Merge branch 'upstream-jeff' of git://git.kernel.org/pub/scm/linux/kernel/git/romieu...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv6 / route.c
1 /*
2 * Linux INET6 implementation
3 * FIB front-end.
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * $Id: route.c,v 1.56 2001/10/31 21:55:55 davem Exp $
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 /* Changes:
17 *
18 * YOSHIFUJI Hideaki @USAGI
19 * reworked default router selection.
20 * - respect outgoing interface
21 * - select from (probably) reachable routers (i.e.
22 * routers in REACHABLE, STALE, DELAY or PROBE states).
23 * - always select the same router if it is (probably)
24 * reachable. otherwise, round-robin the list.
25 * Ville Nuorvala
26 * Fixed routing subtrees.
27 */
28
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/types.h>
32 #include <linux/times.h>
33 #include <linux/socket.h>
34 #include <linux/sockios.h>
35 #include <linux/net.h>
36 #include <linux/route.h>
37 #include <linux/netdevice.h>
38 #include <linux/in6.h>
39 #include <linux/init.h>
40 #include <linux/if_arp.h>
41
42 #ifdef CONFIG_PROC_FS
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #endif
46
47 #include <net/net_namespace.h>
48 #include <net/snmp.h>
49 #include <net/ipv6.h>
50 #include <net/ip6_fib.h>
51 #include <net/ip6_route.h>
52 #include <net/ndisc.h>
53 #include <net/addrconf.h>
54 #include <net/tcp.h>
55 #include <linux/rtnetlink.h>
56 #include <net/dst.h>
57 #include <net/xfrm.h>
58 #include <net/netevent.h>
59 #include <net/netlink.h>
60
61 #include <asm/uaccess.h>
62
63 #ifdef CONFIG_SYSCTL
64 #include <linux/sysctl.h>
65 #endif
66
67 /* Set to 3 to get tracing. */
68 #define RT6_DEBUG 2
69
70 #if RT6_DEBUG >= 3
71 #define RDBG(x) printk x
72 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
73 #else
74 #define RDBG(x)
75 #define RT6_TRACE(x...) do { ; } while (0)
76 #endif
77
78 #define CLONE_OFFLINK_ROUTE 0
79
80 static int ip6_rt_max_size = 4096;
81 static int ip6_rt_gc_min_interval = HZ / 2;
82 static int ip6_rt_gc_timeout = 60*HZ;
83 int ip6_rt_gc_interval = 30*HZ;
84 static int ip6_rt_gc_elasticity = 9;
85 static int ip6_rt_mtu_expires = 10*60*HZ;
86 static int ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
87
88 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
89 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void ip6_dst_destroy(struct dst_entry *);
92 static void ip6_dst_ifdown(struct dst_entry *,
93 struct net_device *dev, int how);
94 static int ip6_dst_gc(void);
95
96 static int ip6_pkt_discard(struct sk_buff *skb);
97 static int ip6_pkt_discard_out(struct sk_buff *skb);
98 static void ip6_link_failure(struct sk_buff *skb);
99 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
100
101 #ifdef CONFIG_IPV6_ROUTE_INFO
102 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
103 struct in6_addr *gwaddr, int ifindex,
104 unsigned pref);
105 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
106 struct in6_addr *gwaddr, int ifindex);
107 #endif
108
109 static struct dst_ops ip6_dst_ops = {
110 .family = AF_INET6,
111 .protocol = __constant_htons(ETH_P_IPV6),
112 .gc = ip6_dst_gc,
113 .gc_thresh = 1024,
114 .check = ip6_dst_check,
115 .destroy = ip6_dst_destroy,
116 .ifdown = ip6_dst_ifdown,
117 .negative_advice = ip6_negative_advice,
118 .link_failure = ip6_link_failure,
119 .update_pmtu = ip6_rt_update_pmtu,
120 .entry_size = sizeof(struct rt6_info),
121 };
122
123 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
124 {
125 }
126
127 static struct dst_ops ip6_dst_blackhole_ops = {
128 .family = AF_INET6,
129 .protocol = __constant_htons(ETH_P_IPV6),
130 .destroy = ip6_dst_destroy,
131 .check = ip6_dst_check,
132 .update_pmtu = ip6_rt_blackhole_update_pmtu,
133 .entry_size = sizeof(struct rt6_info),
134 };
135
136 struct rt6_info ip6_null_entry = {
137 .u = {
138 .dst = {
139 .__refcnt = ATOMIC_INIT(1),
140 .__use = 1,
141 .obsolete = -1,
142 .error = -ENETUNREACH,
143 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
144 .input = ip6_pkt_discard,
145 .output = ip6_pkt_discard_out,
146 .ops = &ip6_dst_ops,
147 .path = (struct dst_entry*)&ip6_null_entry,
148 }
149 },
150 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
151 .rt6i_metric = ~(u32) 0,
152 .rt6i_ref = ATOMIC_INIT(1),
153 };
154
155 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
156
157 static int ip6_pkt_prohibit(struct sk_buff *skb);
158 static int ip6_pkt_prohibit_out(struct sk_buff *skb);
159 static int ip6_pkt_blk_hole(struct sk_buff *skb);
160
161 struct rt6_info ip6_prohibit_entry = {
162 .u = {
163 .dst = {
164 .__refcnt = ATOMIC_INIT(1),
165 .__use = 1,
166 .obsolete = -1,
167 .error = -EACCES,
168 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
169 .input = ip6_pkt_prohibit,
170 .output = ip6_pkt_prohibit_out,
171 .ops = &ip6_dst_ops,
172 .path = (struct dst_entry*)&ip6_prohibit_entry,
173 }
174 },
175 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
176 .rt6i_metric = ~(u32) 0,
177 .rt6i_ref = ATOMIC_INIT(1),
178 };
179
180 struct rt6_info ip6_blk_hole_entry = {
181 .u = {
182 .dst = {
183 .__refcnt = ATOMIC_INIT(1),
184 .__use = 1,
185 .obsolete = -1,
186 .error = -EINVAL,
187 .metrics = { [RTAX_HOPLIMIT - 1] = 255, },
188 .input = ip6_pkt_blk_hole,
189 .output = ip6_pkt_blk_hole,
190 .ops = &ip6_dst_ops,
191 .path = (struct dst_entry*)&ip6_blk_hole_entry,
192 }
193 },
194 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
195 .rt6i_metric = ~(u32) 0,
196 .rt6i_ref = ATOMIC_INIT(1),
197 };
198
199 #endif
200
201 /* allocate dst with ip6_dst_ops */
202 static __inline__ struct rt6_info *ip6_dst_alloc(void)
203 {
204 return (struct rt6_info *)dst_alloc(&ip6_dst_ops);
205 }
206
207 static void ip6_dst_destroy(struct dst_entry *dst)
208 {
209 struct rt6_info *rt = (struct rt6_info *)dst;
210 struct inet6_dev *idev = rt->rt6i_idev;
211
212 if (idev != NULL) {
213 rt->rt6i_idev = NULL;
214 in6_dev_put(idev);
215 }
216 }
217
218 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
219 int how)
220 {
221 struct rt6_info *rt = (struct rt6_info *)dst;
222 struct inet6_dev *idev = rt->rt6i_idev;
223
224 if (dev != init_net.loopback_dev && idev != NULL && idev->dev == dev) {
225 struct inet6_dev *loopback_idev = in6_dev_get(init_net.loopback_dev);
226 if (loopback_idev != NULL) {
227 rt->rt6i_idev = loopback_idev;
228 in6_dev_put(idev);
229 }
230 }
231 }
232
233 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
234 {
235 return (rt->rt6i_flags & RTF_EXPIRES &&
236 time_after(jiffies, rt->rt6i_expires));
237 }
238
239 static inline int rt6_need_strict(struct in6_addr *daddr)
240 {
241 return (ipv6_addr_type(daddr) &
242 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL));
243 }
244
245 /*
246 * Route lookup. Any table->tb6_lock is implied.
247 */
248
249 static __inline__ struct rt6_info *rt6_device_match(struct rt6_info *rt,
250 int oif,
251 int strict)
252 {
253 struct rt6_info *local = NULL;
254 struct rt6_info *sprt;
255
256 if (oif) {
257 for (sprt = rt; sprt; sprt = sprt->u.dst.rt6_next) {
258 struct net_device *dev = sprt->rt6i_dev;
259 if (dev->ifindex == oif)
260 return sprt;
261 if (dev->flags & IFF_LOOPBACK) {
262 if (sprt->rt6i_idev == NULL ||
263 sprt->rt6i_idev->dev->ifindex != oif) {
264 if (strict && oif)
265 continue;
266 if (local && (!oif ||
267 local->rt6i_idev->dev->ifindex == oif))
268 continue;
269 }
270 local = sprt;
271 }
272 }
273
274 if (local)
275 return local;
276
277 if (strict)
278 return &ip6_null_entry;
279 }
280 return rt;
281 }
282
283 #ifdef CONFIG_IPV6_ROUTER_PREF
284 static void rt6_probe(struct rt6_info *rt)
285 {
286 struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
287 /*
288 * Okay, this does not seem to be appropriate
289 * for now, however, we need to check if it
290 * is really so; aka Router Reachability Probing.
291 *
292 * Router Reachability Probe MUST be rate-limited
293 * to no more than one per minute.
294 */
295 if (!neigh || (neigh->nud_state & NUD_VALID))
296 return;
297 read_lock_bh(&neigh->lock);
298 if (!(neigh->nud_state & NUD_VALID) &&
299 time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
300 struct in6_addr mcaddr;
301 struct in6_addr *target;
302
303 neigh->updated = jiffies;
304 read_unlock_bh(&neigh->lock);
305
306 target = (struct in6_addr *)&neigh->primary_key;
307 addrconf_addr_solict_mult(target, &mcaddr);
308 ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
309 } else
310 read_unlock_bh(&neigh->lock);
311 }
312 #else
313 static inline void rt6_probe(struct rt6_info *rt)
314 {
315 return;
316 }
317 #endif
318
319 /*
320 * Default Router Selection (RFC 2461 6.3.6)
321 */
322 static inline int rt6_check_dev(struct rt6_info *rt, int oif)
323 {
324 struct net_device *dev = rt->rt6i_dev;
325 if (!oif || dev->ifindex == oif)
326 return 2;
327 if ((dev->flags & IFF_LOOPBACK) &&
328 rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
329 return 1;
330 return 0;
331 }
332
333 static inline int rt6_check_neigh(struct rt6_info *rt)
334 {
335 struct neighbour *neigh = rt->rt6i_nexthop;
336 int m = 0;
337 if (rt->rt6i_flags & RTF_NONEXTHOP ||
338 !(rt->rt6i_flags & RTF_GATEWAY))
339 m = 1;
340 else if (neigh) {
341 read_lock_bh(&neigh->lock);
342 if (neigh->nud_state & NUD_VALID)
343 m = 2;
344 else if (!(neigh->nud_state & NUD_FAILED))
345 m = 1;
346 read_unlock_bh(&neigh->lock);
347 }
348 return m;
349 }
350
351 static int rt6_score_route(struct rt6_info *rt, int oif,
352 int strict)
353 {
354 int m, n;
355
356 m = rt6_check_dev(rt, oif);
357 if (!m && (strict & RT6_LOOKUP_F_IFACE))
358 return -1;
359 #ifdef CONFIG_IPV6_ROUTER_PREF
360 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
361 #endif
362 n = rt6_check_neigh(rt);
363 if (!n && (strict & RT6_LOOKUP_F_REACHABLE))
364 return -1;
365 return m;
366 }
367
368 static struct rt6_info *find_match(struct rt6_info *rt, int oif, int strict,
369 int *mpri, struct rt6_info *match)
370 {
371 int m;
372
373 if (rt6_check_expired(rt))
374 goto out;
375
376 m = rt6_score_route(rt, oif, strict);
377 if (m < 0)
378 goto out;
379
380 if (m > *mpri) {
381 if (strict & RT6_LOOKUP_F_REACHABLE)
382 rt6_probe(match);
383 *mpri = m;
384 match = rt;
385 } else if (strict & RT6_LOOKUP_F_REACHABLE) {
386 rt6_probe(rt);
387 }
388
389 out:
390 return match;
391 }
392
393 static struct rt6_info *find_rr_leaf(struct fib6_node *fn,
394 struct rt6_info *rr_head,
395 u32 metric, int oif, int strict)
396 {
397 struct rt6_info *rt, *match;
398 int mpri = -1;
399
400 match = NULL;
401 for (rt = rr_head; rt && rt->rt6i_metric == metric;
402 rt = rt->u.dst.rt6_next)
403 match = find_match(rt, oif, strict, &mpri, match);
404 for (rt = fn->leaf; rt && rt != rr_head && rt->rt6i_metric == metric;
405 rt = rt->u.dst.rt6_next)
406 match = find_match(rt, oif, strict, &mpri, match);
407
408 return match;
409 }
410
411 static struct rt6_info *rt6_select(struct fib6_node *fn, int oif, int strict)
412 {
413 struct rt6_info *match, *rt0;
414
415 RT6_TRACE("%s(fn->leaf=%p, oif=%d)\n",
416 __FUNCTION__, fn->leaf, oif);
417
418 rt0 = fn->rr_ptr;
419 if (!rt0)
420 fn->rr_ptr = rt0 = fn->leaf;
421
422 match = find_rr_leaf(fn, rt0, rt0->rt6i_metric, oif, strict);
423
424 if (!match &&
425 (strict & RT6_LOOKUP_F_REACHABLE)) {
426 struct rt6_info *next = rt0->u.dst.rt6_next;
427
428 /* no entries matched; do round-robin */
429 if (!next || next->rt6i_metric != rt0->rt6i_metric)
430 next = fn->leaf;
431
432 if (next != rt0)
433 fn->rr_ptr = next;
434 }
435
436 RT6_TRACE("%s() => %p\n",
437 __FUNCTION__, match);
438
439 return (match ? match : &ip6_null_entry);
440 }
441
442 #ifdef CONFIG_IPV6_ROUTE_INFO
443 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
444 struct in6_addr *gwaddr)
445 {
446 struct route_info *rinfo = (struct route_info *) opt;
447 struct in6_addr prefix_buf, *prefix;
448 unsigned int pref;
449 u32 lifetime;
450 struct rt6_info *rt;
451
452 if (len < sizeof(struct route_info)) {
453 return -EINVAL;
454 }
455
456 /* Sanity check for prefix_len and length */
457 if (rinfo->length > 3) {
458 return -EINVAL;
459 } else if (rinfo->prefix_len > 128) {
460 return -EINVAL;
461 } else if (rinfo->prefix_len > 64) {
462 if (rinfo->length < 2) {
463 return -EINVAL;
464 }
465 } else if (rinfo->prefix_len > 0) {
466 if (rinfo->length < 1) {
467 return -EINVAL;
468 }
469 }
470
471 pref = rinfo->route_pref;
472 if (pref == ICMPV6_ROUTER_PREF_INVALID)
473 pref = ICMPV6_ROUTER_PREF_MEDIUM;
474
475 lifetime = ntohl(rinfo->lifetime);
476 if (lifetime == 0xffffffff) {
477 /* infinity */
478 } else if (lifetime > 0x7fffffff/HZ) {
479 /* Avoid arithmetic overflow */
480 lifetime = 0x7fffffff/HZ - 1;
481 }
482
483 if (rinfo->length == 3)
484 prefix = (struct in6_addr *)rinfo->prefix;
485 else {
486 /* this function is safe */
487 ipv6_addr_prefix(&prefix_buf,
488 (struct in6_addr *)rinfo->prefix,
489 rinfo->prefix_len);
490 prefix = &prefix_buf;
491 }
492
493 rt = rt6_get_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex);
494
495 if (rt && !lifetime) {
496 ip6_del_rt(rt);
497 rt = NULL;
498 }
499
500 if (!rt && lifetime)
501 rt = rt6_add_route_info(prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
502 pref);
503 else if (rt)
504 rt->rt6i_flags = RTF_ROUTEINFO |
505 (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
506
507 if (rt) {
508 if (lifetime == 0xffffffff) {
509 rt->rt6i_flags &= ~RTF_EXPIRES;
510 } else {
511 rt->rt6i_expires = jiffies + HZ * lifetime;
512 rt->rt6i_flags |= RTF_EXPIRES;
513 }
514 dst_release(&rt->u.dst);
515 }
516 return 0;
517 }
518 #endif
519
520 #define BACKTRACK(saddr) \
521 do { \
522 if (rt == &ip6_null_entry) { \
523 struct fib6_node *pn; \
524 while (1) { \
525 if (fn->fn_flags & RTN_TL_ROOT) \
526 goto out; \
527 pn = fn->parent; \
528 if (FIB6_SUBTREE(pn) && FIB6_SUBTREE(pn) != fn) \
529 fn = fib6_lookup(FIB6_SUBTREE(pn), NULL, saddr); \
530 else \
531 fn = pn; \
532 if (fn->fn_flags & RTN_RTINFO) \
533 goto restart; \
534 } \
535 } \
536 } while(0)
537
538 static struct rt6_info *ip6_pol_route_lookup(struct fib6_table *table,
539 struct flowi *fl, int flags)
540 {
541 struct fib6_node *fn;
542 struct rt6_info *rt;
543
544 read_lock_bh(&table->tb6_lock);
545 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
546 restart:
547 rt = fn->leaf;
548 rt = rt6_device_match(rt, fl->oif, flags);
549 BACKTRACK(&fl->fl6_src);
550 out:
551 dst_hold(&rt->u.dst);
552 read_unlock_bh(&table->tb6_lock);
553
554 rt->u.dst.lastuse = jiffies;
555 rt->u.dst.__use++;
556
557 return rt;
558
559 }
560
561 struct rt6_info *rt6_lookup(struct in6_addr *daddr, struct in6_addr *saddr,
562 int oif, int strict)
563 {
564 struct flowi fl = {
565 .oif = oif,
566 .nl_u = {
567 .ip6_u = {
568 .daddr = *daddr,
569 },
570 },
571 };
572 struct dst_entry *dst;
573 int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
574
575 if (saddr) {
576 memcpy(&fl.fl6_src, saddr, sizeof(*saddr));
577 flags |= RT6_LOOKUP_F_HAS_SADDR;
578 }
579
580 dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_lookup);
581 if (dst->error == 0)
582 return (struct rt6_info *) dst;
583
584 dst_release(dst);
585
586 return NULL;
587 }
588
589 EXPORT_SYMBOL(rt6_lookup);
590
591 /* ip6_ins_rt is called with FREE table->tb6_lock.
592 It takes new route entry, the addition fails by any reason the
593 route is freed. In any case, if caller does not hold it, it may
594 be destroyed.
595 */
596
597 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info)
598 {
599 int err;
600 struct fib6_table *table;
601
602 table = rt->rt6i_table;
603 write_lock_bh(&table->tb6_lock);
604 err = fib6_add(&table->tb6_root, rt, info);
605 write_unlock_bh(&table->tb6_lock);
606
607 return err;
608 }
609
610 int ip6_ins_rt(struct rt6_info *rt)
611 {
612 return __ip6_ins_rt(rt, NULL);
613 }
614
615 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
616 struct in6_addr *saddr)
617 {
618 struct rt6_info *rt;
619
620 /*
621 * Clone the route.
622 */
623
624 rt = ip6_rt_copy(ort);
625
626 if (rt) {
627 if (!(rt->rt6i_flags&RTF_GATEWAY)) {
628 if (rt->rt6i_dst.plen != 128 &&
629 ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
630 rt->rt6i_flags |= RTF_ANYCAST;
631 ipv6_addr_copy(&rt->rt6i_gateway, daddr);
632 }
633
634 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
635 rt->rt6i_dst.plen = 128;
636 rt->rt6i_flags |= RTF_CACHE;
637 rt->u.dst.flags |= DST_HOST;
638
639 #ifdef CONFIG_IPV6_SUBTREES
640 if (rt->rt6i_src.plen && saddr) {
641 ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
642 rt->rt6i_src.plen = 128;
643 }
644 #endif
645
646 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
647
648 }
649
650 return rt;
651 }
652
653 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
654 {
655 struct rt6_info *rt = ip6_rt_copy(ort);
656 if (rt) {
657 ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
658 rt->rt6i_dst.plen = 128;
659 rt->rt6i_flags |= RTF_CACHE;
660 rt->u.dst.flags |= DST_HOST;
661 rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
662 }
663 return rt;
664 }
665
666 static struct rt6_info *ip6_pol_route(struct fib6_table *table, int oif,
667 struct flowi *fl, int flags)
668 {
669 struct fib6_node *fn;
670 struct rt6_info *rt, *nrt;
671 int strict = 0;
672 int attempts = 3;
673 int err;
674 int reachable = ipv6_devconf.forwarding ? 0 : RT6_LOOKUP_F_REACHABLE;
675
676 strict |= flags & RT6_LOOKUP_F_IFACE;
677
678 relookup:
679 read_lock_bh(&table->tb6_lock);
680
681 restart_2:
682 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
683
684 restart:
685 rt = rt6_select(fn, oif, strict | reachable);
686 BACKTRACK(&fl->fl6_src);
687 if (rt == &ip6_null_entry ||
688 rt->rt6i_flags & RTF_CACHE)
689 goto out;
690
691 dst_hold(&rt->u.dst);
692 read_unlock_bh(&table->tb6_lock);
693
694 if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
695 nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
696 else {
697 #if CLONE_OFFLINK_ROUTE
698 nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
699 #else
700 goto out2;
701 #endif
702 }
703
704 dst_release(&rt->u.dst);
705 rt = nrt ? : &ip6_null_entry;
706
707 dst_hold(&rt->u.dst);
708 if (nrt) {
709 err = ip6_ins_rt(nrt);
710 if (!err)
711 goto out2;
712 }
713
714 if (--attempts <= 0)
715 goto out2;
716
717 /*
718 * Race condition! In the gap, when table->tb6_lock was
719 * released someone could insert this route. Relookup.
720 */
721 dst_release(&rt->u.dst);
722 goto relookup;
723
724 out:
725 if (reachable) {
726 reachable = 0;
727 goto restart_2;
728 }
729 dst_hold(&rt->u.dst);
730 read_unlock_bh(&table->tb6_lock);
731 out2:
732 rt->u.dst.lastuse = jiffies;
733 rt->u.dst.__use++;
734
735 return rt;
736 }
737
738 static struct rt6_info *ip6_pol_route_input(struct fib6_table *table,
739 struct flowi *fl, int flags)
740 {
741 return ip6_pol_route(table, fl->iif, fl, flags);
742 }
743
744 void ip6_route_input(struct sk_buff *skb)
745 {
746 struct ipv6hdr *iph = ipv6_hdr(skb);
747 int flags = RT6_LOOKUP_F_HAS_SADDR;
748 struct flowi fl = {
749 .iif = skb->dev->ifindex,
750 .nl_u = {
751 .ip6_u = {
752 .daddr = iph->daddr,
753 .saddr = iph->saddr,
754 .flowlabel = (* (__be32 *) iph)&IPV6_FLOWINFO_MASK,
755 },
756 },
757 .mark = skb->mark,
758 .proto = iph->nexthdr,
759 };
760
761 if (rt6_need_strict(&iph->daddr))
762 flags |= RT6_LOOKUP_F_IFACE;
763
764 skb->dst = fib6_rule_lookup(&fl, flags, ip6_pol_route_input);
765 }
766
767 static struct rt6_info *ip6_pol_route_output(struct fib6_table *table,
768 struct flowi *fl, int flags)
769 {
770 return ip6_pol_route(table, fl->oif, fl, flags);
771 }
772
773 struct dst_entry * ip6_route_output(struct sock *sk, struct flowi *fl)
774 {
775 int flags = 0;
776
777 if (rt6_need_strict(&fl->fl6_dst))
778 flags |= RT6_LOOKUP_F_IFACE;
779
780 if (!ipv6_addr_any(&fl->fl6_src))
781 flags |= RT6_LOOKUP_F_HAS_SADDR;
782
783 return fib6_rule_lookup(fl, flags, ip6_pol_route_output);
784 }
785
786 EXPORT_SYMBOL(ip6_route_output);
787
788 static int ip6_blackhole_output(struct sk_buff *skb)
789 {
790 kfree_skb(skb);
791 return 0;
792 }
793
794 int ip6_dst_blackhole(struct sock *sk, struct dst_entry **dstp, struct flowi *fl)
795 {
796 struct rt6_info *ort = (struct rt6_info *) *dstp;
797 struct rt6_info *rt = (struct rt6_info *)
798 dst_alloc(&ip6_dst_blackhole_ops);
799 struct dst_entry *new = NULL;
800
801 if (rt) {
802 new = &rt->u.dst;
803
804 atomic_set(&new->__refcnt, 1);
805 new->__use = 1;
806 new->input = ip6_blackhole_output;
807 new->output = ip6_blackhole_output;
808
809 memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
810 new->dev = ort->u.dst.dev;
811 if (new->dev)
812 dev_hold(new->dev);
813 rt->rt6i_idev = ort->rt6i_idev;
814 if (rt->rt6i_idev)
815 in6_dev_hold(rt->rt6i_idev);
816 rt->rt6i_expires = 0;
817
818 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
819 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
820 rt->rt6i_metric = 0;
821
822 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
823 #ifdef CONFIG_IPV6_SUBTREES
824 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
825 #endif
826
827 dst_free(new);
828 }
829
830 dst_release(*dstp);
831 *dstp = new;
832 return (new ? 0 : -ENOMEM);
833 }
834 EXPORT_SYMBOL_GPL(ip6_dst_blackhole);
835
836 /*
837 * Destination cache support functions
838 */
839
840 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
841 {
842 struct rt6_info *rt;
843
844 rt = (struct rt6_info *) dst;
845
846 if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
847 return dst;
848
849 return NULL;
850 }
851
852 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
853 {
854 struct rt6_info *rt = (struct rt6_info *) dst;
855
856 if (rt) {
857 if (rt->rt6i_flags & RTF_CACHE)
858 ip6_del_rt(rt);
859 else
860 dst_release(dst);
861 }
862 return NULL;
863 }
864
865 static void ip6_link_failure(struct sk_buff *skb)
866 {
867 struct rt6_info *rt;
868
869 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
870
871 rt = (struct rt6_info *) skb->dst;
872 if (rt) {
873 if (rt->rt6i_flags&RTF_CACHE) {
874 dst_set_expires(&rt->u.dst, 0);
875 rt->rt6i_flags |= RTF_EXPIRES;
876 } else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
877 rt->rt6i_node->fn_sernum = -1;
878 }
879 }
880
881 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
882 {
883 struct rt6_info *rt6 = (struct rt6_info*)dst;
884
885 if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
886 rt6->rt6i_flags |= RTF_MODIFIED;
887 if (mtu < IPV6_MIN_MTU) {
888 mtu = IPV6_MIN_MTU;
889 dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
890 }
891 dst->metrics[RTAX_MTU-1] = mtu;
892 call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
893 }
894 }
895
896 static int ipv6_get_mtu(struct net_device *dev);
897
898 static inline unsigned int ipv6_advmss(unsigned int mtu)
899 {
900 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
901
902 if (mtu < ip6_rt_min_advmss)
903 mtu = ip6_rt_min_advmss;
904
905 /*
906 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
907 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
908 * IPV6_MAXPLEN is also valid and means: "any MSS,
909 * rely only on pmtu discovery"
910 */
911 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
912 mtu = IPV6_MAXPLEN;
913 return mtu;
914 }
915
916 static struct dst_entry *ndisc_dst_gc_list;
917 static DEFINE_SPINLOCK(ndisc_lock);
918
919 struct dst_entry *ndisc_dst_alloc(struct net_device *dev,
920 struct neighbour *neigh,
921 struct in6_addr *addr,
922 int (*output)(struct sk_buff *))
923 {
924 struct rt6_info *rt;
925 struct inet6_dev *idev = in6_dev_get(dev);
926
927 if (unlikely(idev == NULL))
928 return NULL;
929
930 rt = ip6_dst_alloc();
931 if (unlikely(rt == NULL)) {
932 in6_dev_put(idev);
933 goto out;
934 }
935
936 dev_hold(dev);
937 if (neigh)
938 neigh_hold(neigh);
939 else
940 neigh = ndisc_get_neigh(dev, addr);
941
942 rt->rt6i_dev = dev;
943 rt->rt6i_idev = idev;
944 rt->rt6i_nexthop = neigh;
945 atomic_set(&rt->u.dst.__refcnt, 1);
946 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
947 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
948 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
949 rt->u.dst.output = output;
950
951 #if 0 /* there's no chance to use these for ndisc */
952 rt->u.dst.flags = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST
953 ? DST_HOST
954 : 0;
955 ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
956 rt->rt6i_dst.plen = 128;
957 #endif
958
959 spin_lock_bh(&ndisc_lock);
960 rt->u.dst.next = ndisc_dst_gc_list;
961 ndisc_dst_gc_list = &rt->u.dst;
962 spin_unlock_bh(&ndisc_lock);
963
964 fib6_force_start_gc();
965
966 out:
967 return &rt->u.dst;
968 }
969
970 int ndisc_dst_gc(int *more)
971 {
972 struct dst_entry *dst, *next, **pprev;
973 int freed;
974
975 next = NULL;
976 freed = 0;
977
978 spin_lock_bh(&ndisc_lock);
979 pprev = &ndisc_dst_gc_list;
980
981 while ((dst = *pprev) != NULL) {
982 if (!atomic_read(&dst->__refcnt)) {
983 *pprev = dst->next;
984 dst_free(dst);
985 freed++;
986 } else {
987 pprev = &dst->next;
988 (*more)++;
989 }
990 }
991
992 spin_unlock_bh(&ndisc_lock);
993
994 return freed;
995 }
996
997 static int ip6_dst_gc(void)
998 {
999 static unsigned expire = 30*HZ;
1000 static unsigned long last_gc;
1001 unsigned long now = jiffies;
1002
1003 if (time_after(last_gc + ip6_rt_gc_min_interval, now) &&
1004 atomic_read(&ip6_dst_ops.entries) <= ip6_rt_max_size)
1005 goto out;
1006
1007 expire++;
1008 fib6_run_gc(expire);
1009 last_gc = now;
1010 if (atomic_read(&ip6_dst_ops.entries) < ip6_dst_ops.gc_thresh)
1011 expire = ip6_rt_gc_timeout>>1;
1012
1013 out:
1014 expire -= expire>>ip6_rt_gc_elasticity;
1015 return (atomic_read(&ip6_dst_ops.entries) > ip6_rt_max_size);
1016 }
1017
1018 /* Clean host part of a prefix. Not necessary in radix tree,
1019 but results in cleaner routing tables.
1020
1021 Remove it only when all the things will work!
1022 */
1023
1024 static int ipv6_get_mtu(struct net_device *dev)
1025 {
1026 int mtu = IPV6_MIN_MTU;
1027 struct inet6_dev *idev;
1028
1029 idev = in6_dev_get(dev);
1030 if (idev) {
1031 mtu = idev->cnf.mtu6;
1032 in6_dev_put(idev);
1033 }
1034 return mtu;
1035 }
1036
1037 int ipv6_get_hoplimit(struct net_device *dev)
1038 {
1039 int hoplimit = ipv6_devconf.hop_limit;
1040 struct inet6_dev *idev;
1041
1042 idev = in6_dev_get(dev);
1043 if (idev) {
1044 hoplimit = idev->cnf.hop_limit;
1045 in6_dev_put(idev);
1046 }
1047 return hoplimit;
1048 }
1049
1050 /*
1051 *
1052 */
1053
1054 int ip6_route_add(struct fib6_config *cfg)
1055 {
1056 int err;
1057 struct rt6_info *rt = NULL;
1058 struct net_device *dev = NULL;
1059 struct inet6_dev *idev = NULL;
1060 struct fib6_table *table;
1061 int addr_type;
1062
1063 if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128)
1064 return -EINVAL;
1065 #ifndef CONFIG_IPV6_SUBTREES
1066 if (cfg->fc_src_len)
1067 return -EINVAL;
1068 #endif
1069 if (cfg->fc_ifindex) {
1070 err = -ENODEV;
1071 dev = dev_get_by_index(&init_net, cfg->fc_ifindex);
1072 if (!dev)
1073 goto out;
1074 idev = in6_dev_get(dev);
1075 if (!idev)
1076 goto out;
1077 }
1078
1079 if (cfg->fc_metric == 0)
1080 cfg->fc_metric = IP6_RT_PRIO_USER;
1081
1082 table = fib6_new_table(cfg->fc_table);
1083 if (table == NULL) {
1084 err = -ENOBUFS;
1085 goto out;
1086 }
1087
1088 rt = ip6_dst_alloc();
1089
1090 if (rt == NULL) {
1091 err = -ENOMEM;
1092 goto out;
1093 }
1094
1095 rt->u.dst.obsolete = -1;
1096 rt->rt6i_expires = jiffies + clock_t_to_jiffies(cfg->fc_expires);
1097
1098 if (cfg->fc_protocol == RTPROT_UNSPEC)
1099 cfg->fc_protocol = RTPROT_BOOT;
1100 rt->rt6i_protocol = cfg->fc_protocol;
1101
1102 addr_type = ipv6_addr_type(&cfg->fc_dst);
1103
1104 if (addr_type & IPV6_ADDR_MULTICAST)
1105 rt->u.dst.input = ip6_mc_input;
1106 else
1107 rt->u.dst.input = ip6_forward;
1108
1109 rt->u.dst.output = ip6_output;
1110
1111 ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
1112 rt->rt6i_dst.plen = cfg->fc_dst_len;
1113 if (rt->rt6i_dst.plen == 128)
1114 rt->u.dst.flags = DST_HOST;
1115
1116 #ifdef CONFIG_IPV6_SUBTREES
1117 ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len);
1118 rt->rt6i_src.plen = cfg->fc_src_len;
1119 #endif
1120
1121 rt->rt6i_metric = cfg->fc_metric;
1122
1123 /* We cannot add true routes via loopback here,
1124 they would result in kernel looping; promote them to reject routes
1125 */
1126 if ((cfg->fc_flags & RTF_REJECT) ||
1127 (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1128 /* hold loopback dev/idev if we haven't done so. */
1129 if (dev != init_net.loopback_dev) {
1130 if (dev) {
1131 dev_put(dev);
1132 in6_dev_put(idev);
1133 }
1134 dev = init_net.loopback_dev;
1135 dev_hold(dev);
1136 idev = in6_dev_get(dev);
1137 if (!idev) {
1138 err = -ENODEV;
1139 goto out;
1140 }
1141 }
1142 rt->u.dst.output = ip6_pkt_discard_out;
1143 rt->u.dst.input = ip6_pkt_discard;
1144 rt->u.dst.error = -ENETUNREACH;
1145 rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1146 goto install_route;
1147 }
1148
1149 if (cfg->fc_flags & RTF_GATEWAY) {
1150 struct in6_addr *gw_addr;
1151 int gwa_type;
1152
1153 gw_addr = &cfg->fc_gateway;
1154 ipv6_addr_copy(&rt->rt6i_gateway, gw_addr);
1155 gwa_type = ipv6_addr_type(gw_addr);
1156
1157 if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1158 struct rt6_info *grt;
1159
1160 /* IPv6 strictly inhibits using not link-local
1161 addresses as nexthop address.
1162 Otherwise, router will not able to send redirects.
1163 It is very good, but in some (rare!) circumstances
1164 (SIT, PtP, NBMA NOARP links) it is handy to allow
1165 some exceptions. --ANK
1166 */
1167 err = -EINVAL;
1168 if (!(gwa_type&IPV6_ADDR_UNICAST))
1169 goto out;
1170
1171 grt = rt6_lookup(gw_addr, NULL, cfg->fc_ifindex, 1);
1172
1173 err = -EHOSTUNREACH;
1174 if (grt == NULL)
1175 goto out;
1176 if (dev) {
1177 if (dev != grt->rt6i_dev) {
1178 dst_release(&grt->u.dst);
1179 goto out;
1180 }
1181 } else {
1182 dev = grt->rt6i_dev;
1183 idev = grt->rt6i_idev;
1184 dev_hold(dev);
1185 in6_dev_hold(grt->rt6i_idev);
1186 }
1187 if (!(grt->rt6i_flags&RTF_GATEWAY))
1188 err = 0;
1189 dst_release(&grt->u.dst);
1190
1191 if (err)
1192 goto out;
1193 }
1194 err = -EINVAL;
1195 if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1196 goto out;
1197 }
1198
1199 err = -ENODEV;
1200 if (dev == NULL)
1201 goto out;
1202
1203 if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) {
1204 rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1205 if (IS_ERR(rt->rt6i_nexthop)) {
1206 err = PTR_ERR(rt->rt6i_nexthop);
1207 rt->rt6i_nexthop = NULL;
1208 goto out;
1209 }
1210 }
1211
1212 rt->rt6i_flags = cfg->fc_flags;
1213
1214 install_route:
1215 if (cfg->fc_mx) {
1216 struct nlattr *nla;
1217 int remaining;
1218
1219 nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) {
1220 int type = nla_type(nla);
1221
1222 if (type) {
1223 if (type > RTAX_MAX) {
1224 err = -EINVAL;
1225 goto out;
1226 }
1227
1228 rt->u.dst.metrics[type - 1] = nla_get_u32(nla);
1229 }
1230 }
1231 }
1232
1233 if (rt->u.dst.metrics[RTAX_HOPLIMIT-1] == 0)
1234 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1235 if (!rt->u.dst.metrics[RTAX_MTU-1])
1236 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1237 if (!rt->u.dst.metrics[RTAX_ADVMSS-1])
1238 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1239 rt->u.dst.dev = dev;
1240 rt->rt6i_idev = idev;
1241 rt->rt6i_table = table;
1242 return __ip6_ins_rt(rt, &cfg->fc_nlinfo);
1243
1244 out:
1245 if (dev)
1246 dev_put(dev);
1247 if (idev)
1248 in6_dev_put(idev);
1249 if (rt)
1250 dst_free(&rt->u.dst);
1251 return err;
1252 }
1253
1254 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info)
1255 {
1256 int err;
1257 struct fib6_table *table;
1258
1259 if (rt == &ip6_null_entry)
1260 return -ENOENT;
1261
1262 table = rt->rt6i_table;
1263 write_lock_bh(&table->tb6_lock);
1264
1265 err = fib6_del(rt, info);
1266 dst_release(&rt->u.dst);
1267
1268 write_unlock_bh(&table->tb6_lock);
1269
1270 return err;
1271 }
1272
1273 int ip6_del_rt(struct rt6_info *rt)
1274 {
1275 return __ip6_del_rt(rt, NULL);
1276 }
1277
1278 static int ip6_route_del(struct fib6_config *cfg)
1279 {
1280 struct fib6_table *table;
1281 struct fib6_node *fn;
1282 struct rt6_info *rt;
1283 int err = -ESRCH;
1284
1285 table = fib6_get_table(cfg->fc_table);
1286 if (table == NULL)
1287 return err;
1288
1289 read_lock_bh(&table->tb6_lock);
1290
1291 fn = fib6_locate(&table->tb6_root,
1292 &cfg->fc_dst, cfg->fc_dst_len,
1293 &cfg->fc_src, cfg->fc_src_len);
1294
1295 if (fn) {
1296 for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1297 if (cfg->fc_ifindex &&
1298 (rt->rt6i_dev == NULL ||
1299 rt->rt6i_dev->ifindex != cfg->fc_ifindex))
1300 continue;
1301 if (cfg->fc_flags & RTF_GATEWAY &&
1302 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
1303 continue;
1304 if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric)
1305 continue;
1306 dst_hold(&rt->u.dst);
1307 read_unlock_bh(&table->tb6_lock);
1308
1309 return __ip6_del_rt(rt, &cfg->fc_nlinfo);
1310 }
1311 }
1312 read_unlock_bh(&table->tb6_lock);
1313
1314 return err;
1315 }
1316
1317 /*
1318 * Handle redirects
1319 */
1320 struct ip6rd_flowi {
1321 struct flowi fl;
1322 struct in6_addr gateway;
1323 };
1324
1325 static struct rt6_info *__ip6_route_redirect(struct fib6_table *table,
1326 struct flowi *fl,
1327 int flags)
1328 {
1329 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl;
1330 struct rt6_info *rt;
1331 struct fib6_node *fn;
1332
1333 /*
1334 * Get the "current" route for this destination and
1335 * check if the redirect has come from approriate router.
1336 *
1337 * RFC 2461 specifies that redirects should only be
1338 * accepted if they come from the nexthop to the target.
1339 * Due to the way the routes are chosen, this notion
1340 * is a bit fuzzy and one might need to check all possible
1341 * routes.
1342 */
1343
1344 read_lock_bh(&table->tb6_lock);
1345 fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
1346 restart:
1347 for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1348 /*
1349 * Current route is on-link; redirect is always invalid.
1350 *
1351 * Seems, previous statement is not true. It could
1352 * be node, which looks for us as on-link (f.e. proxy ndisc)
1353 * But then router serving it might decide, that we should
1354 * know truth 8)8) --ANK (980726).
1355 */
1356 if (rt6_check_expired(rt))
1357 continue;
1358 if (!(rt->rt6i_flags & RTF_GATEWAY))
1359 continue;
1360 if (fl->oif != rt->rt6i_dev->ifindex)
1361 continue;
1362 if (!ipv6_addr_equal(&rdfl->gateway, &rt->rt6i_gateway))
1363 continue;
1364 break;
1365 }
1366
1367 if (!rt)
1368 rt = &ip6_null_entry;
1369 BACKTRACK(&fl->fl6_src);
1370 out:
1371 dst_hold(&rt->u.dst);
1372
1373 read_unlock_bh(&table->tb6_lock);
1374
1375 return rt;
1376 };
1377
1378 static struct rt6_info *ip6_route_redirect(struct in6_addr *dest,
1379 struct in6_addr *src,
1380 struct in6_addr *gateway,
1381 struct net_device *dev)
1382 {
1383 int flags = RT6_LOOKUP_F_HAS_SADDR;
1384 struct ip6rd_flowi rdfl = {
1385 .fl = {
1386 .oif = dev->ifindex,
1387 .nl_u = {
1388 .ip6_u = {
1389 .daddr = *dest,
1390 .saddr = *src,
1391 },
1392 },
1393 },
1394 .gateway = *gateway,
1395 };
1396
1397 if (rt6_need_strict(dest))
1398 flags |= RT6_LOOKUP_F_IFACE;
1399
1400 return (struct rt6_info *)fib6_rule_lookup((struct flowi *)&rdfl, flags, __ip6_route_redirect);
1401 }
1402
1403 void rt6_redirect(struct in6_addr *dest, struct in6_addr *src,
1404 struct in6_addr *saddr,
1405 struct neighbour *neigh, u8 *lladdr, int on_link)
1406 {
1407 struct rt6_info *rt, *nrt = NULL;
1408 struct netevent_redirect netevent;
1409
1410 rt = ip6_route_redirect(dest, src, saddr, neigh->dev);
1411
1412 if (rt == &ip6_null_entry) {
1413 if (net_ratelimit())
1414 printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1415 "for redirect target\n");
1416 goto out;
1417 }
1418
1419 /*
1420 * We have finally decided to accept it.
1421 */
1422
1423 neigh_update(neigh, lladdr, NUD_STALE,
1424 NEIGH_UPDATE_F_WEAK_OVERRIDE|
1425 NEIGH_UPDATE_F_OVERRIDE|
1426 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1427 NEIGH_UPDATE_F_ISROUTER))
1428 );
1429
1430 /*
1431 * Redirect received -> path was valid.
1432 * Look, redirects are sent only in response to data packets,
1433 * so that this nexthop apparently is reachable. --ANK
1434 */
1435 dst_confirm(&rt->u.dst);
1436
1437 /* Duplicate redirect: silently ignore. */
1438 if (neigh == rt->u.dst.neighbour)
1439 goto out;
1440
1441 nrt = ip6_rt_copy(rt);
1442 if (nrt == NULL)
1443 goto out;
1444
1445 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1446 if (on_link)
1447 nrt->rt6i_flags &= ~RTF_GATEWAY;
1448
1449 ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1450 nrt->rt6i_dst.plen = 128;
1451 nrt->u.dst.flags |= DST_HOST;
1452
1453 ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1454 nrt->rt6i_nexthop = neigh_clone(neigh);
1455 /* Reset pmtu, it may be better */
1456 nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1457 nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&nrt->u.dst));
1458
1459 if (ip6_ins_rt(nrt))
1460 goto out;
1461
1462 netevent.old = &rt->u.dst;
1463 netevent.new = &nrt->u.dst;
1464 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1465
1466 if (rt->rt6i_flags&RTF_CACHE) {
1467 ip6_del_rt(rt);
1468 return;
1469 }
1470
1471 out:
1472 dst_release(&rt->u.dst);
1473 return;
1474 }
1475
1476 /*
1477 * Handle ICMP "packet too big" messages
1478 * i.e. Path MTU discovery
1479 */
1480
1481 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1482 struct net_device *dev, u32 pmtu)
1483 {
1484 struct rt6_info *rt, *nrt;
1485 int allfrag = 0;
1486
1487 rt = rt6_lookup(daddr, saddr, dev->ifindex, 0);
1488 if (rt == NULL)
1489 return;
1490
1491 if (pmtu >= dst_mtu(&rt->u.dst))
1492 goto out;
1493
1494 if (pmtu < IPV6_MIN_MTU) {
1495 /*
1496 * According to RFC2460, PMTU is set to the IPv6 Minimum Link
1497 * MTU (1280) and a fragment header should always be included
1498 * after a node receiving Too Big message reporting PMTU is
1499 * less than the IPv6 Minimum Link MTU.
1500 */
1501 pmtu = IPV6_MIN_MTU;
1502 allfrag = 1;
1503 }
1504
1505 /* New mtu received -> path was valid.
1506 They are sent only in response to data packets,
1507 so that this nexthop apparently is reachable. --ANK
1508 */
1509 dst_confirm(&rt->u.dst);
1510
1511 /* Host route. If it is static, it would be better
1512 not to override it, but add new one, so that
1513 when cache entry will expire old pmtu
1514 would return automatically.
1515 */
1516 if (rt->rt6i_flags & RTF_CACHE) {
1517 rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1518 if (allfrag)
1519 rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1520 dst_set_expires(&rt->u.dst, ip6_rt_mtu_expires);
1521 rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1522 goto out;
1523 }
1524
1525 /* Network route.
1526 Two cases are possible:
1527 1. It is connected route. Action: COW
1528 2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1529 */
1530 if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1531 nrt = rt6_alloc_cow(rt, daddr, saddr);
1532 else
1533 nrt = rt6_alloc_clone(rt, daddr);
1534
1535 if (nrt) {
1536 nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1537 if (allfrag)
1538 nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1539
1540 /* According to RFC 1981, detecting PMTU increase shouldn't be
1541 * happened within 5 mins, the recommended timer is 10 mins.
1542 * Here this route expiration time is set to ip6_rt_mtu_expires
1543 * which is 10 mins. After 10 mins the decreased pmtu is expired
1544 * and detecting PMTU increase will be automatically happened.
1545 */
1546 dst_set_expires(&nrt->u.dst, ip6_rt_mtu_expires);
1547 nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1548
1549 ip6_ins_rt(nrt);
1550 }
1551 out:
1552 dst_release(&rt->u.dst);
1553 }
1554
1555 /*
1556 * Misc support functions
1557 */
1558
1559 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1560 {
1561 struct rt6_info *rt = ip6_dst_alloc();
1562
1563 if (rt) {
1564 rt->u.dst.input = ort->u.dst.input;
1565 rt->u.dst.output = ort->u.dst.output;
1566
1567 memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1568 rt->u.dst.error = ort->u.dst.error;
1569 rt->u.dst.dev = ort->u.dst.dev;
1570 if (rt->u.dst.dev)
1571 dev_hold(rt->u.dst.dev);
1572 rt->rt6i_idev = ort->rt6i_idev;
1573 if (rt->rt6i_idev)
1574 in6_dev_hold(rt->rt6i_idev);
1575 rt->u.dst.lastuse = jiffies;
1576 rt->rt6i_expires = 0;
1577
1578 ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1579 rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1580 rt->rt6i_metric = 0;
1581
1582 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1583 #ifdef CONFIG_IPV6_SUBTREES
1584 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1585 #endif
1586 rt->rt6i_table = ort->rt6i_table;
1587 }
1588 return rt;
1589 }
1590
1591 #ifdef CONFIG_IPV6_ROUTE_INFO
1592 static struct rt6_info *rt6_get_route_info(struct in6_addr *prefix, int prefixlen,
1593 struct in6_addr *gwaddr, int ifindex)
1594 {
1595 struct fib6_node *fn;
1596 struct rt6_info *rt = NULL;
1597 struct fib6_table *table;
1598
1599 table = fib6_get_table(RT6_TABLE_INFO);
1600 if (table == NULL)
1601 return NULL;
1602
1603 write_lock_bh(&table->tb6_lock);
1604 fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1605 if (!fn)
1606 goto out;
1607
1608 for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1609 if (rt->rt6i_dev->ifindex != ifindex)
1610 continue;
1611 if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1612 continue;
1613 if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1614 continue;
1615 dst_hold(&rt->u.dst);
1616 break;
1617 }
1618 out:
1619 write_unlock_bh(&table->tb6_lock);
1620 return rt;
1621 }
1622
1623 static struct rt6_info *rt6_add_route_info(struct in6_addr *prefix, int prefixlen,
1624 struct in6_addr *gwaddr, int ifindex,
1625 unsigned pref)
1626 {
1627 struct fib6_config cfg = {
1628 .fc_table = RT6_TABLE_INFO,
1629 .fc_metric = 1024,
1630 .fc_ifindex = ifindex,
1631 .fc_dst_len = prefixlen,
1632 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
1633 RTF_UP | RTF_PREF(pref),
1634 };
1635
1636 ipv6_addr_copy(&cfg.fc_dst, prefix);
1637 ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1638
1639 /* We should treat it as a default route if prefix length is 0. */
1640 if (!prefixlen)
1641 cfg.fc_flags |= RTF_DEFAULT;
1642
1643 ip6_route_add(&cfg);
1644
1645 return rt6_get_route_info(prefix, prefixlen, gwaddr, ifindex);
1646 }
1647 #endif
1648
1649 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1650 {
1651 struct rt6_info *rt;
1652 struct fib6_table *table;
1653
1654 table = fib6_get_table(RT6_TABLE_DFLT);
1655 if (table == NULL)
1656 return NULL;
1657
1658 write_lock_bh(&table->tb6_lock);
1659 for (rt = table->tb6_root.leaf; rt; rt=rt->u.dst.rt6_next) {
1660 if (dev == rt->rt6i_dev &&
1661 ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1662 ipv6_addr_equal(&rt->rt6i_gateway, addr))
1663 break;
1664 }
1665 if (rt)
1666 dst_hold(&rt->u.dst);
1667 write_unlock_bh(&table->tb6_lock);
1668 return rt;
1669 }
1670
1671 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1672 struct net_device *dev,
1673 unsigned int pref)
1674 {
1675 struct fib6_config cfg = {
1676 .fc_table = RT6_TABLE_DFLT,
1677 .fc_metric = 1024,
1678 .fc_ifindex = dev->ifindex,
1679 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
1680 RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
1681 };
1682
1683 ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1684
1685 ip6_route_add(&cfg);
1686
1687 return rt6_get_dflt_router(gwaddr, dev);
1688 }
1689
1690 void rt6_purge_dflt_routers(void)
1691 {
1692 struct rt6_info *rt;
1693 struct fib6_table *table;
1694
1695 /* NOTE: Keep consistent with rt6_get_dflt_router */
1696 table = fib6_get_table(RT6_TABLE_DFLT);
1697 if (table == NULL)
1698 return;
1699
1700 restart:
1701 read_lock_bh(&table->tb6_lock);
1702 for (rt = table->tb6_root.leaf; rt; rt = rt->u.dst.rt6_next) {
1703 if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1704 dst_hold(&rt->u.dst);
1705 read_unlock_bh(&table->tb6_lock);
1706 ip6_del_rt(rt);
1707 goto restart;
1708 }
1709 }
1710 read_unlock_bh(&table->tb6_lock);
1711 }
1712
1713 static void rtmsg_to_fib6_config(struct in6_rtmsg *rtmsg,
1714 struct fib6_config *cfg)
1715 {
1716 memset(cfg, 0, sizeof(*cfg));
1717
1718 cfg->fc_table = RT6_TABLE_MAIN;
1719 cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
1720 cfg->fc_metric = rtmsg->rtmsg_metric;
1721 cfg->fc_expires = rtmsg->rtmsg_info;
1722 cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
1723 cfg->fc_src_len = rtmsg->rtmsg_src_len;
1724 cfg->fc_flags = rtmsg->rtmsg_flags;
1725
1726 ipv6_addr_copy(&cfg->fc_dst, &rtmsg->rtmsg_dst);
1727 ipv6_addr_copy(&cfg->fc_src, &rtmsg->rtmsg_src);
1728 ipv6_addr_copy(&cfg->fc_gateway, &rtmsg->rtmsg_gateway);
1729 }
1730
1731 int ipv6_route_ioctl(unsigned int cmd, void __user *arg)
1732 {
1733 struct fib6_config cfg;
1734 struct in6_rtmsg rtmsg;
1735 int err;
1736
1737 switch(cmd) {
1738 case SIOCADDRT: /* Add a route */
1739 case SIOCDELRT: /* Delete a route */
1740 if (!capable(CAP_NET_ADMIN))
1741 return -EPERM;
1742 err = copy_from_user(&rtmsg, arg,
1743 sizeof(struct in6_rtmsg));
1744 if (err)
1745 return -EFAULT;
1746
1747 rtmsg_to_fib6_config(&rtmsg, &cfg);
1748
1749 rtnl_lock();
1750 switch (cmd) {
1751 case SIOCADDRT:
1752 err = ip6_route_add(&cfg);
1753 break;
1754 case SIOCDELRT:
1755 err = ip6_route_del(&cfg);
1756 break;
1757 default:
1758 err = -EINVAL;
1759 }
1760 rtnl_unlock();
1761
1762 return err;
1763 }
1764
1765 return -EINVAL;
1766 }
1767
1768 /*
1769 * Drop the packet on the floor
1770 */
1771
1772 static inline int ip6_pkt_drop(struct sk_buff *skb, int code,
1773 int ipstats_mib_noroutes)
1774 {
1775 int type;
1776 switch (ipstats_mib_noroutes) {
1777 case IPSTATS_MIB_INNOROUTES:
1778 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
1779 if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED) {
1780 IP6_INC_STATS(ip6_dst_idev(skb->dst), IPSTATS_MIB_INADDRERRORS);
1781 break;
1782 }
1783 /* FALLTHROUGH */
1784 case IPSTATS_MIB_OUTNOROUTES:
1785 IP6_INC_STATS(ip6_dst_idev(skb->dst), ipstats_mib_noroutes);
1786 break;
1787 }
1788 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0, skb->dev);
1789 kfree_skb(skb);
1790 return 0;
1791 }
1792
1793 static int ip6_pkt_discard(struct sk_buff *skb)
1794 {
1795 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
1796 }
1797
1798 static int ip6_pkt_discard_out(struct sk_buff *skb)
1799 {
1800 skb->dev = skb->dst->dev;
1801 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
1802 }
1803
1804 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1805
1806 static int ip6_pkt_prohibit(struct sk_buff *skb)
1807 {
1808 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
1809 }
1810
1811 static int ip6_pkt_prohibit_out(struct sk_buff *skb)
1812 {
1813 skb->dev = skb->dst->dev;
1814 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
1815 }
1816
1817 static int ip6_pkt_blk_hole(struct sk_buff *skb)
1818 {
1819 kfree_skb(skb);
1820 return 0;
1821 }
1822
1823 #endif
1824
1825 /*
1826 * Allocate a dst for local (unicast / anycast) address.
1827 */
1828
1829 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1830 const struct in6_addr *addr,
1831 int anycast)
1832 {
1833 struct rt6_info *rt = ip6_dst_alloc();
1834
1835 if (rt == NULL)
1836 return ERR_PTR(-ENOMEM);
1837
1838 dev_hold(init_net.loopback_dev);
1839 in6_dev_hold(idev);
1840
1841 rt->u.dst.flags = DST_HOST;
1842 rt->u.dst.input = ip6_input;
1843 rt->u.dst.output = ip6_output;
1844 rt->rt6i_dev = init_net.loopback_dev;
1845 rt->rt6i_idev = idev;
1846 rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1847 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dst_mtu(&rt->u.dst));
1848 rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1849 rt->u.dst.obsolete = -1;
1850
1851 rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1852 if (anycast)
1853 rt->rt6i_flags |= RTF_ANYCAST;
1854 else
1855 rt->rt6i_flags |= RTF_LOCAL;
1856 rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1857 if (rt->rt6i_nexthop == NULL) {
1858 dst_free(&rt->u.dst);
1859 return ERR_PTR(-ENOMEM);
1860 }
1861
1862 ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1863 rt->rt6i_dst.plen = 128;
1864 rt->rt6i_table = fib6_get_table(RT6_TABLE_LOCAL);
1865
1866 atomic_set(&rt->u.dst.__refcnt, 1);
1867
1868 return rt;
1869 }
1870
1871 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1872 {
1873 if (((void*)rt->rt6i_dev == arg || arg == NULL) &&
1874 rt != &ip6_null_entry) {
1875 RT6_TRACE("deleted by ifdown %p\n", rt);
1876 return -1;
1877 }
1878 return 0;
1879 }
1880
1881 void rt6_ifdown(struct net_device *dev)
1882 {
1883 fib6_clean_all(fib6_ifdown, 0, dev);
1884 }
1885
1886 struct rt6_mtu_change_arg
1887 {
1888 struct net_device *dev;
1889 unsigned mtu;
1890 };
1891
1892 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1893 {
1894 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1895 struct inet6_dev *idev;
1896
1897 /* In IPv6 pmtu discovery is not optional,
1898 so that RTAX_MTU lock cannot disable it.
1899 We still use this lock to block changes
1900 caused by addrconf/ndisc.
1901 */
1902
1903 idev = __in6_dev_get(arg->dev);
1904 if (idev == NULL)
1905 return 0;
1906
1907 /* For administrative MTU increase, there is no way to discover
1908 IPv6 PMTU increase, so PMTU increase should be updated here.
1909 Since RFC 1981 doesn't include administrative MTU increase
1910 update PMTU increase is a MUST. (i.e. jumbo frame)
1911 */
1912 /*
1913 If new MTU is less than route PMTU, this new MTU will be the
1914 lowest MTU in the path, update the route PMTU to reflect PMTU
1915 decreases; if new MTU is greater than route PMTU, and the
1916 old MTU is the lowest MTU in the path, update the route PMTU
1917 to reflect the increase. In this case if the other nodes' MTU
1918 also have the lowest MTU, TOO BIG MESSAGE will be lead to
1919 PMTU discouvery.
1920 */
1921 if (rt->rt6i_dev == arg->dev &&
1922 !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1923 (dst_mtu(&rt->u.dst) > arg->mtu ||
1924 (dst_mtu(&rt->u.dst) < arg->mtu &&
1925 dst_mtu(&rt->u.dst) == idev->cnf.mtu6))) {
1926 rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
1927 rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(arg->mtu);
1928 }
1929 return 0;
1930 }
1931
1932 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
1933 {
1934 struct rt6_mtu_change_arg arg = {
1935 .dev = dev,
1936 .mtu = mtu,
1937 };
1938
1939 fib6_clean_all(rt6_mtu_change_route, 0, &arg);
1940 }
1941
1942 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
1943 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) },
1944 [RTA_OIF] = { .type = NLA_U32 },
1945 [RTA_IIF] = { .type = NLA_U32 },
1946 [RTA_PRIORITY] = { .type = NLA_U32 },
1947 [RTA_METRICS] = { .type = NLA_NESTED },
1948 };
1949
1950 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
1951 struct fib6_config *cfg)
1952 {
1953 struct rtmsg *rtm;
1954 struct nlattr *tb[RTA_MAX+1];
1955 int err;
1956
1957 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
1958 if (err < 0)
1959 goto errout;
1960
1961 err = -EINVAL;
1962 rtm = nlmsg_data(nlh);
1963 memset(cfg, 0, sizeof(*cfg));
1964
1965 cfg->fc_table = rtm->rtm_table;
1966 cfg->fc_dst_len = rtm->rtm_dst_len;
1967 cfg->fc_src_len = rtm->rtm_src_len;
1968 cfg->fc_flags = RTF_UP;
1969 cfg->fc_protocol = rtm->rtm_protocol;
1970
1971 if (rtm->rtm_type == RTN_UNREACHABLE)
1972 cfg->fc_flags |= RTF_REJECT;
1973
1974 cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
1975 cfg->fc_nlinfo.nlh = nlh;
1976
1977 if (tb[RTA_GATEWAY]) {
1978 nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16);
1979 cfg->fc_flags |= RTF_GATEWAY;
1980 }
1981
1982 if (tb[RTA_DST]) {
1983 int plen = (rtm->rtm_dst_len + 7) >> 3;
1984
1985 if (nla_len(tb[RTA_DST]) < plen)
1986 goto errout;
1987
1988 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
1989 }
1990
1991 if (tb[RTA_SRC]) {
1992 int plen = (rtm->rtm_src_len + 7) >> 3;
1993
1994 if (nla_len(tb[RTA_SRC]) < plen)
1995 goto errout;
1996
1997 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
1998 }
1999
2000 if (tb[RTA_OIF])
2001 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
2002
2003 if (tb[RTA_PRIORITY])
2004 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
2005
2006 if (tb[RTA_METRICS]) {
2007 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
2008 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
2009 }
2010
2011 if (tb[RTA_TABLE])
2012 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
2013
2014 err = 0;
2015 errout:
2016 return err;
2017 }
2018
2019 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2020 {
2021 struct fib6_config cfg;
2022 int err;
2023
2024 err = rtm_to_fib6_config(skb, nlh, &cfg);
2025 if (err < 0)
2026 return err;
2027
2028 return ip6_route_del(&cfg);
2029 }
2030
2031 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2032 {
2033 struct fib6_config cfg;
2034 int err;
2035
2036 err = rtm_to_fib6_config(skb, nlh, &cfg);
2037 if (err < 0)
2038 return err;
2039
2040 return ip6_route_add(&cfg);
2041 }
2042
2043 static inline size_t rt6_nlmsg_size(void)
2044 {
2045 return NLMSG_ALIGN(sizeof(struct rtmsg))
2046 + nla_total_size(16) /* RTA_SRC */
2047 + nla_total_size(16) /* RTA_DST */
2048 + nla_total_size(16) /* RTA_GATEWAY */
2049 + nla_total_size(16) /* RTA_PREFSRC */
2050 + nla_total_size(4) /* RTA_TABLE */
2051 + nla_total_size(4) /* RTA_IIF */
2052 + nla_total_size(4) /* RTA_OIF */
2053 + nla_total_size(4) /* RTA_PRIORITY */
2054 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
2055 + nla_total_size(sizeof(struct rta_cacheinfo));
2056 }
2057
2058 static int rt6_fill_node(struct sk_buff *skb, struct rt6_info *rt,
2059 struct in6_addr *dst, struct in6_addr *src,
2060 int iif, int type, u32 pid, u32 seq,
2061 int prefix, unsigned int flags)
2062 {
2063 struct rtmsg *rtm;
2064 struct nlmsghdr *nlh;
2065 long expires;
2066 u32 table;
2067
2068 if (prefix) { /* user wants prefix routes only */
2069 if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
2070 /* success since this is not a prefix route */
2071 return 1;
2072 }
2073 }
2074
2075 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags);
2076 if (nlh == NULL)
2077 return -EMSGSIZE;
2078
2079 rtm = nlmsg_data(nlh);
2080 rtm->rtm_family = AF_INET6;
2081 rtm->rtm_dst_len = rt->rt6i_dst.plen;
2082 rtm->rtm_src_len = rt->rt6i_src.plen;
2083 rtm->rtm_tos = 0;
2084 if (rt->rt6i_table)
2085 table = rt->rt6i_table->tb6_id;
2086 else
2087 table = RT6_TABLE_UNSPEC;
2088 rtm->rtm_table = table;
2089 NLA_PUT_U32(skb, RTA_TABLE, table);
2090 if (rt->rt6i_flags&RTF_REJECT)
2091 rtm->rtm_type = RTN_UNREACHABLE;
2092 else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
2093 rtm->rtm_type = RTN_LOCAL;
2094 else
2095 rtm->rtm_type = RTN_UNICAST;
2096 rtm->rtm_flags = 0;
2097 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2098 rtm->rtm_protocol = rt->rt6i_protocol;
2099 if (rt->rt6i_flags&RTF_DYNAMIC)
2100 rtm->rtm_protocol = RTPROT_REDIRECT;
2101 else if (rt->rt6i_flags & RTF_ADDRCONF)
2102 rtm->rtm_protocol = RTPROT_KERNEL;
2103 else if (rt->rt6i_flags&RTF_DEFAULT)
2104 rtm->rtm_protocol = RTPROT_RA;
2105
2106 if (rt->rt6i_flags&RTF_CACHE)
2107 rtm->rtm_flags |= RTM_F_CLONED;
2108
2109 if (dst) {
2110 NLA_PUT(skb, RTA_DST, 16, dst);
2111 rtm->rtm_dst_len = 128;
2112 } else if (rtm->rtm_dst_len)
2113 NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
2114 #ifdef CONFIG_IPV6_SUBTREES
2115 if (src) {
2116 NLA_PUT(skb, RTA_SRC, 16, src);
2117 rtm->rtm_src_len = 128;
2118 } else if (rtm->rtm_src_len)
2119 NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
2120 #endif
2121 if (iif)
2122 NLA_PUT_U32(skb, RTA_IIF, iif);
2123 else if (dst) {
2124 struct in6_addr saddr_buf;
2125 if (ipv6_get_saddr(&rt->u.dst, dst, &saddr_buf) == 0)
2126 NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
2127 }
2128
2129 if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2130 goto nla_put_failure;
2131
2132 if (rt->u.dst.neighbour)
2133 NLA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
2134
2135 if (rt->u.dst.dev)
2136 NLA_PUT_U32(skb, RTA_OIF, rt->rt6i_dev->ifindex);
2137
2138 NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric);
2139
2140 expires = rt->rt6i_expires ? rt->rt6i_expires - jiffies : 0;
2141 if (rtnl_put_cacheinfo(skb, &rt->u.dst, 0, 0, 0,
2142 expires, rt->u.dst.error) < 0)
2143 goto nla_put_failure;
2144
2145 return nlmsg_end(skb, nlh);
2146
2147 nla_put_failure:
2148 nlmsg_cancel(skb, nlh);
2149 return -EMSGSIZE;
2150 }
2151
2152 int rt6_dump_route(struct rt6_info *rt, void *p_arg)
2153 {
2154 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
2155 int prefix;
2156
2157 if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
2158 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
2159 prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
2160 } else
2161 prefix = 0;
2162
2163 return rt6_fill_node(arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
2164 NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
2165 prefix, NLM_F_MULTI);
2166 }
2167
2168 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2169 {
2170 struct nlattr *tb[RTA_MAX+1];
2171 struct rt6_info *rt;
2172 struct sk_buff *skb;
2173 struct rtmsg *rtm;
2174 struct flowi fl;
2175 int err, iif = 0;
2176
2177 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
2178 if (err < 0)
2179 goto errout;
2180
2181 err = -EINVAL;
2182 memset(&fl, 0, sizeof(fl));
2183
2184 if (tb[RTA_SRC]) {
2185 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
2186 goto errout;
2187
2188 ipv6_addr_copy(&fl.fl6_src, nla_data(tb[RTA_SRC]));
2189 }
2190
2191 if (tb[RTA_DST]) {
2192 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
2193 goto errout;
2194
2195 ipv6_addr_copy(&fl.fl6_dst, nla_data(tb[RTA_DST]));
2196 }
2197
2198 if (tb[RTA_IIF])
2199 iif = nla_get_u32(tb[RTA_IIF]);
2200
2201 if (tb[RTA_OIF])
2202 fl.oif = nla_get_u32(tb[RTA_OIF]);
2203
2204 if (iif) {
2205 struct net_device *dev;
2206 dev = __dev_get_by_index(&init_net, iif);
2207 if (!dev) {
2208 err = -ENODEV;
2209 goto errout;
2210 }
2211 }
2212
2213 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2214 if (skb == NULL) {
2215 err = -ENOBUFS;
2216 goto errout;
2217 }
2218
2219 /* Reserve room for dummy headers, this skb can pass
2220 through good chunk of routing engine.
2221 */
2222 skb_reset_mac_header(skb);
2223 skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2224
2225 rt = (struct rt6_info*) ip6_route_output(NULL, &fl);
2226 skb->dst = &rt->u.dst;
2227
2228 err = rt6_fill_node(skb, rt, &fl.fl6_dst, &fl.fl6_src, iif,
2229 RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2230 nlh->nlmsg_seq, 0, 0);
2231 if (err < 0) {
2232 kfree_skb(skb);
2233 goto errout;
2234 }
2235
2236 err = rtnl_unicast(skb, NETLINK_CB(in_skb).pid);
2237 errout:
2238 return err;
2239 }
2240
2241 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info)
2242 {
2243 struct sk_buff *skb;
2244 u32 pid = 0, seq = 0;
2245 struct nlmsghdr *nlh = NULL;
2246 int err = -ENOBUFS;
2247
2248 if (info) {
2249 pid = info->pid;
2250 nlh = info->nlh;
2251 if (nlh)
2252 seq = nlh->nlmsg_seq;
2253 }
2254
2255 skb = nlmsg_new(rt6_nlmsg_size(), gfp_any());
2256 if (skb == NULL)
2257 goto errout;
2258
2259 err = rt6_fill_node(skb, rt, NULL, NULL, 0, event, pid, seq, 0, 0);
2260 if (err < 0) {
2261 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
2262 WARN_ON(err == -EMSGSIZE);
2263 kfree_skb(skb);
2264 goto errout;
2265 }
2266 err = rtnl_notify(skb, pid, RTNLGRP_IPV6_ROUTE, nlh, gfp_any());
2267 errout:
2268 if (err < 0)
2269 rtnl_set_sk_err(RTNLGRP_IPV6_ROUTE, err);
2270 }
2271
2272 /*
2273 * /proc
2274 */
2275
2276 #ifdef CONFIG_PROC_FS
2277
2278 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2279
2280 struct rt6_proc_arg
2281 {
2282 char *buffer;
2283 int offset;
2284 int length;
2285 int skip;
2286 int len;
2287 };
2288
2289 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2290 {
2291 struct rt6_proc_arg *arg = (struct rt6_proc_arg *) p_arg;
2292
2293 if (arg->skip < arg->offset / RT6_INFO_LEN) {
2294 arg->skip++;
2295 return 0;
2296 }
2297
2298 if (arg->len >= arg->length)
2299 return 0;
2300
2301 arg->len += sprintf(arg->buffer + arg->len,
2302 NIP6_SEQFMT " %02x ",
2303 NIP6(rt->rt6i_dst.addr),
2304 rt->rt6i_dst.plen);
2305
2306 #ifdef CONFIG_IPV6_SUBTREES
2307 arg->len += sprintf(arg->buffer + arg->len,
2308 NIP6_SEQFMT " %02x ",
2309 NIP6(rt->rt6i_src.addr),
2310 rt->rt6i_src.plen);
2311 #else
2312 arg->len += sprintf(arg->buffer + arg->len,
2313 "00000000000000000000000000000000 00 ");
2314 #endif
2315
2316 if (rt->rt6i_nexthop) {
2317 arg->len += sprintf(arg->buffer + arg->len,
2318 NIP6_SEQFMT,
2319 NIP6(*((struct in6_addr *)rt->rt6i_nexthop->primary_key)));
2320 } else {
2321 arg->len += sprintf(arg->buffer + arg->len,
2322 "00000000000000000000000000000000");
2323 }
2324 arg->len += sprintf(arg->buffer + arg->len,
2325 " %08x %08x %08x %08x %8s\n",
2326 rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2327 rt->u.dst.__use, rt->rt6i_flags,
2328 rt->rt6i_dev ? rt->rt6i_dev->name : "");
2329 return 0;
2330 }
2331
2332 static int rt6_proc_info(char *buffer, char **start, off_t offset, int length)
2333 {
2334 struct rt6_proc_arg arg = {
2335 .buffer = buffer,
2336 .offset = offset,
2337 .length = length,
2338 };
2339
2340 fib6_clean_all(rt6_info_route, 0, &arg);
2341
2342 *start = buffer;
2343 if (offset)
2344 *start += offset % RT6_INFO_LEN;
2345
2346 arg.len -= offset % RT6_INFO_LEN;
2347
2348 if (arg.len > length)
2349 arg.len = length;
2350 if (arg.len < 0)
2351 arg.len = 0;
2352
2353 return arg.len;
2354 }
2355
2356 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2357 {
2358 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2359 rt6_stats.fib_nodes, rt6_stats.fib_route_nodes,
2360 rt6_stats.fib_rt_alloc, rt6_stats.fib_rt_entries,
2361 rt6_stats.fib_rt_cache,
2362 atomic_read(&ip6_dst_ops.entries),
2363 rt6_stats.fib_discarded_routes);
2364
2365 return 0;
2366 }
2367
2368 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2369 {
2370 return single_open(file, rt6_stats_seq_show, NULL);
2371 }
2372
2373 static const struct file_operations rt6_stats_seq_fops = {
2374 .owner = THIS_MODULE,
2375 .open = rt6_stats_seq_open,
2376 .read = seq_read,
2377 .llseek = seq_lseek,
2378 .release = single_release,
2379 };
2380 #endif /* CONFIG_PROC_FS */
2381
2382 #ifdef CONFIG_SYSCTL
2383
2384 static int flush_delay;
2385
2386 static
2387 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2388 void __user *buffer, size_t *lenp, loff_t *ppos)
2389 {
2390 if (write) {
2391 proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2392 fib6_run_gc(flush_delay <= 0 ? ~0UL : (unsigned long)flush_delay);
2393 return 0;
2394 } else
2395 return -EINVAL;
2396 }
2397
2398 ctl_table ipv6_route_table[] = {
2399 {
2400 .procname = "flush",
2401 .data = &flush_delay,
2402 .maxlen = sizeof(int),
2403 .mode = 0200,
2404 .proc_handler = &ipv6_sysctl_rtcache_flush
2405 },
2406 {
2407 .ctl_name = NET_IPV6_ROUTE_GC_THRESH,
2408 .procname = "gc_thresh",
2409 .data = &ip6_dst_ops.gc_thresh,
2410 .maxlen = sizeof(int),
2411 .mode = 0644,
2412 .proc_handler = &proc_dointvec,
2413 },
2414 {
2415 .ctl_name = NET_IPV6_ROUTE_MAX_SIZE,
2416 .procname = "max_size",
2417 .data = &ip6_rt_max_size,
2418 .maxlen = sizeof(int),
2419 .mode = 0644,
2420 .proc_handler = &proc_dointvec,
2421 },
2422 {
2423 .ctl_name = NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2424 .procname = "gc_min_interval",
2425 .data = &ip6_rt_gc_min_interval,
2426 .maxlen = sizeof(int),
2427 .mode = 0644,
2428 .proc_handler = &proc_dointvec_jiffies,
2429 .strategy = &sysctl_jiffies,
2430 },
2431 {
2432 .ctl_name = NET_IPV6_ROUTE_GC_TIMEOUT,
2433 .procname = "gc_timeout",
2434 .data = &ip6_rt_gc_timeout,
2435 .maxlen = sizeof(int),
2436 .mode = 0644,
2437 .proc_handler = &proc_dointvec_jiffies,
2438 .strategy = &sysctl_jiffies,
2439 },
2440 {
2441 .ctl_name = NET_IPV6_ROUTE_GC_INTERVAL,
2442 .procname = "gc_interval",
2443 .data = &ip6_rt_gc_interval,
2444 .maxlen = sizeof(int),
2445 .mode = 0644,
2446 .proc_handler = &proc_dointvec_jiffies,
2447 .strategy = &sysctl_jiffies,
2448 },
2449 {
2450 .ctl_name = NET_IPV6_ROUTE_GC_ELASTICITY,
2451 .procname = "gc_elasticity",
2452 .data = &ip6_rt_gc_elasticity,
2453 .maxlen = sizeof(int),
2454 .mode = 0644,
2455 .proc_handler = &proc_dointvec_jiffies,
2456 .strategy = &sysctl_jiffies,
2457 },
2458 {
2459 .ctl_name = NET_IPV6_ROUTE_MTU_EXPIRES,
2460 .procname = "mtu_expires",
2461 .data = &ip6_rt_mtu_expires,
2462 .maxlen = sizeof(int),
2463 .mode = 0644,
2464 .proc_handler = &proc_dointvec_jiffies,
2465 .strategy = &sysctl_jiffies,
2466 },
2467 {
2468 .ctl_name = NET_IPV6_ROUTE_MIN_ADVMSS,
2469 .procname = "min_adv_mss",
2470 .data = &ip6_rt_min_advmss,
2471 .maxlen = sizeof(int),
2472 .mode = 0644,
2473 .proc_handler = &proc_dointvec_jiffies,
2474 .strategy = &sysctl_jiffies,
2475 },
2476 {
2477 .ctl_name = NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2478 .procname = "gc_min_interval_ms",
2479 .data = &ip6_rt_gc_min_interval,
2480 .maxlen = sizeof(int),
2481 .mode = 0644,
2482 .proc_handler = &proc_dointvec_ms_jiffies,
2483 .strategy = &sysctl_ms_jiffies,
2484 },
2485 { .ctl_name = 0 }
2486 };
2487
2488 #endif
2489
2490 void __init ip6_route_init(void)
2491 {
2492 #ifdef CONFIG_PROC_FS
2493 struct proc_dir_entry *p;
2494 #endif
2495 ip6_dst_ops.kmem_cachep =
2496 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
2497 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2498 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops.kmem_cachep;
2499
2500 fib6_init();
2501 #ifdef CONFIG_PROC_FS
2502 p = proc_net_create(&init_net, "ipv6_route", 0, rt6_proc_info);
2503 if (p)
2504 p->owner = THIS_MODULE;
2505
2506 proc_net_fops_create(&init_net, "rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2507 #endif
2508 #ifdef CONFIG_XFRM
2509 xfrm6_init();
2510 #endif
2511 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2512 fib6_rules_init();
2513 #endif
2514
2515 __rtnl_register(PF_INET6, RTM_NEWROUTE, inet6_rtm_newroute, NULL);
2516 __rtnl_register(PF_INET6, RTM_DELROUTE, inet6_rtm_delroute, NULL);
2517 __rtnl_register(PF_INET6, RTM_GETROUTE, inet6_rtm_getroute, NULL);
2518 }
2519
2520 void ip6_route_cleanup(void)
2521 {
2522 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2523 fib6_rules_cleanup();
2524 #endif
2525 #ifdef CONFIG_PROC_FS
2526 proc_net_remove(&init_net, "ipv6_route");
2527 proc_net_remove(&init_net, "rt6_stats");
2528 #endif
2529 #ifdef CONFIG_XFRM
2530 xfrm6_fini();
2531 #endif
2532 rt6_ifdown(NULL);
2533 fib6_gc_cleanup();
2534 kmem_cache_destroy(ip6_dst_ops.kmem_cachep);
2535 }