[MAC80211]: split RX handlers into own file
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / mac80211 / ieee80211.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <net/mac80211.h>
12 #include <net/ieee80211_radiotap.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/etherdevice.h>
20 #include <linux/if_arp.h>
21 #include <linux/wireless.h>
22 #include <linux/rtnetlink.h>
23 #include <net/iw_handler.h>
24 #include <linux/compiler.h>
25 #include <linux/bitmap.h>
26 #include <net/cfg80211.h>
27 #include <asm/unaligned.h>
28
29 #include "ieee80211_common.h"
30 #include "ieee80211_i.h"
31 #include "ieee80211_rate.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "aes_ccm.h"
37 #include "ieee80211_led.h"
38 #include "ieee80211_cfg.h"
39 #include "debugfs.h"
40 #include "debugfs_netdev.h"
41 #include "debugfs_key.h"
42
43 /* privid for wiphys to determine whether they belong to us or not */
44 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
45
46 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
47 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
48 const unsigned char rfc1042_header[] =
49 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
50
51 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
52 const unsigned char bridge_tunnel_header[] =
53 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
54
55 /* No encapsulation header if EtherType < 0x600 (=length) */
56 static const unsigned char eapol_header[] =
57 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e };
58
59
60 /*
61 * For seeing transmitted packets on monitor interfaces
62 * we have a radiotap header too.
63 */
64 struct ieee80211_tx_status_rtap_hdr {
65 struct ieee80211_radiotap_header hdr;
66 __le16 tx_flags;
67 u8 data_retries;
68 } __attribute__ ((packed));
69
70
71 static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata,
72 struct ieee80211_hdr *hdr)
73 {
74 /* Set the sequence number for this frame. */
75 hdr->seq_ctrl = cpu_to_le16(sdata->sequence);
76
77 /* Increase the sequence number. */
78 sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ;
79 }
80
81 struct ieee80211_key_conf *
82 ieee80211_key_data2conf(struct ieee80211_local *local,
83 const struct ieee80211_key *data)
84 {
85 struct ieee80211_key_conf *conf;
86
87 conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC);
88 if (!conf)
89 return NULL;
90
91 conf->hw_key_idx = data->hw_key_idx;
92 conf->alg = data->alg;
93 conf->keylen = data->keylen;
94 conf->flags = 0;
95 if (data->force_sw_encrypt)
96 conf->flags |= IEEE80211_KEY_FORCE_SW_ENCRYPT;
97 conf->keyidx = data->keyidx;
98 if (data->default_tx_key)
99 conf->flags |= IEEE80211_KEY_DEFAULT_TX_KEY;
100 if (local->default_wep_only)
101 conf->flags |= IEEE80211_KEY_DEFAULT_WEP_ONLY;
102 memcpy(conf->key, data->key, data->keylen);
103
104 return conf;
105 }
106
107 struct ieee80211_key *ieee80211_key_alloc(struct ieee80211_sub_if_data *sdata,
108 int idx, size_t key_len, gfp_t flags)
109 {
110 struct ieee80211_key *key;
111
112 key = kzalloc(sizeof(struct ieee80211_key) + key_len, flags);
113 if (!key)
114 return NULL;
115 kref_init(&key->kref);
116 return key;
117 }
118
119 static void ieee80211_key_release(struct kref *kref)
120 {
121 struct ieee80211_key *key;
122
123 key = container_of(kref, struct ieee80211_key, kref);
124 if (key->alg == ALG_CCMP)
125 ieee80211_aes_key_free(key->u.ccmp.tfm);
126 ieee80211_debugfs_key_remove(key);
127 kfree(key);
128 }
129
130 void ieee80211_key_free(struct ieee80211_key *key)
131 {
132 if (key)
133 kref_put(&key->kref, ieee80211_key_release);
134 }
135
136 static int rate_list_match(const int *rate_list, int rate)
137 {
138 int i;
139
140 if (!rate_list)
141 return 0;
142
143 for (i = 0; rate_list[i] >= 0; i++)
144 if (rate_list[i] == rate)
145 return 1;
146
147 return 0;
148 }
149
150
151 void ieee80211_prepare_rates(struct ieee80211_local *local,
152 struct ieee80211_hw_mode *mode)
153 {
154 int i;
155
156 for (i = 0; i < mode->num_rates; i++) {
157 struct ieee80211_rate *rate = &mode->rates[i];
158
159 rate->flags &= ~(IEEE80211_RATE_SUPPORTED |
160 IEEE80211_RATE_BASIC);
161
162 if (local->supp_rates[mode->mode]) {
163 if (!rate_list_match(local->supp_rates[mode->mode],
164 rate->rate))
165 continue;
166 }
167
168 rate->flags |= IEEE80211_RATE_SUPPORTED;
169
170 /* Use configured basic rate set if it is available. If not,
171 * use defaults that are sane for most cases. */
172 if (local->basic_rates[mode->mode]) {
173 if (rate_list_match(local->basic_rates[mode->mode],
174 rate->rate))
175 rate->flags |= IEEE80211_RATE_BASIC;
176 } else switch (mode->mode) {
177 case MODE_IEEE80211A:
178 if (rate->rate == 60 || rate->rate == 120 ||
179 rate->rate == 240)
180 rate->flags |= IEEE80211_RATE_BASIC;
181 break;
182 case MODE_IEEE80211B:
183 if (rate->rate == 10 || rate->rate == 20)
184 rate->flags |= IEEE80211_RATE_BASIC;
185 break;
186 case MODE_ATHEROS_TURBO:
187 if (rate->rate == 120 || rate->rate == 240 ||
188 rate->rate == 480)
189 rate->flags |= IEEE80211_RATE_BASIC;
190 break;
191 case MODE_IEEE80211G:
192 if (rate->rate == 10 || rate->rate == 20 ||
193 rate->rate == 55 || rate->rate == 110)
194 rate->flags |= IEEE80211_RATE_BASIC;
195 break;
196 }
197
198 /* Set ERP and MANDATORY flags based on phymode */
199 switch (mode->mode) {
200 case MODE_IEEE80211A:
201 if (rate->rate == 60 || rate->rate == 120 ||
202 rate->rate == 240)
203 rate->flags |= IEEE80211_RATE_MANDATORY;
204 break;
205 case MODE_IEEE80211B:
206 if (rate->rate == 10)
207 rate->flags |= IEEE80211_RATE_MANDATORY;
208 break;
209 case MODE_ATHEROS_TURBO:
210 break;
211 case MODE_IEEE80211G:
212 if (rate->rate == 10 || rate->rate == 20 ||
213 rate->rate == 55 || rate->rate == 110 ||
214 rate->rate == 60 || rate->rate == 120 ||
215 rate->rate == 240)
216 rate->flags |= IEEE80211_RATE_MANDATORY;
217 break;
218 }
219 if (ieee80211_is_erp_rate(mode->mode, rate->rate))
220 rate->flags |= IEEE80211_RATE_ERP;
221 }
222 }
223
224
225 void ieee80211_key_threshold_notify(struct net_device *dev,
226 struct ieee80211_key *key,
227 struct sta_info *sta)
228 {
229 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
230 struct sk_buff *skb;
231 struct ieee80211_msg_key_notification *msg;
232
233 /* if no one will get it anyway, don't even allocate it.
234 * unlikely because this is only relevant for APs
235 * where the device must be open... */
236 if (unlikely(!local->apdev))
237 return;
238
239 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
240 sizeof(struct ieee80211_msg_key_notification));
241 if (!skb)
242 return;
243
244 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
245 msg = (struct ieee80211_msg_key_notification *)
246 skb_put(skb, sizeof(struct ieee80211_msg_key_notification));
247 msg->tx_rx_count = key->tx_rx_count;
248 memcpy(msg->ifname, dev->name, IFNAMSIZ);
249 if (sta)
250 memcpy(msg->addr, sta->addr, ETH_ALEN);
251 else
252 memset(msg->addr, 0xff, ETH_ALEN);
253
254 key->tx_rx_count = 0;
255
256 ieee80211_rx_mgmt(local, skb, NULL,
257 ieee80211_msg_key_threshold_notification);
258 }
259
260
261 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len)
262 {
263 u16 fc;
264
265 if (len < 24)
266 return NULL;
267
268 fc = le16_to_cpu(hdr->frame_control);
269
270 switch (fc & IEEE80211_FCTL_FTYPE) {
271 case IEEE80211_FTYPE_DATA:
272 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
273 case IEEE80211_FCTL_TODS:
274 return hdr->addr1;
275 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
276 return NULL;
277 case IEEE80211_FCTL_FROMDS:
278 return hdr->addr2;
279 case 0:
280 return hdr->addr3;
281 }
282 break;
283 case IEEE80211_FTYPE_MGMT:
284 return hdr->addr3;
285 case IEEE80211_FTYPE_CTL:
286 if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)
287 return hdr->addr1;
288 else
289 return NULL;
290 }
291
292 return NULL;
293 }
294
295 int ieee80211_get_hdrlen(u16 fc)
296 {
297 int hdrlen = 24;
298
299 switch (fc & IEEE80211_FCTL_FTYPE) {
300 case IEEE80211_FTYPE_DATA:
301 if ((fc & IEEE80211_FCTL_FROMDS) && (fc & IEEE80211_FCTL_TODS))
302 hdrlen = 30; /* Addr4 */
303 /*
304 * The QoS Control field is two bytes and its presence is
305 * indicated by the IEEE80211_STYPE_QOS_DATA bit. Add 2 to
306 * hdrlen if that bit is set.
307 * This works by masking out the bit and shifting it to
308 * bit position 1 so the result has the value 0 or 2.
309 */
310 hdrlen += (fc & IEEE80211_STYPE_QOS_DATA)
311 >> (ilog2(IEEE80211_STYPE_QOS_DATA)-1);
312 break;
313 case IEEE80211_FTYPE_CTL:
314 /*
315 * ACK and CTS are 10 bytes, all others 16. To see how
316 * to get this condition consider
317 * subtype mask: 0b0000000011110000 (0x00F0)
318 * ACK subtype: 0b0000000011010000 (0x00D0)
319 * CTS subtype: 0b0000000011000000 (0x00C0)
320 * bits that matter: ^^^ (0x00E0)
321 * value of those: 0b0000000011000000 (0x00C0)
322 */
323 if ((fc & 0xE0) == 0xC0)
324 hdrlen = 10;
325 else
326 hdrlen = 16;
327 break;
328 }
329
330 return hdrlen;
331 }
332 EXPORT_SYMBOL(ieee80211_get_hdrlen);
333
334 int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
335 {
336 const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *) skb->data;
337 int hdrlen;
338
339 if (unlikely(skb->len < 10))
340 return 0;
341 hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
342 if (unlikely(hdrlen > skb->len))
343 return 0;
344 return hdrlen;
345 }
346 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
347
348
349 #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP
350 static void ieee80211_dump_frame(const char *ifname, const char *title,
351 const struct sk_buff *skb)
352 {
353 const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
354 u16 fc;
355 int hdrlen;
356
357 printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len);
358 if (skb->len < 4) {
359 printk("\n");
360 return;
361 }
362
363 fc = le16_to_cpu(hdr->frame_control);
364 hdrlen = ieee80211_get_hdrlen(fc);
365 if (hdrlen > skb->len)
366 hdrlen = skb->len;
367 if (hdrlen >= 4)
368 printk(" FC=0x%04x DUR=0x%04x",
369 fc, le16_to_cpu(hdr->duration_id));
370 if (hdrlen >= 10)
371 printk(" A1=" MAC_FMT, MAC_ARG(hdr->addr1));
372 if (hdrlen >= 16)
373 printk(" A2=" MAC_FMT, MAC_ARG(hdr->addr2));
374 if (hdrlen >= 24)
375 printk(" A3=" MAC_FMT, MAC_ARG(hdr->addr3));
376 if (hdrlen >= 30)
377 printk(" A4=" MAC_FMT, MAC_ARG(hdr->addr4));
378 printk("\n");
379 }
380 #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
381 static inline void ieee80211_dump_frame(const char *ifname, const char *title,
382 struct sk_buff *skb)
383 {
384 }
385 #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */
386
387
388 int ieee80211_is_eapol(const struct sk_buff *skb)
389 {
390 const struct ieee80211_hdr *hdr;
391 u16 fc;
392 int hdrlen;
393
394 if (unlikely(skb->len < 10))
395 return 0;
396
397 hdr = (const struct ieee80211_hdr *) skb->data;
398 fc = le16_to_cpu(hdr->frame_control);
399
400 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
401 return 0;
402
403 hdrlen = ieee80211_get_hdrlen(fc);
404
405 if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) &&
406 memcmp(skb->data + hdrlen, eapol_header,
407 sizeof(eapol_header)) == 0))
408 return 1;
409
410 return 0;
411 }
412
413
414 static ieee80211_txrx_result
415 ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx)
416 {
417 struct rate_control_extra extra;
418
419 memset(&extra, 0, sizeof(extra));
420 extra.mode = tx->u.tx.mode;
421 extra.mgmt_data = tx->sdata &&
422 tx->sdata->type == IEEE80211_IF_TYPE_MGMT;
423 extra.ethertype = tx->ethertype;
424
425 tx->u.tx.rate = rate_control_get_rate(tx->local, tx->dev, tx->skb,
426 &extra);
427 if (unlikely(extra.probe != NULL)) {
428 tx->u.tx.control->flags |= IEEE80211_TXCTL_RATE_CTRL_PROBE;
429 tx->u.tx.probe_last_frag = 1;
430 tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val;
431 tx->u.tx.rate = extra.probe;
432 } else {
433 tx->u.tx.control->alt_retry_rate = -1;
434 }
435 if (!tx->u.tx.rate)
436 return TXRX_DROP;
437 if (tx->u.tx.mode->mode == MODE_IEEE80211G &&
438 tx->sdata->use_protection && tx->fragmented &&
439 extra.nonerp) {
440 tx->u.tx.last_frag_rate = tx->u.tx.rate;
441 tx->u.tx.probe_last_frag = extra.probe ? 1 : 0;
442
443 tx->u.tx.rate = extra.nonerp;
444 tx->u.tx.control->rate = extra.nonerp;
445 tx->u.tx.control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE;
446 } else {
447 tx->u.tx.last_frag_rate = tx->u.tx.rate;
448 tx->u.tx.control->rate = tx->u.tx.rate;
449 }
450 tx->u.tx.control->tx_rate = tx->u.tx.rate->val;
451 if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) &&
452 tx->local->short_preamble &&
453 (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) {
454 tx->u.tx.short_preamble = 1;
455 tx->u.tx.control->tx_rate = tx->u.tx.rate->val2;
456 }
457
458 return TXRX_CONTINUE;
459 }
460
461
462 static ieee80211_txrx_result
463 ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx)
464 {
465 if (tx->sta)
466 tx->u.tx.control->key_idx = tx->sta->key_idx_compression;
467 else
468 tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID;
469
470 if (unlikely(tx->u.tx.control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT))
471 tx->key = NULL;
472 else if (tx->sta && tx->sta->key)
473 tx->key = tx->sta->key;
474 else if (tx->sdata->default_key)
475 tx->key = tx->sdata->default_key;
476 else if (tx->sdata->drop_unencrypted &&
477 !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) {
478 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
479 return TXRX_DROP;
480 } else
481 tx->key = NULL;
482
483 if (tx->key) {
484 tx->key->tx_rx_count++;
485 if (unlikely(tx->local->key_tx_rx_threshold &&
486 tx->key->tx_rx_count >
487 tx->local->key_tx_rx_threshold)) {
488 ieee80211_key_threshold_notify(tx->dev, tx->key,
489 tx->sta);
490 }
491 }
492
493 return TXRX_CONTINUE;
494 }
495
496
497 static ieee80211_txrx_result
498 ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx)
499 {
500 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
501 size_t hdrlen, per_fragm, num_fragm, payload_len, left;
502 struct sk_buff **frags, *first, *frag;
503 int i;
504 u16 seq;
505 u8 *pos;
506 int frag_threshold = tx->local->fragmentation_threshold;
507
508 if (!tx->fragmented)
509 return TXRX_CONTINUE;
510
511 first = tx->skb;
512
513 hdrlen = ieee80211_get_hdrlen(tx->fc);
514 payload_len = first->len - hdrlen;
515 per_fragm = frag_threshold - hdrlen - FCS_LEN;
516 num_fragm = (payload_len + per_fragm - 1) / per_fragm;
517
518 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
519 if (!frags)
520 goto fail;
521
522 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
523 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ;
524 pos = first->data + hdrlen + per_fragm;
525 left = payload_len - per_fragm;
526 for (i = 0; i < num_fragm - 1; i++) {
527 struct ieee80211_hdr *fhdr;
528 size_t copylen;
529
530 if (left <= 0)
531 goto fail;
532
533 /* reserve enough extra head and tail room for possible
534 * encryption */
535 frag = frags[i] =
536 dev_alloc_skb(tx->local->tx_headroom +
537 frag_threshold +
538 IEEE80211_ENCRYPT_HEADROOM +
539 IEEE80211_ENCRYPT_TAILROOM);
540 if (!frag)
541 goto fail;
542 /* Make sure that all fragments use the same priority so
543 * that they end up using the same TX queue */
544 frag->priority = first->priority;
545 skb_reserve(frag, tx->local->tx_headroom +
546 IEEE80211_ENCRYPT_HEADROOM);
547 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
548 memcpy(fhdr, first->data, hdrlen);
549 if (i == num_fragm - 2)
550 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS);
551 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG));
552 copylen = left > per_fragm ? per_fragm : left;
553 memcpy(skb_put(frag, copylen), pos, copylen);
554
555 pos += copylen;
556 left -= copylen;
557 }
558 skb_trim(first, hdrlen + per_fragm);
559
560 tx->u.tx.num_extra_frag = num_fragm - 1;
561 tx->u.tx.extra_frag = frags;
562
563 return TXRX_CONTINUE;
564
565 fail:
566 printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name);
567 if (frags) {
568 for (i = 0; i < num_fragm - 1; i++)
569 if (frags[i])
570 dev_kfree_skb(frags[i]);
571 kfree(frags);
572 }
573 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
574 return TXRX_DROP;
575 }
576
577
578 static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb)
579 {
580 if (tx->key->force_sw_encrypt) {
581 if (ieee80211_wep_encrypt(tx->local, skb, tx->key))
582 return -1;
583 } else {
584 tx->u.tx.control->key_idx = tx->key->hw_key_idx;
585 if (tx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
586 if (ieee80211_wep_add_iv(tx->local, skb, tx->key) ==
587 NULL)
588 return -1;
589 }
590 }
591 return 0;
592 }
593
594
595 void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx)
596 {
597 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
598
599 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
600 if (tx->u.tx.extra_frag) {
601 struct ieee80211_hdr *fhdr;
602 int i;
603 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
604 fhdr = (struct ieee80211_hdr *)
605 tx->u.tx.extra_frag[i]->data;
606 fhdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
607 }
608 }
609 }
610
611
612 static ieee80211_txrx_result
613 ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx)
614 {
615 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
616 u16 fc;
617
618 fc = le16_to_cpu(hdr->frame_control);
619
620 if (!tx->key || tx->key->alg != ALG_WEP ||
621 ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
622 ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
623 (fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
624 return TXRX_CONTINUE;
625
626 tx->u.tx.control->iv_len = WEP_IV_LEN;
627 tx->u.tx.control->icv_len = WEP_ICV_LEN;
628 ieee80211_tx_set_iswep(tx);
629
630 if (wep_encrypt_skb(tx, tx->skb) < 0) {
631 I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
632 return TXRX_DROP;
633 }
634
635 if (tx->u.tx.extra_frag) {
636 int i;
637 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
638 if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) {
639 I802_DEBUG_INC(tx->local->
640 tx_handlers_drop_wep);
641 return TXRX_DROP;
642 }
643 }
644 }
645
646 return TXRX_CONTINUE;
647 }
648
649
650 static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len,
651 int rate, int erp, int short_preamble)
652 {
653 int dur;
654
655 /* calculate duration (in microseconds, rounded up to next higher
656 * integer if it includes a fractional microsecond) to send frame of
657 * len bytes (does not include FCS) at the given rate. Duration will
658 * also include SIFS.
659 *
660 * rate is in 100 kbps, so divident is multiplied by 10 in the
661 * DIV_ROUND_UP() operations.
662 */
663
664 if (local->hw.conf.phymode == MODE_IEEE80211A || erp ||
665 local->hw.conf.phymode == MODE_ATHEROS_TURBO) {
666 /*
667 * OFDM:
668 *
669 * N_DBPS = DATARATE x 4
670 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
671 * (16 = SIGNAL time, 6 = tail bits)
672 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
673 *
674 * T_SYM = 4 usec
675 * 802.11a - 17.5.2: aSIFSTime = 16 usec
676 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
677 * signal ext = 6 usec
678 */
679 /* FIX: Atheros Turbo may have different (shorter) duration? */
680 dur = 16; /* SIFS + signal ext */
681 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
682 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
683 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
684 4 * rate); /* T_SYM x N_SYM */
685 } else {
686 /*
687 * 802.11b or 802.11g with 802.11b compatibility:
688 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
689 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
690 *
691 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
692 * aSIFSTime = 10 usec
693 * aPreambleLength = 144 usec or 72 usec with short preamble
694 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
695 */
696 dur = 10; /* aSIFSTime = 10 usec */
697 dur += short_preamble ? (72 + 24) : (144 + 48);
698
699 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
700 }
701
702 return dur;
703 }
704
705
706 /* Exported duration function for driver use */
707 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
708 size_t frame_len, int rate)
709 {
710 struct ieee80211_local *local = hw_to_local(hw);
711 u16 dur;
712 int erp;
713
714 erp = ieee80211_is_erp_rate(hw->conf.phymode, rate);
715 dur = ieee80211_frame_duration(local, frame_len, rate,
716 erp, local->short_preamble);
717
718 return cpu_to_le16(dur);
719 }
720 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
721
722
723 static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr,
724 int next_frag_len)
725 {
726 int rate, mrate, erp, dur, i;
727 struct ieee80211_rate *txrate = tx->u.tx.rate;
728 struct ieee80211_local *local = tx->local;
729 struct ieee80211_hw_mode *mode = tx->u.tx.mode;
730
731 erp = txrate->flags & IEEE80211_RATE_ERP;
732
733 /*
734 * data and mgmt (except PS Poll):
735 * - during CFP: 32768
736 * - during contention period:
737 * if addr1 is group address: 0
738 * if more fragments = 0 and addr1 is individual address: time to
739 * transmit one ACK plus SIFS
740 * if more fragments = 1 and addr1 is individual address: time to
741 * transmit next fragment plus 2 x ACK plus 3 x SIFS
742 *
743 * IEEE 802.11, 9.6:
744 * - control response frame (CTS or ACK) shall be transmitted using the
745 * same rate as the immediately previous frame in the frame exchange
746 * sequence, if this rate belongs to the PHY mandatory rates, or else
747 * at the highest possible rate belonging to the PHY rates in the
748 * BSSBasicRateSet
749 */
750
751 if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) {
752 /* TODO: These control frames are not currently sent by
753 * 80211.o, but should they be implemented, this function
754 * needs to be updated to support duration field calculation.
755 *
756 * RTS: time needed to transmit pending data/mgmt frame plus
757 * one CTS frame plus one ACK frame plus 3 x SIFS
758 * CTS: duration of immediately previous RTS minus time
759 * required to transmit CTS and its SIFS
760 * ACK: 0 if immediately previous directed data/mgmt had
761 * more=0, with more=1 duration in ACK frame is duration
762 * from previous frame minus time needed to transmit ACK
763 * and its SIFS
764 * PS Poll: BIT(15) | BIT(14) | aid
765 */
766 return 0;
767 }
768
769 /* data/mgmt */
770 if (0 /* FIX: data/mgmt during CFP */)
771 return 32768;
772
773 if (group_addr) /* Group address as the destination - no ACK */
774 return 0;
775
776 /* Individual destination address:
777 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
778 * CTS and ACK frames shall be transmitted using the highest rate in
779 * basic rate set that is less than or equal to the rate of the
780 * immediately previous frame and that is using the same modulation
781 * (CCK or OFDM). If no basic rate set matches with these requirements,
782 * the highest mandatory rate of the PHY that is less than or equal to
783 * the rate of the previous frame is used.
784 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
785 */
786 rate = -1;
787 mrate = 10; /* use 1 Mbps if everything fails */
788 for (i = 0; i < mode->num_rates; i++) {
789 struct ieee80211_rate *r = &mode->rates[i];
790 if (r->rate > txrate->rate)
791 break;
792
793 if (IEEE80211_RATE_MODULATION(txrate->flags) !=
794 IEEE80211_RATE_MODULATION(r->flags))
795 continue;
796
797 if (r->flags & IEEE80211_RATE_BASIC)
798 rate = r->rate;
799 else if (r->flags & IEEE80211_RATE_MANDATORY)
800 mrate = r->rate;
801 }
802 if (rate == -1) {
803 /* No matching basic rate found; use highest suitable mandatory
804 * PHY rate */
805 rate = mrate;
806 }
807
808 /* Time needed to transmit ACK
809 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
810 * to closest integer */
811
812 dur = ieee80211_frame_duration(local, 10, rate, erp,
813 local->short_preamble);
814
815 if (next_frag_len) {
816 /* Frame is fragmented: duration increases with time needed to
817 * transmit next fragment plus ACK and 2 x SIFS. */
818 dur *= 2; /* ACK + SIFS */
819 /* next fragment */
820 dur += ieee80211_frame_duration(local, next_frag_len,
821 txrate->rate, erp,
822 local->short_preamble);
823 }
824
825 return dur;
826 }
827
828
829 static ieee80211_txrx_result
830 ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx)
831 {
832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
833 u16 dur;
834 struct ieee80211_tx_control *control = tx->u.tx.control;
835 struct ieee80211_hw_mode *mode = tx->u.tx.mode;
836
837 if (!is_multicast_ether_addr(hdr->addr1)) {
838 if (tx->skb->len + FCS_LEN > tx->local->rts_threshold &&
839 tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) {
840 control->flags |= IEEE80211_TXCTL_USE_RTS_CTS;
841 control->retry_limit =
842 tx->local->long_retry_limit;
843 } else {
844 control->retry_limit =
845 tx->local->short_retry_limit;
846 }
847 } else {
848 control->retry_limit = 1;
849 }
850
851 if (tx->fragmented) {
852 /* Do not use multiple retry rates when sending fragmented
853 * frames.
854 * TODO: The last fragment could still use multiple retry
855 * rates. */
856 control->alt_retry_rate = -1;
857 }
858
859 /* Use CTS protection for unicast frames sent using extended rates if
860 * there are associated non-ERP stations and RTS/CTS is not configured
861 * for the frame. */
862 if (mode->mode == MODE_IEEE80211G &&
863 (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) &&
864 tx->u.tx.unicast && tx->sdata->use_protection &&
865 !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS))
866 control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT;
867
868 /* Setup duration field for the first fragment of the frame. Duration
869 * for remaining fragments will be updated when they are being sent
870 * to low-level driver in ieee80211_tx(). */
871 dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1),
872 tx->fragmented ? tx->u.tx.extra_frag[0]->len :
873 0);
874 hdr->duration_id = cpu_to_le16(dur);
875
876 if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) ||
877 (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) {
878 struct ieee80211_rate *rate;
879
880 /* Do not use multiple retry rates when using RTS/CTS */
881 control->alt_retry_rate = -1;
882
883 /* Use min(data rate, max base rate) as CTS/RTS rate */
884 rate = tx->u.tx.rate;
885 while (rate > mode->rates &&
886 !(rate->flags & IEEE80211_RATE_BASIC))
887 rate--;
888
889 control->rts_cts_rate = rate->val;
890 control->rts_rate = rate;
891 }
892
893 if (tx->sta) {
894 tx->sta->tx_packets++;
895 tx->sta->tx_fragments++;
896 tx->sta->tx_bytes += tx->skb->len;
897 if (tx->u.tx.extra_frag) {
898 int i;
899 tx->sta->tx_fragments += tx->u.tx.num_extra_frag;
900 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
901 tx->sta->tx_bytes +=
902 tx->u.tx.extra_frag[i]->len;
903 }
904 }
905 }
906
907 return TXRX_CONTINUE;
908 }
909
910
911 static ieee80211_txrx_result
912 ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx)
913 {
914 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
915 struct sk_buff *skb = tx->skb;
916 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
917 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
918 u32 sta_flags;
919
920 if (unlikely(tx->local->sta_scanning != 0) &&
921 ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
922 (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ))
923 return TXRX_DROP;
924
925 if (tx->u.tx.ps_buffered)
926 return TXRX_CONTINUE;
927
928 sta_flags = tx->sta ? tx->sta->flags : 0;
929
930 if (likely(tx->u.tx.unicast)) {
931 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
932 tx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
933 (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) {
934 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
935 printk(KERN_DEBUG "%s: dropped data frame to not "
936 "associated station " MAC_FMT "\n",
937 tx->dev->name, MAC_ARG(hdr->addr1));
938 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
939 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
940 return TXRX_DROP;
941 }
942 } else {
943 if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
944 tx->local->num_sta == 0 &&
945 !tx->local->allow_broadcast_always &&
946 tx->sdata->type != IEEE80211_IF_TYPE_IBSS)) {
947 /*
948 * No associated STAs - no need to send multicast
949 * frames.
950 */
951 return TXRX_DROP;
952 }
953 return TXRX_CONTINUE;
954 }
955
956 if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x &&
957 !(sta_flags & WLAN_STA_AUTHORIZED))) {
958 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
959 printk(KERN_DEBUG "%s: dropped frame to " MAC_FMT
960 " (unauthorized port)\n", tx->dev->name,
961 MAC_ARG(hdr->addr1));
962 #endif
963 I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port);
964 return TXRX_DROP;
965 }
966
967 return TXRX_CONTINUE;
968 }
969
970 static ieee80211_txrx_result
971 ieee80211_tx_h_sequence(struct ieee80211_txrx_data *tx)
972 {
973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
974
975 if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24)
976 ieee80211_include_sequence(tx->sdata, hdr);
977
978 return TXRX_CONTINUE;
979 }
980
981 /* This function is called whenever the AP is about to exceed the maximum limit
982 * of buffered frames for power saving STAs. This situation should not really
983 * happen often during normal operation, so dropping the oldest buffered packet
984 * from each queue should be OK to make some room for new frames. */
985 static void purge_old_ps_buffers(struct ieee80211_local *local)
986 {
987 int total = 0, purged = 0;
988 struct sk_buff *skb;
989 struct ieee80211_sub_if_data *sdata;
990 struct sta_info *sta;
991
992 read_lock(&local->sub_if_lock);
993 list_for_each_entry(sdata, &local->sub_if_list, list) {
994 struct ieee80211_if_ap *ap;
995 if (sdata->dev == local->mdev ||
996 sdata->type != IEEE80211_IF_TYPE_AP)
997 continue;
998 ap = &sdata->u.ap;
999 skb = skb_dequeue(&ap->ps_bc_buf);
1000 if (skb) {
1001 purged++;
1002 dev_kfree_skb(skb);
1003 }
1004 total += skb_queue_len(&ap->ps_bc_buf);
1005 }
1006 read_unlock(&local->sub_if_lock);
1007
1008 spin_lock_bh(&local->sta_lock);
1009 list_for_each_entry(sta, &local->sta_list, list) {
1010 skb = skb_dequeue(&sta->ps_tx_buf);
1011 if (skb) {
1012 purged++;
1013 dev_kfree_skb(skb);
1014 }
1015 total += skb_queue_len(&sta->ps_tx_buf);
1016 }
1017 spin_unlock_bh(&local->sta_lock);
1018
1019 local->total_ps_buffered = total;
1020 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
1021 local->mdev->name, purged);
1022 }
1023
1024
1025 static inline ieee80211_txrx_result
1026 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx)
1027 {
1028 /* broadcast/multicast frame */
1029 /* If any of the associated stations is in power save mode,
1030 * the frame is buffered to be sent after DTIM beacon frame */
1031 if ((tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) &&
1032 tx->sdata->type != IEEE80211_IF_TYPE_WDS &&
1033 tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) &&
1034 !(tx->fc & IEEE80211_FCTL_ORDER)) {
1035 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
1036 purge_old_ps_buffers(tx->local);
1037 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
1038 AP_MAX_BC_BUFFER) {
1039 if (net_ratelimit()) {
1040 printk(KERN_DEBUG "%s: BC TX buffer full - "
1041 "dropping the oldest frame\n",
1042 tx->dev->name);
1043 }
1044 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
1045 } else
1046 tx->local->total_ps_buffered++;
1047 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
1048 return TXRX_QUEUED;
1049 }
1050
1051 return TXRX_CONTINUE;
1052 }
1053
1054
1055 static inline ieee80211_txrx_result
1056 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx)
1057 {
1058 struct sta_info *sta = tx->sta;
1059
1060 if (unlikely(!sta ||
1061 ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT &&
1062 (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP)))
1063 return TXRX_CONTINUE;
1064
1065 if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) {
1066 struct ieee80211_tx_packet_data *pkt_data;
1067 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1068 printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS buffer (entries "
1069 "before %d)\n",
1070 MAC_ARG(sta->addr), sta->aid,
1071 skb_queue_len(&sta->ps_tx_buf));
1072 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1073 sta->flags |= WLAN_STA_TIM;
1074 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
1075 purge_old_ps_buffers(tx->local);
1076 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
1077 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
1078 if (net_ratelimit()) {
1079 printk(KERN_DEBUG "%s: STA " MAC_FMT " TX "
1080 "buffer full - dropping oldest frame\n",
1081 tx->dev->name, MAC_ARG(sta->addr));
1082 }
1083 dev_kfree_skb(old);
1084 } else
1085 tx->local->total_ps_buffered++;
1086 /* Queue frame to be sent after STA sends an PS Poll frame */
1087 if (skb_queue_empty(&sta->ps_tx_buf)) {
1088 if (tx->local->ops->set_tim)
1089 tx->local->ops->set_tim(local_to_hw(tx->local),
1090 sta->aid, 1);
1091 if (tx->sdata->bss)
1092 bss_tim_set(tx->local, tx->sdata->bss, sta->aid);
1093 }
1094 pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb;
1095 pkt_data->jiffies = jiffies;
1096 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
1097 return TXRX_QUEUED;
1098 }
1099 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1100 else if (unlikely(sta->flags & WLAN_STA_PS)) {
1101 printk(KERN_DEBUG "%s: STA " MAC_FMT " in PS mode, but pspoll "
1102 "set -> send frame\n", tx->dev->name,
1103 MAC_ARG(sta->addr));
1104 }
1105 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1106 sta->pspoll = 0;
1107
1108 return TXRX_CONTINUE;
1109 }
1110
1111
1112 static ieee80211_txrx_result
1113 ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx)
1114 {
1115 if (unlikely(tx->u.tx.ps_buffered))
1116 return TXRX_CONTINUE;
1117
1118 if (tx->u.tx.unicast)
1119 return ieee80211_tx_h_unicast_ps_buf(tx);
1120 else
1121 return ieee80211_tx_h_multicast_ps_buf(tx);
1122 }
1123
1124
1125 /*
1126 * deal with packet injection down monitor interface
1127 * with Radiotap Header -- only called for monitor mode interface
1128 */
1129
1130 static ieee80211_txrx_result
1131 __ieee80211_parse_tx_radiotap(
1132 struct ieee80211_txrx_data *tx,
1133 struct sk_buff *skb, struct ieee80211_tx_control *control)
1134 {
1135 /*
1136 * this is the moment to interpret and discard the radiotap header that
1137 * must be at the start of the packet injected in Monitor mode
1138 *
1139 * Need to take some care with endian-ness since radiotap
1140 * args are little-endian
1141 */
1142
1143 struct ieee80211_radiotap_iterator iterator;
1144 struct ieee80211_radiotap_header *rthdr =
1145 (struct ieee80211_radiotap_header *) skb->data;
1146 struct ieee80211_hw_mode *mode = tx->local->hw.conf.mode;
1147 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
1148
1149 /*
1150 * default control situation for all injected packets
1151 * FIXME: this does not suit all usage cases, expand to allow control
1152 */
1153
1154 control->retry_limit = 1; /* no retry */
1155 control->key_idx = -1; /* no encryption key */
1156 control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS |
1157 IEEE80211_TXCTL_USE_CTS_PROTECT);
1158 control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT |
1159 IEEE80211_TXCTL_NO_ACK;
1160 control->antenna_sel_tx = 0; /* default to default antenna */
1161
1162 /*
1163 * for every radiotap entry that is present
1164 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1165 * entries present, or -EINVAL on error)
1166 */
1167
1168 while (!ret) {
1169 int i, target_rate;
1170
1171 ret = ieee80211_radiotap_iterator_next(&iterator);
1172
1173 if (ret)
1174 continue;
1175
1176 /* see if this argument is something we can use */
1177 switch (iterator.this_arg_index) {
1178 /*
1179 * You must take care when dereferencing iterator.this_arg
1180 * for multibyte types... the pointer is not aligned. Use
1181 * get_unaligned((type *)iterator.this_arg) to dereference
1182 * iterator.this_arg for type "type" safely on all arches.
1183 */
1184 case IEEE80211_RADIOTAP_RATE:
1185 /*
1186 * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps
1187 * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps
1188 */
1189 target_rate = (*iterator.this_arg) * 5;
1190 for (i = 0; i < mode->num_rates; i++) {
1191 struct ieee80211_rate *r = &mode->rates[i];
1192
1193 if (r->rate > target_rate)
1194 continue;
1195
1196 control->rate = r;
1197
1198 if (r->flags & IEEE80211_RATE_PREAMBLE2)
1199 control->tx_rate = r->val2;
1200 else
1201 control->tx_rate = r->val;
1202
1203 /* end on exact match */
1204 if (r->rate == target_rate)
1205 i = mode->num_rates;
1206 }
1207 break;
1208
1209 case IEEE80211_RADIOTAP_ANTENNA:
1210 /*
1211 * radiotap uses 0 for 1st ant, mac80211 is 1 for
1212 * 1st ant
1213 */
1214 control->antenna_sel_tx = (*iterator.this_arg) + 1;
1215 break;
1216
1217 case IEEE80211_RADIOTAP_DBM_TX_POWER:
1218 control->power_level = *iterator.this_arg;
1219 break;
1220
1221 case IEEE80211_RADIOTAP_FLAGS:
1222 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1223 /*
1224 * this indicates that the skb we have been
1225 * handed has the 32-bit FCS CRC at the end...
1226 * we should react to that by snipping it off
1227 * because it will be recomputed and added
1228 * on transmission
1229 */
1230 if (skb->len < (iterator.max_length + FCS_LEN))
1231 return TXRX_DROP;
1232
1233 skb_trim(skb, skb->len - FCS_LEN);
1234 }
1235 break;
1236
1237 default:
1238 break;
1239 }
1240 }
1241
1242 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1243 return TXRX_DROP;
1244
1245 /*
1246 * remove the radiotap header
1247 * iterator->max_length was sanity-checked against
1248 * skb->len by iterator init
1249 */
1250 skb_pull(skb, iterator.max_length);
1251
1252 return TXRX_CONTINUE;
1253 }
1254
1255
1256 static ieee80211_txrx_result inline
1257 __ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
1258 struct sk_buff *skb,
1259 struct net_device *dev,
1260 struct ieee80211_tx_control *control)
1261 {
1262 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1263 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1264 struct ieee80211_sub_if_data *sdata;
1265 ieee80211_txrx_result res = TXRX_CONTINUE;
1266
1267 int hdrlen;
1268
1269 memset(tx, 0, sizeof(*tx));
1270 tx->skb = skb;
1271 tx->dev = dev; /* use original interface */
1272 tx->local = local;
1273 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1274 tx->sta = sta_info_get(local, hdr->addr1);
1275 tx->fc = le16_to_cpu(hdr->frame_control);
1276
1277 /*
1278 * set defaults for things that can be set by
1279 * injected radiotap headers
1280 */
1281 control->power_level = local->hw.conf.power_level;
1282 control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
1283 if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta)
1284 control->antenna_sel_tx = tx->sta->antenna_sel_tx;
1285
1286 /* process and remove the injection radiotap header */
1287 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1288 if (unlikely(sdata->type == IEEE80211_IF_TYPE_MNTR)) {
1289 if (__ieee80211_parse_tx_radiotap(tx, skb, control) ==
1290 TXRX_DROP) {
1291 return TXRX_DROP;
1292 }
1293 /*
1294 * we removed the radiotap header after this point,
1295 * we filled control with what we could use
1296 * set to the actual ieee header now
1297 */
1298 hdr = (struct ieee80211_hdr *) skb->data;
1299 res = TXRX_QUEUED; /* indication it was monitor packet */
1300 }
1301
1302 tx->u.tx.control = control;
1303 tx->u.tx.unicast = !is_multicast_ether_addr(hdr->addr1);
1304 if (is_multicast_ether_addr(hdr->addr1))
1305 control->flags |= IEEE80211_TXCTL_NO_ACK;
1306 else
1307 control->flags &= ~IEEE80211_TXCTL_NO_ACK;
1308 tx->fragmented = local->fragmentation_threshold <
1309 IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast &&
1310 skb->len + FCS_LEN > local->fragmentation_threshold &&
1311 (!local->ops->set_frag_threshold);
1312 if (!tx->sta)
1313 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
1314 else if (tx->sta->clear_dst_mask) {
1315 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
1316 tx->sta->clear_dst_mask = 0;
1317 }
1318 hdrlen = ieee80211_get_hdrlen(tx->fc);
1319 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1320 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1321 tx->ethertype = (pos[0] << 8) | pos[1];
1322 }
1323 control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT;
1324
1325 return res;
1326 }
1327
1328 static int inline is_ieee80211_device(struct net_device *dev,
1329 struct net_device *master)
1330 {
1331 return (wdev_priv(dev->ieee80211_ptr) ==
1332 wdev_priv(master->ieee80211_ptr));
1333 }
1334
1335 /* Device in tx->dev has a reference added; use dev_put(tx->dev) when
1336 * finished with it. */
1337 static int inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
1338 struct sk_buff *skb,
1339 struct net_device *mdev,
1340 struct ieee80211_tx_control *control)
1341 {
1342 struct ieee80211_tx_packet_data *pkt_data;
1343 struct net_device *dev;
1344
1345 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1346 dev = dev_get_by_index(pkt_data->ifindex);
1347 if (unlikely(dev && !is_ieee80211_device(dev, mdev))) {
1348 dev_put(dev);
1349 dev = NULL;
1350 }
1351 if (unlikely(!dev))
1352 return -ENODEV;
1353 __ieee80211_tx_prepare(tx, skb, dev, control);
1354 return 0;
1355 }
1356
1357 static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local,
1358 int queue)
1359 {
1360 return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
1361 }
1362
1363 static inline int __ieee80211_queue_pending(const struct ieee80211_local *local,
1364 int queue)
1365 {
1366 return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]);
1367 }
1368
1369 #define IEEE80211_TX_OK 0
1370 #define IEEE80211_TX_AGAIN 1
1371 #define IEEE80211_TX_FRAG_AGAIN 2
1372
1373 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb,
1374 struct ieee80211_txrx_data *tx)
1375 {
1376 struct ieee80211_tx_control *control = tx->u.tx.control;
1377 int ret, i;
1378
1379 if (!ieee80211_qdisc_installed(local->mdev) &&
1380 __ieee80211_queue_stopped(local, 0)) {
1381 netif_stop_queue(local->mdev);
1382 return IEEE80211_TX_AGAIN;
1383 }
1384 if (skb) {
1385 ieee80211_dump_frame(local->mdev->name, "TX to low-level driver", skb);
1386 ret = local->ops->tx(local_to_hw(local), skb, control);
1387 if (ret)
1388 return IEEE80211_TX_AGAIN;
1389 local->mdev->trans_start = jiffies;
1390 ieee80211_led_tx(local, 1);
1391 }
1392 if (tx->u.tx.extra_frag) {
1393 control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS |
1394 IEEE80211_TXCTL_USE_CTS_PROTECT |
1395 IEEE80211_TXCTL_CLEAR_DST_MASK |
1396 IEEE80211_TXCTL_FIRST_FRAGMENT);
1397 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
1398 if (!tx->u.tx.extra_frag[i])
1399 continue;
1400 if (__ieee80211_queue_stopped(local, control->queue))
1401 return IEEE80211_TX_FRAG_AGAIN;
1402 if (i == tx->u.tx.num_extra_frag) {
1403 control->tx_rate = tx->u.tx.last_frag_hwrate;
1404 control->rate = tx->u.tx.last_frag_rate;
1405 if (tx->u.tx.probe_last_frag)
1406 control->flags |=
1407 IEEE80211_TXCTL_RATE_CTRL_PROBE;
1408 else
1409 control->flags &=
1410 ~IEEE80211_TXCTL_RATE_CTRL_PROBE;
1411 }
1412
1413 ieee80211_dump_frame(local->mdev->name,
1414 "TX to low-level driver",
1415 tx->u.tx.extra_frag[i]);
1416 ret = local->ops->tx(local_to_hw(local),
1417 tx->u.tx.extra_frag[i],
1418 control);
1419 if (ret)
1420 return IEEE80211_TX_FRAG_AGAIN;
1421 local->mdev->trans_start = jiffies;
1422 ieee80211_led_tx(local, 1);
1423 tx->u.tx.extra_frag[i] = NULL;
1424 }
1425 kfree(tx->u.tx.extra_frag);
1426 tx->u.tx.extra_frag = NULL;
1427 }
1428 return IEEE80211_TX_OK;
1429 }
1430
1431 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
1432 struct ieee80211_tx_control *control, int mgmt)
1433 {
1434 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1435 struct sta_info *sta;
1436 ieee80211_tx_handler *handler;
1437 struct ieee80211_txrx_data tx;
1438 ieee80211_txrx_result res = TXRX_DROP, res_prepare;
1439 int ret, i;
1440
1441 WARN_ON(__ieee80211_queue_pending(local, control->queue));
1442
1443 if (unlikely(skb->len < 10)) {
1444 dev_kfree_skb(skb);
1445 return 0;
1446 }
1447
1448 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control);
1449
1450 if (res_prepare == TXRX_DROP) {
1451 dev_kfree_skb(skb);
1452 return 0;
1453 }
1454
1455 sta = tx.sta;
1456 tx.u.tx.mgmt_interface = mgmt;
1457 tx.u.tx.mode = local->hw.conf.mode;
1458
1459 if (res_prepare == TXRX_QUEUED) { /* if it was an injected packet */
1460 res = TXRX_CONTINUE;
1461 } else {
1462 for (handler = local->tx_handlers; *handler != NULL;
1463 handler++) {
1464 res = (*handler)(&tx);
1465 if (res != TXRX_CONTINUE)
1466 break;
1467 }
1468 }
1469
1470 skb = tx.skb; /* handlers are allowed to change skb */
1471
1472 if (sta)
1473 sta_info_put(sta);
1474
1475 if (unlikely(res == TXRX_DROP)) {
1476 I802_DEBUG_INC(local->tx_handlers_drop);
1477 goto drop;
1478 }
1479
1480 if (unlikely(res == TXRX_QUEUED)) {
1481 I802_DEBUG_INC(local->tx_handlers_queued);
1482 return 0;
1483 }
1484
1485 if (tx.u.tx.extra_frag) {
1486 for (i = 0; i < tx.u.tx.num_extra_frag; i++) {
1487 int next_len, dur;
1488 struct ieee80211_hdr *hdr =
1489 (struct ieee80211_hdr *)
1490 tx.u.tx.extra_frag[i]->data;
1491
1492 if (i + 1 < tx.u.tx.num_extra_frag) {
1493 next_len = tx.u.tx.extra_frag[i + 1]->len;
1494 } else {
1495 next_len = 0;
1496 tx.u.tx.rate = tx.u.tx.last_frag_rate;
1497 tx.u.tx.last_frag_hwrate = tx.u.tx.rate->val;
1498 }
1499 dur = ieee80211_duration(&tx, 0, next_len);
1500 hdr->duration_id = cpu_to_le16(dur);
1501 }
1502 }
1503
1504 retry:
1505 ret = __ieee80211_tx(local, skb, &tx);
1506 if (ret) {
1507 struct ieee80211_tx_stored_packet *store =
1508 &local->pending_packet[control->queue];
1509
1510 if (ret == IEEE80211_TX_FRAG_AGAIN)
1511 skb = NULL;
1512 set_bit(IEEE80211_LINK_STATE_PENDING,
1513 &local->state[control->queue]);
1514 smp_mb();
1515 /* When the driver gets out of buffers during sending of
1516 * fragments and calls ieee80211_stop_queue, there is
1517 * a small window between IEEE80211_LINK_STATE_XOFF and
1518 * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer
1519 * gets available in that window (i.e. driver calls
1520 * ieee80211_wake_queue), we would end up with ieee80211_tx
1521 * called with IEEE80211_LINK_STATE_PENDING. Prevent this by
1522 * continuing transmitting here when that situation is
1523 * possible to have happened. */
1524 if (!__ieee80211_queue_stopped(local, control->queue)) {
1525 clear_bit(IEEE80211_LINK_STATE_PENDING,
1526 &local->state[control->queue]);
1527 goto retry;
1528 }
1529 memcpy(&store->control, control,
1530 sizeof(struct ieee80211_tx_control));
1531 store->skb = skb;
1532 store->extra_frag = tx.u.tx.extra_frag;
1533 store->num_extra_frag = tx.u.tx.num_extra_frag;
1534 store->last_frag_hwrate = tx.u.tx.last_frag_hwrate;
1535 store->last_frag_rate = tx.u.tx.last_frag_rate;
1536 store->last_frag_rate_ctrl_probe = tx.u.tx.probe_last_frag;
1537 }
1538 return 0;
1539
1540 drop:
1541 if (skb)
1542 dev_kfree_skb(skb);
1543 for (i = 0; i < tx.u.tx.num_extra_frag; i++)
1544 if (tx.u.tx.extra_frag[i])
1545 dev_kfree_skb(tx.u.tx.extra_frag[i]);
1546 kfree(tx.u.tx.extra_frag);
1547 return 0;
1548 }
1549
1550 static void ieee80211_tx_pending(unsigned long data)
1551 {
1552 struct ieee80211_local *local = (struct ieee80211_local *)data;
1553 struct net_device *dev = local->mdev;
1554 struct ieee80211_tx_stored_packet *store;
1555 struct ieee80211_txrx_data tx;
1556 int i, ret, reschedule = 0;
1557
1558 netif_tx_lock_bh(dev);
1559 for (i = 0; i < local->hw.queues; i++) {
1560 if (__ieee80211_queue_stopped(local, i))
1561 continue;
1562 if (!__ieee80211_queue_pending(local, i)) {
1563 reschedule = 1;
1564 continue;
1565 }
1566 store = &local->pending_packet[i];
1567 tx.u.tx.control = &store->control;
1568 tx.u.tx.extra_frag = store->extra_frag;
1569 tx.u.tx.num_extra_frag = store->num_extra_frag;
1570 tx.u.tx.last_frag_hwrate = store->last_frag_hwrate;
1571 tx.u.tx.last_frag_rate = store->last_frag_rate;
1572 tx.u.tx.probe_last_frag = store->last_frag_rate_ctrl_probe;
1573 ret = __ieee80211_tx(local, store->skb, &tx);
1574 if (ret) {
1575 if (ret == IEEE80211_TX_FRAG_AGAIN)
1576 store->skb = NULL;
1577 } else {
1578 clear_bit(IEEE80211_LINK_STATE_PENDING,
1579 &local->state[i]);
1580 reschedule = 1;
1581 }
1582 }
1583 netif_tx_unlock_bh(dev);
1584 if (reschedule) {
1585 if (!ieee80211_qdisc_installed(dev)) {
1586 if (!__ieee80211_queue_stopped(local, 0))
1587 netif_wake_queue(dev);
1588 } else
1589 netif_schedule(dev);
1590 }
1591 }
1592
1593 static void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1594 {
1595 int i, j;
1596 struct ieee80211_tx_stored_packet *store;
1597
1598 for (i = 0; i < local->hw.queues; i++) {
1599 if (!__ieee80211_queue_pending(local, i))
1600 continue;
1601 store = &local->pending_packet[i];
1602 kfree_skb(store->skb);
1603 for (j = 0; j < store->num_extra_frag; j++)
1604 kfree_skb(store->extra_frag[j]);
1605 kfree(store->extra_frag);
1606 clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]);
1607 }
1608 }
1609
1610 static int ieee80211_master_start_xmit(struct sk_buff *skb,
1611 struct net_device *dev)
1612 {
1613 struct ieee80211_tx_control control;
1614 struct ieee80211_tx_packet_data *pkt_data;
1615 struct net_device *odev = NULL;
1616 struct ieee80211_sub_if_data *osdata;
1617 int headroom;
1618 int ret;
1619
1620 /*
1621 * copy control out of the skb so other people can use skb->cb
1622 */
1623 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1624 memset(&control, 0, sizeof(struct ieee80211_tx_control));
1625
1626 if (pkt_data->ifindex)
1627 odev = dev_get_by_index(pkt_data->ifindex);
1628 if (unlikely(odev && !is_ieee80211_device(odev, dev))) {
1629 dev_put(odev);
1630 odev = NULL;
1631 }
1632 if (unlikely(!odev)) {
1633 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1634 printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1635 "originating device\n", dev->name);
1636 #endif
1637 dev_kfree_skb(skb);
1638 return 0;
1639 }
1640 osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1641
1642 headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM;
1643 if (skb_headroom(skb) < headroom) {
1644 if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) {
1645 dev_kfree_skb(skb);
1646 dev_put(odev);
1647 return 0;
1648 }
1649 }
1650
1651 control.ifindex = odev->ifindex;
1652 control.type = osdata->type;
1653 if (pkt_data->req_tx_status)
1654 control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS;
1655 if (pkt_data->do_not_encrypt)
1656 control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT;
1657 if (pkt_data->requeue)
1658 control.flags |= IEEE80211_TXCTL_REQUEUE;
1659 control.queue = pkt_data->queue;
1660
1661 ret = ieee80211_tx(odev, skb, &control,
1662 control.type == IEEE80211_IF_TYPE_MGMT);
1663 dev_put(odev);
1664
1665 return ret;
1666 }
1667
1668
1669 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1670 struct net_device *dev)
1671 {
1672 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1673 struct ieee80211_tx_packet_data *pkt_data;
1674 struct ieee80211_radiotap_header *prthdr =
1675 (struct ieee80211_radiotap_header *)skb->data;
1676 u16 len;
1677
1678 /*
1679 * there must be a radiotap header at the
1680 * start in this case
1681 */
1682 if (unlikely(prthdr->it_version)) {
1683 /* only version 0 is supported */
1684 dev_kfree_skb(skb);
1685 return NETDEV_TX_OK;
1686 }
1687
1688 skb->dev = local->mdev;
1689
1690 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1691 memset(pkt_data, 0, sizeof(*pkt_data));
1692 pkt_data->ifindex = dev->ifindex;
1693 pkt_data->mgmt_iface = 0;
1694 pkt_data->do_not_encrypt = 1;
1695
1696 /* above needed because we set skb device to master */
1697
1698 /*
1699 * fix up the pointers accounting for the radiotap
1700 * header still being in there. We are being given
1701 * a precooked IEEE80211 header so no need for
1702 * normal processing
1703 */
1704 len = le16_to_cpu(get_unaligned(&prthdr->it_len));
1705 skb_set_mac_header(skb, len);
1706 skb_set_network_header(skb, len + sizeof(struct ieee80211_hdr));
1707 skb_set_transport_header(skb, len + sizeof(struct ieee80211_hdr));
1708
1709 /*
1710 * pass the radiotap header up to
1711 * the next stage intact
1712 */
1713 dev_queue_xmit(skb);
1714
1715 return NETDEV_TX_OK;
1716 }
1717
1718
1719 /**
1720 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1721 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1722 * @skb: packet to be sent
1723 * @dev: incoming interface
1724 *
1725 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1726 * not be freed, and caller is responsible for either retrying later or freeing
1727 * skb).
1728 *
1729 * This function takes in an Ethernet header and encapsulates it with suitable
1730 * IEEE 802.11 header based on which interface the packet is coming in. The
1731 * encapsulated packet will then be passed to master interface, wlan#.11, for
1732 * transmission (through low-level driver).
1733 */
1734 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1735 struct net_device *dev)
1736 {
1737 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1738 struct ieee80211_tx_packet_data *pkt_data;
1739 struct ieee80211_sub_if_data *sdata;
1740 int ret = 1, head_need;
1741 u16 ethertype, hdrlen, fc;
1742 struct ieee80211_hdr hdr;
1743 const u8 *encaps_data;
1744 int encaps_len, skip_header_bytes;
1745 int nh_pos, h_pos, no_encrypt = 0;
1746 struct sta_info *sta;
1747
1748 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1749 if (unlikely(skb->len < ETH_HLEN)) {
1750 printk(KERN_DEBUG "%s: short skb (len=%d)\n",
1751 dev->name, skb->len);
1752 ret = 0;
1753 goto fail;
1754 }
1755
1756 nh_pos = skb_network_header(skb) - skb->data;
1757 h_pos = skb_transport_header(skb) - skb->data;
1758
1759 /* convert Ethernet header to proper 802.11 header (based on
1760 * operation mode) */
1761 ethertype = (skb->data[12] << 8) | skb->data[13];
1762 /* TODO: handling for 802.1x authorized/unauthorized port */
1763 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;
1764
1765 if (likely(sdata->type == IEEE80211_IF_TYPE_AP ||
1766 sdata->type == IEEE80211_IF_TYPE_VLAN)) {
1767 fc |= IEEE80211_FCTL_FROMDS;
1768 /* DA BSSID SA */
1769 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1770 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1771 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1772 hdrlen = 24;
1773 } else if (sdata->type == IEEE80211_IF_TYPE_WDS) {
1774 fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS;
1775 /* RA TA DA SA */
1776 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1777 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1778 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1779 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1780 hdrlen = 30;
1781 } else if (sdata->type == IEEE80211_IF_TYPE_STA) {
1782 fc |= IEEE80211_FCTL_TODS;
1783 /* BSSID SA DA */
1784 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
1785 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1786 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1787 hdrlen = 24;
1788 } else if (sdata->type == IEEE80211_IF_TYPE_IBSS) {
1789 /* DA SA BSSID */
1790 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1791 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1792 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
1793 hdrlen = 24;
1794 } else {
1795 ret = 0;
1796 goto fail;
1797 }
1798
1799 /* receiver is QoS enabled, use a QoS type frame */
1800 sta = sta_info_get(local, hdr.addr1);
1801 if (sta) {
1802 if (sta->flags & WLAN_STA_WME) {
1803 fc |= IEEE80211_STYPE_QOS_DATA;
1804 hdrlen += 2;
1805 }
1806 sta_info_put(sta);
1807 }
1808
1809 hdr.frame_control = cpu_to_le16(fc);
1810 hdr.duration_id = 0;
1811 hdr.seq_ctrl = 0;
1812
1813 skip_header_bytes = ETH_HLEN;
1814 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1815 encaps_data = bridge_tunnel_header;
1816 encaps_len = sizeof(bridge_tunnel_header);
1817 skip_header_bytes -= 2;
1818 } else if (ethertype >= 0x600) {
1819 encaps_data = rfc1042_header;
1820 encaps_len = sizeof(rfc1042_header);
1821 skip_header_bytes -= 2;
1822 } else {
1823 encaps_data = NULL;
1824 encaps_len = 0;
1825 }
1826
1827 skb_pull(skb, skip_header_bytes);
1828 nh_pos -= skip_header_bytes;
1829 h_pos -= skip_header_bytes;
1830
1831 /* TODO: implement support for fragments so that there is no need to
1832 * reallocate and copy payload; it might be enough to support one
1833 * extra fragment that would be copied in the beginning of the frame
1834 * data.. anyway, it would be nice to include this into skb structure
1835 * somehow
1836 *
1837 * There are few options for this:
1838 * use skb->cb as an extra space for 802.11 header
1839 * allocate new buffer if not enough headroom
1840 * make sure that there is enough headroom in every skb by increasing
1841 * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and
1842 * alloc_skb() (net/core/skbuff.c)
1843 */
1844 head_need = hdrlen + encaps_len + local->tx_headroom;
1845 head_need -= skb_headroom(skb);
1846
1847 /* We are going to modify skb data, so make a copy of it if happens to
1848 * be cloned. This could happen, e.g., with Linux bridge code passing
1849 * us broadcast frames. */
1850
1851 if (head_need > 0 || skb_cloned(skb)) {
1852 #if 0
1853 printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes "
1854 "of headroom\n", dev->name, head_need);
1855 #endif
1856
1857 if (skb_cloned(skb))
1858 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1859 else
1860 I802_DEBUG_INC(local->tx_expand_skb_head);
1861 /* Since we have to reallocate the buffer, make sure that there
1862 * is enough room for possible WEP IV/ICV and TKIP (8 bytes
1863 * before payload and 12 after). */
1864 if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8),
1865 12, GFP_ATOMIC)) {
1866 printk(KERN_DEBUG "%s: failed to reallocate TX buffer"
1867 "\n", dev->name);
1868 goto fail;
1869 }
1870 }
1871
1872 if (encaps_data) {
1873 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1874 nh_pos += encaps_len;
1875 h_pos += encaps_len;
1876 }
1877 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1878 nh_pos += hdrlen;
1879 h_pos += hdrlen;
1880
1881 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1882 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
1883 pkt_data->ifindex = dev->ifindex;
1884 pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT);
1885 pkt_data->do_not_encrypt = no_encrypt;
1886
1887 skb->dev = local->mdev;
1888 sdata->stats.tx_packets++;
1889 sdata->stats.tx_bytes += skb->len;
1890
1891 /* Update skb pointers to various headers since this modified frame
1892 * is going to go through Linux networking code that may potentially
1893 * need things like pointer to IP header. */
1894 skb_set_mac_header(skb, 0);
1895 skb_set_network_header(skb, nh_pos);
1896 skb_set_transport_header(skb, h_pos);
1897
1898 dev->trans_start = jiffies;
1899 dev_queue_xmit(skb);
1900
1901 return 0;
1902
1903 fail:
1904 if (!ret)
1905 dev_kfree_skb(skb);
1906
1907 return ret;
1908 }
1909
1910
1911 /*
1912 * This is the transmit routine for the 802.11 type interfaces
1913 * called by upper layers of the linux networking
1914 * stack when it has a frame to transmit
1915 */
1916 static int
1917 ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev)
1918 {
1919 struct ieee80211_sub_if_data *sdata;
1920 struct ieee80211_tx_packet_data *pkt_data;
1921 struct ieee80211_hdr *hdr;
1922 u16 fc;
1923
1924 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1925
1926 if (skb->len < 10) {
1927 dev_kfree_skb(skb);
1928 return 0;
1929 }
1930
1931 if (skb_headroom(skb) < sdata->local->tx_headroom) {
1932 if (pskb_expand_head(skb, sdata->local->tx_headroom,
1933 0, GFP_ATOMIC)) {
1934 dev_kfree_skb(skb);
1935 return 0;
1936 }
1937 }
1938
1939 hdr = (struct ieee80211_hdr *) skb->data;
1940 fc = le16_to_cpu(hdr->frame_control);
1941
1942 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
1943 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
1944 pkt_data->ifindex = sdata->dev->ifindex;
1945 pkt_data->mgmt_iface = (sdata->type == IEEE80211_IF_TYPE_MGMT);
1946
1947 skb->priority = 20; /* use hardcoded priority for mgmt TX queue */
1948 skb->dev = sdata->local->mdev;
1949
1950 /*
1951 * We're using the protocol field of the the frame control header
1952 * to request TX callback for hostapd. BIT(1) is checked.
1953 */
1954 if ((fc & BIT(1)) == BIT(1)) {
1955 pkt_data->req_tx_status = 1;
1956 fc &= ~BIT(1);
1957 hdr->frame_control = cpu_to_le16(fc);
1958 }
1959
1960 pkt_data->do_not_encrypt = !(fc & IEEE80211_FCTL_PROTECTED);
1961
1962 sdata->stats.tx_packets++;
1963 sdata->stats.tx_bytes += skb->len;
1964
1965 dev_queue_xmit(skb);
1966
1967 return 0;
1968 }
1969
1970
1971 static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
1972 struct ieee80211_if_ap *bss,
1973 struct sk_buff *skb)
1974 {
1975 u8 *pos, *tim;
1976 int aid0 = 0;
1977 int i, have_bits = 0, n1, n2;
1978
1979 /* Generate bitmap for TIM only if there are any STAs in power save
1980 * mode. */
1981 spin_lock_bh(&local->sta_lock);
1982 if (atomic_read(&bss->num_sta_ps) > 0)
1983 /* in the hope that this is faster than
1984 * checking byte-for-byte */
1985 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1986 IEEE80211_MAX_AID+1);
1987
1988 if (bss->dtim_count == 0)
1989 bss->dtim_count = bss->dtim_period - 1;
1990 else
1991 bss->dtim_count--;
1992
1993 tim = pos = (u8 *) skb_put(skb, 6);
1994 *pos++ = WLAN_EID_TIM;
1995 *pos++ = 4;
1996 *pos++ = bss->dtim_count;
1997 *pos++ = bss->dtim_period;
1998
1999 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2000 aid0 = 1;
2001
2002 if (have_bits) {
2003 /* Find largest even number N1 so that bits numbered 1 through
2004 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2005 * (N2 + 1) x 8 through 2007 are 0. */
2006 n1 = 0;
2007 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2008 if (bss->tim[i]) {
2009 n1 = i & 0xfe;
2010 break;
2011 }
2012 }
2013 n2 = n1;
2014 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2015 if (bss->tim[i]) {
2016 n2 = i;
2017 break;
2018 }
2019 }
2020
2021 /* Bitmap control */
2022 *pos++ = n1 | aid0;
2023 /* Part Virt Bitmap */
2024 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2025
2026 tim[1] = n2 - n1 + 4;
2027 skb_put(skb, n2 - n1);
2028 } else {
2029 *pos++ = aid0; /* Bitmap control */
2030 *pos++ = 0; /* Part Virt Bitmap */
2031 }
2032 spin_unlock_bh(&local->sta_lock);
2033 }
2034
2035
2036 struct sk_buff * ieee80211_beacon_get(struct ieee80211_hw *hw, int if_id,
2037 struct ieee80211_tx_control *control)
2038 {
2039 struct ieee80211_local *local = hw_to_local(hw);
2040 struct sk_buff *skb;
2041 struct net_device *bdev;
2042 struct ieee80211_sub_if_data *sdata = NULL;
2043 struct ieee80211_if_ap *ap = NULL;
2044 struct ieee80211_rate *rate;
2045 struct rate_control_extra extra;
2046 u8 *b_head, *b_tail;
2047 int bh_len, bt_len;
2048
2049 bdev = dev_get_by_index(if_id);
2050 if (bdev) {
2051 sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
2052 ap = &sdata->u.ap;
2053 dev_put(bdev);
2054 }
2055
2056 if (!ap || sdata->type != IEEE80211_IF_TYPE_AP ||
2057 !ap->beacon_head) {
2058 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
2059 if (net_ratelimit())
2060 printk(KERN_DEBUG "no beacon data avail for idx=%d "
2061 "(%s)\n", if_id, bdev ? bdev->name : "N/A");
2062 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
2063 return NULL;
2064 }
2065
2066 /* Assume we are generating the normal beacon locally */
2067 b_head = ap->beacon_head;
2068 b_tail = ap->beacon_tail;
2069 bh_len = ap->beacon_head_len;
2070 bt_len = ap->beacon_tail_len;
2071
2072 skb = dev_alloc_skb(local->tx_headroom +
2073 bh_len + bt_len + 256 /* maximum TIM len */);
2074 if (!skb)
2075 return NULL;
2076
2077 skb_reserve(skb, local->tx_headroom);
2078 memcpy(skb_put(skb, bh_len), b_head, bh_len);
2079
2080 ieee80211_include_sequence(sdata, (struct ieee80211_hdr *)skb->data);
2081
2082 ieee80211_beacon_add_tim(local, ap, skb);
2083
2084 if (b_tail) {
2085 memcpy(skb_put(skb, bt_len), b_tail, bt_len);
2086 }
2087
2088 if (control) {
2089 memset(&extra, 0, sizeof(extra));
2090 extra.mode = local->oper_hw_mode;
2091
2092 rate = rate_control_get_rate(local, local->mdev, skb, &extra);
2093 if (!rate) {
2094 if (net_ratelimit()) {
2095 printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate "
2096 "found\n", local->mdev->name);
2097 }
2098 dev_kfree_skb(skb);
2099 return NULL;
2100 }
2101
2102 control->tx_rate = (local->short_preamble &&
2103 (rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
2104 rate->val2 : rate->val;
2105 control->antenna_sel_tx = local->hw.conf.antenna_sel_tx;
2106 control->power_level = local->hw.conf.power_level;
2107 control->flags |= IEEE80211_TXCTL_NO_ACK;
2108 control->retry_limit = 1;
2109 control->flags |= IEEE80211_TXCTL_CLEAR_DST_MASK;
2110 }
2111
2112 ap->num_beacons++;
2113 return skb;
2114 }
2115 EXPORT_SYMBOL(ieee80211_beacon_get);
2116
2117 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
2118 size_t frame_len,
2119 const struct ieee80211_tx_control *frame_txctl)
2120 {
2121 struct ieee80211_local *local = hw_to_local(hw);
2122 struct ieee80211_rate *rate;
2123 int short_preamble = local->short_preamble;
2124 int erp;
2125 u16 dur;
2126
2127 rate = frame_txctl->rts_rate;
2128 erp = !!(rate->flags & IEEE80211_RATE_ERP);
2129
2130 /* CTS duration */
2131 dur = ieee80211_frame_duration(local, 10, rate->rate,
2132 erp, short_preamble);
2133 /* Data frame duration */
2134 dur += ieee80211_frame_duration(local, frame_len, rate->rate,
2135 erp, short_preamble);
2136 /* ACK duration */
2137 dur += ieee80211_frame_duration(local, 10, rate->rate,
2138 erp, short_preamble);
2139
2140 return cpu_to_le16(dur);
2141 }
2142 EXPORT_SYMBOL(ieee80211_rts_duration);
2143
2144
2145 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
2146 size_t frame_len,
2147 const struct ieee80211_tx_control *frame_txctl)
2148 {
2149 struct ieee80211_local *local = hw_to_local(hw);
2150 struct ieee80211_rate *rate;
2151 int short_preamble = local->short_preamble;
2152 int erp;
2153 u16 dur;
2154
2155 rate = frame_txctl->rts_rate;
2156 erp = !!(rate->flags & IEEE80211_RATE_ERP);
2157
2158 /* Data frame duration */
2159 dur = ieee80211_frame_duration(local, frame_len, rate->rate,
2160 erp, short_preamble);
2161 if (!(frame_txctl->flags & IEEE80211_TXCTL_NO_ACK)) {
2162 /* ACK duration */
2163 dur += ieee80211_frame_duration(local, 10, rate->rate,
2164 erp, short_preamble);
2165 }
2166
2167 return cpu_to_le16(dur);
2168 }
2169 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
2170
2171 void ieee80211_rts_get(struct ieee80211_hw *hw,
2172 const void *frame, size_t frame_len,
2173 const struct ieee80211_tx_control *frame_txctl,
2174 struct ieee80211_rts *rts)
2175 {
2176 const struct ieee80211_hdr *hdr = frame;
2177 u16 fctl;
2178
2179 fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS;
2180 rts->frame_control = cpu_to_le16(fctl);
2181 rts->duration = ieee80211_rts_duration(hw, frame_len, frame_txctl);
2182 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2183 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2184 }
2185 EXPORT_SYMBOL(ieee80211_rts_get);
2186
2187 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
2188 const void *frame, size_t frame_len,
2189 const struct ieee80211_tx_control *frame_txctl,
2190 struct ieee80211_cts *cts)
2191 {
2192 const struct ieee80211_hdr *hdr = frame;
2193 u16 fctl;
2194
2195 fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS;
2196 cts->frame_control = cpu_to_le16(fctl);
2197 cts->duration = ieee80211_ctstoself_duration(hw, frame_len, frame_txctl);
2198 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2199 }
2200 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2201
2202 struct sk_buff *
2203 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, int if_id,
2204 struct ieee80211_tx_control *control)
2205 {
2206 struct ieee80211_local *local = hw_to_local(hw);
2207 struct sk_buff *skb;
2208 struct sta_info *sta;
2209 ieee80211_tx_handler *handler;
2210 struct ieee80211_txrx_data tx;
2211 ieee80211_txrx_result res = TXRX_DROP;
2212 struct net_device *bdev;
2213 struct ieee80211_sub_if_data *sdata;
2214 struct ieee80211_if_ap *bss = NULL;
2215
2216 bdev = dev_get_by_index(if_id);
2217 if (bdev) {
2218 sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
2219 bss = &sdata->u.ap;
2220 dev_put(bdev);
2221 }
2222 if (!bss || sdata->type != IEEE80211_IF_TYPE_AP || !bss->beacon_head)
2223 return NULL;
2224
2225 if (bss->dtim_count != 0)
2226 return NULL; /* send buffered bc/mc only after DTIM beacon */
2227 memset(control, 0, sizeof(*control));
2228 while (1) {
2229 skb = skb_dequeue(&bss->ps_bc_buf);
2230 if (!skb)
2231 return NULL;
2232 local->total_ps_buffered--;
2233
2234 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2235 struct ieee80211_hdr *hdr =
2236 (struct ieee80211_hdr *) skb->data;
2237 /* more buffered multicast/broadcast frames ==> set
2238 * MoreData flag in IEEE 802.11 header to inform PS
2239 * STAs */
2240 hdr->frame_control |=
2241 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2242 }
2243
2244 if (ieee80211_tx_prepare(&tx, skb, local->mdev, control) == 0)
2245 break;
2246 dev_kfree_skb_any(skb);
2247 }
2248 sta = tx.sta;
2249 tx.u.tx.ps_buffered = 1;
2250
2251 for (handler = local->tx_handlers; *handler != NULL; handler++) {
2252 res = (*handler)(&tx);
2253 if (res == TXRX_DROP || res == TXRX_QUEUED)
2254 break;
2255 }
2256 dev_put(tx.dev);
2257 skb = tx.skb; /* handlers are allowed to change skb */
2258
2259 if (res == TXRX_DROP) {
2260 I802_DEBUG_INC(local->tx_handlers_drop);
2261 dev_kfree_skb(skb);
2262 skb = NULL;
2263 } else if (res == TXRX_QUEUED) {
2264 I802_DEBUG_INC(local->tx_handlers_queued);
2265 skb = NULL;
2266 }
2267
2268 if (sta)
2269 sta_info_put(sta);
2270
2271 return skb;
2272 }
2273 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2274
2275 static int __ieee80211_if_config(struct net_device *dev,
2276 struct sk_buff *beacon,
2277 struct ieee80211_tx_control *control)
2278 {
2279 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2280 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2281 struct ieee80211_if_conf conf;
2282 static u8 scan_bssid[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
2283
2284 if (!local->ops->config_interface || !netif_running(dev))
2285 return 0;
2286
2287 memset(&conf, 0, sizeof(conf));
2288 conf.type = sdata->type;
2289 if (sdata->type == IEEE80211_IF_TYPE_STA ||
2290 sdata->type == IEEE80211_IF_TYPE_IBSS) {
2291 if (local->sta_scanning &&
2292 local->scan_dev == dev)
2293 conf.bssid = scan_bssid;
2294 else
2295 conf.bssid = sdata->u.sta.bssid;
2296 conf.ssid = sdata->u.sta.ssid;
2297 conf.ssid_len = sdata->u.sta.ssid_len;
2298 conf.generic_elem = sdata->u.sta.extra_ie;
2299 conf.generic_elem_len = sdata->u.sta.extra_ie_len;
2300 } else if (sdata->type == IEEE80211_IF_TYPE_AP) {
2301 conf.ssid = sdata->u.ap.ssid;
2302 conf.ssid_len = sdata->u.ap.ssid_len;
2303 conf.generic_elem = sdata->u.ap.generic_elem;
2304 conf.generic_elem_len = sdata->u.ap.generic_elem_len;
2305 conf.beacon = beacon;
2306 conf.beacon_control = control;
2307 }
2308 return local->ops->config_interface(local_to_hw(local),
2309 dev->ifindex, &conf);
2310 }
2311
2312 int ieee80211_if_config(struct net_device *dev)
2313 {
2314 return __ieee80211_if_config(dev, NULL, NULL);
2315 }
2316
2317 int ieee80211_if_config_beacon(struct net_device *dev)
2318 {
2319 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2320 struct ieee80211_tx_control control;
2321 struct sk_buff *skb;
2322
2323 if (!(local->hw.flags & IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE))
2324 return 0;
2325 skb = ieee80211_beacon_get(local_to_hw(local), dev->ifindex, &control);
2326 if (!skb)
2327 return -ENOMEM;
2328 return __ieee80211_if_config(dev, skb, &control);
2329 }
2330
2331 int ieee80211_hw_config(struct ieee80211_local *local)
2332 {
2333 struct ieee80211_hw_mode *mode;
2334 struct ieee80211_channel *chan;
2335 int ret = 0;
2336
2337 if (local->sta_scanning) {
2338 chan = local->scan_channel;
2339 mode = local->scan_hw_mode;
2340 } else {
2341 chan = local->oper_channel;
2342 mode = local->oper_hw_mode;
2343 }
2344
2345 local->hw.conf.channel = chan->chan;
2346 local->hw.conf.channel_val = chan->val;
2347 local->hw.conf.power_level = chan->power_level;
2348 local->hw.conf.freq = chan->freq;
2349 local->hw.conf.phymode = mode->mode;
2350 local->hw.conf.antenna_max = chan->antenna_max;
2351 local->hw.conf.chan = chan;
2352 local->hw.conf.mode = mode;
2353
2354 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
2355 printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d "
2356 "phymode=%d\n", local->hw.conf.channel, local->hw.conf.freq,
2357 local->hw.conf.phymode);
2358 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
2359
2360 if (local->ops->config)
2361 ret = local->ops->config(local_to_hw(local), &local->hw.conf);
2362
2363 return ret;
2364 }
2365
2366
2367 static int ieee80211_change_mtu(struct net_device *dev, int new_mtu)
2368 {
2369 /* FIX: what would be proper limits for MTU?
2370 * This interface uses 802.3 frames. */
2371 if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN - 24 - 6) {
2372 printk(KERN_WARNING "%s: invalid MTU %d\n",
2373 dev->name, new_mtu);
2374 return -EINVAL;
2375 }
2376
2377 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
2378 printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
2379 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
2380 dev->mtu = new_mtu;
2381 return 0;
2382 }
2383
2384
2385 static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu)
2386 {
2387 /* FIX: what would be proper limits for MTU?
2388 * This interface uses 802.11 frames. */
2389 if (new_mtu < 256 || new_mtu > IEEE80211_MAX_DATA_LEN) {
2390 printk(KERN_WARNING "%s: invalid MTU %d\n",
2391 dev->name, new_mtu);
2392 return -EINVAL;
2393 }
2394
2395 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
2396 printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
2397 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
2398 dev->mtu = new_mtu;
2399 return 0;
2400 }
2401
2402 enum netif_tx_lock_class {
2403 TX_LOCK_NORMAL,
2404 TX_LOCK_MASTER,
2405 };
2406
2407 static inline void netif_tx_lock_nested(struct net_device *dev, int subclass)
2408 {
2409 spin_lock_nested(&dev->_xmit_lock, subclass);
2410 dev->xmit_lock_owner = smp_processor_id();
2411 }
2412
2413 static void ieee80211_set_multicast_list(struct net_device *dev)
2414 {
2415 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2416 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2417 unsigned short flags;
2418
2419 netif_tx_lock_nested(local->mdev, TX_LOCK_MASTER);
2420 if (((dev->flags & IFF_ALLMULTI) != 0) ^ (sdata->allmulti != 0)) {
2421 if (sdata->allmulti) {
2422 sdata->allmulti = 0;
2423 local->iff_allmultis--;
2424 } else {
2425 sdata->allmulti = 1;
2426 local->iff_allmultis++;
2427 }
2428 }
2429 if (((dev->flags & IFF_PROMISC) != 0) ^ (sdata->promisc != 0)) {
2430 if (sdata->promisc) {
2431 sdata->promisc = 0;
2432 local->iff_promiscs--;
2433 } else {
2434 sdata->promisc = 1;
2435 local->iff_promiscs++;
2436 }
2437 }
2438 if (dev->mc_count != sdata->mc_count) {
2439 local->mc_count = local->mc_count - sdata->mc_count +
2440 dev->mc_count;
2441 sdata->mc_count = dev->mc_count;
2442 }
2443 if (local->ops->set_multicast_list) {
2444 flags = local->mdev->flags;
2445 if (local->iff_allmultis)
2446 flags |= IFF_ALLMULTI;
2447 if (local->iff_promiscs)
2448 flags |= IFF_PROMISC;
2449 read_lock(&local->sub_if_lock);
2450 local->ops->set_multicast_list(local_to_hw(local), flags,
2451 local->mc_count);
2452 read_unlock(&local->sub_if_lock);
2453 }
2454 netif_tx_unlock(local->mdev);
2455 }
2456
2457 struct dev_mc_list *ieee80211_get_mc_list_item(struct ieee80211_hw *hw,
2458 struct dev_mc_list *prev,
2459 void **ptr)
2460 {
2461 struct ieee80211_local *local = hw_to_local(hw);
2462 struct ieee80211_sub_if_data *sdata = *ptr;
2463 struct dev_mc_list *mc;
2464
2465 if (!prev) {
2466 WARN_ON(sdata);
2467 sdata = NULL;
2468 }
2469 if (!prev || !prev->next) {
2470 if (sdata)
2471 sdata = list_entry(sdata->list.next,
2472 struct ieee80211_sub_if_data, list);
2473 else
2474 sdata = list_entry(local->sub_if_list.next,
2475 struct ieee80211_sub_if_data, list);
2476 if (&sdata->list != &local->sub_if_list)
2477 mc = sdata->dev->mc_list;
2478 else
2479 mc = NULL;
2480 } else
2481 mc = prev->next;
2482
2483 *ptr = sdata;
2484 return mc;
2485 }
2486 EXPORT_SYMBOL(ieee80211_get_mc_list_item);
2487
2488 static struct net_device_stats *ieee80211_get_stats(struct net_device *dev)
2489 {
2490 struct ieee80211_sub_if_data *sdata;
2491 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2492 return &(sdata->stats);
2493 }
2494
2495 static void ieee80211_if_shutdown(struct net_device *dev)
2496 {
2497 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2498 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2499
2500 ASSERT_RTNL();
2501 switch (sdata->type) {
2502 case IEEE80211_IF_TYPE_STA:
2503 case IEEE80211_IF_TYPE_IBSS:
2504 sdata->u.sta.state = IEEE80211_DISABLED;
2505 del_timer_sync(&sdata->u.sta.timer);
2506 skb_queue_purge(&sdata->u.sta.skb_queue);
2507 if (!local->ops->hw_scan &&
2508 local->scan_dev == sdata->dev) {
2509 local->sta_scanning = 0;
2510 cancel_delayed_work(&local->scan_work);
2511 }
2512 flush_workqueue(local->hw.workqueue);
2513 break;
2514 }
2515 }
2516
2517 static inline int identical_mac_addr_allowed(int type1, int type2)
2518 {
2519 return (type1 == IEEE80211_IF_TYPE_MNTR ||
2520 type2 == IEEE80211_IF_TYPE_MNTR ||
2521 (type1 == IEEE80211_IF_TYPE_AP &&
2522 type2 == IEEE80211_IF_TYPE_WDS) ||
2523 (type1 == IEEE80211_IF_TYPE_WDS &&
2524 (type2 == IEEE80211_IF_TYPE_WDS ||
2525 type2 == IEEE80211_IF_TYPE_AP)) ||
2526 (type1 == IEEE80211_IF_TYPE_AP &&
2527 type2 == IEEE80211_IF_TYPE_VLAN) ||
2528 (type1 == IEEE80211_IF_TYPE_VLAN &&
2529 (type2 == IEEE80211_IF_TYPE_AP ||
2530 type2 == IEEE80211_IF_TYPE_VLAN)));
2531 }
2532
2533 static int ieee80211_master_open(struct net_device *dev)
2534 {
2535 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2536 struct ieee80211_sub_if_data *sdata;
2537 int res = -EOPNOTSUPP;
2538
2539 read_lock(&local->sub_if_lock);
2540 list_for_each_entry(sdata, &local->sub_if_list, list) {
2541 if (sdata->dev != dev && netif_running(sdata->dev)) {
2542 res = 0;
2543 break;
2544 }
2545 }
2546 read_unlock(&local->sub_if_lock);
2547 return res;
2548 }
2549
2550 static int ieee80211_master_stop(struct net_device *dev)
2551 {
2552 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2553 struct ieee80211_sub_if_data *sdata;
2554
2555 read_lock(&local->sub_if_lock);
2556 list_for_each_entry(sdata, &local->sub_if_list, list)
2557 if (sdata->dev != dev && netif_running(sdata->dev))
2558 dev_close(sdata->dev);
2559 read_unlock(&local->sub_if_lock);
2560
2561 return 0;
2562 }
2563
2564 static int ieee80211_mgmt_open(struct net_device *dev)
2565 {
2566 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2567
2568 if (!netif_running(local->mdev))
2569 return -EOPNOTSUPP;
2570 return 0;
2571 }
2572
2573 static int ieee80211_mgmt_stop(struct net_device *dev)
2574 {
2575 return 0;
2576 }
2577
2578 /* Check if running monitor interfaces should go to a "soft monitor" mode
2579 * and switch them if necessary. */
2580 static inline void ieee80211_start_soft_monitor(struct ieee80211_local *local)
2581 {
2582 struct ieee80211_if_init_conf conf;
2583
2584 if (local->open_count && local->open_count == local->monitors &&
2585 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER) &&
2586 local->ops->remove_interface) {
2587 conf.if_id = -1;
2588 conf.type = IEEE80211_IF_TYPE_MNTR;
2589 conf.mac_addr = NULL;
2590 local->ops->remove_interface(local_to_hw(local), &conf);
2591 }
2592 }
2593
2594 /* Check if running monitor interfaces should go to a "hard monitor" mode
2595 * and switch them if necessary. */
2596 static void ieee80211_start_hard_monitor(struct ieee80211_local *local)
2597 {
2598 struct ieee80211_if_init_conf conf;
2599
2600 if (local->open_count && local->open_count == local->monitors &&
2601 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
2602 conf.if_id = -1;
2603 conf.type = IEEE80211_IF_TYPE_MNTR;
2604 conf.mac_addr = NULL;
2605 local->ops->add_interface(local_to_hw(local), &conf);
2606 }
2607 }
2608
2609 static int ieee80211_open(struct net_device *dev)
2610 {
2611 struct ieee80211_sub_if_data *sdata, *nsdata;
2612 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2613 struct ieee80211_if_init_conf conf;
2614 int res;
2615
2616 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2617 read_lock(&local->sub_if_lock);
2618 list_for_each_entry(nsdata, &local->sub_if_list, list) {
2619 struct net_device *ndev = nsdata->dev;
2620
2621 if (ndev != dev && ndev != local->mdev && netif_running(ndev) &&
2622 compare_ether_addr(dev->dev_addr, ndev->dev_addr) == 0 &&
2623 !identical_mac_addr_allowed(sdata->type, nsdata->type)) {
2624 read_unlock(&local->sub_if_lock);
2625 return -ENOTUNIQ;
2626 }
2627 }
2628 read_unlock(&local->sub_if_lock);
2629
2630 if (sdata->type == IEEE80211_IF_TYPE_WDS &&
2631 is_zero_ether_addr(sdata->u.wds.remote_addr))
2632 return -ENOLINK;
2633
2634 if (sdata->type == IEEE80211_IF_TYPE_MNTR && local->open_count &&
2635 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
2636 /* run the interface in a "soft monitor" mode */
2637 local->monitors++;
2638 local->open_count++;
2639 local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP;
2640 return 0;
2641 }
2642 ieee80211_start_soft_monitor(local);
2643
2644 conf.if_id = dev->ifindex;
2645 conf.type = sdata->type;
2646 conf.mac_addr = dev->dev_addr;
2647 res = local->ops->add_interface(local_to_hw(local), &conf);
2648 if (res) {
2649 if (sdata->type == IEEE80211_IF_TYPE_MNTR)
2650 ieee80211_start_hard_monitor(local);
2651 return res;
2652 }
2653
2654 if (local->open_count == 0) {
2655 res = 0;
2656 tasklet_enable(&local->tx_pending_tasklet);
2657 tasklet_enable(&local->tasklet);
2658 if (local->ops->open)
2659 res = local->ops->open(local_to_hw(local));
2660 if (res == 0) {
2661 res = dev_open(local->mdev);
2662 if (res) {
2663 if (local->ops->stop)
2664 local->ops->stop(local_to_hw(local));
2665 } else {
2666 res = ieee80211_hw_config(local);
2667 if (res && local->ops->stop)
2668 local->ops->stop(local_to_hw(local));
2669 else if (!res && local->apdev)
2670 dev_open(local->apdev);
2671 }
2672 }
2673 if (res) {
2674 if (local->ops->remove_interface)
2675 local->ops->remove_interface(local_to_hw(local),
2676 &conf);
2677 return res;
2678 }
2679 }
2680 local->open_count++;
2681
2682 if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
2683 local->monitors++;
2684 local->hw.conf.flags |= IEEE80211_CONF_RADIOTAP;
2685 } else
2686 ieee80211_if_config(dev);
2687
2688 if (sdata->type == IEEE80211_IF_TYPE_STA &&
2689 !local->user_space_mlme)
2690 netif_carrier_off(dev);
2691 else
2692 netif_carrier_on(dev);
2693
2694 netif_start_queue(dev);
2695 return 0;
2696 }
2697
2698
2699 static int ieee80211_stop(struct net_device *dev)
2700 {
2701 struct ieee80211_sub_if_data *sdata;
2702 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2703
2704 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2705
2706 if (sdata->type == IEEE80211_IF_TYPE_MNTR &&
2707 local->open_count > 1 &&
2708 !(local->hw.flags & IEEE80211_HW_MONITOR_DURING_OPER)) {
2709 /* remove "soft monitor" interface */
2710 local->open_count--;
2711 local->monitors--;
2712 if (!local->monitors)
2713 local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP;
2714 return 0;
2715 }
2716
2717 netif_stop_queue(dev);
2718 ieee80211_if_shutdown(dev);
2719
2720 if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
2721 local->monitors--;
2722 if (!local->monitors)
2723 local->hw.conf.flags &= ~IEEE80211_CONF_RADIOTAP;
2724 }
2725
2726 local->open_count--;
2727 if (local->open_count == 0) {
2728 if (netif_running(local->mdev))
2729 dev_close(local->mdev);
2730 if (local->apdev)
2731 dev_close(local->apdev);
2732 if (local->ops->stop)
2733 local->ops->stop(local_to_hw(local));
2734 tasklet_disable(&local->tx_pending_tasklet);
2735 tasklet_disable(&local->tasklet);
2736 }
2737 if (local->ops->remove_interface) {
2738 struct ieee80211_if_init_conf conf;
2739
2740 conf.if_id = dev->ifindex;
2741 conf.type = sdata->type;
2742 conf.mac_addr = dev->dev_addr;
2743 local->ops->remove_interface(local_to_hw(local), &conf);
2744 }
2745
2746 ieee80211_start_hard_monitor(local);
2747
2748 return 0;
2749 }
2750
2751
2752 static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr)
2753 {
2754 memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */
2755 return ETH_ALEN;
2756 }
2757
2758 struct ieee80211_rate *
2759 ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate)
2760 {
2761 struct ieee80211_hw_mode *mode;
2762 int r;
2763
2764 list_for_each_entry(mode, &local->modes_list, list) {
2765 if (mode->mode != phymode)
2766 continue;
2767 for (r = 0; r < mode->num_rates; r++) {
2768 struct ieee80211_rate *rate = &mode->rates[r];
2769 if (rate->val == hw_rate ||
2770 (rate->flags & IEEE80211_RATE_PREAMBLE2 &&
2771 rate->val2 == hw_rate))
2772 return rate;
2773 }
2774 }
2775
2776 return NULL;
2777 }
2778
2779 static void
2780 ieee80211_fill_frame_info(struct ieee80211_local *local,
2781 struct ieee80211_frame_info *fi,
2782 struct ieee80211_rx_status *status)
2783 {
2784 if (status) {
2785 struct timespec ts;
2786 struct ieee80211_rate *rate;
2787
2788 jiffies_to_timespec(jiffies, &ts);
2789 fi->hosttime = cpu_to_be64((u64) ts.tv_sec * 1000000 +
2790 ts.tv_nsec / 1000);
2791 fi->mactime = cpu_to_be64(status->mactime);
2792 switch (status->phymode) {
2793 case MODE_IEEE80211A:
2794 fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a);
2795 break;
2796 case MODE_IEEE80211B:
2797 fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b);
2798 break;
2799 case MODE_IEEE80211G:
2800 fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g);
2801 break;
2802 case MODE_ATHEROS_TURBO:
2803 fi->phytype =
2804 htonl(ieee80211_phytype_dsss_dot11_turbo);
2805 break;
2806 default:
2807 fi->phytype = htonl(0xAAAAAAAA);
2808 break;
2809 }
2810 fi->channel = htonl(status->channel);
2811 rate = ieee80211_get_rate(local, status->phymode,
2812 status->rate);
2813 if (rate) {
2814 fi->datarate = htonl(rate->rate);
2815 if (rate->flags & IEEE80211_RATE_PREAMBLE2) {
2816 if (status->rate == rate->val)
2817 fi->preamble = htonl(2); /* long */
2818 else if (status->rate == rate->val2)
2819 fi->preamble = htonl(1); /* short */
2820 } else
2821 fi->preamble = htonl(0);
2822 } else {
2823 fi->datarate = htonl(0);
2824 fi->preamble = htonl(0);
2825 }
2826
2827 fi->antenna = htonl(status->antenna);
2828 fi->priority = htonl(0xffffffff); /* no clue */
2829 fi->ssi_type = htonl(ieee80211_ssi_raw);
2830 fi->ssi_signal = htonl(status->ssi);
2831 fi->ssi_noise = 0x00000000;
2832 fi->encoding = 0;
2833 } else {
2834 /* clear everything because we really don't know.
2835 * the msg_type field isn't present on monitor frames
2836 * so we don't know whether it will be present or not,
2837 * but it's ok to not clear it since it'll be assigned
2838 * anyway */
2839 memset(fi, 0, sizeof(*fi) - sizeof(fi->msg_type));
2840
2841 fi->ssi_type = htonl(ieee80211_ssi_none);
2842 }
2843 fi->version = htonl(IEEE80211_FI_VERSION);
2844 fi->length = cpu_to_be32(sizeof(*fi) - sizeof(fi->msg_type));
2845 }
2846
2847 /* this routine is actually not just for this, but also
2848 * for pushing fake 'management' frames into userspace.
2849 * it shall be replaced by a netlink-based system. */
2850 void
2851 ieee80211_rx_mgmt(struct ieee80211_local *local, struct sk_buff *skb,
2852 struct ieee80211_rx_status *status, u32 msg_type)
2853 {
2854 struct ieee80211_frame_info *fi;
2855 const size_t hlen = sizeof(struct ieee80211_frame_info);
2856 struct ieee80211_sub_if_data *sdata;
2857
2858 skb->dev = local->apdev;
2859
2860 sdata = IEEE80211_DEV_TO_SUB_IF(local->apdev);
2861
2862 if (skb_headroom(skb) < hlen) {
2863 I802_DEBUG_INC(local->rx_expand_skb_head);
2864 if (pskb_expand_head(skb, hlen, 0, GFP_ATOMIC)) {
2865 dev_kfree_skb(skb);
2866 return;
2867 }
2868 }
2869
2870 fi = (struct ieee80211_frame_info *) skb_push(skb, hlen);
2871
2872 ieee80211_fill_frame_info(local, fi, status);
2873 fi->msg_type = htonl(msg_type);
2874
2875 sdata->stats.rx_packets++;
2876 sdata->stats.rx_bytes += skb->len;
2877
2878 skb_set_mac_header(skb, 0);
2879 skb->ip_summed = CHECKSUM_UNNECESSARY;
2880 skb->pkt_type = PACKET_OTHERHOST;
2881 skb->protocol = htons(ETH_P_802_2);
2882 memset(skb->cb, 0, sizeof(skb->cb));
2883 netif_rx(skb);
2884 }
2885
2886 int ieee80211_radar_status(struct ieee80211_hw *hw, int channel,
2887 int radar, int radar_type)
2888 {
2889 struct sk_buff *skb;
2890 struct ieee80211_radar_info *msg;
2891 struct ieee80211_local *local = hw_to_local(hw);
2892
2893 if (!local->apdev)
2894 return 0;
2895
2896 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
2897 sizeof(struct ieee80211_radar_info));
2898
2899 if (!skb)
2900 return -ENOMEM;
2901 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
2902
2903 msg = (struct ieee80211_radar_info *)
2904 skb_put(skb, sizeof(struct ieee80211_radar_info));
2905 msg->channel = channel;
2906 msg->radar = radar;
2907 msg->radar_type = radar_type;
2908
2909 ieee80211_rx_mgmt(local, skb, NULL, ieee80211_msg_radar);
2910 return 0;
2911 }
2912 EXPORT_SYMBOL(ieee80211_radar_status);
2913
2914
2915 static ieee80211_txrx_result
2916 ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx)
2917 {
2918 struct ieee80211_local *local = tx->local;
2919 struct ieee80211_hw_mode *mode = tx->u.tx.mode;
2920 struct sk_buff *skb = tx->skb;
2921 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2922 u32 load = 0, hdrtime;
2923
2924 /* TODO: this could be part of tx_status handling, so that the number
2925 * of retries would be known; TX rate should in that case be stored
2926 * somewhere with the packet */
2927
2928 /* Estimate total channel use caused by this frame */
2929
2930 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
2931 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
2932
2933 if (mode->mode == MODE_IEEE80211A ||
2934 mode->mode == MODE_ATHEROS_TURBO ||
2935 mode->mode == MODE_ATHEROS_TURBOG ||
2936 (mode->mode == MODE_IEEE80211G &&
2937 tx->u.tx.rate->flags & IEEE80211_RATE_ERP))
2938 hdrtime = CHAN_UTIL_HDR_SHORT;
2939 else
2940 hdrtime = CHAN_UTIL_HDR_LONG;
2941
2942 load = hdrtime;
2943 if (!is_multicast_ether_addr(hdr->addr1))
2944 load += hdrtime;
2945
2946 if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_RTS_CTS)
2947 load += 2 * hdrtime;
2948 else if (tx->u.tx.control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
2949 load += hdrtime;
2950
2951 load += skb->len * tx->u.tx.rate->rate_inv;
2952
2953 if (tx->u.tx.extra_frag) {
2954 int i;
2955 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
2956 load += 2 * hdrtime;
2957 load += tx->u.tx.extra_frag[i]->len *
2958 tx->u.tx.rate->rate;
2959 }
2960 }
2961
2962 /* Divide channel_use by 8 to avoid wrapping around the counter */
2963 load >>= CHAN_UTIL_SHIFT;
2964 local->channel_use_raw += load;
2965 if (tx->sta)
2966 tx->sta->channel_use_raw += load;
2967 tx->sdata->channel_use_raw += load;
2968
2969 return TXRX_CONTINUE;
2970 }
2971
2972
2973 static void ieee80211_stat_refresh(unsigned long data)
2974 {
2975 struct ieee80211_local *local = (struct ieee80211_local *) data;
2976 struct sta_info *sta;
2977 struct ieee80211_sub_if_data *sdata;
2978
2979 if (!local->stat_time)
2980 return;
2981
2982 /* go through all stations */
2983 spin_lock_bh(&local->sta_lock);
2984 list_for_each_entry(sta, &local->sta_list, list) {
2985 sta->channel_use = (sta->channel_use_raw / local->stat_time) /
2986 CHAN_UTIL_PER_10MS;
2987 sta->channel_use_raw = 0;
2988 }
2989 spin_unlock_bh(&local->sta_lock);
2990
2991 /* go through all subinterfaces */
2992 read_lock(&local->sub_if_lock);
2993 list_for_each_entry(sdata, &local->sub_if_list, list) {
2994 sdata->channel_use = (sdata->channel_use_raw /
2995 local->stat_time) / CHAN_UTIL_PER_10MS;
2996 sdata->channel_use_raw = 0;
2997 }
2998 read_unlock(&local->sub_if_lock);
2999
3000 /* hardware interface */
3001 local->channel_use = (local->channel_use_raw /
3002 local->stat_time) / CHAN_UTIL_PER_10MS;
3003 local->channel_use_raw = 0;
3004
3005 local->stat_timer.expires = jiffies + HZ * local->stat_time / 100;
3006 add_timer(&local->stat_timer);
3007 }
3008
3009
3010 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
3011 struct sk_buff *skb,
3012 struct ieee80211_tx_status *status)
3013 {
3014 struct ieee80211_local *local = hw_to_local(hw);
3015 struct ieee80211_tx_status *saved;
3016 int tmp;
3017
3018 skb->dev = local->mdev;
3019 saved = kmalloc(sizeof(struct ieee80211_tx_status), GFP_ATOMIC);
3020 if (unlikely(!saved)) {
3021 if (net_ratelimit())
3022 printk(KERN_WARNING "%s: Not enough memory, "
3023 "dropping tx status", skb->dev->name);
3024 /* should be dev_kfree_skb_irq, but due to this function being
3025 * named _irqsafe instead of just _irq we can't be sure that
3026 * people won't call it from non-irq contexts */
3027 dev_kfree_skb_any(skb);
3028 return;
3029 }
3030 memcpy(saved, status, sizeof(struct ieee80211_tx_status));
3031 /* copy pointer to saved status into skb->cb for use by tasklet */
3032 memcpy(skb->cb, &saved, sizeof(saved));
3033
3034 skb->pkt_type = IEEE80211_TX_STATUS_MSG;
3035 skb_queue_tail(status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS ?
3036 &local->skb_queue : &local->skb_queue_unreliable, skb);
3037 tmp = skb_queue_len(&local->skb_queue) +
3038 skb_queue_len(&local->skb_queue_unreliable);
3039 while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT &&
3040 (skb = skb_dequeue(&local->skb_queue_unreliable))) {
3041 memcpy(&saved, skb->cb, sizeof(saved));
3042 kfree(saved);
3043 dev_kfree_skb_irq(skb);
3044 tmp--;
3045 I802_DEBUG_INC(local->tx_status_drop);
3046 }
3047 tasklet_schedule(&local->tasklet);
3048 }
3049 EXPORT_SYMBOL(ieee80211_tx_status_irqsafe);
3050
3051 static void ieee80211_tasklet_handler(unsigned long data)
3052 {
3053 struct ieee80211_local *local = (struct ieee80211_local *) data;
3054 struct sk_buff *skb;
3055 struct ieee80211_rx_status rx_status;
3056 struct ieee80211_tx_status *tx_status;
3057
3058 while ((skb = skb_dequeue(&local->skb_queue)) ||
3059 (skb = skb_dequeue(&local->skb_queue_unreliable))) {
3060 switch (skb->pkt_type) {
3061 case IEEE80211_RX_MSG:
3062 /* status is in skb->cb */
3063 memcpy(&rx_status, skb->cb, sizeof(rx_status));
3064 /* Clear skb->type in order to not confuse kernel
3065 * netstack. */
3066 skb->pkt_type = 0;
3067 __ieee80211_rx(local_to_hw(local), skb, &rx_status);
3068 break;
3069 case IEEE80211_TX_STATUS_MSG:
3070 /* get pointer to saved status out of skb->cb */
3071 memcpy(&tx_status, skb->cb, sizeof(tx_status));
3072 skb->pkt_type = 0;
3073 ieee80211_tx_status(local_to_hw(local),
3074 skb, tx_status);
3075 kfree(tx_status);
3076 break;
3077 default: /* should never get here! */
3078 printk(KERN_ERR "%s: Unknown message type (%d)\n",
3079 local->mdev->name, skb->pkt_type);
3080 dev_kfree_skb(skb);
3081 break;
3082 }
3083 }
3084 }
3085
3086
3087 /* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to
3088 * make a prepared TX frame (one that has been given to hw) to look like brand
3089 * new IEEE 802.11 frame that is ready to go through TX processing again.
3090 * Also, tx_packet_data in cb is restored from tx_control. */
3091 static void ieee80211_remove_tx_extra(struct ieee80211_local *local,
3092 struct ieee80211_key *key,
3093 struct sk_buff *skb,
3094 struct ieee80211_tx_control *control)
3095 {
3096 int hdrlen, iv_len, mic_len;
3097 struct ieee80211_tx_packet_data *pkt_data;
3098
3099 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
3100 pkt_data->ifindex = control->ifindex;
3101 pkt_data->mgmt_iface = (control->type == IEEE80211_IF_TYPE_MGMT);
3102 pkt_data->req_tx_status = !!(control->flags & IEEE80211_TXCTL_REQ_TX_STATUS);
3103 pkt_data->do_not_encrypt = !!(control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT);
3104 pkt_data->requeue = !!(control->flags & IEEE80211_TXCTL_REQUEUE);
3105 pkt_data->queue = control->queue;
3106
3107 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
3108
3109 if (!key)
3110 goto no_key;
3111
3112 switch (key->alg) {
3113 case ALG_WEP:
3114 iv_len = WEP_IV_LEN;
3115 mic_len = WEP_ICV_LEN;
3116 break;
3117 case ALG_TKIP:
3118 iv_len = TKIP_IV_LEN;
3119 mic_len = TKIP_ICV_LEN;
3120 break;
3121 case ALG_CCMP:
3122 iv_len = CCMP_HDR_LEN;
3123 mic_len = CCMP_MIC_LEN;
3124 break;
3125 default:
3126 goto no_key;
3127 }
3128
3129 if (skb->len >= mic_len && key->force_sw_encrypt)
3130 skb_trim(skb, skb->len - mic_len);
3131 if (skb->len >= iv_len && skb->len > hdrlen) {
3132 memmove(skb->data + iv_len, skb->data, hdrlen);
3133 skb_pull(skb, iv_len);
3134 }
3135
3136 no_key:
3137 {
3138 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
3139 u16 fc = le16_to_cpu(hdr->frame_control);
3140 if ((fc & 0x8C) == 0x88) /* QoS Control Field */ {
3141 fc &= ~IEEE80211_STYPE_QOS_DATA;
3142 hdr->frame_control = cpu_to_le16(fc);
3143 memmove(skb->data + 2, skb->data, hdrlen - 2);
3144 skb_pull(skb, 2);
3145 }
3146 }
3147 }
3148
3149
3150 void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
3151 struct ieee80211_tx_status *status)
3152 {
3153 struct sk_buff *skb2;
3154 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
3155 struct ieee80211_local *local = hw_to_local(hw);
3156 u16 frag, type;
3157 u32 msg_type;
3158 struct ieee80211_tx_status_rtap_hdr *rthdr;
3159 struct ieee80211_sub_if_data *sdata;
3160 int monitors;
3161
3162 if (!status) {
3163 printk(KERN_ERR
3164 "%s: ieee80211_tx_status called with NULL status\n",
3165 local->mdev->name);
3166 dev_kfree_skb(skb);
3167 return;
3168 }
3169
3170 if (status->excessive_retries) {
3171 struct sta_info *sta;
3172 sta = sta_info_get(local, hdr->addr1);
3173 if (sta) {
3174 if (sta->flags & WLAN_STA_PS) {
3175 /* The STA is in power save mode, so assume
3176 * that this TX packet failed because of that.
3177 */
3178 status->excessive_retries = 0;
3179 status->flags |= IEEE80211_TX_STATUS_TX_FILTERED;
3180 }
3181 sta_info_put(sta);
3182 }
3183 }
3184
3185 if (status->flags & IEEE80211_TX_STATUS_TX_FILTERED) {
3186 struct sta_info *sta;
3187 sta = sta_info_get(local, hdr->addr1);
3188 if (sta) {
3189 sta->tx_filtered_count++;
3190
3191 /* Clear the TX filter mask for this STA when sending
3192 * the next packet. If the STA went to power save mode,
3193 * this will happen when it is waking up for the next
3194 * time. */
3195 sta->clear_dst_mask = 1;
3196
3197 /* TODO: Is the WLAN_STA_PS flag always set here or is
3198 * the race between RX and TX status causing some
3199 * packets to be filtered out before 80211.o gets an
3200 * update for PS status? This seems to be the case, so
3201 * no changes are likely to be needed. */
3202 if (sta->flags & WLAN_STA_PS &&
3203 skb_queue_len(&sta->tx_filtered) <
3204 STA_MAX_TX_BUFFER) {
3205 ieee80211_remove_tx_extra(local, sta->key,
3206 skb,
3207 &status->control);
3208 skb_queue_tail(&sta->tx_filtered, skb);
3209 } else if (!(sta->flags & WLAN_STA_PS) &&
3210 !(status->control.flags & IEEE80211_TXCTL_REQUEUE)) {
3211 /* Software retry the packet once */
3212 status->control.flags |= IEEE80211_TXCTL_REQUEUE;
3213 ieee80211_remove_tx_extra(local, sta->key,
3214 skb,
3215 &status->control);
3216 dev_queue_xmit(skb);
3217 } else {
3218 if (net_ratelimit()) {
3219 printk(KERN_DEBUG "%s: dropped TX "
3220 "filtered frame queue_len=%d "
3221 "PS=%d @%lu\n",
3222 local->mdev->name,
3223 skb_queue_len(
3224 &sta->tx_filtered),
3225 !!(sta->flags & WLAN_STA_PS),
3226 jiffies);
3227 }
3228 dev_kfree_skb(skb);
3229 }
3230 sta_info_put(sta);
3231 return;
3232 }
3233 } else {
3234 /* FIXME: STUPID to call this with both local and local->mdev */
3235 rate_control_tx_status(local, local->mdev, skb, status);
3236 }
3237
3238 ieee80211_led_tx(local, 0);
3239
3240 /* SNMP counters
3241 * Fragments are passed to low-level drivers as separate skbs, so these
3242 * are actually fragments, not frames. Update frame counters only for
3243 * the first fragment of the frame. */
3244
3245 frag = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
3246 type = le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_FTYPE;
3247
3248 if (status->flags & IEEE80211_TX_STATUS_ACK) {
3249 if (frag == 0) {
3250 local->dot11TransmittedFrameCount++;
3251 if (is_multicast_ether_addr(hdr->addr1))
3252 local->dot11MulticastTransmittedFrameCount++;
3253 if (status->retry_count > 0)
3254 local->dot11RetryCount++;
3255 if (status->retry_count > 1)
3256 local->dot11MultipleRetryCount++;
3257 }
3258
3259 /* This counter shall be incremented for an acknowledged MPDU
3260 * with an individual address in the address 1 field or an MPDU
3261 * with a multicast address in the address 1 field of type Data
3262 * or Management. */
3263 if (!is_multicast_ether_addr(hdr->addr1) ||
3264 type == IEEE80211_FTYPE_DATA ||
3265 type == IEEE80211_FTYPE_MGMT)
3266 local->dot11TransmittedFragmentCount++;
3267 } else {
3268 if (frag == 0)
3269 local->dot11FailedCount++;
3270 }
3271
3272 msg_type = (status->flags & IEEE80211_TX_STATUS_ACK) ?
3273 ieee80211_msg_tx_callback_ack : ieee80211_msg_tx_callback_fail;
3274
3275 /* this was a transmitted frame, but now we want to reuse it */
3276 skb_orphan(skb);
3277
3278 if ((status->control.flags & IEEE80211_TXCTL_REQ_TX_STATUS) &&
3279 local->apdev) {
3280 if (local->monitors) {
3281 skb2 = skb_clone(skb, GFP_ATOMIC);
3282 } else {
3283 skb2 = skb;
3284 skb = NULL;
3285 }
3286
3287 if (skb2)
3288 /* Send frame to hostapd */
3289 ieee80211_rx_mgmt(local, skb2, NULL, msg_type);
3290
3291 if (!skb)
3292 return;
3293 }
3294
3295 if (!local->monitors) {
3296 dev_kfree_skb(skb);
3297 return;
3298 }
3299
3300 /* send frame to monitor interfaces now */
3301
3302 if (skb_headroom(skb) < sizeof(*rthdr)) {
3303 printk(KERN_ERR "ieee80211_tx_status: headroom too small\n");
3304 dev_kfree_skb(skb);
3305 return;
3306 }
3307
3308 rthdr = (struct ieee80211_tx_status_rtap_hdr*)
3309 skb_push(skb, sizeof(*rthdr));
3310
3311 memset(rthdr, 0, sizeof(*rthdr));
3312 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
3313 rthdr->hdr.it_present =
3314 cpu_to_le32((1 << IEEE80211_RADIOTAP_TX_FLAGS) |
3315 (1 << IEEE80211_RADIOTAP_DATA_RETRIES));
3316
3317 if (!(status->flags & IEEE80211_TX_STATUS_ACK) &&
3318 !is_multicast_ether_addr(hdr->addr1))
3319 rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_FAIL);
3320
3321 if ((status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) &&
3322 (status->control.flags & IEEE80211_TXCTL_USE_CTS_PROTECT))
3323 rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_CTS);
3324 else if (status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS)
3325 rthdr->tx_flags |= cpu_to_le16(IEEE80211_RADIOTAP_F_TX_RTS);
3326
3327 rthdr->data_retries = status->retry_count;
3328
3329 read_lock(&local->sub_if_lock);
3330 monitors = local->monitors;
3331 list_for_each_entry(sdata, &local->sub_if_list, list) {
3332 /*
3333 * Using the monitors counter is possibly racy, but
3334 * if the value is wrong we simply either clone the skb
3335 * once too much or forget sending it to one monitor iface
3336 * The latter case isn't nice but fixing the race is much
3337 * more complicated.
3338 */
3339 if (!monitors || !skb)
3340 goto out;
3341
3342 if (sdata->type == IEEE80211_IF_TYPE_MNTR) {
3343 if (!netif_running(sdata->dev))
3344 continue;
3345 monitors--;
3346 if (monitors)
3347 skb2 = skb_clone(skb, GFP_KERNEL);
3348 else
3349 skb2 = NULL;
3350 skb->dev = sdata->dev;
3351 /* XXX: is this sufficient for BPF? */
3352 skb_set_mac_header(skb, 0);
3353 skb->ip_summed = CHECKSUM_UNNECESSARY;
3354 skb->pkt_type = PACKET_OTHERHOST;
3355 skb->protocol = htons(ETH_P_802_2);
3356 memset(skb->cb, 0, sizeof(skb->cb));
3357 netif_rx(skb);
3358 skb = skb2;
3359 }
3360 }
3361 out:
3362 read_unlock(&local->sub_if_lock);
3363 if (skb)
3364 dev_kfree_skb(skb);
3365 }
3366 EXPORT_SYMBOL(ieee80211_tx_status);
3367
3368 /* TODO: implement register/unregister functions for adding TX/RX handlers
3369 * into ordered list */
3370
3371 static ieee80211_tx_handler ieee80211_tx_handlers[] =
3372 {
3373 ieee80211_tx_h_check_assoc,
3374 ieee80211_tx_h_sequence,
3375 ieee80211_tx_h_ps_buf,
3376 ieee80211_tx_h_select_key,
3377 ieee80211_tx_h_michael_mic_add,
3378 ieee80211_tx_h_fragment,
3379 ieee80211_tx_h_tkip_encrypt,
3380 ieee80211_tx_h_ccmp_encrypt,
3381 ieee80211_tx_h_wep_encrypt,
3382 ieee80211_tx_h_rate_ctrl,
3383 ieee80211_tx_h_misc,
3384 ieee80211_tx_h_load_stats,
3385 NULL
3386 };
3387
3388
3389 int ieee80211_if_update_wds(struct net_device *dev, u8 *remote_addr)
3390 {
3391 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
3392 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
3393 struct sta_info *sta;
3394
3395 if (compare_ether_addr(remote_addr, sdata->u.wds.remote_addr) == 0)
3396 return 0;
3397
3398 /* Create STA entry for the new peer */
3399 sta = sta_info_add(local, dev, remote_addr, GFP_KERNEL);
3400 if (!sta)
3401 return -ENOMEM;
3402 sta_info_put(sta);
3403
3404 /* Remove STA entry for the old peer */
3405 sta = sta_info_get(local, sdata->u.wds.remote_addr);
3406 if (sta) {
3407 sta_info_put(sta);
3408 sta_info_free(sta, 0);
3409 } else {
3410 printk(KERN_DEBUG "%s: could not find STA entry for WDS link "
3411 "peer " MAC_FMT "\n",
3412 dev->name, MAC_ARG(sdata->u.wds.remote_addr));
3413 }
3414
3415 /* Update WDS link data */
3416 memcpy(&sdata->u.wds.remote_addr, remote_addr, ETH_ALEN);
3417
3418 return 0;
3419 }
3420
3421 /* Must not be called for mdev and apdev */
3422 void ieee80211_if_setup(struct net_device *dev)
3423 {
3424 ether_setup(dev);
3425 dev->hard_start_xmit = ieee80211_subif_start_xmit;
3426 dev->wireless_handlers = &ieee80211_iw_handler_def;
3427 dev->set_multicast_list = ieee80211_set_multicast_list;
3428 dev->change_mtu = ieee80211_change_mtu;
3429 dev->get_stats = ieee80211_get_stats;
3430 dev->open = ieee80211_open;
3431 dev->stop = ieee80211_stop;
3432 dev->uninit = ieee80211_if_reinit;
3433 dev->destructor = ieee80211_if_free;
3434 }
3435
3436 void ieee80211_if_mgmt_setup(struct net_device *dev)
3437 {
3438 ether_setup(dev);
3439 dev->hard_start_xmit = ieee80211_mgmt_start_xmit;
3440 dev->change_mtu = ieee80211_change_mtu_apdev;
3441 dev->get_stats = ieee80211_get_stats;
3442 dev->open = ieee80211_mgmt_open;
3443 dev->stop = ieee80211_mgmt_stop;
3444 dev->type = ARPHRD_IEEE80211_PRISM;
3445 dev->hard_header_parse = header_parse_80211;
3446 dev->uninit = ieee80211_if_reinit;
3447 dev->destructor = ieee80211_if_free;
3448 }
3449
3450 int ieee80211_init_rate_ctrl_alg(struct ieee80211_local *local,
3451 const char *name)
3452 {
3453 struct rate_control_ref *ref, *old;
3454
3455 ASSERT_RTNL();
3456 if (local->open_count || netif_running(local->mdev) ||
3457 (local->apdev && netif_running(local->apdev)))
3458 return -EBUSY;
3459
3460 ref = rate_control_alloc(name, local);
3461 if (!ref) {
3462 printk(KERN_WARNING "%s: Failed to select rate control "
3463 "algorithm\n", local->mdev->name);
3464 return -ENOENT;
3465 }
3466
3467 old = local->rate_ctrl;
3468 local->rate_ctrl = ref;
3469 if (old) {
3470 rate_control_put(old);
3471 sta_info_flush(local, NULL);
3472 }
3473
3474 printk(KERN_DEBUG "%s: Selected rate control "
3475 "algorithm '%s'\n", local->mdev->name,
3476 ref->ops->name);
3477
3478
3479 return 0;
3480 }
3481
3482 static void rate_control_deinitialize(struct ieee80211_local *local)
3483 {
3484 struct rate_control_ref *ref;
3485
3486 ref = local->rate_ctrl;
3487 local->rate_ctrl = NULL;
3488 rate_control_put(ref);
3489 }
3490
3491 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
3492 const struct ieee80211_ops *ops)
3493 {
3494 struct net_device *mdev;
3495 struct ieee80211_local *local;
3496 struct ieee80211_sub_if_data *sdata;
3497 int priv_size;
3498 struct wiphy *wiphy;
3499
3500 /* Ensure 32-byte alignment of our private data and hw private data.
3501 * We use the wiphy priv data for both our ieee80211_local and for
3502 * the driver's private data
3503 *
3504 * In memory it'll be like this:
3505 *
3506 * +-------------------------+
3507 * | struct wiphy |
3508 * +-------------------------+
3509 * | struct ieee80211_local |
3510 * +-------------------------+
3511 * | driver's private data |
3512 * +-------------------------+
3513 *
3514 */
3515 priv_size = ((sizeof(struct ieee80211_local) +
3516 NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST) +
3517 priv_data_len;
3518
3519 wiphy = wiphy_new(&mac80211_config_ops, priv_size);
3520
3521 if (!wiphy)
3522 return NULL;
3523
3524 wiphy->privid = mac80211_wiphy_privid;
3525
3526 local = wiphy_priv(wiphy);
3527 local->hw.wiphy = wiphy;
3528
3529 local->hw.priv = (char *)local +
3530 ((sizeof(struct ieee80211_local) +
3531 NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3532
3533 BUG_ON(!ops->tx);
3534 BUG_ON(!ops->config);
3535 BUG_ON(!ops->add_interface);
3536 local->ops = ops;
3537
3538 /* for now, mdev needs sub_if_data :/ */
3539 mdev = alloc_netdev(sizeof(struct ieee80211_sub_if_data),
3540 "wmaster%d", ether_setup);
3541 if (!mdev) {
3542 wiphy_free(wiphy);
3543 return NULL;
3544 }
3545
3546 sdata = IEEE80211_DEV_TO_SUB_IF(mdev);
3547 mdev->ieee80211_ptr = &sdata->wdev;
3548 sdata->wdev.wiphy = wiphy;
3549
3550 local->hw.queues = 1; /* default */
3551
3552 local->mdev = mdev;
3553 local->rx_pre_handlers = ieee80211_rx_pre_handlers;
3554 local->rx_handlers = ieee80211_rx_handlers;
3555 local->tx_handlers = ieee80211_tx_handlers;
3556
3557 local->bridge_packets = 1;
3558
3559 local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
3560 local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
3561 local->short_retry_limit = 7;
3562 local->long_retry_limit = 4;
3563 local->hw.conf.radio_enabled = 1;
3564
3565 local->enabled_modes = (unsigned int) -1;
3566
3567 INIT_LIST_HEAD(&local->modes_list);
3568
3569 rwlock_init(&local->sub_if_lock);
3570 INIT_LIST_HEAD(&local->sub_if_list);
3571
3572 INIT_DELAYED_WORK(&local->scan_work, ieee80211_sta_scan_work);
3573 init_timer(&local->stat_timer);
3574 local->stat_timer.function = ieee80211_stat_refresh;
3575 local->stat_timer.data = (unsigned long) local;
3576 ieee80211_rx_bss_list_init(mdev);
3577
3578 sta_info_init(local);
3579
3580 mdev->hard_start_xmit = ieee80211_master_start_xmit;
3581 mdev->open = ieee80211_master_open;
3582 mdev->stop = ieee80211_master_stop;
3583 mdev->type = ARPHRD_IEEE80211;
3584 mdev->hard_header_parse = header_parse_80211;
3585
3586 sdata->type = IEEE80211_IF_TYPE_AP;
3587 sdata->dev = mdev;
3588 sdata->local = local;
3589 sdata->u.ap.force_unicast_rateidx = -1;
3590 sdata->u.ap.max_ratectrl_rateidx = -1;
3591 ieee80211_if_sdata_init(sdata);
3592 list_add_tail(&sdata->list, &local->sub_if_list);
3593
3594 tasklet_init(&local->tx_pending_tasklet, ieee80211_tx_pending,
3595 (unsigned long)local);
3596 tasklet_disable(&local->tx_pending_tasklet);
3597
3598 tasklet_init(&local->tasklet,
3599 ieee80211_tasklet_handler,
3600 (unsigned long) local);
3601 tasklet_disable(&local->tasklet);
3602
3603 skb_queue_head_init(&local->skb_queue);
3604 skb_queue_head_init(&local->skb_queue_unreliable);
3605
3606 return local_to_hw(local);
3607 }
3608 EXPORT_SYMBOL(ieee80211_alloc_hw);
3609
3610 int ieee80211_register_hw(struct ieee80211_hw *hw)
3611 {
3612 struct ieee80211_local *local = hw_to_local(hw);
3613 const char *name;
3614 int result;
3615
3616 result = wiphy_register(local->hw.wiphy);
3617 if (result < 0)
3618 return result;
3619
3620 name = wiphy_dev(local->hw.wiphy)->driver->name;
3621 local->hw.workqueue = create_singlethread_workqueue(name);
3622 if (!local->hw.workqueue) {
3623 result = -ENOMEM;
3624 goto fail_workqueue;
3625 }
3626
3627 /*
3628 * The hardware needs headroom for sending the frame,
3629 * and we need some headroom for passing the frame to monitor
3630 * interfaces, but never both at the same time.
3631 */
3632 local->tx_headroom = max_t(unsigned int , local->hw.extra_tx_headroom,
3633 sizeof(struct ieee80211_tx_status_rtap_hdr));
3634
3635 debugfs_hw_add(local);
3636
3637 local->hw.conf.beacon_int = 1000;
3638
3639 local->wstats_flags |= local->hw.max_rssi ?
3640 IW_QUAL_LEVEL_UPDATED : IW_QUAL_LEVEL_INVALID;
3641 local->wstats_flags |= local->hw.max_signal ?
3642 IW_QUAL_QUAL_UPDATED : IW_QUAL_QUAL_INVALID;
3643 local->wstats_flags |= local->hw.max_noise ?
3644 IW_QUAL_NOISE_UPDATED : IW_QUAL_NOISE_INVALID;
3645 if (local->hw.max_rssi < 0 || local->hw.max_noise < 0)
3646 local->wstats_flags |= IW_QUAL_DBM;
3647
3648 result = sta_info_start(local);
3649 if (result < 0)
3650 goto fail_sta_info;
3651
3652 rtnl_lock();
3653 result = dev_alloc_name(local->mdev, local->mdev->name);
3654 if (result < 0)
3655 goto fail_dev;
3656
3657 memcpy(local->mdev->dev_addr, local->hw.wiphy->perm_addr, ETH_ALEN);
3658 SET_NETDEV_DEV(local->mdev, wiphy_dev(local->hw.wiphy));
3659
3660 result = register_netdevice(local->mdev);
3661 if (result < 0)
3662 goto fail_dev;
3663
3664 ieee80211_debugfs_add_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev));
3665
3666 result = ieee80211_init_rate_ctrl_alg(local, NULL);
3667 if (result < 0) {
3668 printk(KERN_DEBUG "%s: Failed to initialize rate control "
3669 "algorithm\n", local->mdev->name);
3670 goto fail_rate;
3671 }
3672
3673 result = ieee80211_wep_init(local);
3674
3675 if (result < 0) {
3676 printk(KERN_DEBUG "%s: Failed to initialize wep\n",
3677 local->mdev->name);
3678 goto fail_wep;
3679 }
3680
3681 ieee80211_install_qdisc(local->mdev);
3682
3683 /* add one default STA interface */
3684 result = ieee80211_if_add(local->mdev, "wlan%d", NULL,
3685 IEEE80211_IF_TYPE_STA);
3686 if (result)
3687 printk(KERN_WARNING "%s: Failed to add default virtual iface\n",
3688 local->mdev->name);
3689
3690 local->reg_state = IEEE80211_DEV_REGISTERED;
3691 rtnl_unlock();
3692
3693 ieee80211_led_init(local);
3694
3695 return 0;
3696
3697 fail_wep:
3698 rate_control_deinitialize(local);
3699 fail_rate:
3700 ieee80211_debugfs_remove_netdev(IEEE80211_DEV_TO_SUB_IF(local->mdev));
3701 unregister_netdevice(local->mdev);
3702 fail_dev:
3703 rtnl_unlock();
3704 sta_info_stop(local);
3705 fail_sta_info:
3706 debugfs_hw_del(local);
3707 destroy_workqueue(local->hw.workqueue);
3708 fail_workqueue:
3709 wiphy_unregister(local->hw.wiphy);
3710 return result;
3711 }
3712 EXPORT_SYMBOL(ieee80211_register_hw);
3713
3714 int ieee80211_register_hwmode(struct ieee80211_hw *hw,
3715 struct ieee80211_hw_mode *mode)
3716 {
3717 struct ieee80211_local *local = hw_to_local(hw);
3718 struct ieee80211_rate *rate;
3719 int i;
3720
3721 INIT_LIST_HEAD(&mode->list);
3722 list_add_tail(&mode->list, &local->modes_list);
3723
3724 local->hw_modes |= (1 << mode->mode);
3725 for (i = 0; i < mode->num_rates; i++) {
3726 rate = &(mode->rates[i]);
3727 rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate;
3728 }
3729 ieee80211_prepare_rates(local, mode);
3730
3731 if (!local->oper_hw_mode) {
3732 /* Default to this mode */
3733 local->hw.conf.phymode = mode->mode;
3734 local->oper_hw_mode = local->scan_hw_mode = mode;
3735 local->oper_channel = local->scan_channel = &mode->channels[0];
3736 local->hw.conf.mode = local->oper_hw_mode;
3737 local->hw.conf.chan = local->oper_channel;
3738 }
3739
3740 if (!(hw->flags & IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED))
3741 ieee80211_set_default_regdomain(mode);
3742
3743 return 0;
3744 }
3745 EXPORT_SYMBOL(ieee80211_register_hwmode);
3746
3747 void ieee80211_unregister_hw(struct ieee80211_hw *hw)
3748 {
3749 struct ieee80211_local *local = hw_to_local(hw);
3750 struct ieee80211_sub_if_data *sdata, *tmp;
3751 struct list_head tmp_list;
3752 int i;
3753
3754 tasklet_kill(&local->tx_pending_tasklet);
3755 tasklet_kill(&local->tasklet);
3756
3757 rtnl_lock();
3758
3759 BUG_ON(local->reg_state != IEEE80211_DEV_REGISTERED);
3760
3761 local->reg_state = IEEE80211_DEV_UNREGISTERED;
3762 if (local->apdev)
3763 ieee80211_if_del_mgmt(local);
3764
3765 write_lock_bh(&local->sub_if_lock);
3766 list_replace_init(&local->sub_if_list, &tmp_list);
3767 write_unlock_bh(&local->sub_if_lock);
3768
3769 list_for_each_entry_safe(sdata, tmp, &tmp_list, list)
3770 __ieee80211_if_del(local, sdata);
3771
3772 rtnl_unlock();
3773
3774 if (local->stat_time)
3775 del_timer_sync(&local->stat_timer);
3776
3777 ieee80211_rx_bss_list_deinit(local->mdev);
3778 ieee80211_clear_tx_pending(local);
3779 sta_info_stop(local);
3780 rate_control_deinitialize(local);
3781 debugfs_hw_del(local);
3782
3783 for (i = 0; i < NUM_IEEE80211_MODES; i++) {
3784 kfree(local->supp_rates[i]);
3785 kfree(local->basic_rates[i]);
3786 }
3787
3788 if (skb_queue_len(&local->skb_queue)
3789 || skb_queue_len(&local->skb_queue_unreliable))
3790 printk(KERN_WARNING "%s: skb_queue not empty\n",
3791 local->mdev->name);
3792 skb_queue_purge(&local->skb_queue);
3793 skb_queue_purge(&local->skb_queue_unreliable);
3794
3795 destroy_workqueue(local->hw.workqueue);
3796 wiphy_unregister(local->hw.wiphy);
3797 ieee80211_wep_free(local);
3798 ieee80211_led_exit(local);
3799 }
3800 EXPORT_SYMBOL(ieee80211_unregister_hw);
3801
3802 void ieee80211_free_hw(struct ieee80211_hw *hw)
3803 {
3804 struct ieee80211_local *local = hw_to_local(hw);
3805
3806 ieee80211_if_free(local->mdev);
3807 wiphy_free(local->hw.wiphy);
3808 }
3809 EXPORT_SYMBOL(ieee80211_free_hw);
3810
3811 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
3812 {
3813 struct ieee80211_local *local = hw_to_local(hw);
3814
3815 if (test_and_clear_bit(IEEE80211_LINK_STATE_XOFF,
3816 &local->state[queue])) {
3817 if (test_bit(IEEE80211_LINK_STATE_PENDING,
3818 &local->state[queue]))
3819 tasklet_schedule(&local->tx_pending_tasklet);
3820 else
3821 if (!ieee80211_qdisc_installed(local->mdev)) {
3822 if (queue == 0)
3823 netif_wake_queue(local->mdev);
3824 } else
3825 __netif_schedule(local->mdev);
3826 }
3827 }
3828 EXPORT_SYMBOL(ieee80211_wake_queue);
3829
3830 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
3831 {
3832 struct ieee80211_local *local = hw_to_local(hw);
3833
3834 if (!ieee80211_qdisc_installed(local->mdev) && queue == 0)
3835 netif_stop_queue(local->mdev);
3836 set_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]);
3837 }
3838 EXPORT_SYMBOL(ieee80211_stop_queue);
3839
3840 void ieee80211_start_queues(struct ieee80211_hw *hw)
3841 {
3842 struct ieee80211_local *local = hw_to_local(hw);
3843 int i;
3844
3845 for (i = 0; i < local->hw.queues; i++)
3846 clear_bit(IEEE80211_LINK_STATE_XOFF, &local->state[i]);
3847 if (!ieee80211_qdisc_installed(local->mdev))
3848 netif_start_queue(local->mdev);
3849 }
3850 EXPORT_SYMBOL(ieee80211_start_queues);
3851
3852 void ieee80211_stop_queues(struct ieee80211_hw *hw)
3853 {
3854 int i;
3855
3856 for (i = 0; i < hw->queues; i++)
3857 ieee80211_stop_queue(hw, i);
3858 }
3859 EXPORT_SYMBOL(ieee80211_stop_queues);
3860
3861 void ieee80211_wake_queues(struct ieee80211_hw *hw)
3862 {
3863 int i;
3864
3865 for (i = 0; i < hw->queues; i++)
3866 ieee80211_wake_queue(hw, i);
3867 }
3868 EXPORT_SYMBOL(ieee80211_wake_queues);
3869
3870 struct net_device_stats *ieee80211_dev_stats(struct net_device *dev)
3871 {
3872 struct ieee80211_sub_if_data *sdata;
3873 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
3874 return &sdata->stats;
3875 }
3876
3877 static int __init ieee80211_init(void)
3878 {
3879 struct sk_buff *skb;
3880 int ret;
3881
3882 BUILD_BUG_ON(sizeof(struct ieee80211_tx_packet_data) > sizeof(skb->cb));
3883
3884 ret = ieee80211_wme_register();
3885 if (ret) {
3886 printk(KERN_DEBUG "ieee80211_init: failed to "
3887 "initialize WME (err=%d)\n", ret);
3888 return ret;
3889 }
3890
3891 ieee80211_debugfs_netdev_init();
3892 ieee80211_regdomain_init();
3893
3894 return 0;
3895 }
3896
3897
3898 static void __exit ieee80211_exit(void)
3899 {
3900 ieee80211_wme_unregister();
3901 ieee80211_debugfs_netdev_exit();
3902 }
3903
3904
3905 subsys_initcall(ieee80211_init);
3906 module_exit(ieee80211_exit);
3907
3908 MODULE_DESCRIPTION("IEEE 802.11 subsystem");
3909 MODULE_LICENSE("GPL");