA may still remain is PS mode after this frame
1533 * exchange.
1534 */
1535 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1536 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1537
1538 /*
1539 * Use MoreData flag to indicate whether there are
1540 * more buffered frames for this STA
1541 */
1542 if (more_data || !skb_queue_empty(&frames))
1543 hdr->frame_control |=
1544 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1545 else
1546 hdr->frame_control &=
1547 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1548
1549 if (ieee80211_is_data_qos(hdr->frame_control) ||
1550 ieee80211_is_qos_nullfunc(hdr->frame_control))
1551 qoshdr = ieee80211_get_qos_ctl(hdr);
1552
1553 tids |= BIT(skb->priority);
1554
1555 __skb_queue_tail(&pending, skb);
1556
1557 /* end service period after last frame or add one */
1558 if (!skb_queue_empty(&frames))
1559 continue;
1560
1561 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1562 /* for PS-Poll, there's only one frame */
1563 info->flags |= IEEE80211_TX_STATUS_EOSP |
1564 IEEE80211_TX_CTL_REQ_TX_STATUS;
1565 break;
1566 }
1567
1568 /* For uAPSD, things are a bit more complicated. If the
1569 * last frame has a QoS header (i.e. is a QoS-data or
1570 * QoS-nulldata frame) then just set the EOSP bit there
1571 * and be done.
1572 * If the frame doesn't have a QoS header (which means
1573 * it should be a bufferable MMPDU) then we can't set
1574 * the EOSP bit in the QoS header; add a QoS-nulldata
1575 * frame to the list to send it after the MMPDU.
1576 *
1577 * Note that this code is only in the mac80211-release
1578 * code path, we assume that the driver will not buffer
1579 * anything but QoS-data frames, or if it does, will
1580 * create the QoS-nulldata frame by itself if needed.
1581 *
1582 * Cf. 802.11-2012 10.2.1.10 (c).
1583 */
1584 if (qoshdr) {
1585 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1586
1587 info->flags |= IEEE80211_TX_STATUS_EOSP |
1588 IEEE80211_TX_CTL_REQ_TX_STATUS;
1589 } else {
1590 /* The standard isn't completely clear on this
1591 * as it says the more-data bit should be set
1592 * if there are more BUs. The QoS-Null frame
1593 * we're about to send isn't buffered yet, we
1594 * only create it below, but let's pretend it
1595 * was buffered just in case some clients only
1596 * expect more-data=0 when eosp=1.
1597 */
1598 hdr->frame_control |=
1599 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1600 need_null = true;
1601 num++;
1602 }
1603 break;
1604 }
1605
1606 drv_allow_buffered_frames(local, sta, tids, num,
1607 reason, more_data);
1608
1609 ieee80211_add_pending_skbs(local, &pending);
1610
1611 if (need_null)
1612 ieee80211_send_null_response(
1613 sta, find_highest_prio_tid(tids),
1614 reason, false, false);
1615
1616 sta_info_recalc_tim(sta);
1617 } else {
1618 int tid;
1619
1620 /*
1621 * We need to release a frame that is buffered somewhere in the
1622 * driver ... it'll have to handle that.
1623 * Note that the driver also has to check the number of frames
1624 * on the TIDs we're releasing from - if there are more than
1625 * n_frames it has to set the more-data bit (if we didn't ask
1626 * it to set it anyway due to other buffered frames); if there
1627 * are fewer than n_frames it has to make sure to adjust that
1628 * to allow the service period to end properly.
1629 */
1630 drv_release_buffered_frames(local, sta, driver_release_tids,
1631 n_frames, reason, more_data);
1632
1633 /*
1634 * Note that we don't recalculate the TIM bit here as it would
1635 * most likely have no effect at all unless the driver told us
1636 * that the TID(s) became empty before returning here from the
1637 * release function.
1638 * Either way, however, when the driver tells us that the TID(s)
1639 * became empty or we find that a txq became empty, we'll do the
1640 * TIM recalculation.
1641 */
1642
1643 if (!sta->sta.txq[0])
1644 return;
1645
1646 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1647 if (!(driver_release_tids & BIT(tid)) ||
1648 txq_has_queue(sta->sta.txq[tid]))
1649 continue;
1650
1651 sta_info_recalc_tim(sta);
1652 break;
1653 }
1654 }
1655 }
1656
1657 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1658 {
1659 u8 ignore_for_response = sta->sta.uapsd_queues;
1660
1661 /*
1662 * If all ACs are delivery-enabled then we should reply
1663 * from any of them, if only some are enabled we reply
1664 * only from the non-enabled ones.
1665 */
1666 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1667 ignore_for_response = 0;
1668
1669 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1670 IEEE80211_FRAME_RELEASE_PSPOLL);
1671 }
1672
1673 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1674 {
1675 int n_frames = sta->sta.max_sp;
1676 u8 delivery_enabled = sta->sta.uapsd_queues;
1677
1678 /*
1679 * If we ever grow support for TSPEC this might happen if
1680 * the TSPEC update from hostapd comes in between a trigger
1681 * frame setting WLAN_STA_UAPSD in the RX path and this
1682 * actually getting called.
1683 */
1684 if (!delivery_enabled)
1685 return;
1686
1687 switch (sta->sta.max_sp) {
1688 case 1:
1689 n_frames = 2;
1690 break;
1691 case 2:
1692 n_frames = 4;
1693 break;
1694 case 3:
1695 n_frames = 6;
1696 break;
1697 case 0:
1698 /* XXX: what is a good value? */
1699 n_frames = 128;
1700 break;
1701 }
1702
1703 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1704 IEEE80211_FRAME_RELEASE_UAPSD);
1705 }
1706
1707 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1708 struct ieee80211_sta *pubsta, bool block)
1709 {
1710 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1711
1712 trace_api_sta_block_awake(sta->local, pubsta, block);
1713
1714 if (block) {
1715 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1716 ieee80211_clear_fast_xmit(sta);
1717 return;
1718 }
1719
1720 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1721 return;
1722
1723 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1724 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1725 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1726 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1727 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1728 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1729 /* must be asleep in this case */
1730 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1731 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1732 } else {
1733 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1734 ieee80211_check_fast_xmit(sta);
1735 }
1736 }
1737 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1738
1739 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1740 {
1741 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1742 struct ieee80211_local *local = sta->local;
1743
1744 trace_api_eosp(local, pubsta);
1745
1746 clear_sta_flag(sta, WLAN_STA_SP);
1747 }
1748 EXPORT_SYMBOL(ieee80211_sta_eosp);
1749
1750 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1751 {
1752 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1753 enum ieee80211_frame_release_type reason;
1754 bool more_data;
1755
1756 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1757
1758 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1759 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1760 reason, 0);
1761
1762 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1763 }
1764 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1765
1766 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1767 u8 tid, bool buffered)
1768 {
1769 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1770
1771 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1772 return;
1773
1774 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1775
1776 if (buffered)
1777 set_bit(tid, &sta->driver_buffered_tids);
1778 else
1779 clear_bit(tid, &sta->driver_buffered_tids);
1780
1781 sta_info_recalc_tim(sta);
1782 }
1783 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1784
1785 static void
1786 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
1787 {
1788 struct ieee80211_local *local = sdata->local;
1789 bool allow_p2p_go_ps = sdata->vif.p2p;
1790 struct sta_info *sta;
1791
1792 rcu_read_lock();
1793 list_for_each_entry_rcu(sta, &local->sta_list, list) {
1794 if (sdata != sta->sdata ||
1795 !test_sta_flag(sta, WLAN_STA_ASSOC))
1796 continue;
1797 if (!sta->sta.support_p2p_ps) {
1798 allow_p2p_go_ps = false;
1799 break;
1800 }
1801 }
1802 rcu_read_unlock();
1803
1804 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
1805 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
1806 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
1807 }
1808 }
1809
1810 int sta_info_move_state(struct sta_info *sta,
1811 enum ieee80211_sta_state new_state)
1812 {
1813 might_sleep();
1814
1815 if (sta->sta_state == new_state)
1816 return 0;
1817
1818 /* check allowed transitions first */
1819
1820 switch (new_state) {
1821 case IEEE80211_STA_NONE:
1822 if (sta->sta_state != IEEE80211_STA_AUTH)
1823 return -EINVAL;
1824 break;
1825 case IEEE80211_STA_AUTH:
1826 if (sta->sta_state != IEEE80211_STA_NONE &&
1827 sta->sta_state != IEEE80211_STA_ASSOC)
1828 return -EINVAL;
1829 break;
1830 case IEEE80211_STA_ASSOC:
1831 if (sta->sta_state != IEEE80211_STA_AUTH &&
1832 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1833 return -EINVAL;
1834 break;
1835 case IEEE80211_STA_AUTHORIZED:
1836 if (sta->sta_state != IEEE80211_STA_ASSOC)
1837 return -EINVAL;
1838 break;
1839 default:
1840 WARN(1, "invalid state %d", new_state);
1841 return -EINVAL;
1842 }
1843
1844 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1845 sta->sta.addr, new_state);
1846
1847 /*
1848 * notify the driver before the actual changes so it can
1849 * fail the transition
1850 */
1851 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1852 int err = drv_sta_state(sta->local, sta->sdata, sta,
1853 sta->sta_state, new_state);
1854 if (err)
1855 return err;
1856 }
1857
1858 /* reflect the change in all state variables */
1859
1860 switch (new_state) {
1861 case IEEE80211_STA_NONE:
1862 if (sta->sta_state == IEEE80211_STA_AUTH)
1863 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1864 break;
1865 case IEEE80211_STA_AUTH:
1866 if (sta->sta_state == IEEE80211_STA_NONE) {
1867 set_bit(WLAN_STA_AUTH, &sta->_flags);
1868 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1869 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1870 ieee80211_recalc_min_chandef(sta->sdata);
1871 if (!sta->sta.support_p2p_ps)
1872 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1873 }
1874 break;
1875 case IEEE80211_STA_ASSOC:
1876 if (sta->sta_state == IEEE80211_STA_AUTH) {
1877 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1878 ieee80211_recalc_min_chandef(sta->sdata);
1879 if (!sta->sta.support_p2p_ps)
1880 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1881 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1882 ieee80211_vif_dec_num_mcast(sta->sdata);
1883 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1884 ieee80211_clear_fast_xmit(sta);
1885 ieee80211_clear_fast_rx(sta);
1886 }
1887 break;
1888 case IEEE80211_STA_AUTHORIZED:
1889 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1890 ieee80211_vif_inc_num_mcast(sta->sdata);
1891 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1892 ieee80211_check_fast_xmit(sta);
1893 ieee80211_check_fast_rx(sta);
1894 }
1895 break;
1896 default:
1897 break;
1898 }
1899
1900 sta->sta_state = new_state;
1901
1902 return 0;
1903 }
1904
1905 u8 sta_info_tx_streams(struct sta_info *sta)
1906 {
1907 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1908 u8 rx_streams;
1909
1910 if (!sta->sta.ht_cap.ht_supported)
1911 return 1;
1912
1913 if (sta->sta.vht_cap.vht_supported) {
1914 int i;
1915 u16 tx_mcs_map =
1916 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1917
1918 for (i = 7; i >= 0; i--)
1919 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1920 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1921 return i + 1;
1922 }
1923
1924 if (ht_cap->mcs.rx_mask[3])
1925 rx_streams = 4;
1926 else if (ht_cap->mcs.rx_mask[2])
1927 rx_streams = 3;
1928 else if (ht_cap->mcs.rx_mask[1])
1929 rx_streams = 2;
1930 else
1931 rx_streams = 1;
1932
1933 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1934 return rx_streams;
1935
1936 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1937 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1938 }
1939
1940 static struct ieee80211_sta_rx_stats *
1941 sta_get_last_rx_stats(struct sta_info *sta)
1942 {
1943 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1944 struct ieee80211_local *local = sta->local;
1945 int cpu;
1946
1947 if (!ieee80211_hw_check(&local->hw, USES_RSS))
1948 return stats;
1949
1950 for_each_possible_cpu(cpu) {
1951 struct ieee80211_sta_rx_stats *cpustats;
1952
1953 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1954
1955 if (time_after(cpustats->last_rx, stats->last_rx))
1956 stats = cpustats;
1957 }
1958
1959 return stats;
1960 }
1961
1962 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
1963 struct rate_info *rinfo)
1964 {
1965 rinfo->bw = STA_STATS_GET(BW, rate);
1966
1967 switch (STA_STATS_GET(TYPE, rate)) {
1968 case STA_STATS_RATE_TYPE_VHT:
1969 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
1970 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
1971 rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
1972 if (STA_STATS_GET(SGI, rate))
1973 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1974 break;
1975 case STA_STATS_RATE_TYPE_HT:
1976 rinfo->flags = RATE_INFO_FLAGS_MCS;
1977 rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
1978 if (STA_STATS_GET(SGI, rate))
1979 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1980 break;
1981 case STA_STATS_RATE_TYPE_LEGACY: {
1982 struct ieee80211_supported_band *sband;
1983 u16 brate;
1984 unsigned int shift;
1985 int band = STA_STATS_GET(LEGACY_BAND, rate);
1986 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
1987
1988 rinfo->flags = 0;
1989 sband = local->hw.wiphy->bands[band];
1990 brate = sband->bitrates[rate_idx].bitrate;
1991 if (rinfo->bw == RATE_INFO_BW_5)
1992 shift = 2;
1993 else if (rinfo->bw == RATE_INFO_BW_10)
1994 shift = 1;
1995 else
1996 shift = 0;
1997 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
1998 break;
1999 }
2000 }
2001 }
2002
2003 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2004 {
2005 u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2006
2007 if (rate == STA_STATS_RATE_INVALID)
2008 return -EINVAL;
2009
2010 sta_stats_decode_rate(sta->local, rate, rinfo);
2011 return 0;
2012 }
2013
2014 static void sta_set_tidstats(struct sta_info *sta,
2015 struct cfg80211_tid_stats *tidstats,
2016 int tid)
2017 {
2018 struct ieee80211_local *local = sta->local;
2019
2020 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2021 unsigned int start;
2022
2023 do {
2024 start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2025 tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2026 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2027
2028 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2029 }
2030
2031 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2032 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2033 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2034 }
2035
2036 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2037 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2038 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2039 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2040 }
2041
2042 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2043 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2044 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2045 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2046 }
2047 }
2048
2049 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2050 {
2051 unsigned int start;
2052 u64 value;
2053
2054 do {
2055 start = u64_stats_fetch_begin(&rxstats->syncp);
2056 value = rxstats->bytes;
2057 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2058
2059 return value;
2060 }
2061
2062 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
2063 {
2064 struct ieee80211_sub_if_data *sdata = sta->sdata;
2065 struct ieee80211_local *local = sdata->local;
2066 u32 thr = 0;
2067 int i, ac, cpu;
2068 struct ieee80211_sta_rx_stats *last_rxstats;
2069
2070 last_rxstats = sta_get_last_rx_stats(sta);
2071
2072 sinfo->generation = sdata->local->sta_generation;
2073
2074 /* do before driver, so beacon filtering drivers have a
2075 * chance to e.g. just add the number of filtered beacons
2076 * (or just modify the value entirely, of course)
2077 */
2078 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2079 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2080
2081 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2082
2083 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
2084 BIT(NL80211_STA_INFO_STA_FLAGS) |
2085 BIT(NL80211_STA_INFO_BSS_PARAM) |
2086 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
2087 BIT(NL80211_STA_INFO_RX_DROP_MISC);
2088
2089 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2090 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2091 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
2092 }
2093
2094 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2095 sinfo->inactive_time =
2096 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2097
2098 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
2099 BIT(NL80211_STA_INFO_TX_BYTES)))) {
2100 sinfo->tx_bytes = 0;
2101 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2102 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2103 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
2104 }
2105
2106 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
2107 sinfo->tx_packets = 0;
2108 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2109 sinfo->tx_packets += sta->tx_stats.packets[ac];
2110 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
2111 }
2112
2113 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
2114 BIT(NL80211_STA_INFO_RX_BYTES)))) {
2115 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2116
2117 if (sta->pcpu_rx_stats) {
2118 for_each_possible_cpu(cpu) {
2119 struct ieee80211_sta_rx_stats *cpurxs;
2120
2121 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2122 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2123 }
2124 }
2125
2126 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
2127 }
2128
2129 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
2130 sinfo->rx_packets = sta->rx_stats.packets;
2131 if (sta->pcpu_rx_stats) {
2132 for_each_possible_cpu(cpu) {
2133 struct ieee80211_sta_rx_stats *cpurxs;
2134
2135 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2136 sinfo->rx_packets += cpurxs->packets;
2137 }
2138 }
2139 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
2140 }
2141
2142 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
2143 sinfo->tx_retries = sta->status_stats.retry_count;
2144 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
2145 }
2146
2147 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
2148 sinfo->tx_failed = sta->status_stats.retry_failed;
2149 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
2150 }
2151
2152 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2153 if (sta->pcpu_rx_stats) {
2154 for_each_possible_cpu(cpu) {
2155 struct ieee80211_sta_rx_stats *cpurxs;
2156
2157 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2158 sinfo->rx_dropped_misc += cpurxs->dropped;
2159 }
2160 }
2161
2162 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2163 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2164 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
2165 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2166 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2167 }
2168
2169 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2170 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2171 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
2172 sinfo->signal = (s8)last_rxstats->last_signal;
2173 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
2174 }
2175
2176 if (!sta->pcpu_rx_stats &&
2177 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
2178 sinfo->signal_avg =
2179 -ewma_signal_read(&sta->rx_stats_avg.signal);
2180 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
2181 }
2182 }
2183
2184 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2185 * the sta->rx_stats struct, so the check here is fine with and without
2186 * pcpu statistics
2187 */
2188 if (last_rxstats->chains &&
2189 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
2190 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2191 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
2192 if (!sta->pcpu_rx_stats)
2193 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2194
2195 sinfo->chains = last_rxstats->chains;
2196
2197 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2198 sinfo->chain_signal[i] =
2199 last_rxstats->chain_signal_last[i];
2200 sinfo->chain_signal_avg[i] =
2201 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2202 }
2203 }
2204
2205 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
2206 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2207 &sinfo->txrate);
2208 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
2209 }
2210
2211 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
2212 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2213 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
2214 }
2215
2216 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
2217 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
2218 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
2219
2220 sta_set_tidstats(sta, tidstats, i);
2221 }
2222
2223 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2224 #ifdef CONFIG_MAC80211_MESH
2225 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2226 BIT(NL80211_STA_INFO_PLID) |
2227 BIT(NL80211_STA_INFO_PLINK_STATE) |
2228 BIT(NL80211_STA_INFO_LOCAL_PM) |
2229 BIT(NL80211_STA_INFO_PEER_PM) |
2230 BIT(NL80211_STA_INFO_NONPEER_PM);
2231
2232 sinfo->llid = sta->mesh->llid;
2233 sinfo->plid = sta->mesh->plid;
2234 sinfo->plink_state = sta->mesh->plink_state;
2235 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2236 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2237 sinfo->t_offset = sta->mesh->t_offset;
2238 }
2239 sinfo->local_pm = sta->mesh->local_pm;
2240 sinfo->peer_pm = sta->mesh->peer_pm;
2241 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2242 #endif
2243 }
2244
2245 sinfo->bss_param.flags = 0;
2246 if (sdata->vif.bss_conf.use_cts_prot)
2247 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2248 if (sdata->vif.bss_conf.use_short_preamble)
2249 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2250 if (sdata->vif.bss_conf.use_short_slot)
2251 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2252 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2253 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2254
2255 sinfo->sta_flags.set = 0;
2256 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2257 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2258 BIT(NL80211_STA_FLAG_WME) |
2259 BIT(NL80211_STA_FLAG_MFP) |
2260 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2261 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2262 BIT(NL80211_STA_FLAG_TDLS_PEER);
2263 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2264 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2265 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2266 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2267 if (sta->sta.wme)
2268 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2269 if (test_sta_flag(sta, WLAN_STA_MFP))
2270 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2271 if (test_sta_flag(sta, WLAN_STA_AUTH))
2272 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2273 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2274 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2275 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2276 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2277
2278 thr = sta_get_expected_throughput(sta);
2279
2280 if (thr != 0) {
2281 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2282 sinfo->expected_throughput = thr;
2283 }
2284 }
2285
2286 u32 sta_get_expected_throughput(struct sta_info *sta)
2287 {
2288 struct ieee80211_sub_if_data *sdata = sta->sdata;
2289 struct ieee80211_local *local = sdata->local;
2290 struct rate_control_ref *ref = NULL;
2291 u32 thr = 0;
2292
2293 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2294 ref = local->rate_ctrl;
2295
2296 /* check if the driver has a SW RC implementation */
2297 if (ref && ref->ops->get_expected_throughput)
2298 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2299 else
2300 thr = drv_get_expected_throughput(local, sta);
2301
2302 return thr;
2303 }
2304
2305 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2306 {
2307 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2308
2309 if (time_after(stats->last_rx, sta->status_stats.last_ack))
2310 return stats->last_rx;
2311 return sta->status_stats.last_ack;
2312 }