Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
90
91 return len;
92 }
93
94 /*
95 * ieee80211_add_rx_radiotap_header - add radiotap header
96 *
97 * add a radiotap header containing all the fields which the hardware provided.
98 */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
104 {
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
109
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
112
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
120
121 pos = (unsigned char *)(rthdr+1);
122
123 /* the order of the following fields is important */
124
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
131 }
132
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
141
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
144 /*
145 * MCS information is a separate field in radiotap,
146 * added below.
147 */
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
152 }
153 pos++;
154
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
171
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
178 }
179
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
185
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
196
197 if (status->flag & RX_FLAG_HT) {
198 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
199 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
200 IEEE80211_RADIOTAP_MCS_HAVE_GI |
201 IEEE80211_RADIOTAP_MCS_HAVE_BW;
202 *pos = 0;
203 if (status->flag & RX_FLAG_SHORT_GI)
204 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
205 if (status->flag & RX_FLAG_40MHZ)
206 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
207 pos++;
208 *pos++ = status->rate_idx;
209 }
210 }
211
212 /*
213 * This function copies a received frame to all monitor interfaces and
214 * returns a cleaned-up SKB that no longer includes the FCS nor the
215 * radiotap header the driver might have added.
216 */
217 static struct sk_buff *
218 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
219 struct ieee80211_rate *rate)
220 {
221 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
222 struct ieee80211_sub_if_data *sdata;
223 int needed_headroom = 0;
224 struct sk_buff *skb, *skb2;
225 struct net_device *prev_dev = NULL;
226 int present_fcs_len = 0;
227
228 /*
229 * First, we may need to make a copy of the skb because
230 * (1) we need to modify it for radiotap (if not present), and
231 * (2) the other RX handlers will modify the skb we got.
232 *
233 * We don't need to, of course, if we aren't going to return
234 * the SKB because it has a bad FCS/PLCP checksum.
235 */
236
237 /* room for the radiotap header based on driver features */
238 needed_headroom = ieee80211_rx_radiotap_len(local, status);
239
240 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
241 present_fcs_len = FCS_LEN;
242
243 /* make sure hdr->frame_control is on the linear part */
244 if (!pskb_may_pull(origskb, 2)) {
245 dev_kfree_skb(origskb);
246 return NULL;
247 }
248
249 if (!local->monitors) {
250 if (should_drop_frame(origskb, present_fcs_len)) {
251 dev_kfree_skb(origskb);
252 return NULL;
253 }
254
255 return remove_monitor_info(local, origskb);
256 }
257
258 if (should_drop_frame(origskb, present_fcs_len)) {
259 /* only need to expand headroom if necessary */
260 skb = origskb;
261 origskb = NULL;
262
263 /*
264 * This shouldn't trigger often because most devices have an
265 * RX header they pull before we get here, and that should
266 * be big enough for our radiotap information. We should
267 * probably export the length to drivers so that we can have
268 * them allocate enough headroom to start with.
269 */
270 if (skb_headroom(skb) < needed_headroom &&
271 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
272 dev_kfree_skb(skb);
273 return NULL;
274 }
275 } else {
276 /*
277 * Need to make a copy and possibly remove radiotap header
278 * and FCS from the original.
279 */
280 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
281
282 origskb = remove_monitor_info(local, origskb);
283
284 if (!skb)
285 return origskb;
286 }
287
288 /* prepend radiotap information */
289 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
290
291 skb_reset_mac_header(skb);
292 skb->ip_summed = CHECKSUM_UNNECESSARY;
293 skb->pkt_type = PACKET_OTHERHOST;
294 skb->protocol = htons(ETH_P_802_2);
295
296 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
297 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
298 continue;
299
300 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
301 continue;
302
303 if (!ieee80211_sdata_running(sdata))
304 continue;
305
306 if (prev_dev) {
307 skb2 = skb_clone(skb, GFP_ATOMIC);
308 if (skb2) {
309 skb2->dev = prev_dev;
310 netif_receive_skb(skb2);
311 }
312 }
313
314 prev_dev = sdata->dev;
315 sdata->dev->stats.rx_packets++;
316 sdata->dev->stats.rx_bytes += skb->len;
317 }
318
319 if (prev_dev) {
320 skb->dev = prev_dev;
321 netif_receive_skb(skb);
322 } else
323 dev_kfree_skb(skb);
324
325 return origskb;
326 }
327
328
329 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
330 {
331 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
332 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
333 int tid;
334
335 /* does the frame have a qos control field? */
336 if (ieee80211_is_data_qos(hdr->frame_control)) {
337 u8 *qc = ieee80211_get_qos_ctl(hdr);
338 /* frame has qos control */
339 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
340 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
341 status->rx_flags |= IEEE80211_RX_AMSDU;
342 } else {
343 /*
344 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
345 *
346 * Sequence numbers for management frames, QoS data
347 * frames with a broadcast/multicast address in the
348 * Address 1 field, and all non-QoS data frames sent
349 * by QoS STAs are assigned using an additional single
350 * modulo-4096 counter, [...]
351 *
352 * We also use that counter for non-QoS STAs.
353 */
354 tid = NUM_RX_DATA_QUEUES - 1;
355 }
356
357 rx->queue = tid;
358 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
359 * For now, set skb->priority to 0 for other cases. */
360 rx->skb->priority = (tid > 7) ? 0 : tid;
361 }
362
363 /**
364 * DOC: Packet alignment
365 *
366 * Drivers always need to pass packets that are aligned to two-byte boundaries
367 * to the stack.
368 *
369 * Additionally, should, if possible, align the payload data in a way that
370 * guarantees that the contained IP header is aligned to a four-byte
371 * boundary. In the case of regular frames, this simply means aligning the
372 * payload to a four-byte boundary (because either the IP header is directly
373 * contained, or IV/RFC1042 headers that have a length divisible by four are
374 * in front of it). If the payload data is not properly aligned and the
375 * architecture doesn't support efficient unaligned operations, mac80211
376 * will align the data.
377 *
378 * With A-MSDU frames, however, the payload data address must yield two modulo
379 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
380 * push the IP header further back to a multiple of four again. Thankfully, the
381 * specs were sane enough this time around to require padding each A-MSDU
382 * subframe to a length that is a multiple of four.
383 *
384 * Padding like Atheros hardware adds which is between the 802.11 header and
385 * the payload is not supported, the driver is required to move the 802.11
386 * header to be directly in front of the payload in that case.
387 */
388 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
389 {
390 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
391 WARN_ONCE((unsigned long)rx->skb->data & 1,
392 "unaligned packet at 0x%p\n", rx->skb->data);
393 #endif
394 }
395
396
397 /* rx handlers */
398
399 static ieee80211_rx_result debug_noinline
400 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
401 {
402 struct ieee80211_local *local = rx->local;
403 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
404 struct sk_buff *skb = rx->skb;
405
406 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
407 return RX_CONTINUE;
408
409 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
410 test_bit(SCAN_SW_SCANNING, &local->scanning))
411 return ieee80211_scan_rx(rx->sdata, skb);
412
413 /* scanning finished during invoking of handlers */
414 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
415 return RX_DROP_UNUSABLE;
416 }
417
418
419 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
420 {
421 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
422
423 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
424 return 0;
425
426 return ieee80211_is_robust_mgmt_frame(hdr);
427 }
428
429
430 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
431 {
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
433
434 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
435 return 0;
436
437 return ieee80211_is_robust_mgmt_frame(hdr);
438 }
439
440
441 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
442 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
443 {
444 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
445 struct ieee80211_mmie *mmie;
446
447 if (skb->len < 24 + sizeof(*mmie) ||
448 !is_multicast_ether_addr(hdr->da))
449 return -1;
450
451 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
452 return -1; /* not a robust management frame */
453
454 mmie = (struct ieee80211_mmie *)
455 (skb->data + skb->len - sizeof(*mmie));
456 if (mmie->element_id != WLAN_EID_MMIE ||
457 mmie->length != sizeof(*mmie) - 2)
458 return -1;
459
460 return le16_to_cpu(mmie->key_id);
461 }
462
463
464 static ieee80211_rx_result
465 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
466 {
467 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
468 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
469 char *dev_addr = rx->sdata->vif.addr;
470
471 if (ieee80211_is_data(hdr->frame_control)) {
472 if (is_multicast_ether_addr(hdr->addr1)) {
473 if (ieee80211_has_tods(hdr->frame_control) ||
474 !ieee80211_has_fromds(hdr->frame_control))
475 return RX_DROP_MONITOR;
476 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
477 return RX_DROP_MONITOR;
478 } else {
479 if (!ieee80211_has_a4(hdr->frame_control))
480 return RX_DROP_MONITOR;
481 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
482 return RX_DROP_MONITOR;
483 }
484 }
485
486 /* If there is not an established peer link and this is not a peer link
487 * establisment frame, beacon or probe, drop the frame.
488 */
489
490 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
491 struct ieee80211_mgmt *mgmt;
492
493 if (!ieee80211_is_mgmt(hdr->frame_control))
494 return RX_DROP_MONITOR;
495
496 if (ieee80211_is_action(hdr->frame_control)) {
497 mgmt = (struct ieee80211_mgmt *)hdr;
498 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
499 return RX_DROP_MONITOR;
500 return RX_CONTINUE;
501 }
502
503 if (ieee80211_is_probe_req(hdr->frame_control) ||
504 ieee80211_is_probe_resp(hdr->frame_control) ||
505 ieee80211_is_beacon(hdr->frame_control))
506 return RX_CONTINUE;
507
508 return RX_DROP_MONITOR;
509
510 }
511
512 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
513
514 if (ieee80211_is_data(hdr->frame_control) &&
515 is_multicast_ether_addr(hdr->addr1) &&
516 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
517 return RX_DROP_MONITOR;
518 #undef msh_h_get
519
520 return RX_CONTINUE;
521 }
522
523 #define SEQ_MODULO 0x1000
524 #define SEQ_MASK 0xfff
525
526 static inline int seq_less(u16 sq1, u16 sq2)
527 {
528 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
529 }
530
531 static inline u16 seq_inc(u16 sq)
532 {
533 return (sq + 1) & SEQ_MASK;
534 }
535
536 static inline u16 seq_sub(u16 sq1, u16 sq2)
537 {
538 return (sq1 - sq2) & SEQ_MASK;
539 }
540
541
542 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
543 struct tid_ampdu_rx *tid_agg_rx,
544 int index)
545 {
546 struct ieee80211_local *local = hw_to_local(hw);
547 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
548 struct ieee80211_rx_status *status;
549
550 lockdep_assert_held(&tid_agg_rx->reorder_lock);
551
552 if (!skb)
553 goto no_frame;
554
555 /* release the frame from the reorder ring buffer */
556 tid_agg_rx->stored_mpdu_num--;
557 tid_agg_rx->reorder_buf[index] = NULL;
558 status = IEEE80211_SKB_RXCB(skb);
559 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
560 skb_queue_tail(&local->rx_skb_queue, skb);
561
562 no_frame:
563 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
564 }
565
566 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
567 struct tid_ampdu_rx *tid_agg_rx,
568 u16 head_seq_num)
569 {
570 int index;
571
572 lockdep_assert_held(&tid_agg_rx->reorder_lock);
573
574 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
575 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
576 tid_agg_rx->buf_size;
577 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
578 }
579 }
580
581 /*
582 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
583 * the skb was added to the buffer longer than this time ago, the earlier
584 * frames that have not yet been received are assumed to be lost and the skb
585 * can be released for processing. This may also release other skb's from the
586 * reorder buffer if there are no additional gaps between the frames.
587 *
588 * Callers must hold tid_agg_rx->reorder_lock.
589 */
590 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
591
592 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
593 struct tid_ampdu_rx *tid_agg_rx)
594 {
595 int index, j;
596
597 lockdep_assert_held(&tid_agg_rx->reorder_lock);
598
599 /* release the buffer until next missing frame */
600 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
601 tid_agg_rx->buf_size;
602 if (!tid_agg_rx->reorder_buf[index] &&
603 tid_agg_rx->stored_mpdu_num > 1) {
604 /*
605 * No buffers ready to be released, but check whether any
606 * frames in the reorder buffer have timed out.
607 */
608 int skipped = 1;
609 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
610 j = (j + 1) % tid_agg_rx->buf_size) {
611 if (!tid_agg_rx->reorder_buf[j]) {
612 skipped++;
613 continue;
614 }
615 if (skipped &&
616 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
617 HT_RX_REORDER_BUF_TIMEOUT))
618 goto set_release_timer;
619
620 #ifdef CONFIG_MAC80211_HT_DEBUG
621 if (net_ratelimit())
622 wiphy_debug(hw->wiphy,
623 "release an RX reorder frame due to timeout on earlier frames\n");
624 #endif
625 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
626
627 /*
628 * Increment the head seq# also for the skipped slots.
629 */
630 tid_agg_rx->head_seq_num =
631 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
632 skipped = 0;
633 }
634 } else while (tid_agg_rx->reorder_buf[index]) {
635 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
636 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
637 tid_agg_rx->buf_size;
638 }
639
640 if (tid_agg_rx->stored_mpdu_num) {
641 j = index = seq_sub(tid_agg_rx->head_seq_num,
642 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
643
644 for (; j != (index - 1) % tid_agg_rx->buf_size;
645 j = (j + 1) % tid_agg_rx->buf_size) {
646 if (tid_agg_rx->reorder_buf[j])
647 break;
648 }
649
650 set_release_timer:
651
652 mod_timer(&tid_agg_rx->reorder_timer,
653 tid_agg_rx->reorder_time[j] +
654 HT_RX_REORDER_BUF_TIMEOUT);
655 } else {
656 del_timer(&tid_agg_rx->reorder_timer);
657 }
658 }
659
660 /*
661 * As this function belongs to the RX path it must be under
662 * rcu_read_lock protection. It returns false if the frame
663 * can be processed immediately, true if it was consumed.
664 */
665 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
666 struct tid_ampdu_rx *tid_agg_rx,
667 struct sk_buff *skb)
668 {
669 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
670 u16 sc = le16_to_cpu(hdr->seq_ctrl);
671 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
672 u16 head_seq_num, buf_size;
673 int index;
674 bool ret = true;
675
676 spin_lock(&tid_agg_rx->reorder_lock);
677
678 buf_size = tid_agg_rx->buf_size;
679 head_seq_num = tid_agg_rx->head_seq_num;
680
681 /* frame with out of date sequence number */
682 if (seq_less(mpdu_seq_num, head_seq_num)) {
683 dev_kfree_skb(skb);
684 goto out;
685 }
686
687 /*
688 * If frame the sequence number exceeds our buffering window
689 * size release some previous frames to make room for this one.
690 */
691 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
692 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
693 /* release stored frames up to new head to stack */
694 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
695 }
696
697 /* Now the new frame is always in the range of the reordering buffer */
698
699 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
700
701 /* check if we already stored this frame */
702 if (tid_agg_rx->reorder_buf[index]) {
703 dev_kfree_skb(skb);
704 goto out;
705 }
706
707 /*
708 * If the current MPDU is in the right order and nothing else
709 * is stored we can process it directly, no need to buffer it.
710 * If it is first but there's something stored, we may be able
711 * to release frames after this one.
712 */
713 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
714 tid_agg_rx->stored_mpdu_num == 0) {
715 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
716 ret = false;
717 goto out;
718 }
719
720 /* put the frame in the reordering buffer */
721 tid_agg_rx->reorder_buf[index] = skb;
722 tid_agg_rx->reorder_time[index] = jiffies;
723 tid_agg_rx->stored_mpdu_num++;
724 ieee80211_sta_reorder_release(hw, tid_agg_rx);
725
726 out:
727 spin_unlock(&tid_agg_rx->reorder_lock);
728 return ret;
729 }
730
731 /*
732 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
733 * true if the MPDU was buffered, false if it should be processed.
734 */
735 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
736 {
737 struct sk_buff *skb = rx->skb;
738 struct ieee80211_local *local = rx->local;
739 struct ieee80211_hw *hw = &local->hw;
740 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
741 struct sta_info *sta = rx->sta;
742 struct tid_ampdu_rx *tid_agg_rx;
743 u16 sc;
744 int tid;
745
746 if (!ieee80211_is_data_qos(hdr->frame_control))
747 goto dont_reorder;
748
749 /*
750 * filter the QoS data rx stream according to
751 * STA/TID and check if this STA/TID is on aggregation
752 */
753
754 if (!sta)
755 goto dont_reorder;
756
757 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
758
759 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
760 if (!tid_agg_rx)
761 goto dont_reorder;
762
763 /* qos null data frames are excluded */
764 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
765 goto dont_reorder;
766
767 /* new, potentially un-ordered, ampdu frame - process it */
768
769 /* reset session timer */
770 if (tid_agg_rx->timeout)
771 mod_timer(&tid_agg_rx->session_timer,
772 TU_TO_EXP_TIME(tid_agg_rx->timeout));
773
774 /* if this mpdu is fragmented - terminate rx aggregation session */
775 sc = le16_to_cpu(hdr->seq_ctrl);
776 if (sc & IEEE80211_SCTL_FRAG) {
777 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
778 skb_queue_tail(&rx->sdata->skb_queue, skb);
779 ieee80211_queue_work(&local->hw, &rx->sdata->work);
780 return;
781 }
782
783 /*
784 * No locking needed -- we will only ever process one
785 * RX packet at a time, and thus own tid_agg_rx. All
786 * other code manipulating it needs to (and does) make
787 * sure that we cannot get to it any more before doing
788 * anything with it.
789 */
790 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
791 return;
792
793 dont_reorder:
794 skb_queue_tail(&local->rx_skb_queue, skb);
795 }
796
797 static ieee80211_rx_result debug_noinline
798 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
799 {
800 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
801 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
802
803 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
804 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
805 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
806 rx->sta->last_seq_ctrl[rx->queue] ==
807 hdr->seq_ctrl)) {
808 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
809 rx->local->dot11FrameDuplicateCount++;
810 rx->sta->num_duplicates++;
811 }
812 return RX_DROP_UNUSABLE;
813 } else
814 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
815 }
816
817 if (unlikely(rx->skb->len < 16)) {
818 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
819 return RX_DROP_MONITOR;
820 }
821
822 /* Drop disallowed frame classes based on STA auth/assoc state;
823 * IEEE 802.11, Chap 5.5.
824 *
825 * mac80211 filters only based on association state, i.e. it drops
826 * Class 3 frames from not associated stations. hostapd sends
827 * deauth/disassoc frames when needed. In addition, hostapd is
828 * responsible for filtering on both auth and assoc states.
829 */
830
831 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
832 return ieee80211_rx_mesh_check(rx);
833
834 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
835 ieee80211_is_pspoll(hdr->frame_control)) &&
836 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
837 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
838 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC))))
839 return RX_DROP_MONITOR;
840
841 return RX_CONTINUE;
842 }
843
844
845 static ieee80211_rx_result debug_noinline
846 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
847 {
848 struct sk_buff *skb = rx->skb;
849 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
850 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
851 int keyidx;
852 int hdrlen;
853 ieee80211_rx_result result = RX_DROP_UNUSABLE;
854 struct ieee80211_key *sta_ptk = NULL;
855 int mmie_keyidx = -1;
856 __le16 fc;
857
858 /*
859 * Key selection 101
860 *
861 * There are four types of keys:
862 * - GTK (group keys)
863 * - IGTK (group keys for management frames)
864 * - PTK (pairwise keys)
865 * - STK (station-to-station pairwise keys)
866 *
867 * When selecting a key, we have to distinguish between multicast
868 * (including broadcast) and unicast frames, the latter can only
869 * use PTKs and STKs while the former always use GTKs and IGTKs.
870 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
871 * unicast frames can also use key indices like GTKs. Hence, if we
872 * don't have a PTK/STK we check the key index for a WEP key.
873 *
874 * Note that in a regular BSS, multicast frames are sent by the
875 * AP only, associated stations unicast the frame to the AP first
876 * which then multicasts it on their behalf.
877 *
878 * There is also a slight problem in IBSS mode: GTKs are negotiated
879 * with each station, that is something we don't currently handle.
880 * The spec seems to expect that one negotiates the same key with
881 * every station but there's no such requirement; VLANs could be
882 * possible.
883 */
884
885 /*
886 * No point in finding a key and decrypting if the frame is neither
887 * addressed to us nor a multicast frame.
888 */
889 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
890 return RX_CONTINUE;
891
892 /* start without a key */
893 rx->key = NULL;
894
895 if (rx->sta)
896 sta_ptk = rcu_dereference(rx->sta->ptk);
897
898 fc = hdr->frame_control;
899
900 if (!ieee80211_has_protected(fc))
901 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
902
903 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
904 rx->key = sta_ptk;
905 if ((status->flag & RX_FLAG_DECRYPTED) &&
906 (status->flag & RX_FLAG_IV_STRIPPED))
907 return RX_CONTINUE;
908 /* Skip decryption if the frame is not protected. */
909 if (!ieee80211_has_protected(fc))
910 return RX_CONTINUE;
911 } else if (mmie_keyidx >= 0) {
912 /* Broadcast/multicast robust management frame / BIP */
913 if ((status->flag & RX_FLAG_DECRYPTED) &&
914 (status->flag & RX_FLAG_IV_STRIPPED))
915 return RX_CONTINUE;
916
917 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
918 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
919 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
920 if (rx->sta)
921 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
922 if (!rx->key)
923 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
924 } else if (!ieee80211_has_protected(fc)) {
925 /*
926 * The frame was not protected, so skip decryption. However, we
927 * need to set rx->key if there is a key that could have been
928 * used so that the frame may be dropped if encryption would
929 * have been expected.
930 */
931 struct ieee80211_key *key = NULL;
932 struct ieee80211_sub_if_data *sdata = rx->sdata;
933 int i;
934
935 if (ieee80211_is_mgmt(fc) &&
936 is_multicast_ether_addr(hdr->addr1) &&
937 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
938 rx->key = key;
939 else {
940 if (rx->sta) {
941 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
942 key = rcu_dereference(rx->sta->gtk[i]);
943 if (key)
944 break;
945 }
946 }
947 if (!key) {
948 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
949 key = rcu_dereference(sdata->keys[i]);
950 if (key)
951 break;
952 }
953 }
954 if (key)
955 rx->key = key;
956 }
957 return RX_CONTINUE;
958 } else {
959 u8 keyid;
960 /*
961 * The device doesn't give us the IV so we won't be
962 * able to look up the key. That's ok though, we
963 * don't need to decrypt the frame, we just won't
964 * be able to keep statistics accurate.
965 * Except for key threshold notifications, should
966 * we somehow allow the driver to tell us which key
967 * the hardware used if this flag is set?
968 */
969 if ((status->flag & RX_FLAG_DECRYPTED) &&
970 (status->flag & RX_FLAG_IV_STRIPPED))
971 return RX_CONTINUE;
972
973 hdrlen = ieee80211_hdrlen(fc);
974
975 if (rx->skb->len < 8 + hdrlen)
976 return RX_DROP_UNUSABLE; /* TODO: count this? */
977
978 /*
979 * no need to call ieee80211_wep_get_keyidx,
980 * it verifies a bunch of things we've done already
981 */
982 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
983 keyidx = keyid >> 6;
984
985 /* check per-station GTK first, if multicast packet */
986 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
987 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
988
989 /* if not found, try default key */
990 if (!rx->key) {
991 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
992
993 /*
994 * RSNA-protected unicast frames should always be
995 * sent with pairwise or station-to-station keys,
996 * but for WEP we allow using a key index as well.
997 */
998 if (rx->key &&
999 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1000 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1001 !is_multicast_ether_addr(hdr->addr1))
1002 rx->key = NULL;
1003 }
1004 }
1005
1006 if (rx->key) {
1007 rx->key->tx_rx_count++;
1008 /* TODO: add threshold stuff again */
1009 } else {
1010 return RX_DROP_MONITOR;
1011 }
1012
1013 if (skb_linearize(rx->skb))
1014 return RX_DROP_UNUSABLE;
1015 /* the hdr variable is invalid now! */
1016
1017 switch (rx->key->conf.cipher) {
1018 case WLAN_CIPHER_SUITE_WEP40:
1019 case WLAN_CIPHER_SUITE_WEP104:
1020 /* Check for weak IVs if possible */
1021 if (rx->sta && ieee80211_is_data(fc) &&
1022 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1023 !(status->flag & RX_FLAG_DECRYPTED)) &&
1024 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1025 rx->sta->wep_weak_iv_count++;
1026
1027 result = ieee80211_crypto_wep_decrypt(rx);
1028 break;
1029 case WLAN_CIPHER_SUITE_TKIP:
1030 result = ieee80211_crypto_tkip_decrypt(rx);
1031 break;
1032 case WLAN_CIPHER_SUITE_CCMP:
1033 result = ieee80211_crypto_ccmp_decrypt(rx);
1034 break;
1035 case WLAN_CIPHER_SUITE_AES_CMAC:
1036 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1037 break;
1038 default:
1039 /*
1040 * We can reach here only with HW-only algorithms
1041 * but why didn't it decrypt the frame?!
1042 */
1043 return RX_DROP_UNUSABLE;
1044 }
1045
1046 /* either the frame has been decrypted or will be dropped */
1047 status->flag |= RX_FLAG_DECRYPTED;
1048
1049 return result;
1050 }
1051
1052 static ieee80211_rx_result debug_noinline
1053 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1054 {
1055 struct ieee80211_local *local;
1056 struct ieee80211_hdr *hdr;
1057 struct sk_buff *skb;
1058
1059 local = rx->local;
1060 skb = rx->skb;
1061 hdr = (struct ieee80211_hdr *) skb->data;
1062
1063 if (!local->pspolling)
1064 return RX_CONTINUE;
1065
1066 if (!ieee80211_has_fromds(hdr->frame_control))
1067 /* this is not from AP */
1068 return RX_CONTINUE;
1069
1070 if (!ieee80211_is_data(hdr->frame_control))
1071 return RX_CONTINUE;
1072
1073 if (!ieee80211_has_moredata(hdr->frame_control)) {
1074 /* AP has no more frames buffered for us */
1075 local->pspolling = false;
1076 return RX_CONTINUE;
1077 }
1078
1079 /* more data bit is set, let's request a new frame from the AP */
1080 ieee80211_send_pspoll(local, rx->sdata);
1081
1082 return RX_CONTINUE;
1083 }
1084
1085 static void ap_sta_ps_start(struct sta_info *sta)
1086 {
1087 struct ieee80211_sub_if_data *sdata = sta->sdata;
1088 struct ieee80211_local *local = sdata->local;
1089
1090 atomic_inc(&sdata->bss->num_sta_ps);
1091 set_sta_flags(sta, WLAN_STA_PS_STA);
1092 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1093 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1094 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1095 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1096 sdata->name, sta->sta.addr, sta->sta.aid);
1097 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1098 }
1099
1100 static void ap_sta_ps_end(struct sta_info *sta)
1101 {
1102 struct ieee80211_sub_if_data *sdata = sta->sdata;
1103
1104 atomic_dec(&sdata->bss->num_sta_ps);
1105
1106 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1107 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1108 sdata->name, sta->sta.addr, sta->sta.aid);
1109 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1110
1111 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1112 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1113 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1114 sdata->name, sta->sta.addr, sta->sta.aid);
1115 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1116 return;
1117 }
1118
1119 ieee80211_sta_ps_deliver_wakeup(sta);
1120 }
1121
1122 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1123 {
1124 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1125 bool in_ps;
1126
1127 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1128
1129 /* Don't let the same PS state be set twice */
1130 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1131 if ((start && in_ps) || (!start && !in_ps))
1132 return -EINVAL;
1133
1134 if (start)
1135 ap_sta_ps_start(sta_inf);
1136 else
1137 ap_sta_ps_end(sta_inf);
1138
1139 return 0;
1140 }
1141 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1142
1143 static ieee80211_rx_result debug_noinline
1144 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1145 {
1146 struct sta_info *sta = rx->sta;
1147 struct sk_buff *skb = rx->skb;
1148 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1149 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1150
1151 if (!sta)
1152 return RX_CONTINUE;
1153
1154 /*
1155 * Update last_rx only for IBSS packets which are for the current
1156 * BSSID to avoid keeping the current IBSS network alive in cases
1157 * where other STAs start using different BSSID.
1158 */
1159 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1160 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1161 NL80211_IFTYPE_ADHOC);
1162 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1163 sta->last_rx = jiffies;
1164 if (ieee80211_is_data(hdr->frame_control)) {
1165 sta->last_rx_rate_idx = status->rate_idx;
1166 sta->last_rx_rate_flag = status->flag;
1167 }
1168 }
1169 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1170 /*
1171 * Mesh beacons will update last_rx when if they are found to
1172 * match the current local configuration when processed.
1173 */
1174 sta->last_rx = jiffies;
1175 if (ieee80211_is_data(hdr->frame_control)) {
1176 sta->last_rx_rate_idx = status->rate_idx;
1177 sta->last_rx_rate_flag = status->flag;
1178 }
1179 }
1180
1181 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1182 return RX_CONTINUE;
1183
1184 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1185 ieee80211_sta_rx_notify(rx->sdata, hdr);
1186
1187 sta->rx_fragments++;
1188 sta->rx_bytes += rx->skb->len;
1189 sta->last_signal = status->signal;
1190 ewma_add(&sta->avg_signal, -status->signal);
1191
1192 /*
1193 * Change STA power saving mode only at the end of a frame
1194 * exchange sequence.
1195 */
1196 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1197 !ieee80211_has_morefrags(hdr->frame_control) &&
1198 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1199 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1200 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1201 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1202 /*
1203 * Ignore doze->wake transitions that are
1204 * indicated by non-data frames, the standard
1205 * is unclear here, but for example going to
1206 * PS mode and then scanning would cause a
1207 * doze->wake transition for the probe request,
1208 * and that is clearly undesirable.
1209 */
1210 if (ieee80211_is_data(hdr->frame_control) &&
1211 !ieee80211_has_pm(hdr->frame_control))
1212 ap_sta_ps_end(sta);
1213 } else {
1214 if (ieee80211_has_pm(hdr->frame_control))
1215 ap_sta_ps_start(sta);
1216 }
1217 }
1218
1219 /*
1220 * Drop (qos-)data::nullfunc frames silently, since they
1221 * are used only to control station power saving mode.
1222 */
1223 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1224 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1225 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1226
1227 /*
1228 * If we receive a 4-addr nullfunc frame from a STA
1229 * that was not moved to a 4-addr STA vlan yet, drop
1230 * the frame to the monitor interface, to make sure
1231 * that hostapd sees it
1232 */
1233 if (ieee80211_has_a4(hdr->frame_control) &&
1234 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1235 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1236 !rx->sdata->u.vlan.sta)))
1237 return RX_DROP_MONITOR;
1238 /*
1239 * Update counter and free packet here to avoid
1240 * counting this as a dropped packed.
1241 */
1242 sta->rx_packets++;
1243 dev_kfree_skb(rx->skb);
1244 return RX_QUEUED;
1245 }
1246
1247 return RX_CONTINUE;
1248 } /* ieee80211_rx_h_sta_process */
1249
1250 static inline struct ieee80211_fragment_entry *
1251 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1252 unsigned int frag, unsigned int seq, int rx_queue,
1253 struct sk_buff **skb)
1254 {
1255 struct ieee80211_fragment_entry *entry;
1256 int idx;
1257
1258 idx = sdata->fragment_next;
1259 entry = &sdata->fragments[sdata->fragment_next++];
1260 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1261 sdata->fragment_next = 0;
1262
1263 if (!skb_queue_empty(&entry->skb_list)) {
1264 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1265 struct ieee80211_hdr *hdr =
1266 (struct ieee80211_hdr *) entry->skb_list.next->data;
1267 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1268 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1269 "addr1=%pM addr2=%pM\n",
1270 sdata->name, idx,
1271 jiffies - entry->first_frag_time, entry->seq,
1272 entry->last_frag, hdr->addr1, hdr->addr2);
1273 #endif
1274 __skb_queue_purge(&entry->skb_list);
1275 }
1276
1277 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1278 *skb = NULL;
1279 entry->first_frag_time = jiffies;
1280 entry->seq = seq;
1281 entry->rx_queue = rx_queue;
1282 entry->last_frag = frag;
1283 entry->ccmp = 0;
1284 entry->extra_len = 0;
1285
1286 return entry;
1287 }
1288
1289 static inline struct ieee80211_fragment_entry *
1290 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1291 unsigned int frag, unsigned int seq,
1292 int rx_queue, struct ieee80211_hdr *hdr)
1293 {
1294 struct ieee80211_fragment_entry *entry;
1295 int i, idx;
1296
1297 idx = sdata->fragment_next;
1298 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1299 struct ieee80211_hdr *f_hdr;
1300
1301 idx--;
1302 if (idx < 0)
1303 idx = IEEE80211_FRAGMENT_MAX - 1;
1304
1305 entry = &sdata->fragments[idx];
1306 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1307 entry->rx_queue != rx_queue ||
1308 entry->last_frag + 1 != frag)
1309 continue;
1310
1311 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1312
1313 /*
1314 * Check ftype and addresses are equal, else check next fragment
1315 */
1316 if (((hdr->frame_control ^ f_hdr->frame_control) &
1317 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1318 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1319 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1320 continue;
1321
1322 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1323 __skb_queue_purge(&entry->skb_list);
1324 continue;
1325 }
1326 return entry;
1327 }
1328
1329 return NULL;
1330 }
1331
1332 static ieee80211_rx_result debug_noinline
1333 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1334 {
1335 struct ieee80211_hdr *hdr;
1336 u16 sc;
1337 __le16 fc;
1338 unsigned int frag, seq;
1339 struct ieee80211_fragment_entry *entry;
1340 struct sk_buff *skb;
1341 struct ieee80211_rx_status *status;
1342
1343 hdr = (struct ieee80211_hdr *)rx->skb->data;
1344 fc = hdr->frame_control;
1345 sc = le16_to_cpu(hdr->seq_ctrl);
1346 frag = sc & IEEE80211_SCTL_FRAG;
1347
1348 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1349 (rx->skb)->len < 24 ||
1350 is_multicast_ether_addr(hdr->addr1))) {
1351 /* not fragmented */
1352 goto out;
1353 }
1354 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1355
1356 if (skb_linearize(rx->skb))
1357 return RX_DROP_UNUSABLE;
1358
1359 /*
1360 * skb_linearize() might change the skb->data and
1361 * previously cached variables (in this case, hdr) need to
1362 * be refreshed with the new data.
1363 */
1364 hdr = (struct ieee80211_hdr *)rx->skb->data;
1365 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1366
1367 if (frag == 0) {
1368 /* This is the first fragment of a new frame. */
1369 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1370 rx->queue, &(rx->skb));
1371 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1372 ieee80211_has_protected(fc)) {
1373 int queue = ieee80211_is_mgmt(fc) ?
1374 NUM_RX_DATA_QUEUES : rx->queue;
1375 /* Store CCMP PN so that we can verify that the next
1376 * fragment has a sequential PN value. */
1377 entry->ccmp = 1;
1378 memcpy(entry->last_pn,
1379 rx->key->u.ccmp.rx_pn[queue],
1380 CCMP_PN_LEN);
1381 }
1382 return RX_QUEUED;
1383 }
1384
1385 /* This is a fragment for a frame that should already be pending in
1386 * fragment cache. Add this fragment to the end of the pending entry.
1387 */
1388 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1389 if (!entry) {
1390 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1391 return RX_DROP_MONITOR;
1392 }
1393
1394 /* Verify that MPDUs within one MSDU have sequential PN values.
1395 * (IEEE 802.11i, 8.3.3.4.5) */
1396 if (entry->ccmp) {
1397 int i;
1398 u8 pn[CCMP_PN_LEN], *rpn;
1399 int queue;
1400 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1401 return RX_DROP_UNUSABLE;
1402 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1403 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1404 pn[i]++;
1405 if (pn[i])
1406 break;
1407 }
1408 queue = ieee80211_is_mgmt(fc) ?
1409 NUM_RX_DATA_QUEUES : rx->queue;
1410 rpn = rx->key->u.ccmp.rx_pn[queue];
1411 if (memcmp(pn, rpn, CCMP_PN_LEN))
1412 return RX_DROP_UNUSABLE;
1413 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1414 }
1415
1416 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1417 __skb_queue_tail(&entry->skb_list, rx->skb);
1418 entry->last_frag = frag;
1419 entry->extra_len += rx->skb->len;
1420 if (ieee80211_has_morefrags(fc)) {
1421 rx->skb = NULL;
1422 return RX_QUEUED;
1423 }
1424
1425 rx->skb = __skb_dequeue(&entry->skb_list);
1426 if (skb_tailroom(rx->skb) < entry->extra_len) {
1427 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1428 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1429 GFP_ATOMIC))) {
1430 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1431 __skb_queue_purge(&entry->skb_list);
1432 return RX_DROP_UNUSABLE;
1433 }
1434 }
1435 while ((skb = __skb_dequeue(&entry->skb_list))) {
1436 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1437 dev_kfree_skb(skb);
1438 }
1439
1440 /* Complete frame has been reassembled - process it now */
1441 status = IEEE80211_SKB_RXCB(rx->skb);
1442 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1443
1444 out:
1445 if (rx->sta)
1446 rx->sta->rx_packets++;
1447 if (is_multicast_ether_addr(hdr->addr1))
1448 rx->local->dot11MulticastReceivedFrameCount++;
1449 else
1450 ieee80211_led_rx(rx->local);
1451 return RX_CONTINUE;
1452 }
1453
1454 static ieee80211_rx_result debug_noinline
1455 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1456 {
1457 struct ieee80211_sub_if_data *sdata = rx->sdata;
1458 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1459 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1460
1461 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1462 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1463 return RX_CONTINUE;
1464
1465 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1466 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1467 return RX_DROP_UNUSABLE;
1468
1469 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1470 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1471 else
1472 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1473
1474 /* Free PS Poll skb here instead of returning RX_DROP that would
1475 * count as an dropped frame. */
1476 dev_kfree_skb(rx->skb);
1477
1478 return RX_QUEUED;
1479 }
1480
1481 static ieee80211_rx_result debug_noinline
1482 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1483 {
1484 u8 *data = rx->skb->data;
1485 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1486
1487 if (!ieee80211_is_data_qos(hdr->frame_control))
1488 return RX_CONTINUE;
1489
1490 /* remove the qos control field, update frame type and meta-data */
1491 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1492 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1493 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1494 /* change frame type to non QOS */
1495 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1496
1497 return RX_CONTINUE;
1498 }
1499
1500 static int
1501 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1502 {
1503 if (unlikely(!rx->sta ||
1504 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1505 return -EACCES;
1506
1507 return 0;
1508 }
1509
1510 static int
1511 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1512 {
1513 struct sk_buff *skb = rx->skb;
1514 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1515
1516 /*
1517 * Pass through unencrypted frames if the hardware has
1518 * decrypted them already.
1519 */
1520 if (status->flag & RX_FLAG_DECRYPTED)
1521 return 0;
1522
1523 /* Drop unencrypted frames if key is set. */
1524 if (unlikely(!ieee80211_has_protected(fc) &&
1525 !ieee80211_is_nullfunc(fc) &&
1526 ieee80211_is_data(fc) &&
1527 (rx->key || rx->sdata->drop_unencrypted)))
1528 return -EACCES;
1529
1530 return 0;
1531 }
1532
1533 static int
1534 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1535 {
1536 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1537 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1538 __le16 fc = hdr->frame_control;
1539
1540 /*
1541 * Pass through unencrypted frames if the hardware has
1542 * decrypted them already.
1543 */
1544 if (status->flag & RX_FLAG_DECRYPTED)
1545 return 0;
1546
1547 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1548 if (unlikely(!ieee80211_has_protected(fc) &&
1549 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1550 rx->key)) {
1551 if (ieee80211_is_deauth(fc))
1552 cfg80211_send_unprot_deauth(rx->sdata->dev,
1553 rx->skb->data,
1554 rx->skb->len);
1555 else if (ieee80211_is_disassoc(fc))
1556 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1557 rx->skb->data,
1558 rx->skb->len);
1559 return -EACCES;
1560 }
1561 /* BIP does not use Protected field, so need to check MMIE */
1562 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1563 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1564 if (ieee80211_is_deauth(fc))
1565 cfg80211_send_unprot_deauth(rx->sdata->dev,
1566 rx->skb->data,
1567 rx->skb->len);
1568 else if (ieee80211_is_disassoc(fc))
1569 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1570 rx->skb->data,
1571 rx->skb->len);
1572 return -EACCES;
1573 }
1574 /*
1575 * When using MFP, Action frames are not allowed prior to
1576 * having configured keys.
1577 */
1578 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1579 ieee80211_is_robust_mgmt_frame(
1580 (struct ieee80211_hdr *) rx->skb->data)))
1581 return -EACCES;
1582 }
1583
1584 return 0;
1585 }
1586
1587 static int
1588 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1589 {
1590 struct ieee80211_sub_if_data *sdata = rx->sdata;
1591 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1592 bool check_port_control = false;
1593 struct ethhdr *ehdr;
1594 int ret;
1595
1596 if (ieee80211_has_a4(hdr->frame_control) &&
1597 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1598 return -1;
1599
1600 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1601 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1602
1603 if (!sdata->u.mgd.use_4addr)
1604 return -1;
1605 else
1606 check_port_control = true;
1607 }
1608
1609 if (is_multicast_ether_addr(hdr->addr1) &&
1610 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1611 return -1;
1612
1613 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1614 if (ret < 0 || !check_port_control)
1615 return ret;
1616
1617 ehdr = (struct ethhdr *) rx->skb->data;
1618 if (ehdr->h_proto != rx->sdata->control_port_protocol)
1619 return -1;
1620
1621 return 0;
1622 }
1623
1624 /*
1625 * requires that rx->skb is a frame with ethernet header
1626 */
1627 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1628 {
1629 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1630 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1631 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1632
1633 /*
1634 * Allow EAPOL frames to us/the PAE group address regardless
1635 * of whether the frame was encrypted or not.
1636 */
1637 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1638 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1639 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1640 return true;
1641
1642 if (ieee80211_802_1x_port_control(rx) ||
1643 ieee80211_drop_unencrypted(rx, fc))
1644 return false;
1645
1646 return true;
1647 }
1648
1649 /*
1650 * requires that rx->skb is a frame with ethernet header
1651 */
1652 static void
1653 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1654 {
1655 struct ieee80211_sub_if_data *sdata = rx->sdata;
1656 struct net_device *dev = sdata->dev;
1657 struct sk_buff *skb, *xmit_skb;
1658 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1659 struct sta_info *dsta;
1660 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1661
1662 skb = rx->skb;
1663 xmit_skb = NULL;
1664
1665 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1666 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1667 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1668 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1669 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1670 if (is_multicast_ether_addr(ehdr->h_dest)) {
1671 /*
1672 * send multicast frames both to higher layers in
1673 * local net stack and back to the wireless medium
1674 */
1675 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1676 if (!xmit_skb && net_ratelimit())
1677 printk(KERN_DEBUG "%s: failed to clone "
1678 "multicast frame\n", dev->name);
1679 } else {
1680 dsta = sta_info_get(sdata, skb->data);
1681 if (dsta) {
1682 /*
1683 * The destination station is associated to
1684 * this AP (in this VLAN), so send the frame
1685 * directly to it and do not pass it to local
1686 * net stack.
1687 */
1688 xmit_skb = skb;
1689 skb = NULL;
1690 }
1691 }
1692 }
1693
1694 if (skb) {
1695 int align __maybe_unused;
1696
1697 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1698 /*
1699 * 'align' will only take the values 0 or 2 here
1700 * since all frames are required to be aligned
1701 * to 2-byte boundaries when being passed to
1702 * mac80211. That also explains the __skb_push()
1703 * below.
1704 */
1705 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1706 if (align) {
1707 if (WARN_ON(skb_headroom(skb) < 3)) {
1708 dev_kfree_skb(skb);
1709 skb = NULL;
1710 } else {
1711 u8 *data = skb->data;
1712 size_t len = skb_headlen(skb);
1713 skb->data -= align;
1714 memmove(skb->data, data, len);
1715 skb_set_tail_pointer(skb, len);
1716 }
1717 }
1718 #endif
1719
1720 if (skb) {
1721 /* deliver to local stack */
1722 skb->protocol = eth_type_trans(skb, dev);
1723 memset(skb->cb, 0, sizeof(skb->cb));
1724 netif_receive_skb(skb);
1725 }
1726 }
1727
1728 if (xmit_skb) {
1729 /* send to wireless media */
1730 xmit_skb->protocol = htons(ETH_P_802_3);
1731 skb_reset_network_header(xmit_skb);
1732 skb_reset_mac_header(xmit_skb);
1733 dev_queue_xmit(xmit_skb);
1734 }
1735 }
1736
1737 static ieee80211_rx_result debug_noinline
1738 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1739 {
1740 struct net_device *dev = rx->sdata->dev;
1741 struct sk_buff *skb = rx->skb;
1742 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1743 __le16 fc = hdr->frame_control;
1744 struct sk_buff_head frame_list;
1745 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1746
1747 if (unlikely(!ieee80211_is_data(fc)))
1748 return RX_CONTINUE;
1749
1750 if (unlikely(!ieee80211_is_data_present(fc)))
1751 return RX_DROP_MONITOR;
1752
1753 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1754 return RX_CONTINUE;
1755
1756 if (ieee80211_has_a4(hdr->frame_control) &&
1757 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1758 !rx->sdata->u.vlan.sta)
1759 return RX_DROP_UNUSABLE;
1760
1761 if (is_multicast_ether_addr(hdr->addr1) &&
1762 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1763 rx->sdata->u.vlan.sta) ||
1764 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1765 rx->sdata->u.mgd.use_4addr)))
1766 return RX_DROP_UNUSABLE;
1767
1768 skb->dev = dev;
1769 __skb_queue_head_init(&frame_list);
1770
1771 if (skb_linearize(skb))
1772 return RX_DROP_UNUSABLE;
1773
1774 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1775 rx->sdata->vif.type,
1776 rx->local->hw.extra_tx_headroom);
1777
1778 while (!skb_queue_empty(&frame_list)) {
1779 rx->skb = __skb_dequeue(&frame_list);
1780
1781 if (!ieee80211_frame_allowed(rx, fc)) {
1782 dev_kfree_skb(rx->skb);
1783 continue;
1784 }
1785 dev->stats.rx_packets++;
1786 dev->stats.rx_bytes += rx->skb->len;
1787
1788 ieee80211_deliver_skb(rx);
1789 }
1790
1791 return RX_QUEUED;
1792 }
1793
1794 #ifdef CONFIG_MAC80211_MESH
1795 static ieee80211_rx_result
1796 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1797 {
1798 struct ieee80211_hdr *hdr;
1799 struct ieee80211s_hdr *mesh_hdr;
1800 unsigned int hdrlen;
1801 struct sk_buff *skb = rx->skb, *fwd_skb;
1802 struct ieee80211_local *local = rx->local;
1803 struct ieee80211_sub_if_data *sdata = rx->sdata;
1804 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1805
1806 hdr = (struct ieee80211_hdr *) skb->data;
1807 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1808 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1809
1810 if (!ieee80211_is_data(hdr->frame_control))
1811 return RX_CONTINUE;
1812
1813 if (!mesh_hdr->ttl)
1814 /* illegal frame */
1815 return RX_DROP_MONITOR;
1816
1817 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1818 struct mesh_path *mppath;
1819 char *proxied_addr;
1820 char *mpp_addr;
1821
1822 if (is_multicast_ether_addr(hdr->addr1)) {
1823 mpp_addr = hdr->addr3;
1824 proxied_addr = mesh_hdr->eaddr1;
1825 } else {
1826 mpp_addr = hdr->addr4;
1827 proxied_addr = mesh_hdr->eaddr2;
1828 }
1829
1830 rcu_read_lock();
1831 mppath = mpp_path_lookup(proxied_addr, sdata);
1832 if (!mppath) {
1833 mpp_path_add(proxied_addr, mpp_addr, sdata);
1834 } else {
1835 spin_lock_bh(&mppath->state_lock);
1836 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1837 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1838 spin_unlock_bh(&mppath->state_lock);
1839 }
1840 rcu_read_unlock();
1841 }
1842
1843 /* Frame has reached destination. Don't forward */
1844 if (!is_multicast_ether_addr(hdr->addr1) &&
1845 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1846 return RX_CONTINUE;
1847
1848 mesh_hdr->ttl--;
1849
1850 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1851 if (!mesh_hdr->ttl)
1852 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1853 dropped_frames_ttl);
1854 else {
1855 struct ieee80211_hdr *fwd_hdr;
1856 struct ieee80211_tx_info *info;
1857
1858 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1859
1860 if (!fwd_skb && net_ratelimit())
1861 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1862 sdata->name);
1863 if (!fwd_skb)
1864 goto out;
1865
1866 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1867 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1868 info = IEEE80211_SKB_CB(fwd_skb);
1869 memset(info, 0, sizeof(*info));
1870 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1871 info->control.vif = &rx->sdata->vif;
1872 skb_set_queue_mapping(skb,
1873 ieee80211_select_queue(rx->sdata, fwd_skb));
1874 ieee80211_set_qos_hdr(local, skb);
1875 if (is_multicast_ether_addr(fwd_hdr->addr1))
1876 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1877 fwded_mcast);
1878 else {
1879 int err;
1880 /*
1881 * Save TA to addr1 to send TA a path error if a
1882 * suitable next hop is not found
1883 */
1884 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1885 ETH_ALEN);
1886 err = mesh_nexthop_lookup(fwd_skb, sdata);
1887 /* Failed to immediately resolve next hop:
1888 * fwded frame was dropped or will be added
1889 * later to the pending skb queue. */
1890 if (err)
1891 return RX_DROP_MONITOR;
1892
1893 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1894 fwded_unicast);
1895 }
1896 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1897 fwded_frames);
1898 ieee80211_add_pending_skb(local, fwd_skb);
1899 }
1900 }
1901
1902 out:
1903 if (is_multicast_ether_addr(hdr->addr1) ||
1904 sdata->dev->flags & IFF_PROMISC)
1905 return RX_CONTINUE;
1906 else
1907 return RX_DROP_MONITOR;
1908 }
1909 #endif
1910
1911 static ieee80211_rx_result debug_noinline
1912 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1913 {
1914 struct ieee80211_sub_if_data *sdata = rx->sdata;
1915 struct ieee80211_local *local = rx->local;
1916 struct net_device *dev = sdata->dev;
1917 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1918 __le16 fc = hdr->frame_control;
1919 int err;
1920
1921 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1922 return RX_CONTINUE;
1923
1924 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1925 return RX_DROP_MONITOR;
1926
1927 /*
1928 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1929 * that a 4-addr station can be detected and moved into a separate VLAN
1930 */
1931 if (ieee80211_has_a4(hdr->frame_control) &&
1932 sdata->vif.type == NL80211_IFTYPE_AP)
1933 return RX_DROP_MONITOR;
1934
1935 err = __ieee80211_data_to_8023(rx);
1936 if (unlikely(err))
1937 return RX_DROP_UNUSABLE;
1938
1939 if (!ieee80211_frame_allowed(rx, fc))
1940 return RX_DROP_MONITOR;
1941
1942 rx->skb->dev = dev;
1943
1944 dev->stats.rx_packets++;
1945 dev->stats.rx_bytes += rx->skb->len;
1946
1947 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1948 !is_multicast_ether_addr(
1949 ((struct ethhdr *)rx->skb->data)->h_dest) &&
1950 (!local->scanning &&
1951 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1952 mod_timer(&local->dynamic_ps_timer, jiffies +
1953 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1954 }
1955
1956 ieee80211_deliver_skb(rx);
1957
1958 return RX_QUEUED;
1959 }
1960
1961 static ieee80211_rx_result debug_noinline
1962 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1963 {
1964 struct ieee80211_local *local = rx->local;
1965 struct ieee80211_hw *hw = &local->hw;
1966 struct sk_buff *skb = rx->skb;
1967 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1968 struct tid_ampdu_rx *tid_agg_rx;
1969 u16 start_seq_num;
1970 u16 tid;
1971
1972 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1973 return RX_CONTINUE;
1974
1975 if (ieee80211_is_back_req(bar->frame_control)) {
1976 struct {
1977 __le16 control, start_seq_num;
1978 } __packed bar_data;
1979
1980 if (!rx->sta)
1981 return RX_DROP_MONITOR;
1982
1983 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1984 &bar_data, sizeof(bar_data)))
1985 return RX_DROP_MONITOR;
1986
1987 tid = le16_to_cpu(bar_data.control) >> 12;
1988
1989 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1990 if (!tid_agg_rx)
1991 return RX_DROP_MONITOR;
1992
1993 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1994
1995 /* reset session timer */
1996 if (tid_agg_rx->timeout)
1997 mod_timer(&tid_agg_rx->session_timer,
1998 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1999
2000 spin_lock(&tid_agg_rx->reorder_lock);
2001 /* release stored frames up to start of BAR */
2002 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2003 spin_unlock(&tid_agg_rx->reorder_lock);
2004
2005 kfree_skb(skb);
2006 return RX_QUEUED;
2007 }
2008
2009 /*
2010 * After this point, we only want management frames,
2011 * so we can drop all remaining control frames to
2012 * cooked monitor interfaces.
2013 */
2014 return RX_DROP_MONITOR;
2015 }
2016
2017 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2018 struct ieee80211_mgmt *mgmt,
2019 size_t len)
2020 {
2021 struct ieee80211_local *local = sdata->local;
2022 struct sk_buff *skb;
2023 struct ieee80211_mgmt *resp;
2024
2025 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2026 /* Not to own unicast address */
2027 return;
2028 }
2029
2030 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2031 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2032 /* Not from the current AP or not associated yet. */
2033 return;
2034 }
2035
2036 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2037 /* Too short SA Query request frame */
2038 return;
2039 }
2040
2041 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2042 if (skb == NULL)
2043 return;
2044
2045 skb_reserve(skb, local->hw.extra_tx_headroom);
2046 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2047 memset(resp, 0, 24);
2048 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2049 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2050 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2051 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2052 IEEE80211_STYPE_ACTION);
2053 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2054 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2055 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2056 memcpy(resp->u.action.u.sa_query.trans_id,
2057 mgmt->u.action.u.sa_query.trans_id,
2058 WLAN_SA_QUERY_TR_ID_LEN);
2059
2060 ieee80211_tx_skb(sdata, skb);
2061 }
2062
2063 static ieee80211_rx_result debug_noinline
2064 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2065 {
2066 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2067 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2068
2069 /*
2070 * From here on, look only at management frames.
2071 * Data and control frames are already handled,
2072 * and unknown (reserved) frames are useless.
2073 */
2074 if (rx->skb->len < 24)
2075 return RX_DROP_MONITOR;
2076
2077 if (!ieee80211_is_mgmt(mgmt->frame_control))
2078 return RX_DROP_MONITOR;
2079
2080 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2081 return RX_DROP_MONITOR;
2082
2083 if (ieee80211_drop_unencrypted_mgmt(rx))
2084 return RX_DROP_UNUSABLE;
2085
2086 return RX_CONTINUE;
2087 }
2088
2089 static ieee80211_rx_result debug_noinline
2090 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2091 {
2092 struct ieee80211_local *local = rx->local;
2093 struct ieee80211_sub_if_data *sdata = rx->sdata;
2094 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2095 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2096 int len = rx->skb->len;
2097
2098 if (!ieee80211_is_action(mgmt->frame_control))
2099 return RX_CONTINUE;
2100
2101 /* drop too small frames */
2102 if (len < IEEE80211_MIN_ACTION_SIZE)
2103 return RX_DROP_UNUSABLE;
2104
2105 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2106 return RX_DROP_UNUSABLE;
2107
2108 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2109 return RX_DROP_UNUSABLE;
2110
2111 switch (mgmt->u.action.category) {
2112 case WLAN_CATEGORY_BACK:
2113 /*
2114 * The aggregation code is not prepared to handle
2115 * anything but STA/AP due to the BSSID handling;
2116 * IBSS could work in the code but isn't supported
2117 * by drivers or the standard.
2118 */
2119 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2120 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2121 sdata->vif.type != NL80211_IFTYPE_AP)
2122 break;
2123
2124 /* verify action_code is present */
2125 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2126 break;
2127
2128 switch (mgmt->u.action.u.addba_req.action_code) {
2129 case WLAN_ACTION_ADDBA_REQ:
2130 if (len < (IEEE80211_MIN_ACTION_SIZE +
2131 sizeof(mgmt->u.action.u.addba_req)))
2132 goto invalid;
2133 break;
2134 case WLAN_ACTION_ADDBA_RESP:
2135 if (len < (IEEE80211_MIN_ACTION_SIZE +
2136 sizeof(mgmt->u.action.u.addba_resp)))
2137 goto invalid;
2138 break;
2139 case WLAN_ACTION_DELBA:
2140 if (len < (IEEE80211_MIN_ACTION_SIZE +
2141 sizeof(mgmt->u.action.u.delba)))
2142 goto invalid;
2143 break;
2144 default:
2145 goto invalid;
2146 }
2147
2148 goto queue;
2149 case WLAN_CATEGORY_SPECTRUM_MGMT:
2150 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2151 break;
2152
2153 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2154 break;
2155
2156 /* verify action_code is present */
2157 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2158 break;
2159
2160 switch (mgmt->u.action.u.measurement.action_code) {
2161 case WLAN_ACTION_SPCT_MSR_REQ:
2162 if (len < (IEEE80211_MIN_ACTION_SIZE +
2163 sizeof(mgmt->u.action.u.measurement)))
2164 break;
2165 ieee80211_process_measurement_req(sdata, mgmt, len);
2166 goto handled;
2167 case WLAN_ACTION_SPCT_CHL_SWITCH:
2168 if (len < (IEEE80211_MIN_ACTION_SIZE +
2169 sizeof(mgmt->u.action.u.chan_switch)))
2170 break;
2171
2172 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2173 break;
2174
2175 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2176 break;
2177
2178 goto queue;
2179 }
2180 break;
2181 case WLAN_CATEGORY_SA_QUERY:
2182 if (len < (IEEE80211_MIN_ACTION_SIZE +
2183 sizeof(mgmt->u.action.u.sa_query)))
2184 break;
2185
2186 switch (mgmt->u.action.u.sa_query.action) {
2187 case WLAN_ACTION_SA_QUERY_REQUEST:
2188 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2189 break;
2190 ieee80211_process_sa_query_req(sdata, mgmt, len);
2191 goto handled;
2192 }
2193 break;
2194 case WLAN_CATEGORY_MESH_PLINK:
2195 if (!ieee80211_vif_is_mesh(&sdata->vif))
2196 break;
2197 goto queue;
2198 case WLAN_CATEGORY_MESH_PATH_SEL:
2199 if (!mesh_path_sel_is_hwmp(sdata))
2200 break;
2201 goto queue;
2202 }
2203
2204 return RX_CONTINUE;
2205
2206 invalid:
2207 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2208 /* will return in the next handlers */
2209 return RX_CONTINUE;
2210
2211 handled:
2212 if (rx->sta)
2213 rx->sta->rx_packets++;
2214 dev_kfree_skb(rx->skb);
2215 return RX_QUEUED;
2216
2217 queue:
2218 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2219 skb_queue_tail(&sdata->skb_queue, rx->skb);
2220 ieee80211_queue_work(&local->hw, &sdata->work);
2221 if (rx->sta)
2222 rx->sta->rx_packets++;
2223 return RX_QUEUED;
2224 }
2225
2226 static ieee80211_rx_result debug_noinline
2227 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2228 {
2229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2230
2231 /* skip known-bad action frames and return them in the next handler */
2232 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2233 return RX_CONTINUE;
2234
2235 /*
2236 * Getting here means the kernel doesn't know how to handle
2237 * it, but maybe userspace does ... include returned frames
2238 * so userspace can register for those to know whether ones
2239 * it transmitted were processed or returned.
2240 */
2241
2242 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2243 rx->skb->data, rx->skb->len,
2244 GFP_ATOMIC)) {
2245 if (rx->sta)
2246 rx->sta->rx_packets++;
2247 dev_kfree_skb(rx->skb);
2248 return RX_QUEUED;
2249 }
2250
2251
2252 return RX_CONTINUE;
2253 }
2254
2255 static ieee80211_rx_result debug_noinline
2256 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2257 {
2258 struct ieee80211_local *local = rx->local;
2259 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2260 struct sk_buff *nskb;
2261 struct ieee80211_sub_if_data *sdata = rx->sdata;
2262 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2263
2264 if (!ieee80211_is_action(mgmt->frame_control))
2265 return RX_CONTINUE;
2266
2267 /*
2268 * For AP mode, hostapd is responsible for handling any action
2269 * frames that we didn't handle, including returning unknown
2270 * ones. For all other modes we will return them to the sender,
2271 * setting the 0x80 bit in the action category, as required by
2272 * 802.11-2007 7.3.1.11.
2273 * Newer versions of hostapd shall also use the management frame
2274 * registration mechanisms, but older ones still use cooked
2275 * monitor interfaces so push all frames there.
2276 */
2277 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2278 (sdata->vif.type == NL80211_IFTYPE_AP ||
2279 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2280 return RX_DROP_MONITOR;
2281
2282 /* do not return rejected action frames */
2283 if (mgmt->u.action.category & 0x80)
2284 return RX_DROP_UNUSABLE;
2285
2286 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2287 GFP_ATOMIC);
2288 if (nskb) {
2289 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2290
2291 nmgmt->u.action.category |= 0x80;
2292 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2293 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2294
2295 memset(nskb->cb, 0, sizeof(nskb->cb));
2296
2297 ieee80211_tx_skb(rx->sdata, nskb);
2298 }
2299 dev_kfree_skb(rx->skb);
2300 return RX_QUEUED;
2301 }
2302
2303 static ieee80211_rx_result debug_noinline
2304 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2305 {
2306 struct ieee80211_sub_if_data *sdata = rx->sdata;
2307 ieee80211_rx_result rxs;
2308 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2309 __le16 stype;
2310
2311 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2312 if (rxs != RX_CONTINUE)
2313 return rxs;
2314
2315 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2316
2317 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2318 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2319 sdata->vif.type != NL80211_IFTYPE_STATION)
2320 return RX_DROP_MONITOR;
2321
2322 switch (stype) {
2323 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2324 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2325 /* process for all: mesh, mlme, ibss */
2326 break;
2327 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2328 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2329 if (is_multicast_ether_addr(mgmt->da) &&
2330 !is_broadcast_ether_addr(mgmt->da))
2331 return RX_DROP_MONITOR;
2332
2333 /* process only for station */
2334 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2335 return RX_DROP_MONITOR;
2336 break;
2337 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2338 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2339 /* process only for ibss */
2340 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2341 return RX_DROP_MONITOR;
2342 break;
2343 default:
2344 return RX_DROP_MONITOR;
2345 }
2346
2347 /* queue up frame and kick off work to process it */
2348 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2349 skb_queue_tail(&sdata->skb_queue, rx->skb);
2350 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2351 if (rx->sta)
2352 rx->sta->rx_packets++;
2353
2354 return RX_QUEUED;
2355 }
2356
2357 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2358 struct ieee80211_rx_data *rx)
2359 {
2360 int keyidx;
2361 unsigned int hdrlen;
2362
2363 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2364 if (rx->skb->len >= hdrlen + 4)
2365 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2366 else
2367 keyidx = -1;
2368
2369 if (!rx->sta) {
2370 /*
2371 * Some hardware seem to generate incorrect Michael MIC
2372 * reports; ignore them to avoid triggering countermeasures.
2373 */
2374 return;
2375 }
2376
2377 if (!ieee80211_has_protected(hdr->frame_control))
2378 return;
2379
2380 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2381 /*
2382 * APs with pairwise keys should never receive Michael MIC
2383 * errors for non-zero keyidx because these are reserved for
2384 * group keys and only the AP is sending real multicast
2385 * frames in the BSS.
2386 */
2387 return;
2388 }
2389
2390 if (!ieee80211_is_data(hdr->frame_control) &&
2391 !ieee80211_is_auth(hdr->frame_control))
2392 return;
2393
2394 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2395 GFP_ATOMIC);
2396 }
2397
2398 /* TODO: use IEEE80211_RX_FRAGMENTED */
2399 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2400 struct ieee80211_rate *rate)
2401 {
2402 struct ieee80211_sub_if_data *sdata;
2403 struct ieee80211_local *local = rx->local;
2404 struct ieee80211_rtap_hdr {
2405 struct ieee80211_radiotap_header hdr;
2406 u8 flags;
2407 u8 rate_or_pad;
2408 __le16 chan_freq;
2409 __le16 chan_flags;
2410 } __packed *rthdr;
2411 struct sk_buff *skb = rx->skb, *skb2;
2412 struct net_device *prev_dev = NULL;
2413 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2414
2415 /*
2416 * If cooked monitor has been processed already, then
2417 * don't do it again. If not, set the flag.
2418 */
2419 if (rx->flags & IEEE80211_RX_CMNTR)
2420 goto out_free_skb;
2421 rx->flags |= IEEE80211_RX_CMNTR;
2422
2423 if (skb_headroom(skb) < sizeof(*rthdr) &&
2424 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2425 goto out_free_skb;
2426
2427 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2428 memset(rthdr, 0, sizeof(*rthdr));
2429 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2430 rthdr->hdr.it_present =
2431 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2432 (1 << IEEE80211_RADIOTAP_CHANNEL));
2433
2434 if (rate) {
2435 rthdr->rate_or_pad = rate->bitrate / 5;
2436 rthdr->hdr.it_present |=
2437 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2438 }
2439 rthdr->chan_freq = cpu_to_le16(status->freq);
2440
2441 if (status->band == IEEE80211_BAND_5GHZ)
2442 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2443 IEEE80211_CHAN_5GHZ);
2444 else
2445 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2446 IEEE80211_CHAN_2GHZ);
2447
2448 skb_set_mac_header(skb, 0);
2449 skb->ip_summed = CHECKSUM_UNNECESSARY;
2450 skb->pkt_type = PACKET_OTHERHOST;
2451 skb->protocol = htons(ETH_P_802_2);
2452
2453 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2454 if (!ieee80211_sdata_running(sdata))
2455 continue;
2456
2457 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2458 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2459 continue;
2460
2461 if (prev_dev) {
2462 skb2 = skb_clone(skb, GFP_ATOMIC);
2463 if (skb2) {
2464 skb2->dev = prev_dev;
2465 netif_receive_skb(skb2);
2466 }
2467 }
2468
2469 prev_dev = sdata->dev;
2470 sdata->dev->stats.rx_packets++;
2471 sdata->dev->stats.rx_bytes += skb->len;
2472 }
2473
2474 if (prev_dev) {
2475 skb->dev = prev_dev;
2476 netif_receive_skb(skb);
2477 return;
2478 }
2479
2480 out_free_skb:
2481 dev_kfree_skb(skb);
2482 }
2483
2484 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2485 ieee80211_rx_result res)
2486 {
2487 switch (res) {
2488 case RX_DROP_MONITOR:
2489 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2490 if (rx->sta)
2491 rx->sta->rx_dropped++;
2492 /* fall through */
2493 case RX_CONTINUE: {
2494 struct ieee80211_rate *rate = NULL;
2495 struct ieee80211_supported_band *sband;
2496 struct ieee80211_rx_status *status;
2497
2498 status = IEEE80211_SKB_RXCB((rx->skb));
2499
2500 sband = rx->local->hw.wiphy->bands[status->band];
2501 if (!(status->flag & RX_FLAG_HT))
2502 rate = &sband->bitrates[status->rate_idx];
2503
2504 ieee80211_rx_cooked_monitor(rx, rate);
2505 break;
2506 }
2507 case RX_DROP_UNUSABLE:
2508 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2509 if (rx->sta)
2510 rx->sta->rx_dropped++;
2511 dev_kfree_skb(rx->skb);
2512 break;
2513 case RX_QUEUED:
2514 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2515 break;
2516 }
2517 }
2518
2519 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2520 {
2521 ieee80211_rx_result res = RX_DROP_MONITOR;
2522 struct sk_buff *skb;
2523
2524 #define CALL_RXH(rxh) \
2525 do { \
2526 res = rxh(rx); \
2527 if (res != RX_CONTINUE) \
2528 goto rxh_next; \
2529 } while (0);
2530
2531 spin_lock(&rx->local->rx_skb_queue.lock);
2532 if (rx->local->running_rx_handler)
2533 goto unlock;
2534
2535 rx->local->running_rx_handler = true;
2536
2537 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2538 spin_unlock(&rx->local->rx_skb_queue.lock);
2539
2540 /*
2541 * all the other fields are valid across frames
2542 * that belong to an aMPDU since they are on the
2543 * same TID from the same station
2544 */
2545 rx->skb = skb;
2546
2547 CALL_RXH(ieee80211_rx_h_decrypt)
2548 CALL_RXH(ieee80211_rx_h_check_more_data)
2549 CALL_RXH(ieee80211_rx_h_sta_process)
2550 CALL_RXH(ieee80211_rx_h_defragment)
2551 CALL_RXH(ieee80211_rx_h_ps_poll)
2552 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2553 /* must be after MMIC verify so header is counted in MPDU mic */
2554 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2555 CALL_RXH(ieee80211_rx_h_amsdu)
2556 #ifdef CONFIG_MAC80211_MESH
2557 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2558 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2559 #endif
2560 CALL_RXH(ieee80211_rx_h_data)
2561 CALL_RXH(ieee80211_rx_h_ctrl);
2562 CALL_RXH(ieee80211_rx_h_mgmt_check)
2563 CALL_RXH(ieee80211_rx_h_action)
2564 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2565 CALL_RXH(ieee80211_rx_h_action_return)
2566 CALL_RXH(ieee80211_rx_h_mgmt)
2567
2568 rxh_next:
2569 ieee80211_rx_handlers_result(rx, res);
2570 spin_lock(&rx->local->rx_skb_queue.lock);
2571 #undef CALL_RXH
2572 }
2573
2574 rx->local->running_rx_handler = false;
2575
2576 unlock:
2577 spin_unlock(&rx->local->rx_skb_queue.lock);
2578 }
2579
2580 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2581 {
2582 ieee80211_rx_result res = RX_DROP_MONITOR;
2583
2584 #define CALL_RXH(rxh) \
2585 do { \
2586 res = rxh(rx); \
2587 if (res != RX_CONTINUE) \
2588 goto rxh_next; \
2589 } while (0);
2590
2591 CALL_RXH(ieee80211_rx_h_passive_scan)
2592 CALL_RXH(ieee80211_rx_h_check)
2593
2594 ieee80211_rx_reorder_ampdu(rx);
2595
2596 ieee80211_rx_handlers(rx);
2597 return;
2598
2599 rxh_next:
2600 ieee80211_rx_handlers_result(rx, res);
2601
2602 #undef CALL_RXH
2603 }
2604
2605 /*
2606 * This function makes calls into the RX path, therefore
2607 * it has to be invoked under RCU read lock.
2608 */
2609 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2610 {
2611 struct ieee80211_rx_data rx = {
2612 .sta = sta,
2613 .sdata = sta->sdata,
2614 .local = sta->local,
2615 .queue = tid,
2616 .flags = 0,
2617 };
2618 struct tid_ampdu_rx *tid_agg_rx;
2619
2620 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2621 if (!tid_agg_rx)
2622 return;
2623
2624 spin_lock(&tid_agg_rx->reorder_lock);
2625 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2626 spin_unlock(&tid_agg_rx->reorder_lock);
2627
2628 ieee80211_rx_handlers(&rx);
2629 }
2630
2631 /* main receive path */
2632
2633 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2634 struct ieee80211_hdr *hdr)
2635 {
2636 struct ieee80211_sub_if_data *sdata = rx->sdata;
2637 struct sk_buff *skb = rx->skb;
2638 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2639 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2640 int multicast = is_multicast_ether_addr(hdr->addr1);
2641
2642 switch (sdata->vif.type) {
2643 case NL80211_IFTYPE_STATION:
2644 if (!bssid && !sdata->u.mgd.use_4addr)
2645 return 0;
2646 if (!multicast &&
2647 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2648 if (!(sdata->dev->flags & IFF_PROMISC) ||
2649 sdata->u.mgd.use_4addr)
2650 return 0;
2651 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2652 }
2653 break;
2654 case NL80211_IFTYPE_ADHOC:
2655 if (!bssid)
2656 return 0;
2657 if (ieee80211_is_beacon(hdr->frame_control)) {
2658 return 1;
2659 }
2660 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2661 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2662 return 0;
2663 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2664 } else if (!multicast &&
2665 compare_ether_addr(sdata->vif.addr,
2666 hdr->addr1) != 0) {
2667 if (!(sdata->dev->flags & IFF_PROMISC))
2668 return 0;
2669 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2670 } else if (!rx->sta) {
2671 int rate_idx;
2672 if (status->flag & RX_FLAG_HT)
2673 rate_idx = 0; /* TODO: HT rates */
2674 else
2675 rate_idx = status->rate_idx;
2676 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2677 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2678 }
2679 break;
2680 case NL80211_IFTYPE_MESH_POINT:
2681 if (!multicast &&
2682 compare_ether_addr(sdata->vif.addr,
2683 hdr->addr1) != 0) {
2684 if (!(sdata->dev->flags & IFF_PROMISC))
2685 return 0;
2686
2687 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2688 }
2689 break;
2690 case NL80211_IFTYPE_AP_VLAN:
2691 case NL80211_IFTYPE_AP:
2692 if (!bssid) {
2693 if (compare_ether_addr(sdata->vif.addr,
2694 hdr->addr1))
2695 return 0;
2696 } else if (!ieee80211_bssid_match(bssid,
2697 sdata->vif.addr)) {
2698 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2699 !ieee80211_is_beacon(hdr->frame_control))
2700 return 0;
2701 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2702 }
2703 break;
2704 case NL80211_IFTYPE_WDS:
2705 if (bssid || !ieee80211_is_data(hdr->frame_control))
2706 return 0;
2707 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2708 return 0;
2709 break;
2710 default:
2711 /* should never get here */
2712 WARN_ON(1);
2713 break;
2714 }
2715
2716 return 1;
2717 }
2718
2719 /*
2720 * This function returns whether or not the SKB
2721 * was destined for RX processing or not, which,
2722 * if consume is true, is equivalent to whether
2723 * or not the skb was consumed.
2724 */
2725 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2726 struct sk_buff *skb, bool consume)
2727 {
2728 struct ieee80211_local *local = rx->local;
2729 struct ieee80211_sub_if_data *sdata = rx->sdata;
2730 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2731 struct ieee80211_hdr *hdr = (void *)skb->data;
2732 int prepares;
2733
2734 rx->skb = skb;
2735 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2736 prepares = prepare_for_handlers(rx, hdr);
2737
2738 if (!prepares)
2739 return false;
2740
2741 if (status->flag & RX_FLAG_MMIC_ERROR) {
2742 if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2743 ieee80211_rx_michael_mic_report(hdr, rx);
2744 return false;
2745 }
2746
2747 if (!consume) {
2748 skb = skb_copy(skb, GFP_ATOMIC);
2749 if (!skb) {
2750 if (net_ratelimit())
2751 wiphy_debug(local->hw.wiphy,
2752 "failed to copy skb for %s\n",
2753 sdata->name);
2754 return true;
2755 }
2756
2757 rx->skb = skb;
2758 }
2759
2760 ieee80211_invoke_rx_handlers(rx);
2761 return true;
2762 }
2763
2764 /*
2765 * This is the actual Rx frames handler. as it blongs to Rx path it must
2766 * be called with rcu_read_lock protection.
2767 */
2768 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2769 struct sk_buff *skb)
2770 {
2771 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2772 struct ieee80211_local *local = hw_to_local(hw);
2773 struct ieee80211_sub_if_data *sdata;
2774 struct ieee80211_hdr *hdr;
2775 __le16 fc;
2776 struct ieee80211_rx_data rx;
2777 struct ieee80211_sub_if_data *prev;
2778 struct sta_info *sta, *tmp, *prev_sta;
2779 int err = 0;
2780
2781 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2782 memset(&rx, 0, sizeof(rx));
2783 rx.skb = skb;
2784 rx.local = local;
2785
2786 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2787 local->dot11ReceivedFragmentCount++;
2788
2789 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2790 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2791 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2792
2793 if (ieee80211_is_mgmt(fc))
2794 err = skb_linearize(skb);
2795 else
2796 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2797
2798 if (err) {
2799 dev_kfree_skb(skb);
2800 return;
2801 }
2802
2803 hdr = (struct ieee80211_hdr *)skb->data;
2804 ieee80211_parse_qos(&rx);
2805 ieee80211_verify_alignment(&rx);
2806
2807 if (ieee80211_is_data(fc)) {
2808 prev_sta = NULL;
2809
2810 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2811 if (!prev_sta) {
2812 prev_sta = sta;
2813 continue;
2814 }
2815
2816 rx.sta = prev_sta;
2817 rx.sdata = prev_sta->sdata;
2818 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2819
2820 prev_sta = sta;
2821 }
2822
2823 if (prev_sta) {
2824 rx.sta = prev_sta;
2825 rx.sdata = prev_sta->sdata;
2826
2827 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2828 return;
2829 goto out;
2830 }
2831 }
2832
2833 prev = NULL;
2834
2835 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2836 if (!ieee80211_sdata_running(sdata))
2837 continue;
2838
2839 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2840 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2841 continue;
2842
2843 /*
2844 * frame is destined for this interface, but if it's
2845 * not also for the previous one we handle that after
2846 * the loop to avoid copying the SKB once too much
2847 */
2848
2849 if (!prev) {
2850 prev = sdata;
2851 continue;
2852 }
2853
2854 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2855 rx.sdata = prev;
2856 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2857
2858 prev = sdata;
2859 }
2860
2861 if (prev) {
2862 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2863 rx.sdata = prev;
2864
2865 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2866 return;
2867 }
2868
2869 out:
2870 dev_kfree_skb(skb);
2871 }
2872
2873 /*
2874 * This is the receive path handler. It is called by a low level driver when an
2875 * 802.11 MPDU is received from the hardware.
2876 */
2877 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2878 {
2879 struct ieee80211_local *local = hw_to_local(hw);
2880 struct ieee80211_rate *rate = NULL;
2881 struct ieee80211_supported_band *sband;
2882 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2883
2884 WARN_ON_ONCE(softirq_count() == 0);
2885
2886 if (WARN_ON(status->band < 0 ||
2887 status->band >= IEEE80211_NUM_BANDS))
2888 goto drop;
2889
2890 sband = local->hw.wiphy->bands[status->band];
2891 if (WARN_ON(!sband))
2892 goto drop;
2893
2894 /*
2895 * If we're suspending, it is possible although not too likely
2896 * that we'd be receiving frames after having already partially
2897 * quiesced the stack. We can't process such frames then since
2898 * that might, for example, cause stations to be added or other
2899 * driver callbacks be invoked.
2900 */
2901 if (unlikely(local->quiescing || local->suspended))
2902 goto drop;
2903
2904 /*
2905 * The same happens when we're not even started,
2906 * but that's worth a warning.
2907 */
2908 if (WARN_ON(!local->started))
2909 goto drop;
2910
2911 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2912 /*
2913 * Validate the rate, unless a PLCP error means that
2914 * we probably can't have a valid rate here anyway.
2915 */
2916
2917 if (status->flag & RX_FLAG_HT) {
2918 /*
2919 * rate_idx is MCS index, which can be [0-76]
2920 * as documented on:
2921 *
2922 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2923 *
2924 * Anything else would be some sort of driver or
2925 * hardware error. The driver should catch hardware
2926 * errors.
2927 */
2928 if (WARN((status->rate_idx < 0 ||
2929 status->rate_idx > 76),
2930 "Rate marked as an HT rate but passed "
2931 "status->rate_idx is not "
2932 "an MCS index [0-76]: %d (0x%02x)\n",
2933 status->rate_idx,
2934 status->rate_idx))
2935 goto drop;
2936 } else {
2937 if (WARN_ON(status->rate_idx < 0 ||
2938 status->rate_idx >= sband->n_bitrates))
2939 goto drop;
2940 rate = &sband->bitrates[status->rate_idx];
2941 }
2942 }
2943
2944 status->rx_flags = 0;
2945
2946 /*
2947 * key references and virtual interfaces are protected using RCU
2948 * and this requires that we are in a read-side RCU section during
2949 * receive processing
2950 */
2951 rcu_read_lock();
2952
2953 /*
2954 * Frames with failed FCS/PLCP checksum are not returned,
2955 * all other frames are returned without radiotap header
2956 * if it was previously present.
2957 * Also, frames with less than 16 bytes are dropped.
2958 */
2959 skb = ieee80211_rx_monitor(local, skb, rate);
2960 if (!skb) {
2961 rcu_read_unlock();
2962 return;
2963 }
2964
2965 ieee80211_tpt_led_trig_rx(local,
2966 ((struct ieee80211_hdr *)skb->data)->frame_control,
2967 skb->len);
2968 __ieee80211_rx_handle_packet(hw, skb);
2969
2970 rcu_read_unlock();
2971
2972 return;
2973 drop:
2974 kfree_skb(skb);
2975 }
2976 EXPORT_SYMBOL(ieee80211_rx);
2977
2978 /* This is a version of the rx handler that can be called from hard irq
2979 * context. Post the skb on the queue and schedule the tasklet */
2980 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2981 {
2982 struct ieee80211_local *local = hw_to_local(hw);
2983
2984 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2985
2986 skb->pkt_type = IEEE80211_RX_MSG;
2987 skb_queue_tail(&local->skb_queue, skb);
2988 tasklet_schedule(&local->tasklet);
2989 }
2990 EXPORT_SYMBOL(ieee80211_rx_irqsafe);