Pull netlink into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / irda / af_irda.c
1 /*********************************************************************
2 *
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12 *
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
30 * MA 02111-1307 USA
31 *
32 * Linux-IrDA now supports four different types of IrDA sockets:
33 *
34 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
35 * max SDU size is 0 for conn. of this type
36 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
37 * fragment the messages, but will preserve
38 * the message boundaries
39 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
40 * (unreliable) transfers
41 * IRDAPROTO_ULTRA: Connectionless and unreliable data
42 *
43 ********************************************************************/
44
45 #include <linux/capability.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/socket.h>
49 #include <linux/sockios.h>
50 #include <linux/init.h>
51 #include <linux/net.h>
52 #include <linux/irda.h>
53 #include <linux/poll.h>
54
55 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
56 #include <asm/uaccess.h>
57
58 #include <net/sock.h>
59 #include <net/tcp_states.h>
60
61 #include <net/irda/af_irda.h>
62
63 static int irda_create(struct socket *sock, int protocol);
64
65 static const struct proto_ops irda_stream_ops;
66 static const struct proto_ops irda_seqpacket_ops;
67 static const struct proto_ops irda_dgram_ops;
68
69 #ifdef CONFIG_IRDA_ULTRA
70 static const struct proto_ops irda_ultra_ops;
71 #define ULTRA_MAX_DATA 382
72 #endif /* CONFIG_IRDA_ULTRA */
73
74 #define IRDA_MAX_HEADER (TTP_MAX_HEADER)
75
76 /*
77 * Function irda_data_indication (instance, sap, skb)
78 *
79 * Received some data from TinyTP. Just queue it on the receive queue
80 *
81 */
82 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
83 {
84 struct irda_sock *self;
85 struct sock *sk;
86 int err;
87
88 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
89
90 self = instance;
91 sk = instance;
92
93 err = sock_queue_rcv_skb(sk, skb);
94 if (err) {
95 IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__);
96 self->rx_flow = FLOW_STOP;
97
98 /* When we return error, TTP will need to requeue the skb */
99 return err;
100 }
101
102 return 0;
103 }
104
105 /*
106 * Function irda_disconnect_indication (instance, sap, reason, skb)
107 *
108 * Connection has been closed. Check reason to find out why
109 *
110 */
111 static void irda_disconnect_indication(void *instance, void *sap,
112 LM_REASON reason, struct sk_buff *skb)
113 {
114 struct irda_sock *self;
115 struct sock *sk;
116
117 self = instance;
118
119 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
120
121 /* Don't care about it, but let's not leak it */
122 if(skb)
123 dev_kfree_skb(skb);
124
125 sk = instance;
126 if (sk == NULL) {
127 IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n",
128 __FUNCTION__, self);
129 return;
130 }
131
132 /* Prevent race conditions with irda_release() and irda_shutdown() */
133 bh_lock_sock(sk);
134 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
135 sk->sk_state = TCP_CLOSE;
136 sk->sk_shutdown |= SEND_SHUTDOWN;
137
138 sk->sk_state_change(sk);
139
140 /* Close our TSAP.
141 * If we leave it open, IrLMP put it back into the list of
142 * unconnected LSAPs. The problem is that any incoming request
143 * can then be matched to this socket (and it will be, because
144 * it is at the head of the list). This would prevent any
145 * listening socket waiting on the same TSAP to get those
146 * requests. Some apps forget to close sockets, or hang to it
147 * a bit too long, so we may stay in this dead state long
148 * enough to be noticed...
149 * Note : all socket function do check sk->sk_state, so we are
150 * safe...
151 * Jean II
152 */
153 if (self->tsap) {
154 irttp_close_tsap(self->tsap);
155 self->tsap = NULL;
156 }
157 }
158 bh_unlock_sock(sk);
159
160 /* Note : once we are there, there is not much you want to do
161 * with the socket anymore, apart from closing it.
162 * For example, bind() and connect() won't reset sk->sk_err,
163 * sk->sk_shutdown and sk->sk_flags to valid values...
164 * Jean II
165 */
166 }
167
168 /*
169 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
170 *
171 * Connections has been confirmed by the remote device
172 *
173 */
174 static void irda_connect_confirm(void *instance, void *sap,
175 struct qos_info *qos,
176 __u32 max_sdu_size, __u8 max_header_size,
177 struct sk_buff *skb)
178 {
179 struct irda_sock *self;
180 struct sock *sk;
181
182 self = instance;
183
184 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
185
186 sk = instance;
187 if (sk == NULL) {
188 dev_kfree_skb(skb);
189 return;
190 }
191
192 dev_kfree_skb(skb);
193 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
194
195 /* How much header space do we need to reserve */
196 self->max_header_size = max_header_size;
197
198 /* IrTTP max SDU size in transmit direction */
199 self->max_sdu_size_tx = max_sdu_size;
200
201 /* Find out what the largest chunk of data that we can transmit is */
202 switch (sk->sk_type) {
203 case SOCK_STREAM:
204 if (max_sdu_size != 0) {
205 IRDA_ERROR("%s: max_sdu_size must be 0\n",
206 __FUNCTION__);
207 return;
208 }
209 self->max_data_size = irttp_get_max_seg_size(self->tsap);
210 break;
211 case SOCK_SEQPACKET:
212 if (max_sdu_size == 0) {
213 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
214 __FUNCTION__);
215 return;
216 }
217 self->max_data_size = max_sdu_size;
218 break;
219 default:
220 self->max_data_size = irttp_get_max_seg_size(self->tsap);
221 }
222
223 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
224 self->max_data_size);
225
226 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
227
228 /* We are now connected! */
229 sk->sk_state = TCP_ESTABLISHED;
230 sk->sk_state_change(sk);
231 }
232
233 /*
234 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
235 *
236 * Incoming connection
237 *
238 */
239 static void irda_connect_indication(void *instance, void *sap,
240 struct qos_info *qos, __u32 max_sdu_size,
241 __u8 max_header_size, struct sk_buff *skb)
242 {
243 struct irda_sock *self;
244 struct sock *sk;
245
246 self = instance;
247
248 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
249
250 sk = instance;
251 if (sk == NULL) {
252 dev_kfree_skb(skb);
253 return;
254 }
255
256 /* How much header space do we need to reserve */
257 self->max_header_size = max_header_size;
258
259 /* IrTTP max SDU size in transmit direction */
260 self->max_sdu_size_tx = max_sdu_size;
261
262 /* Find out what the largest chunk of data that we can transmit is */
263 switch (sk->sk_type) {
264 case SOCK_STREAM:
265 if (max_sdu_size != 0) {
266 IRDA_ERROR("%s: max_sdu_size must be 0\n",
267 __FUNCTION__);
268 kfree_skb(skb);
269 return;
270 }
271 self->max_data_size = irttp_get_max_seg_size(self->tsap);
272 break;
273 case SOCK_SEQPACKET:
274 if (max_sdu_size == 0) {
275 IRDA_ERROR("%s: max_sdu_size cannot be 0\n",
276 __FUNCTION__);
277 kfree_skb(skb);
278 return;
279 }
280 self->max_data_size = max_sdu_size;
281 break;
282 default:
283 self->max_data_size = irttp_get_max_seg_size(self->tsap);
284 }
285
286 IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__,
287 self->max_data_size);
288
289 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
290
291 skb_queue_tail(&sk->sk_receive_queue, skb);
292 sk->sk_state_change(sk);
293 }
294
295 /*
296 * Function irda_connect_response (handle)
297 *
298 * Accept incoming connection
299 *
300 */
301 static void irda_connect_response(struct irda_sock *self)
302 {
303 struct sk_buff *skb;
304
305 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
306
307 skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
308 GFP_ATOMIC);
309 if (skb == NULL) {
310 IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n",
311 __FUNCTION__);
312 return;
313 }
314
315 /* Reserve space for MUX_CONTROL and LAP header */
316 skb_reserve(skb, IRDA_MAX_HEADER);
317
318 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
319 }
320
321 /*
322 * Function irda_flow_indication (instance, sap, flow)
323 *
324 * Used by TinyTP to tell us if it can accept more data or not
325 *
326 */
327 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
328 {
329 struct irda_sock *self;
330 struct sock *sk;
331
332 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
333
334 self = instance;
335 sk = instance;
336 BUG_ON(sk == NULL);
337
338 switch (flow) {
339 case FLOW_STOP:
340 IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n",
341 __FUNCTION__);
342 self->tx_flow = flow;
343 break;
344 case FLOW_START:
345 self->tx_flow = flow;
346 IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n",
347 __FUNCTION__);
348 wake_up_interruptible(sk->sk_sleep);
349 break;
350 default:
351 IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__);
352 /* Unknown flow command, better stop */
353 self->tx_flow = flow;
354 break;
355 }
356 }
357
358 /*
359 * Function irda_getvalue_confirm (obj_id, value, priv)
360 *
361 * Got answer from remote LM-IAS, just pass object to requester...
362 *
363 * Note : duplicate from above, but we need our own version that
364 * doesn't touch the dtsap_sel and save the full value structure...
365 */
366 static void irda_getvalue_confirm(int result, __u16 obj_id,
367 struct ias_value *value, void *priv)
368 {
369 struct irda_sock *self;
370
371 self = (struct irda_sock *) priv;
372 if (!self) {
373 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
374 return;
375 }
376
377 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
378
379 /* We probably don't need to make any more queries */
380 iriap_close(self->iriap);
381 self->iriap = NULL;
382
383 /* Check if request succeeded */
384 if (result != IAS_SUCCESS) {
385 IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__,
386 result);
387
388 self->errno = result; /* We really need it later */
389
390 /* Wake up any processes waiting for result */
391 wake_up_interruptible(&self->query_wait);
392
393 return;
394 }
395
396 /* Pass the object to the caller (so the caller must delete it) */
397 self->ias_result = value;
398 self->errno = 0;
399
400 /* Wake up any processes waiting for result */
401 wake_up_interruptible(&self->query_wait);
402 }
403
404 /*
405 * Function irda_selective_discovery_indication (discovery)
406 *
407 * Got a selective discovery indication from IrLMP.
408 *
409 * IrLMP is telling us that this node is new and matching our hint bit
410 * filter. Wake up any process waiting for answer...
411 */
412 static void irda_selective_discovery_indication(discinfo_t *discovery,
413 DISCOVERY_MODE mode,
414 void *priv)
415 {
416 struct irda_sock *self;
417
418 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
419
420 self = (struct irda_sock *) priv;
421 if (!self) {
422 IRDA_WARNING("%s: lost myself!\n", __FUNCTION__);
423 return;
424 }
425
426 /* Pass parameter to the caller */
427 self->cachedaddr = discovery->daddr;
428
429 /* Wake up process if its waiting for device to be discovered */
430 wake_up_interruptible(&self->query_wait);
431 }
432
433 /*
434 * Function irda_discovery_timeout (priv)
435 *
436 * Timeout in the selective discovery process
437 *
438 * We were waiting for a node to be discovered, but nothing has come up
439 * so far. Wake up the user and tell him that we failed...
440 */
441 static void irda_discovery_timeout(u_long priv)
442 {
443 struct irda_sock *self;
444
445 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
446
447 self = (struct irda_sock *) priv;
448 BUG_ON(self == NULL);
449
450 /* Nothing for the caller */
451 self->cachelog = NULL;
452 self->cachedaddr = 0;
453 self->errno = -ETIME;
454
455 /* Wake up process if its still waiting... */
456 wake_up_interruptible(&self->query_wait);
457 }
458
459 /*
460 * Function irda_open_tsap (self)
461 *
462 * Open local Transport Service Access Point (TSAP)
463 *
464 */
465 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
466 {
467 notify_t notify;
468
469 if (self->tsap) {
470 IRDA_WARNING("%s: busy!\n", __FUNCTION__);
471 return -EBUSY;
472 }
473
474 /* Initialize callbacks to be used by the IrDA stack */
475 irda_notify_init(&notify);
476 notify.connect_confirm = irda_connect_confirm;
477 notify.connect_indication = irda_connect_indication;
478 notify.disconnect_indication = irda_disconnect_indication;
479 notify.data_indication = irda_data_indication;
480 notify.udata_indication = irda_data_indication;
481 notify.flow_indication = irda_flow_indication;
482 notify.instance = self;
483 strncpy(notify.name, name, NOTIFY_MAX_NAME);
484
485 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
486 &notify);
487 if (self->tsap == NULL) {
488 IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n",
489 __FUNCTION__);
490 return -ENOMEM;
491 }
492 /* Remember which TSAP selector we actually got */
493 self->stsap_sel = self->tsap->stsap_sel;
494
495 return 0;
496 }
497
498 /*
499 * Function irda_open_lsap (self)
500 *
501 * Open local Link Service Access Point (LSAP). Used for opening Ultra
502 * sockets
503 */
504 #ifdef CONFIG_IRDA_ULTRA
505 static int irda_open_lsap(struct irda_sock *self, int pid)
506 {
507 notify_t notify;
508
509 if (self->lsap) {
510 IRDA_WARNING("%s(), busy!\n", __FUNCTION__);
511 return -EBUSY;
512 }
513
514 /* Initialize callbacks to be used by the IrDA stack */
515 irda_notify_init(&notify);
516 notify.udata_indication = irda_data_indication;
517 notify.instance = self;
518 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
519
520 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
521 if (self->lsap == NULL) {
522 IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__);
523 return -ENOMEM;
524 }
525
526 return 0;
527 }
528 #endif /* CONFIG_IRDA_ULTRA */
529
530 /*
531 * Function irda_find_lsap_sel (self, name)
532 *
533 * Try to lookup LSAP selector in remote LM-IAS
534 *
535 * Basically, we start a IAP query, and then go to sleep. When the query
536 * return, irda_getvalue_confirm will wake us up, and we can examine the
537 * result of the query...
538 * Note that in some case, the query fail even before we go to sleep,
539 * creating some races...
540 */
541 static int irda_find_lsap_sel(struct irda_sock *self, char *name)
542 {
543 IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name);
544
545 if (self->iriap) {
546 IRDA_WARNING("%s(): busy with a previous query\n",
547 __FUNCTION__);
548 return -EBUSY;
549 }
550
551 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
552 irda_getvalue_confirm);
553 if(self->iriap == NULL)
554 return -ENOMEM;
555
556 /* Treat unexpected wakeup as disconnect */
557 self->errno = -EHOSTUNREACH;
558
559 /* Query remote LM-IAS */
560 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
561 name, "IrDA:TinyTP:LsapSel");
562
563 /* Wait for answer, if not yet finished (or failed) */
564 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
565 /* Treat signals as disconnect */
566 return -EHOSTUNREACH;
567
568 /* Check what happened */
569 if (self->errno)
570 {
571 /* Requested object/attribute doesn't exist */
572 if((self->errno == IAS_CLASS_UNKNOWN) ||
573 (self->errno == IAS_ATTRIB_UNKNOWN))
574 return (-EADDRNOTAVAIL);
575 else
576 return (-EHOSTUNREACH);
577 }
578
579 /* Get the remote TSAP selector */
580 switch (self->ias_result->type) {
581 case IAS_INTEGER:
582 IRDA_DEBUG(4, "%s() int=%d\n",
583 __FUNCTION__, self->ias_result->t.integer);
584
585 if (self->ias_result->t.integer != -1)
586 self->dtsap_sel = self->ias_result->t.integer;
587 else
588 self->dtsap_sel = 0;
589 break;
590 default:
591 self->dtsap_sel = 0;
592 IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__);
593 break;
594 }
595 if (self->ias_result)
596 irias_delete_value(self->ias_result);
597
598 if (self->dtsap_sel)
599 return 0;
600
601 return -EADDRNOTAVAIL;
602 }
603
604 /*
605 * Function irda_discover_daddr_and_lsap_sel (self, name)
606 *
607 * This try to find a device with the requested service.
608 *
609 * It basically look into the discovery log. For each address in the list,
610 * it queries the LM-IAS of the device to find if this device offer
611 * the requested service.
612 * If there is more than one node supporting the service, we complain
613 * to the user (it should move devices around).
614 * The, we set both the destination address and the lsap selector to point
615 * on the service on the unique device we have found.
616 *
617 * Note : this function fails if there is more than one device in range,
618 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
619 * Moreover, we would need to wait the LAP disconnection...
620 */
621 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
622 {
623 discinfo_t *discoveries; /* Copy of the discovery log */
624 int number; /* Number of nodes in the log */
625 int i;
626 int err = -ENETUNREACH;
627 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
628 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
629
630 IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name);
631
632 /* Ask lmp for the current discovery log
633 * Note : we have to use irlmp_get_discoveries(), as opposed
634 * to play with the cachelog directly, because while we are
635 * making our ias query, le log might change... */
636 discoveries = irlmp_get_discoveries(&number, self->mask.word,
637 self->nslots);
638 /* Check if the we got some results */
639 if (discoveries == NULL)
640 return -ENETUNREACH; /* No nodes discovered */
641
642 /*
643 * Now, check all discovered devices (if any), and connect
644 * client only about the services that the client is
645 * interested in...
646 */
647 for(i = 0; i < number; i++) {
648 /* Try the address in the log */
649 self->daddr = discoveries[i].daddr;
650 self->saddr = 0x0;
651 IRDA_DEBUG(1, "%s(), trying daddr = %08x\n",
652 __FUNCTION__, self->daddr);
653
654 /* Query remote LM-IAS for this service */
655 err = irda_find_lsap_sel(self, name);
656 switch (err) {
657 case 0:
658 /* We found the requested service */
659 if(daddr != DEV_ADDR_ANY) {
660 IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n",
661 __FUNCTION__, name);
662 self->daddr = DEV_ADDR_ANY;
663 kfree(discoveries);
664 return(-ENOTUNIQ);
665 }
666 /* First time we found that one, save it ! */
667 daddr = self->daddr;
668 dtsap_sel = self->dtsap_sel;
669 break;
670 case -EADDRNOTAVAIL:
671 /* Requested service simply doesn't exist on this node */
672 break;
673 default:
674 /* Something bad did happen :-( */
675 IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__);
676 self->daddr = DEV_ADDR_ANY;
677 kfree(discoveries);
678 return(-EHOSTUNREACH);
679 break;
680 }
681 }
682 /* Cleanup our copy of the discovery log */
683 kfree(discoveries);
684
685 /* Check out what we found */
686 if(daddr == DEV_ADDR_ANY) {
687 IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n",
688 __FUNCTION__, name);
689 self->daddr = DEV_ADDR_ANY;
690 return(-EADDRNOTAVAIL);
691 }
692
693 /* Revert back to discovered device & service */
694 self->daddr = daddr;
695 self->saddr = 0x0;
696 self->dtsap_sel = dtsap_sel;
697
698 IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n",
699 __FUNCTION__, name, self->daddr);
700
701 return 0;
702 }
703
704 /*
705 * Function irda_getname (sock, uaddr, uaddr_len, peer)
706 *
707 * Return the our own, or peers socket address (sockaddr_irda)
708 *
709 */
710 static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
711 int *uaddr_len, int peer)
712 {
713 struct sockaddr_irda saddr;
714 struct sock *sk = sock->sk;
715 struct irda_sock *self = irda_sk(sk);
716
717 if (peer) {
718 if (sk->sk_state != TCP_ESTABLISHED)
719 return -ENOTCONN;
720
721 saddr.sir_family = AF_IRDA;
722 saddr.sir_lsap_sel = self->dtsap_sel;
723 saddr.sir_addr = self->daddr;
724 } else {
725 saddr.sir_family = AF_IRDA;
726 saddr.sir_lsap_sel = self->stsap_sel;
727 saddr.sir_addr = self->saddr;
728 }
729
730 IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel);
731 IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr);
732
733 /* uaddr_len come to us uninitialised */
734 *uaddr_len = sizeof (struct sockaddr_irda);
735 memcpy(uaddr, &saddr, *uaddr_len);
736
737 return 0;
738 }
739
740 /*
741 * Function irda_listen (sock, backlog)
742 *
743 * Just move to the listen state
744 *
745 */
746 static int irda_listen(struct socket *sock, int backlog)
747 {
748 struct sock *sk = sock->sk;
749
750 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
751
752 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
753 (sk->sk_type != SOCK_DGRAM))
754 return -EOPNOTSUPP;
755
756 if (sk->sk_state != TCP_LISTEN) {
757 sk->sk_max_ack_backlog = backlog;
758 sk->sk_state = TCP_LISTEN;
759
760 return 0;
761 }
762
763 return -EOPNOTSUPP;
764 }
765
766 /*
767 * Function irda_bind (sock, uaddr, addr_len)
768 *
769 * Used by servers to register their well known TSAP
770 *
771 */
772 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
773 {
774 struct sock *sk = sock->sk;
775 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
776 struct irda_sock *self = irda_sk(sk);
777 int err;
778
779 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
780
781 if (addr_len != sizeof(struct sockaddr_irda))
782 return -EINVAL;
783
784 #ifdef CONFIG_IRDA_ULTRA
785 /* Special care for Ultra sockets */
786 if ((sk->sk_type == SOCK_DGRAM) &&
787 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
788 self->pid = addr->sir_lsap_sel;
789 if (self->pid & 0x80) {
790 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
791 return -EOPNOTSUPP;
792 }
793 err = irda_open_lsap(self, self->pid);
794 if (err < 0)
795 return err;
796
797 /* Pretend we are connected */
798 sock->state = SS_CONNECTED;
799 sk->sk_state = TCP_ESTABLISHED;
800
801 return 0;
802 }
803 #endif /* CONFIG_IRDA_ULTRA */
804
805 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
806 if (err < 0)
807 return err;
808
809 /* Register with LM-IAS */
810 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
811 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
812 self->stsap_sel, IAS_KERNEL_ATTR);
813 irias_insert_object(self->ias_obj);
814
815 return 0;
816 }
817
818 /*
819 * Function irda_accept (sock, newsock, flags)
820 *
821 * Wait for incoming connection
822 *
823 */
824 static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
825 {
826 struct sock *sk = sock->sk;
827 struct irda_sock *new, *self = irda_sk(sk);
828 struct sock *newsk;
829 struct sk_buff *skb;
830 int err;
831
832 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
833
834 err = irda_create(newsock, sk->sk_protocol);
835 if (err)
836 return err;
837
838 if (sock->state != SS_UNCONNECTED)
839 return -EINVAL;
840
841 if ((sk = sock->sk) == NULL)
842 return -EINVAL;
843
844 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
845 (sk->sk_type != SOCK_DGRAM))
846 return -EOPNOTSUPP;
847
848 if (sk->sk_state != TCP_LISTEN)
849 return -EINVAL;
850
851 /*
852 * The read queue this time is holding sockets ready to use
853 * hooked into the SABM we saved
854 */
855
856 /*
857 * We can perform the accept only if there is incoming data
858 * on the listening socket.
859 * So, we will block the caller until we receive any data.
860 * If the caller was waiting on select() or poll() before
861 * calling us, the data is waiting for us ;-)
862 * Jean II
863 */
864 while (1) {
865 skb = skb_dequeue(&sk->sk_receive_queue);
866 if (skb)
867 break;
868
869 /* Non blocking operation */
870 if (flags & O_NONBLOCK)
871 return -EWOULDBLOCK;
872
873 err = wait_event_interruptible(*(sk->sk_sleep),
874 skb_peek(&sk->sk_receive_queue));
875 if (err)
876 return err;
877 }
878
879 newsk = newsock->sk;
880 if (newsk == NULL)
881 return -EIO;
882
883 newsk->sk_state = TCP_ESTABLISHED;
884
885 new = irda_sk(newsk);
886
887 /* Now attach up the new socket */
888 new->tsap = irttp_dup(self->tsap, new);
889 if (!new->tsap) {
890 IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__);
891 kfree_skb(skb);
892 return -1;
893 }
894
895 new->stsap_sel = new->tsap->stsap_sel;
896 new->dtsap_sel = new->tsap->dtsap_sel;
897 new->saddr = irttp_get_saddr(new->tsap);
898 new->daddr = irttp_get_daddr(new->tsap);
899
900 new->max_sdu_size_tx = self->max_sdu_size_tx;
901 new->max_sdu_size_rx = self->max_sdu_size_rx;
902 new->max_data_size = self->max_data_size;
903 new->max_header_size = self->max_header_size;
904
905 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
906
907 /* Clean up the original one to keep it in listen state */
908 irttp_listen(self->tsap);
909
910 /* Wow ! What is that ? Jean II */
911 skb->sk = NULL;
912 skb->destructor = NULL;
913 kfree_skb(skb);
914 sk->sk_ack_backlog--;
915
916 newsock->state = SS_CONNECTED;
917
918 irda_connect_response(new);
919
920 return 0;
921 }
922
923 /*
924 * Function irda_connect (sock, uaddr, addr_len, flags)
925 *
926 * Connect to a IrDA device
927 *
928 * The main difference with a "standard" connect is that with IrDA we need
929 * to resolve the service name into a TSAP selector (in TCP, port number
930 * doesn't have to be resolved).
931 * Because of this service name resoltion, we can offer "auto-connect",
932 * where we connect to a service without specifying a destination address.
933 *
934 * Note : by consulting "errno", the user space caller may learn the cause
935 * of the failure. Most of them are visible in the function, others may come
936 * from subroutines called and are listed here :
937 * o EBUSY : already processing a connect
938 * o EHOSTUNREACH : bad addr->sir_addr argument
939 * o EADDRNOTAVAIL : bad addr->sir_name argument
940 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
941 * o ENETUNREACH : no node found on the network (auto-connect)
942 */
943 static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
944 int addr_len, int flags)
945 {
946 struct sock *sk = sock->sk;
947 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
948 struct irda_sock *self = irda_sk(sk);
949 int err;
950
951 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
952
953 /* Don't allow connect for Ultra sockets */
954 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
955 return -ESOCKTNOSUPPORT;
956
957 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
958 sock->state = SS_CONNECTED;
959 return 0; /* Connect completed during a ERESTARTSYS event */
960 }
961
962 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
963 sock->state = SS_UNCONNECTED;
964 return -ECONNREFUSED;
965 }
966
967 if (sk->sk_state == TCP_ESTABLISHED)
968 return -EISCONN; /* No reconnect on a seqpacket socket */
969
970 sk->sk_state = TCP_CLOSE;
971 sock->state = SS_UNCONNECTED;
972
973 if (addr_len != sizeof(struct sockaddr_irda))
974 return -EINVAL;
975
976 /* Check if user supplied any destination device address */
977 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
978 /* Try to find one suitable */
979 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
980 if (err) {
981 IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__);
982 return err;
983 }
984 } else {
985 /* Use the one provided by the user */
986 self->daddr = addr->sir_addr;
987 IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr);
988
989 /* If we don't have a valid service name, we assume the
990 * user want to connect on a specific LSAP. Prevent
991 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
992 if((addr->sir_name[0] != '\0') ||
993 (addr->sir_lsap_sel >= 0x70)) {
994 /* Query remote LM-IAS using service name */
995 err = irda_find_lsap_sel(self, addr->sir_name);
996 if (err) {
997 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
998 return err;
999 }
1000 } else {
1001 /* Directly connect to the remote LSAP
1002 * specified by the sir_lsap field.
1003 * Please use with caution, in IrDA LSAPs are
1004 * dynamic and there is no "well-known" LSAP. */
1005 self->dtsap_sel = addr->sir_lsap_sel;
1006 }
1007 }
1008
1009 /* Check if we have opened a local TSAP */
1010 if (!self->tsap)
1011 irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1012
1013 /* Move to connecting socket, start sending Connect Requests */
1014 sock->state = SS_CONNECTING;
1015 sk->sk_state = TCP_SYN_SENT;
1016
1017 /* Connect to remote device */
1018 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1019 self->saddr, self->daddr, NULL,
1020 self->max_sdu_size_rx, NULL);
1021 if (err) {
1022 IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__);
1023 return err;
1024 }
1025
1026 /* Now the loop */
1027 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1028 return -EINPROGRESS;
1029
1030 if (wait_event_interruptible(*(sk->sk_sleep),
1031 (sk->sk_state != TCP_SYN_SENT)))
1032 return -ERESTARTSYS;
1033
1034 if (sk->sk_state != TCP_ESTABLISHED) {
1035 sock->state = SS_UNCONNECTED;
1036 err = sock_error(sk);
1037 return err? err : -ECONNRESET;
1038 }
1039
1040 sock->state = SS_CONNECTED;
1041
1042 /* At this point, IrLMP has assigned our source address */
1043 self->saddr = irttp_get_saddr(self->tsap);
1044
1045 return 0;
1046 }
1047
1048 static struct proto irda_proto = {
1049 .name = "IRDA",
1050 .owner = THIS_MODULE,
1051 .obj_size = sizeof(struct irda_sock),
1052 };
1053
1054 /*
1055 * Function irda_create (sock, protocol)
1056 *
1057 * Create IrDA socket
1058 *
1059 */
1060 static int irda_create(struct socket *sock, int protocol)
1061 {
1062 struct sock *sk;
1063 struct irda_sock *self;
1064
1065 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1066
1067 /* Check for valid socket type */
1068 switch (sock->type) {
1069 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1070 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1071 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1072 break;
1073 default:
1074 return -ESOCKTNOSUPPORT;
1075 }
1076
1077 /* Allocate networking socket */
1078 sk = sk_alloc(PF_IRDA, GFP_ATOMIC, &irda_proto, 1);
1079 if (sk == NULL)
1080 return -ENOMEM;
1081
1082 self = irda_sk(sk);
1083 IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self);
1084
1085 init_waitqueue_head(&self->query_wait);
1086
1087 /* Initialise networking socket struct */
1088 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1089 sk->sk_family = PF_IRDA;
1090 sk->sk_protocol = protocol;
1091
1092 switch (sock->type) {
1093 case SOCK_STREAM:
1094 sock->ops = &irda_stream_ops;
1095 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1096 break;
1097 case SOCK_SEQPACKET:
1098 sock->ops = &irda_seqpacket_ops;
1099 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1100 break;
1101 case SOCK_DGRAM:
1102 switch (protocol) {
1103 #ifdef CONFIG_IRDA_ULTRA
1104 case IRDAPROTO_ULTRA:
1105 sock->ops = &irda_ultra_ops;
1106 /* Initialise now, because we may send on unbound
1107 * sockets. Jean II */
1108 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1109 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1110 break;
1111 #endif /* CONFIG_IRDA_ULTRA */
1112 case IRDAPROTO_UNITDATA:
1113 sock->ops = &irda_dgram_ops;
1114 /* We let Unitdata conn. be like seqpack conn. */
1115 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1116 break;
1117 default:
1118 IRDA_ERROR("%s: protocol not supported!\n",
1119 __FUNCTION__);
1120 return -ESOCKTNOSUPPORT;
1121 }
1122 break;
1123 default:
1124 return -ESOCKTNOSUPPORT;
1125 }
1126
1127 /* Register as a client with IrLMP */
1128 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1129 self->mask.word = 0xffff;
1130 self->rx_flow = self->tx_flow = FLOW_START;
1131 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1132 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1133 self->saddr = 0x0; /* so IrLMP assign us any link */
1134 return 0;
1135 }
1136
1137 /*
1138 * Function irda_destroy_socket (self)
1139 *
1140 * Destroy socket
1141 *
1142 */
1143 static void irda_destroy_socket(struct irda_sock *self)
1144 {
1145 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1146
1147 /* Unregister with IrLMP */
1148 irlmp_unregister_client(self->ckey);
1149 irlmp_unregister_service(self->skey);
1150
1151 /* Unregister with LM-IAS */
1152 if (self->ias_obj) {
1153 irias_delete_object(self->ias_obj);
1154 self->ias_obj = NULL;
1155 }
1156
1157 if (self->iriap) {
1158 iriap_close(self->iriap);
1159 self->iriap = NULL;
1160 }
1161
1162 if (self->tsap) {
1163 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1164 irttp_close_tsap(self->tsap);
1165 self->tsap = NULL;
1166 }
1167 #ifdef CONFIG_IRDA_ULTRA
1168 if (self->lsap) {
1169 irlmp_close_lsap(self->lsap);
1170 self->lsap = NULL;
1171 }
1172 #endif /* CONFIG_IRDA_ULTRA */
1173 }
1174
1175 /*
1176 * Function irda_release (sock)
1177 */
1178 static int irda_release(struct socket *sock)
1179 {
1180 struct sock *sk = sock->sk;
1181
1182 IRDA_DEBUG(2, "%s()\n", __FUNCTION__);
1183
1184 if (sk == NULL)
1185 return 0;
1186
1187 lock_sock(sk);
1188 sk->sk_state = TCP_CLOSE;
1189 sk->sk_shutdown |= SEND_SHUTDOWN;
1190 sk->sk_state_change(sk);
1191
1192 /* Destroy IrDA socket */
1193 irda_destroy_socket(irda_sk(sk));
1194
1195 sock_orphan(sk);
1196 sock->sk = NULL;
1197 release_sock(sk);
1198
1199 /* Purge queues (see sock_init_data()) */
1200 skb_queue_purge(&sk->sk_receive_queue);
1201
1202 /* Destroy networking socket if we are the last reference on it,
1203 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1204 sock_put(sk);
1205
1206 /* Notes on socket locking and deallocation... - Jean II
1207 * In theory we should put pairs of sock_hold() / sock_put() to
1208 * prevent the socket to be destroyed whenever there is an
1209 * outstanding request or outstanding incoming packet or event.
1210 *
1211 * 1) This may include IAS request, both in connect and getsockopt.
1212 * Unfortunately, the situation is a bit more messy than it looks,
1213 * because we close iriap and kfree(self) above.
1214 *
1215 * 2) This may include selective discovery in getsockopt.
1216 * Same stuff as above, irlmp registration and self are gone.
1217 *
1218 * Probably 1 and 2 may not matter, because it's all triggered
1219 * by a process and the socket layer already prevent the
1220 * socket to go away while a process is holding it, through
1221 * sockfd_put() and fput()...
1222 *
1223 * 3) This may include deferred TSAP closure. In particular,
1224 * we may receive a late irda_disconnect_indication()
1225 * Fortunately, (tsap_cb *)->close_pend should protect us
1226 * from that.
1227 *
1228 * I did some testing on SMP, and it looks solid. And the socket
1229 * memory leak is now gone... - Jean II
1230 */
1231
1232 return 0;
1233 }
1234
1235 /*
1236 * Function irda_sendmsg (iocb, sock, msg, len)
1237 *
1238 * Send message down to TinyTP. This function is used for both STREAM and
1239 * SEQPACK services. This is possible since it forces the client to
1240 * fragment the message if necessary
1241 */
1242 static int irda_sendmsg(struct kiocb *iocb, struct socket *sock,
1243 struct msghdr *msg, size_t len)
1244 {
1245 struct sock *sk = sock->sk;
1246 struct irda_sock *self;
1247 struct sk_buff *skb;
1248 int err;
1249
1250 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1251
1252 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1253 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1254 return -EINVAL;
1255
1256 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1257 send_sig(SIGPIPE, current, 0);
1258 return -EPIPE;
1259 }
1260
1261 if (sk->sk_state != TCP_ESTABLISHED)
1262 return -ENOTCONN;
1263
1264 self = irda_sk(sk);
1265
1266 /* Check if IrTTP is wants us to slow down */
1267
1268 if (wait_event_interruptible(*(sk->sk_sleep),
1269 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED)))
1270 return -ERESTARTSYS;
1271
1272 /* Check if we are still connected */
1273 if (sk->sk_state != TCP_ESTABLISHED)
1274 return -ENOTCONN;
1275
1276 /* Check that we don't send out too big frames */
1277 if (len > self->max_data_size) {
1278 IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n",
1279 __FUNCTION__, len, self->max_data_size);
1280 len = self->max_data_size;
1281 }
1282
1283 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1284 msg->msg_flags & MSG_DONTWAIT, &err);
1285 if (!skb)
1286 return -ENOBUFS;
1287
1288 skb_reserve(skb, self->max_header_size + 16);
1289 skb_reset_transport_header(skb);
1290 skb_put(skb, len);
1291 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1292 if (err) {
1293 kfree_skb(skb);
1294 return err;
1295 }
1296
1297 /*
1298 * Just send the message to TinyTP, and let it deal with possible
1299 * errors. No need to duplicate all that here
1300 */
1301 err = irttp_data_request(self->tsap, skb);
1302 if (err) {
1303 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1304 return err;
1305 }
1306 /* Tell client how much data we actually sent */
1307 return len;
1308 }
1309
1310 /*
1311 * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags)
1312 *
1313 * Try to receive message and copy it to user. The frame is discarded
1314 * after being read, regardless of how much the user actually read
1315 */
1316 static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock,
1317 struct msghdr *msg, size_t size, int flags)
1318 {
1319 struct sock *sk = sock->sk;
1320 struct irda_sock *self = irda_sk(sk);
1321 struct sk_buff *skb;
1322 size_t copied;
1323 int err;
1324
1325 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1326
1327 if ((err = sock_error(sk)) < 0)
1328 return err;
1329
1330 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1331 flags & MSG_DONTWAIT, &err);
1332 if (!skb)
1333 return err;
1334
1335 skb_reset_transport_header(skb);
1336 copied = skb->len;
1337
1338 if (copied > size) {
1339 IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n",
1340 __FUNCTION__, copied, size);
1341 copied = size;
1342 msg->msg_flags |= MSG_TRUNC;
1343 }
1344 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1345
1346 skb_free_datagram(sk, skb);
1347
1348 /*
1349 * Check if we have previously stopped IrTTP and we know
1350 * have more free space in our rx_queue. If so tell IrTTP
1351 * to start delivering frames again before our rx_queue gets
1352 * empty
1353 */
1354 if (self->rx_flow == FLOW_STOP) {
1355 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1356 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1357 self->rx_flow = FLOW_START;
1358 irttp_flow_request(self->tsap, FLOW_START);
1359 }
1360 }
1361
1362 return copied;
1363 }
1364
1365 /*
1366 * Function irda_recvmsg_stream (iocb, sock, msg, size, flags)
1367 */
1368 static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock,
1369 struct msghdr *msg, size_t size, int flags)
1370 {
1371 struct sock *sk = sock->sk;
1372 struct irda_sock *self = irda_sk(sk);
1373 int noblock = flags & MSG_DONTWAIT;
1374 size_t copied = 0;
1375 int target, err;
1376 long timeo;
1377
1378 IRDA_DEBUG(3, "%s()\n", __FUNCTION__);
1379
1380 if ((err = sock_error(sk)) < 0)
1381 return err;
1382
1383 if (sock->flags & __SO_ACCEPTCON)
1384 return(-EINVAL);
1385
1386 if (flags & MSG_OOB)
1387 return -EOPNOTSUPP;
1388
1389 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
1390 timeo = sock_rcvtimeo(sk, noblock);
1391
1392 msg->msg_namelen = 0;
1393
1394 do {
1395 int chunk;
1396 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1397
1398 if (skb == NULL) {
1399 DEFINE_WAIT(wait);
1400 int ret = 0;
1401
1402 if (copied >= target)
1403 break;
1404
1405 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1406
1407 /*
1408 * POSIX 1003.1g mandates this order.
1409 */
1410 ret = sock_error(sk);
1411 if (ret)
1412 ;
1413 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1414 ;
1415 else if (noblock)
1416 ret = -EAGAIN;
1417 else if (signal_pending(current))
1418 ret = sock_intr_errno(timeo);
1419 else if (sk->sk_state != TCP_ESTABLISHED)
1420 ret = -ENOTCONN;
1421 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1422 /* Wait process until data arrives */
1423 schedule();
1424
1425 finish_wait(sk->sk_sleep, &wait);
1426
1427 if (ret)
1428 return ret;
1429 if (sk->sk_shutdown & RCV_SHUTDOWN)
1430 break;
1431
1432 continue;
1433 }
1434
1435 chunk = min_t(unsigned int, skb->len, size);
1436 if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) {
1437 skb_queue_head(&sk->sk_receive_queue, skb);
1438 if (copied == 0)
1439 copied = -EFAULT;
1440 break;
1441 }
1442 copied += chunk;
1443 size -= chunk;
1444
1445 /* Mark read part of skb as used */
1446 if (!(flags & MSG_PEEK)) {
1447 skb_pull(skb, chunk);
1448
1449 /* put the skb back if we didn't use it up.. */
1450 if (skb->len) {
1451 IRDA_DEBUG(1, "%s(), back on q!\n",
1452 __FUNCTION__);
1453 skb_queue_head(&sk->sk_receive_queue, skb);
1454 break;
1455 }
1456
1457 kfree_skb(skb);
1458 } else {
1459 IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__);
1460
1461 /* put message back and return */
1462 skb_queue_head(&sk->sk_receive_queue, skb);
1463 break;
1464 }
1465 } while (size);
1466
1467 /*
1468 * Check if we have previously stopped IrTTP and we know
1469 * have more free space in our rx_queue. If so tell IrTTP
1470 * to start delivering frames again before our rx_queue gets
1471 * empty
1472 */
1473 if (self->rx_flow == FLOW_STOP) {
1474 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1475 IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__);
1476 self->rx_flow = FLOW_START;
1477 irttp_flow_request(self->tsap, FLOW_START);
1478 }
1479 }
1480
1481 return copied;
1482 }
1483
1484 /*
1485 * Function irda_sendmsg_dgram (iocb, sock, msg, len)
1486 *
1487 * Send message down to TinyTP for the unreliable sequenced
1488 * packet service...
1489 *
1490 */
1491 static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock,
1492 struct msghdr *msg, size_t len)
1493 {
1494 struct sock *sk = sock->sk;
1495 struct irda_sock *self;
1496 struct sk_buff *skb;
1497 int err;
1498
1499 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1500
1501 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1502 return -EINVAL;
1503
1504 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1505 send_sig(SIGPIPE, current, 0);
1506 return -EPIPE;
1507 }
1508
1509 if (sk->sk_state != TCP_ESTABLISHED)
1510 return -ENOTCONN;
1511
1512 self = irda_sk(sk);
1513
1514 /*
1515 * Check that we don't send out too big frames. This is an unreliable
1516 * service, so we have no fragmentation and no coalescence
1517 */
1518 if (len > self->max_data_size) {
1519 IRDA_DEBUG(0, "%s(), Warning to much data! "
1520 "Chopping frame from %zd to %d bytes!\n",
1521 __FUNCTION__, len, self->max_data_size);
1522 len = self->max_data_size;
1523 }
1524
1525 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1526 msg->msg_flags & MSG_DONTWAIT, &err);
1527 if (!skb)
1528 return -ENOBUFS;
1529
1530 skb_reserve(skb, self->max_header_size);
1531 skb_reset_transport_header(skb);
1532
1533 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1534 skb_put(skb, len);
1535 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1536 if (err) {
1537 kfree_skb(skb);
1538 return err;
1539 }
1540
1541 /*
1542 * Just send the message to TinyTP, and let it deal with possible
1543 * errors. No need to duplicate all that here
1544 */
1545 err = irttp_udata_request(self->tsap, skb);
1546 if (err) {
1547 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1548 return err;
1549 }
1550 return len;
1551 }
1552
1553 /*
1554 * Function irda_sendmsg_ultra (iocb, sock, msg, len)
1555 *
1556 * Send message down to IrLMP for the unreliable Ultra
1557 * packet service...
1558 */
1559 #ifdef CONFIG_IRDA_ULTRA
1560 static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock,
1561 struct msghdr *msg, size_t len)
1562 {
1563 struct sock *sk = sock->sk;
1564 struct irda_sock *self;
1565 __u8 pid = 0;
1566 int bound = 0;
1567 struct sk_buff *skb;
1568 int err;
1569
1570 IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len);
1571
1572 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1573 return -EINVAL;
1574
1575 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1576 send_sig(SIGPIPE, current, 0);
1577 return -EPIPE;
1578 }
1579
1580 self = irda_sk(sk);
1581
1582 /* Check if an address was specified with sendto. Jean II */
1583 if (msg->msg_name) {
1584 struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name;
1585 /* Check address, extract pid. Jean II */
1586 if (msg->msg_namelen < sizeof(*addr))
1587 return -EINVAL;
1588 if (addr->sir_family != AF_IRDA)
1589 return -EINVAL;
1590
1591 pid = addr->sir_lsap_sel;
1592 if (pid & 0x80) {
1593 IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__);
1594 return -EOPNOTSUPP;
1595 }
1596 } else {
1597 /* Check that the socket is properly bound to an Ultra
1598 * port. Jean II */
1599 if ((self->lsap == NULL) ||
1600 (sk->sk_state != TCP_ESTABLISHED)) {
1601 IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n",
1602 __FUNCTION__);
1603 return -ENOTCONN;
1604 }
1605 /* Use PID from socket */
1606 bound = 1;
1607 }
1608
1609 /*
1610 * Check that we don't send out too big frames. This is an unreliable
1611 * service, so we have no fragmentation and no coalescence
1612 */
1613 if (len > self->max_data_size) {
1614 IRDA_DEBUG(0, "%s(), Warning to much data! "
1615 "Chopping frame from %zd to %d bytes!\n",
1616 __FUNCTION__, len, self->max_data_size);
1617 len = self->max_data_size;
1618 }
1619
1620 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1621 msg->msg_flags & MSG_DONTWAIT, &err);
1622 if (!skb)
1623 return -ENOBUFS;
1624
1625 skb_reserve(skb, self->max_header_size);
1626 skb_reset_transport_header(skb);
1627
1628 IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__);
1629 skb_put(skb, len);
1630 err = memcpy_fromiovec(skb_transport_header(skb), msg->msg_iov, len);
1631 if (err) {
1632 kfree_skb(skb);
1633 return err;
1634 }
1635
1636 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1637 skb, pid);
1638 if (err) {
1639 IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err);
1640 return err;
1641 }
1642 return len;
1643 }
1644 #endif /* CONFIG_IRDA_ULTRA */
1645
1646 /*
1647 * Function irda_shutdown (sk, how)
1648 */
1649 static int irda_shutdown(struct socket *sock, int how)
1650 {
1651 struct sock *sk = sock->sk;
1652 struct irda_sock *self = irda_sk(sk);
1653
1654 IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self);
1655
1656 sk->sk_state = TCP_CLOSE;
1657 sk->sk_shutdown |= SEND_SHUTDOWN;
1658 sk->sk_state_change(sk);
1659
1660 if (self->iriap) {
1661 iriap_close(self->iriap);
1662 self->iriap = NULL;
1663 }
1664
1665 if (self->tsap) {
1666 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1667 irttp_close_tsap(self->tsap);
1668 self->tsap = NULL;
1669 }
1670
1671 /* A few cleanup so the socket look as good as new... */
1672 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1673 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1674 self->saddr = 0x0; /* so IrLMP assign us any link */
1675
1676 return 0;
1677 }
1678
1679 /*
1680 * Function irda_poll (file, sock, wait)
1681 */
1682 static unsigned int irda_poll(struct file * file, struct socket *sock,
1683 poll_table *wait)
1684 {
1685 struct sock *sk = sock->sk;
1686 struct irda_sock *self = irda_sk(sk);
1687 unsigned int mask;
1688
1689 IRDA_DEBUG(4, "%s()\n", __FUNCTION__);
1690
1691 poll_wait(file, sk->sk_sleep, wait);
1692 mask = 0;
1693
1694 /* Exceptional events? */
1695 if (sk->sk_err)
1696 mask |= POLLERR;
1697 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1698 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1699 mask |= POLLHUP;
1700 }
1701
1702 /* Readable? */
1703 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1704 IRDA_DEBUG(4, "Socket is readable\n");
1705 mask |= POLLIN | POLLRDNORM;
1706 }
1707
1708 /* Connection-based need to check for termination and startup */
1709 switch (sk->sk_type) {
1710 case SOCK_STREAM:
1711 if (sk->sk_state == TCP_CLOSE) {
1712 IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__);
1713 mask |= POLLHUP;
1714 }
1715
1716 if (sk->sk_state == TCP_ESTABLISHED) {
1717 if ((self->tx_flow == FLOW_START) &&
1718 sock_writeable(sk))
1719 {
1720 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1721 }
1722 }
1723 break;
1724 case SOCK_SEQPACKET:
1725 if ((self->tx_flow == FLOW_START) &&
1726 sock_writeable(sk))
1727 {
1728 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1729 }
1730 break;
1731 case SOCK_DGRAM:
1732 if (sock_writeable(sk))
1733 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1734 break;
1735 default:
1736 break;
1737 }
1738 return mask;
1739 }
1740
1741 /*
1742 * Function irda_ioctl (sock, cmd, arg)
1743 */
1744 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1745 {
1746 struct sock *sk = sock->sk;
1747
1748 IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd);
1749
1750 switch (cmd) {
1751 case TIOCOUTQ: {
1752 long amount;
1753 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1754 if (amount < 0)
1755 amount = 0;
1756 if (put_user(amount, (unsigned int __user *)arg))
1757 return -EFAULT;
1758 return 0;
1759 }
1760
1761 case TIOCINQ: {
1762 struct sk_buff *skb;
1763 long amount = 0L;
1764 /* These two are safe on a single CPU system as only user tasks fiddle here */
1765 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1766 amount = skb->len;
1767 if (put_user(amount, (unsigned int __user *)arg))
1768 return -EFAULT;
1769 return 0;
1770 }
1771
1772 case SIOCGSTAMP:
1773 if (sk != NULL)
1774 return sock_get_timestamp(sk, (struct timeval __user *)arg);
1775 return -EINVAL;
1776
1777 case SIOCGIFADDR:
1778 case SIOCSIFADDR:
1779 case SIOCGIFDSTADDR:
1780 case SIOCSIFDSTADDR:
1781 case SIOCGIFBRDADDR:
1782 case SIOCSIFBRDADDR:
1783 case SIOCGIFNETMASK:
1784 case SIOCSIFNETMASK:
1785 case SIOCGIFMETRIC:
1786 case SIOCSIFMETRIC:
1787 return -EINVAL;
1788 default:
1789 IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__);
1790 return -ENOIOCTLCMD;
1791 }
1792
1793 /*NOTREACHED*/
1794 return 0;
1795 }
1796
1797 #ifdef CONFIG_COMPAT
1798 /*
1799 * Function irda_ioctl (sock, cmd, arg)
1800 */
1801 static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1802 {
1803 /*
1804 * All IRDA's ioctl are standard ones.
1805 */
1806 return -ENOIOCTLCMD;
1807 }
1808 #endif
1809
1810 /*
1811 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1812 *
1813 * Set some options for the socket
1814 *
1815 */
1816 static int irda_setsockopt(struct socket *sock, int level, int optname,
1817 char __user *optval, int optlen)
1818 {
1819 struct sock *sk = sock->sk;
1820 struct irda_sock *self = irda_sk(sk);
1821 struct irda_ias_set *ias_opt;
1822 struct ias_object *ias_obj;
1823 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1824 int opt;
1825
1826 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
1827
1828 if (level != SOL_IRLMP)
1829 return -ENOPROTOOPT;
1830
1831 switch (optname) {
1832 case IRLMP_IAS_SET:
1833 /* The user want to add an attribute to an existing IAS object
1834 * (in the IAS database) or to create a new object with this
1835 * attribute.
1836 * We first query IAS to know if the object exist, and then
1837 * create the right attribute...
1838 */
1839
1840 if (optlen != sizeof(struct irda_ias_set))
1841 return -EINVAL;
1842
1843 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1844 if (ias_opt == NULL)
1845 return -ENOMEM;
1846
1847 /* Copy query to the driver. */
1848 if (copy_from_user(ias_opt, optval, optlen)) {
1849 kfree(ias_opt);
1850 return -EFAULT;
1851 }
1852
1853 /* Find the object we target.
1854 * If the user gives us an empty string, we use the object
1855 * associated with this socket. This will workaround
1856 * duplicated class name - Jean II */
1857 if(ias_opt->irda_class_name[0] == '\0') {
1858 if(self->ias_obj == NULL) {
1859 kfree(ias_opt);
1860 return -EINVAL;
1861 }
1862 ias_obj = self->ias_obj;
1863 } else
1864 ias_obj = irias_find_object(ias_opt->irda_class_name);
1865
1866 /* Only ROOT can mess with the global IAS database.
1867 * Users can only add attributes to the object associated
1868 * with the socket they own - Jean II */
1869 if((!capable(CAP_NET_ADMIN)) &&
1870 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1871 kfree(ias_opt);
1872 return -EPERM;
1873 }
1874
1875 /* If the object doesn't exist, create it */
1876 if(ias_obj == (struct ias_object *) NULL) {
1877 /* Create a new object */
1878 ias_obj = irias_new_object(ias_opt->irda_class_name,
1879 jiffies);
1880 }
1881
1882 /* Do we have the attribute already ? */
1883 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1884 kfree(ias_opt);
1885 return -EINVAL;
1886 }
1887
1888 /* Look at the type */
1889 switch(ias_opt->irda_attrib_type) {
1890 case IAS_INTEGER:
1891 /* Add an integer attribute */
1892 irias_add_integer_attrib(
1893 ias_obj,
1894 ias_opt->irda_attrib_name,
1895 ias_opt->attribute.irda_attrib_int,
1896 IAS_USER_ATTR);
1897 break;
1898 case IAS_OCT_SEQ:
1899 /* Check length */
1900 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1901 IAS_MAX_OCTET_STRING) {
1902 kfree(ias_opt);
1903 return -EINVAL;
1904 }
1905 /* Add an octet sequence attribute */
1906 irias_add_octseq_attrib(
1907 ias_obj,
1908 ias_opt->irda_attrib_name,
1909 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1910 ias_opt->attribute.irda_attrib_octet_seq.len,
1911 IAS_USER_ATTR);
1912 break;
1913 case IAS_STRING:
1914 /* Should check charset & co */
1915 /* Check length */
1916 /* The length is encoded in a __u8, and
1917 * IAS_MAX_STRING == 256, so there is no way
1918 * userspace can pass us a string too large.
1919 * Jean II */
1920 /* NULL terminate the string (avoid troubles) */
1921 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
1922 /* Add a string attribute */
1923 irias_add_string_attrib(
1924 ias_obj,
1925 ias_opt->irda_attrib_name,
1926 ias_opt->attribute.irda_attrib_string.string,
1927 IAS_USER_ATTR);
1928 break;
1929 default :
1930 kfree(ias_opt);
1931 return -EINVAL;
1932 }
1933 irias_insert_object(ias_obj);
1934 kfree(ias_opt);
1935 break;
1936 case IRLMP_IAS_DEL:
1937 /* The user want to delete an object from our local IAS
1938 * database. We just need to query the IAS, check is the
1939 * object is not owned by the kernel and delete it.
1940 */
1941
1942 if (optlen != sizeof(struct irda_ias_set))
1943 return -EINVAL;
1944
1945 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1946 if (ias_opt == NULL)
1947 return -ENOMEM;
1948
1949 /* Copy query to the driver. */
1950 if (copy_from_user(ias_opt, optval, optlen)) {
1951 kfree(ias_opt);
1952 return -EFAULT;
1953 }
1954
1955 /* Find the object we target.
1956 * If the user gives us an empty string, we use the object
1957 * associated with this socket. This will workaround
1958 * duplicated class name - Jean II */
1959 if(ias_opt->irda_class_name[0] == '\0')
1960 ias_obj = self->ias_obj;
1961 else
1962 ias_obj = irias_find_object(ias_opt->irda_class_name);
1963 if(ias_obj == (struct ias_object *) NULL) {
1964 kfree(ias_opt);
1965 return -EINVAL;
1966 }
1967
1968 /* Only ROOT can mess with the global IAS database.
1969 * Users can only del attributes from the object associated
1970 * with the socket they own - Jean II */
1971 if((!capable(CAP_NET_ADMIN)) &&
1972 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1973 kfree(ias_opt);
1974 return -EPERM;
1975 }
1976
1977 /* Find the attribute (in the object) we target */
1978 ias_attr = irias_find_attrib(ias_obj,
1979 ias_opt->irda_attrib_name);
1980 if(ias_attr == (struct ias_attrib *) NULL) {
1981 kfree(ias_opt);
1982 return -EINVAL;
1983 }
1984
1985 /* Check is the user space own the object */
1986 if(ias_attr->value->owner != IAS_USER_ATTR) {
1987 IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__);
1988 kfree(ias_opt);
1989 return -EPERM;
1990 }
1991
1992 /* Remove the attribute (and maybe the object) */
1993 irias_delete_attrib(ias_obj, ias_attr, 1);
1994 kfree(ias_opt);
1995 break;
1996 case IRLMP_MAX_SDU_SIZE:
1997 if (optlen < sizeof(int))
1998 return -EINVAL;
1999
2000 if (get_user(opt, (int __user *)optval))
2001 return -EFAULT;
2002
2003 /* Only possible for a seqpacket service (TTP with SAR) */
2004 if (sk->sk_type != SOCK_SEQPACKET) {
2005 IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n",
2006 __FUNCTION__, opt);
2007 self->max_sdu_size_rx = opt;
2008 } else {
2009 IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2010 __FUNCTION__);
2011 return -ENOPROTOOPT;
2012 }
2013 break;
2014 case IRLMP_HINTS_SET:
2015 if (optlen < sizeof(int))
2016 return -EINVAL;
2017
2018 /* The input is really a (__u8 hints[2]), easier as an int */
2019 if (get_user(opt, (int __user *)optval))
2020 return -EFAULT;
2021
2022 /* Unregister any old registration */
2023 if (self->skey)
2024 irlmp_unregister_service(self->skey);
2025
2026 self->skey = irlmp_register_service((__u16) opt);
2027 break;
2028 case IRLMP_HINT_MASK_SET:
2029 /* As opposed to the previous case which set the hint bits
2030 * that we advertise, this one set the filter we use when
2031 * making a discovery (nodes which don't match any hint
2032 * bit in the mask are not reported).
2033 */
2034 if (optlen < sizeof(int))
2035 return -EINVAL;
2036
2037 /* The input is really a (__u8 hints[2]), easier as an int */
2038 if (get_user(opt, (int __user *)optval))
2039 return -EFAULT;
2040
2041 /* Set the new hint mask */
2042 self->mask.word = (__u16) opt;
2043 /* Mask out extension bits */
2044 self->mask.word &= 0x7f7f;
2045 /* Check if no bits */
2046 if(!self->mask.word)
2047 self->mask.word = 0xFFFF;
2048
2049 break;
2050 default:
2051 return -ENOPROTOOPT;
2052 }
2053 return 0;
2054 }
2055
2056 /*
2057 * Function irda_extract_ias_value(ias_opt, ias_value)
2058 *
2059 * Translate internal IAS value structure to the user space representation
2060 *
2061 * The external representation of IAS values, as we exchange them with
2062 * user space program is quite different from the internal representation,
2063 * as stored in the IAS database (because we need a flat structure for
2064 * crossing kernel boundary).
2065 * This function transform the former in the latter. We also check
2066 * that the value type is valid.
2067 */
2068 static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2069 struct ias_value *ias_value)
2070 {
2071 /* Look at the type */
2072 switch (ias_value->type) {
2073 case IAS_INTEGER:
2074 /* Copy the integer */
2075 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2076 break;
2077 case IAS_OCT_SEQ:
2078 /* Set length */
2079 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2080 /* Copy over */
2081 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2082 ias_value->t.oct_seq, ias_value->len);
2083 break;
2084 case IAS_STRING:
2085 /* Set length */
2086 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2087 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2088 /* Copy over */
2089 memcpy(ias_opt->attribute.irda_attrib_string.string,
2090 ias_value->t.string, ias_value->len);
2091 /* NULL terminate the string (avoid troubles) */
2092 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2093 break;
2094 case IAS_MISSING:
2095 default :
2096 return -EINVAL;
2097 }
2098
2099 /* Copy type over */
2100 ias_opt->irda_attrib_type = ias_value->type;
2101
2102 return 0;
2103 }
2104
2105 /*
2106 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2107 */
2108 static int irda_getsockopt(struct socket *sock, int level, int optname,
2109 char __user *optval, int __user *optlen)
2110 {
2111 struct sock *sk = sock->sk;
2112 struct irda_sock *self = irda_sk(sk);
2113 struct irda_device_list list;
2114 struct irda_device_info *discoveries;
2115 struct irda_ias_set * ias_opt; /* IAS get/query params */
2116 struct ias_object * ias_obj; /* Object in IAS */
2117 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2118 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2119 int val = 0;
2120 int len = 0;
2121 int err;
2122 int offset, total;
2123
2124 IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self);
2125
2126 if (level != SOL_IRLMP)
2127 return -ENOPROTOOPT;
2128
2129 if (get_user(len, optlen))
2130 return -EFAULT;
2131
2132 if(len < 0)
2133 return -EINVAL;
2134
2135 switch (optname) {
2136 case IRLMP_ENUMDEVICES:
2137 /* Ask lmp for the current discovery log */
2138 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2139 self->nslots);
2140 /* Check if the we got some results */
2141 if (discoveries == NULL)
2142 return -EAGAIN; /* Didn't find any devices */
2143 err = 0;
2144
2145 /* Write total list length back to client */
2146 if (copy_to_user(optval, &list,
2147 sizeof(struct irda_device_list) -
2148 sizeof(struct irda_device_info)))
2149 err = -EFAULT;
2150
2151 /* Offset to first device entry */
2152 offset = sizeof(struct irda_device_list) -
2153 sizeof(struct irda_device_info);
2154
2155 /* Copy the list itself - watch for overflow */
2156 if(list.len > 2048)
2157 {
2158 err = -EINVAL;
2159 goto bed;
2160 }
2161 total = offset + (list.len * sizeof(struct irda_device_info));
2162 if (total > len)
2163 total = len;
2164 if (copy_to_user(optval+offset, discoveries, total - offset))
2165 err = -EFAULT;
2166
2167 /* Write total number of bytes used back to client */
2168 if (put_user(total, optlen))
2169 err = -EFAULT;
2170 bed:
2171 /* Free up our buffer */
2172 kfree(discoveries);
2173 if (err)
2174 return err;
2175 break;
2176 case IRLMP_MAX_SDU_SIZE:
2177 val = self->max_data_size;
2178 len = sizeof(int);
2179 if (put_user(len, optlen))
2180 return -EFAULT;
2181
2182 if (copy_to_user(optval, &val, len))
2183 return -EFAULT;
2184 break;
2185 case IRLMP_IAS_GET:
2186 /* The user want an object from our local IAS database.
2187 * We just need to query the IAS and return the value
2188 * that we found */
2189
2190 /* Check that the user has allocated the right space for us */
2191 if (len != sizeof(struct irda_ias_set))
2192 return -EINVAL;
2193
2194 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2195 if (ias_opt == NULL)
2196 return -ENOMEM;
2197
2198 /* Copy query to the driver. */
2199 if (copy_from_user(ias_opt, optval, len)) {
2200 kfree(ias_opt);
2201 return -EFAULT;
2202 }
2203
2204 /* Find the object we target.
2205 * If the user gives us an empty string, we use the object
2206 * associated with this socket. This will workaround
2207 * duplicated class name - Jean II */
2208 if(ias_opt->irda_class_name[0] == '\0')
2209 ias_obj = self->ias_obj;
2210 else
2211 ias_obj = irias_find_object(ias_opt->irda_class_name);
2212 if(ias_obj == (struct ias_object *) NULL) {
2213 kfree(ias_opt);
2214 return -EINVAL;
2215 }
2216
2217 /* Find the attribute (in the object) we target */
2218 ias_attr = irias_find_attrib(ias_obj,
2219 ias_opt->irda_attrib_name);
2220 if(ias_attr == (struct ias_attrib *) NULL) {
2221 kfree(ias_opt);
2222 return -EINVAL;
2223 }
2224
2225 /* Translate from internal to user structure */
2226 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2227 if(err) {
2228 kfree(ias_opt);
2229 return err;
2230 }
2231
2232 /* Copy reply to the user */
2233 if (copy_to_user(optval, ias_opt,
2234 sizeof(struct irda_ias_set))) {
2235 kfree(ias_opt);
2236 return -EFAULT;
2237 }
2238 /* Note : don't need to put optlen, we checked it */
2239 kfree(ias_opt);
2240 break;
2241 case IRLMP_IAS_QUERY:
2242 /* The user want an object from a remote IAS database.
2243 * We need to use IAP to query the remote database and
2244 * then wait for the answer to come back. */
2245
2246 /* Check that the user has allocated the right space for us */
2247 if (len != sizeof(struct irda_ias_set))
2248 return -EINVAL;
2249
2250 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2251 if (ias_opt == NULL)
2252 return -ENOMEM;
2253
2254 /* Copy query to the driver. */
2255 if (copy_from_user(ias_opt, optval, len)) {
2256 kfree(ias_opt);
2257 return -EFAULT;
2258 }
2259
2260 /* At this point, there are two cases...
2261 * 1) the socket is connected - that's the easy case, we
2262 * just query the device we are connected to...
2263 * 2) the socket is not connected - the user doesn't want
2264 * to connect and/or may not have a valid service name
2265 * (so can't create a fake connection). In this case,
2266 * we assume that the user pass us a valid destination
2267 * address in the requesting structure...
2268 */
2269 if(self->daddr != DEV_ADDR_ANY) {
2270 /* We are connected - reuse known daddr */
2271 daddr = self->daddr;
2272 } else {
2273 /* We are not connected, we must specify a valid
2274 * destination address */
2275 daddr = ias_opt->daddr;
2276 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2277 kfree(ias_opt);
2278 return -EINVAL;
2279 }
2280 }
2281
2282 /* Check that we can proceed with IAP */
2283 if (self->iriap) {
2284 IRDA_WARNING("%s: busy with a previous query\n",
2285 __FUNCTION__);
2286 kfree(ias_opt);
2287 return -EBUSY;
2288 }
2289
2290 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2291 irda_getvalue_confirm);
2292
2293 if (self->iriap == NULL) {
2294 kfree(ias_opt);
2295 return -ENOMEM;
2296 }
2297
2298 /* Treat unexpected wakeup as disconnect */
2299 self->errno = -EHOSTUNREACH;
2300
2301 /* Query remote LM-IAS */
2302 iriap_getvaluebyclass_request(self->iriap,
2303 self->saddr, daddr,
2304 ias_opt->irda_class_name,
2305 ias_opt->irda_attrib_name);
2306
2307 /* Wait for answer, if not yet finished (or failed) */
2308 if (wait_event_interruptible(self->query_wait,
2309 (self->iriap == NULL))) {
2310 /* pending request uses copy of ias_opt-content
2311 * we can free it regardless! */
2312 kfree(ias_opt);
2313 /* Treat signals as disconnect */
2314 return -EHOSTUNREACH;
2315 }
2316
2317 /* Check what happened */
2318 if (self->errno)
2319 {
2320 kfree(ias_opt);
2321 /* Requested object/attribute doesn't exist */
2322 if((self->errno == IAS_CLASS_UNKNOWN) ||
2323 (self->errno == IAS_ATTRIB_UNKNOWN))
2324 return (-EADDRNOTAVAIL);
2325 else
2326 return (-EHOSTUNREACH);
2327 }
2328
2329 /* Translate from internal to user structure */
2330 err = irda_extract_ias_value(ias_opt, self->ias_result);
2331 if (self->ias_result)
2332 irias_delete_value(self->ias_result);
2333 if (err) {
2334 kfree(ias_opt);
2335 return err;
2336 }
2337
2338 /* Copy reply to the user */
2339 if (copy_to_user(optval, ias_opt,
2340 sizeof(struct irda_ias_set))) {
2341 kfree(ias_opt);
2342 return -EFAULT;
2343 }
2344 /* Note : don't need to put optlen, we checked it */
2345 kfree(ias_opt);
2346 break;
2347 case IRLMP_WAITDEVICE:
2348 /* This function is just another way of seeing life ;-)
2349 * IRLMP_ENUMDEVICES assumes that you have a static network,
2350 * and that you just want to pick one of the devices present.
2351 * On the other hand, in here we assume that no device is
2352 * present and that at some point in the future a device will
2353 * come into range. When this device arrive, we just wake
2354 * up the caller, so that he has time to connect to it before
2355 * the device goes away...
2356 * Note : once the node has been discovered for more than a
2357 * few second, it won't trigger this function, unless it
2358 * goes away and come back changes its hint bits (so we
2359 * might call it IRLMP_WAITNEWDEVICE).
2360 */
2361
2362 /* Check that the user is passing us an int */
2363 if (len != sizeof(int))
2364 return -EINVAL;
2365 /* Get timeout in ms (max time we block the caller) */
2366 if (get_user(val, (int __user *)optval))
2367 return -EFAULT;
2368
2369 /* Tell IrLMP we want to be notified */
2370 irlmp_update_client(self->ckey, self->mask.word,
2371 irda_selective_discovery_indication,
2372 NULL, (void *) self);
2373
2374 /* Do some discovery (and also return cached results) */
2375 irlmp_discovery_request(self->nslots);
2376
2377 /* Wait until a node is discovered */
2378 if (!self->cachedaddr) {
2379 int ret = 0;
2380
2381 IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__);
2382
2383 /* Set watchdog timer to expire in <val> ms. */
2384 self->errno = 0;
2385 init_timer(&self->watchdog);
2386 self->watchdog.function = irda_discovery_timeout;
2387 self->watchdog.data = (unsigned long) self;
2388 self->watchdog.expires = jiffies + (val * HZ/1000);
2389 add_timer(&(self->watchdog));
2390
2391 /* Wait for IR-LMP to call us back */
2392 __wait_event_interruptible(self->query_wait,
2393 (self->cachedaddr != 0 || self->errno == -ETIME),
2394 ret);
2395
2396 /* If watchdog is still activated, kill it! */
2397 if(timer_pending(&(self->watchdog)))
2398 del_timer(&(self->watchdog));
2399
2400 IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__);
2401
2402 if (ret != 0)
2403 return ret;
2404 }
2405 else
2406 IRDA_DEBUG(1, "%s(), found immediately !\n",
2407 __FUNCTION__);
2408
2409 /* Tell IrLMP that we have been notified */
2410 irlmp_update_client(self->ckey, self->mask.word,
2411 NULL, NULL, NULL);
2412
2413 /* Check if the we got some results */
2414 if (!self->cachedaddr)
2415 return -EAGAIN; /* Didn't find any devices */
2416 daddr = self->cachedaddr;
2417 /* Cleanup */
2418 self->cachedaddr = 0;
2419
2420 /* We return the daddr of the device that trigger the
2421 * wakeup. As irlmp pass us only the new devices, we
2422 * are sure that it's not an old device.
2423 * If the user want more details, he should query
2424 * the whole discovery log and pick one device...
2425 */
2426 if (put_user(daddr, (int __user *)optval))
2427 return -EFAULT;
2428
2429 break;
2430 default:
2431 return -ENOPROTOOPT;
2432 }
2433
2434 return 0;
2435 }
2436
2437 static struct net_proto_family irda_family_ops = {
2438 .family = PF_IRDA,
2439 .create = irda_create,
2440 .owner = THIS_MODULE,
2441 };
2442
2443 static const struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = {
2444 .family = PF_IRDA,
2445 .owner = THIS_MODULE,
2446 .release = irda_release,
2447 .bind = irda_bind,
2448 .connect = irda_connect,
2449 .socketpair = sock_no_socketpair,
2450 .accept = irda_accept,
2451 .getname = irda_getname,
2452 .poll = irda_poll,
2453 .ioctl = irda_ioctl,
2454 #ifdef CONFIG_COMPAT
2455 .compat_ioctl = irda_compat_ioctl,
2456 #endif
2457 .listen = irda_listen,
2458 .shutdown = irda_shutdown,
2459 .setsockopt = irda_setsockopt,
2460 .getsockopt = irda_getsockopt,
2461 .sendmsg = irda_sendmsg,
2462 .recvmsg = irda_recvmsg_stream,
2463 .mmap = sock_no_mmap,
2464 .sendpage = sock_no_sendpage,
2465 };
2466
2467 static const struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = {
2468 .family = PF_IRDA,
2469 .owner = THIS_MODULE,
2470 .release = irda_release,
2471 .bind = irda_bind,
2472 .connect = irda_connect,
2473 .socketpair = sock_no_socketpair,
2474 .accept = irda_accept,
2475 .getname = irda_getname,
2476 .poll = datagram_poll,
2477 .ioctl = irda_ioctl,
2478 #ifdef CONFIG_COMPAT
2479 .compat_ioctl = irda_compat_ioctl,
2480 #endif
2481 .listen = irda_listen,
2482 .shutdown = irda_shutdown,
2483 .setsockopt = irda_setsockopt,
2484 .getsockopt = irda_getsockopt,
2485 .sendmsg = irda_sendmsg,
2486 .recvmsg = irda_recvmsg_dgram,
2487 .mmap = sock_no_mmap,
2488 .sendpage = sock_no_sendpage,
2489 };
2490
2491 static const struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = {
2492 .family = PF_IRDA,
2493 .owner = THIS_MODULE,
2494 .release = irda_release,
2495 .bind = irda_bind,
2496 .connect = irda_connect,
2497 .socketpair = sock_no_socketpair,
2498 .accept = irda_accept,
2499 .getname = irda_getname,
2500 .poll = datagram_poll,
2501 .ioctl = irda_ioctl,
2502 #ifdef CONFIG_COMPAT
2503 .compat_ioctl = irda_compat_ioctl,
2504 #endif
2505 .listen = irda_listen,
2506 .shutdown = irda_shutdown,
2507 .setsockopt = irda_setsockopt,
2508 .getsockopt = irda_getsockopt,
2509 .sendmsg = irda_sendmsg_dgram,
2510 .recvmsg = irda_recvmsg_dgram,
2511 .mmap = sock_no_mmap,
2512 .sendpage = sock_no_sendpage,
2513 };
2514
2515 #ifdef CONFIG_IRDA_ULTRA
2516 static const struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = {
2517 .family = PF_IRDA,
2518 .owner = THIS_MODULE,
2519 .release = irda_release,
2520 .bind = irda_bind,
2521 .connect = sock_no_connect,
2522 .socketpair = sock_no_socketpair,
2523 .accept = sock_no_accept,
2524 .getname = irda_getname,
2525 .poll = datagram_poll,
2526 .ioctl = irda_ioctl,
2527 #ifdef CONFIG_COMPAT
2528 .compat_ioctl = irda_compat_ioctl,
2529 #endif
2530 .listen = sock_no_listen,
2531 .shutdown = irda_shutdown,
2532 .setsockopt = irda_setsockopt,
2533 .getsockopt = irda_getsockopt,
2534 .sendmsg = irda_sendmsg_ultra,
2535 .recvmsg = irda_recvmsg_dgram,
2536 .mmap = sock_no_mmap,
2537 .sendpage = sock_no_sendpage,
2538 };
2539 #endif /* CONFIG_IRDA_ULTRA */
2540
2541 SOCKOPS_WRAP(irda_stream, PF_IRDA);
2542 SOCKOPS_WRAP(irda_seqpacket, PF_IRDA);
2543 SOCKOPS_WRAP(irda_dgram, PF_IRDA);
2544 #ifdef CONFIG_IRDA_ULTRA
2545 SOCKOPS_WRAP(irda_ultra, PF_IRDA);
2546 #endif /* CONFIG_IRDA_ULTRA */
2547
2548 /*
2549 * Function irsock_init (pro)
2550 *
2551 * Initialize IrDA protocol
2552 *
2553 */
2554 int __init irsock_init(void)
2555 {
2556 int rc = proto_register(&irda_proto, 0);
2557
2558 if (rc == 0)
2559 rc = sock_register(&irda_family_ops);
2560
2561 return rc;
2562 }
2563
2564 /*
2565 * Function irsock_cleanup (void)
2566 *
2567 * Remove IrDA protocol
2568 *
2569 */
2570 void irsock_cleanup(void)
2571 {
2572 sock_unregister(PF_IRDA);
2573 proto_unregister(&irda_proto);
2574 }