Merge remote-tracking branch 'regulator/topic/mc13892' into regulator-next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv6 / ip6mr.c
1 /*
2 * Linux IPv6 multicast routing support for BSD pim6sd
3 * Based on net/ipv4/ipmr.c.
4 *
5 * (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr>
6 * LSIIT Laboratory, Strasbourg, France
7 * (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com>
8 * 6WIND, Paris, France
9 * Copyright (C)2007,2008 USAGI/WIDE Project
10 * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 */
18
19 #include <asm/uaccess.h>
20 #include <linux/types.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/timer.h>
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/fcntl.h>
27 #include <linux/stat.h>
28 #include <linux/socket.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/proc_fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/compat.h>
37 #include <net/protocol.h>
38 #include <linux/skbuff.h>
39 #include <net/sock.h>
40 #include <net/raw.h>
41 #include <linux/notifier.h>
42 #include <linux/if_arp.h>
43 #include <net/checksum.h>
44 #include <net/netlink.h>
45 #include <net/fib_rules.h>
46
47 #include <net/ipv6.h>
48 #include <net/ip6_route.h>
49 #include <linux/mroute6.h>
50 #include <linux/pim.h>
51 #include <net/addrconf.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/export.h>
54 #include <net/ip6_checksum.h>
55 #include <linux/netconf.h>
56
57 struct mr6_table {
58 struct list_head list;
59 #ifdef CONFIG_NET_NS
60 struct net *net;
61 #endif
62 u32 id;
63 struct sock *mroute6_sk;
64 struct timer_list ipmr_expire_timer;
65 struct list_head mfc6_unres_queue;
66 struct list_head mfc6_cache_array[MFC6_LINES];
67 struct mif_device vif6_table[MAXMIFS];
68 int maxvif;
69 atomic_t cache_resolve_queue_len;
70 bool mroute_do_assert;
71 bool mroute_do_pim;
72 #ifdef CONFIG_IPV6_PIMSM_V2
73 int mroute_reg_vif_num;
74 #endif
75 };
76
77 struct ip6mr_rule {
78 struct fib_rule common;
79 };
80
81 struct ip6mr_result {
82 struct mr6_table *mrt;
83 };
84
85 /* Big lock, protecting vif table, mrt cache and mroute socket state.
86 Note that the changes are semaphored via rtnl_lock.
87 */
88
89 static DEFINE_RWLOCK(mrt_lock);
90
91 /*
92 * Multicast router control variables
93 */
94
95 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL)
96
97 /* Special spinlock for queue of unresolved entries */
98 static DEFINE_SPINLOCK(mfc_unres_lock);
99
100 /* We return to original Alan's scheme. Hash table of resolved
101 entries is changed only in process context and protected
102 with weak lock mrt_lock. Queue of unresolved entries is protected
103 with strong spinlock mfc_unres_lock.
104
105 In this case data path is free of exclusive locks at all.
106 */
107
108 static struct kmem_cache *mrt_cachep __read_mostly;
109
110 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id);
111 static void ip6mr_free_table(struct mr6_table *mrt);
112
113 static int ip6_mr_forward(struct net *net, struct mr6_table *mrt,
114 struct sk_buff *skb, struct mfc6_cache *cache);
115 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
116 mifi_t mifi, int assert);
117 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
118 struct mfc6_cache *c, struct rtmsg *rtm);
119 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc,
120 int cmd);
121 static int ip6mr_rtm_dumproute(struct sk_buff *skb,
122 struct netlink_callback *cb);
123 static void mroute_clean_tables(struct mr6_table *mrt);
124 static void ipmr_expire_process(unsigned long arg);
125
126 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
127 #define ip6mr_for_each_table(mrt, net) \
128 list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list)
129
130 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
131 {
132 struct mr6_table *mrt;
133
134 ip6mr_for_each_table(mrt, net) {
135 if (mrt->id == id)
136 return mrt;
137 }
138 return NULL;
139 }
140
141 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
142 struct mr6_table **mrt)
143 {
144 struct ip6mr_result res;
145 struct fib_lookup_arg arg = { .result = &res, };
146 int err;
147
148 err = fib_rules_lookup(net->ipv6.mr6_rules_ops,
149 flowi6_to_flowi(flp6), 0, &arg);
150 if (err < 0)
151 return err;
152 *mrt = res.mrt;
153 return 0;
154 }
155
156 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp,
157 int flags, struct fib_lookup_arg *arg)
158 {
159 struct ip6mr_result *res = arg->result;
160 struct mr6_table *mrt;
161
162 switch (rule->action) {
163 case FR_ACT_TO_TBL:
164 break;
165 case FR_ACT_UNREACHABLE:
166 return -ENETUNREACH;
167 case FR_ACT_PROHIBIT:
168 return -EACCES;
169 case FR_ACT_BLACKHOLE:
170 default:
171 return -EINVAL;
172 }
173
174 mrt = ip6mr_get_table(rule->fr_net, rule->table);
175 if (mrt == NULL)
176 return -EAGAIN;
177 res->mrt = mrt;
178 return 0;
179 }
180
181 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags)
182 {
183 return 1;
184 }
185
186 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = {
187 FRA_GENERIC_POLICY,
188 };
189
190 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
191 struct fib_rule_hdr *frh, struct nlattr **tb)
192 {
193 return 0;
194 }
195
196 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
197 struct nlattr **tb)
198 {
199 return 1;
200 }
201
202 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
203 struct fib_rule_hdr *frh)
204 {
205 frh->dst_len = 0;
206 frh->src_len = 0;
207 frh->tos = 0;
208 return 0;
209 }
210
211 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = {
212 .family = RTNL_FAMILY_IP6MR,
213 .rule_size = sizeof(struct ip6mr_rule),
214 .addr_size = sizeof(struct in6_addr),
215 .action = ip6mr_rule_action,
216 .match = ip6mr_rule_match,
217 .configure = ip6mr_rule_configure,
218 .compare = ip6mr_rule_compare,
219 .default_pref = fib_default_rule_pref,
220 .fill = ip6mr_rule_fill,
221 .nlgroup = RTNLGRP_IPV6_RULE,
222 .policy = ip6mr_rule_policy,
223 .owner = THIS_MODULE,
224 };
225
226 static int __net_init ip6mr_rules_init(struct net *net)
227 {
228 struct fib_rules_ops *ops;
229 struct mr6_table *mrt;
230 int err;
231
232 ops = fib_rules_register(&ip6mr_rules_ops_template, net);
233 if (IS_ERR(ops))
234 return PTR_ERR(ops);
235
236 INIT_LIST_HEAD(&net->ipv6.mr6_tables);
237
238 mrt = ip6mr_new_table(net, RT6_TABLE_DFLT);
239 if (mrt == NULL) {
240 err = -ENOMEM;
241 goto err1;
242 }
243
244 err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0);
245 if (err < 0)
246 goto err2;
247
248 net->ipv6.mr6_rules_ops = ops;
249 return 0;
250
251 err2:
252 kfree(mrt);
253 err1:
254 fib_rules_unregister(ops);
255 return err;
256 }
257
258 static void __net_exit ip6mr_rules_exit(struct net *net)
259 {
260 struct mr6_table *mrt, *next;
261
262 list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) {
263 list_del(&mrt->list);
264 ip6mr_free_table(mrt);
265 }
266 fib_rules_unregister(net->ipv6.mr6_rules_ops);
267 }
268 #else
269 #define ip6mr_for_each_table(mrt, net) \
270 for (mrt = net->ipv6.mrt6; mrt; mrt = NULL)
271
272 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
273 {
274 return net->ipv6.mrt6;
275 }
276
277 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
278 struct mr6_table **mrt)
279 {
280 *mrt = net->ipv6.mrt6;
281 return 0;
282 }
283
284 static int __net_init ip6mr_rules_init(struct net *net)
285 {
286 net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT);
287 return net->ipv6.mrt6 ? 0 : -ENOMEM;
288 }
289
290 static void __net_exit ip6mr_rules_exit(struct net *net)
291 {
292 ip6mr_free_table(net->ipv6.mrt6);
293 }
294 #endif
295
296 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id)
297 {
298 struct mr6_table *mrt;
299 unsigned int i;
300
301 mrt = ip6mr_get_table(net, id);
302 if (mrt != NULL)
303 return mrt;
304
305 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
306 if (mrt == NULL)
307 return NULL;
308 mrt->id = id;
309 write_pnet(&mrt->net, net);
310
311 /* Forwarding cache */
312 for (i = 0; i < MFC6_LINES; i++)
313 INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]);
314
315 INIT_LIST_HEAD(&mrt->mfc6_unres_queue);
316
317 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
318 (unsigned long)mrt);
319
320 #ifdef CONFIG_IPV6_PIMSM_V2
321 mrt->mroute_reg_vif_num = -1;
322 #endif
323 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
324 list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables);
325 #endif
326 return mrt;
327 }
328
329 static void ip6mr_free_table(struct mr6_table *mrt)
330 {
331 del_timer(&mrt->ipmr_expire_timer);
332 mroute_clean_tables(mrt);
333 kfree(mrt);
334 }
335
336 #ifdef CONFIG_PROC_FS
337
338 struct ipmr_mfc_iter {
339 struct seq_net_private p;
340 struct mr6_table *mrt;
341 struct list_head *cache;
342 int ct;
343 };
344
345
346 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net,
347 struct ipmr_mfc_iter *it, loff_t pos)
348 {
349 struct mr6_table *mrt = it->mrt;
350 struct mfc6_cache *mfc;
351
352 read_lock(&mrt_lock);
353 for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) {
354 it->cache = &mrt->mfc6_cache_array[it->ct];
355 list_for_each_entry(mfc, it->cache, list)
356 if (pos-- == 0)
357 return mfc;
358 }
359 read_unlock(&mrt_lock);
360
361 spin_lock_bh(&mfc_unres_lock);
362 it->cache = &mrt->mfc6_unres_queue;
363 list_for_each_entry(mfc, it->cache, list)
364 if (pos-- == 0)
365 return mfc;
366 spin_unlock_bh(&mfc_unres_lock);
367
368 it->cache = NULL;
369 return NULL;
370 }
371
372 /*
373 * The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif
374 */
375
376 struct ipmr_vif_iter {
377 struct seq_net_private p;
378 struct mr6_table *mrt;
379 int ct;
380 };
381
382 static struct mif_device *ip6mr_vif_seq_idx(struct net *net,
383 struct ipmr_vif_iter *iter,
384 loff_t pos)
385 {
386 struct mr6_table *mrt = iter->mrt;
387
388 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
389 if (!MIF_EXISTS(mrt, iter->ct))
390 continue;
391 if (pos-- == 0)
392 return &mrt->vif6_table[iter->ct];
393 }
394 return NULL;
395 }
396
397 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos)
398 __acquires(mrt_lock)
399 {
400 struct ipmr_vif_iter *iter = seq->private;
401 struct net *net = seq_file_net(seq);
402 struct mr6_table *mrt;
403
404 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
405 if (mrt == NULL)
406 return ERR_PTR(-ENOENT);
407
408 iter->mrt = mrt;
409
410 read_lock(&mrt_lock);
411 return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1)
412 : SEQ_START_TOKEN;
413 }
414
415 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
416 {
417 struct ipmr_vif_iter *iter = seq->private;
418 struct net *net = seq_file_net(seq);
419 struct mr6_table *mrt = iter->mrt;
420
421 ++*pos;
422 if (v == SEQ_START_TOKEN)
423 return ip6mr_vif_seq_idx(net, iter, 0);
424
425 while (++iter->ct < mrt->maxvif) {
426 if (!MIF_EXISTS(mrt, iter->ct))
427 continue;
428 return &mrt->vif6_table[iter->ct];
429 }
430 return NULL;
431 }
432
433 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v)
434 __releases(mrt_lock)
435 {
436 read_unlock(&mrt_lock);
437 }
438
439 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v)
440 {
441 struct ipmr_vif_iter *iter = seq->private;
442 struct mr6_table *mrt = iter->mrt;
443
444 if (v == SEQ_START_TOKEN) {
445 seq_puts(seq,
446 "Interface BytesIn PktsIn BytesOut PktsOut Flags\n");
447 } else {
448 const struct mif_device *vif = v;
449 const char *name = vif->dev ? vif->dev->name : "none";
450
451 seq_printf(seq,
452 "%2td %-10s %8ld %7ld %8ld %7ld %05X\n",
453 vif - mrt->vif6_table,
454 name, vif->bytes_in, vif->pkt_in,
455 vif->bytes_out, vif->pkt_out,
456 vif->flags);
457 }
458 return 0;
459 }
460
461 static const struct seq_operations ip6mr_vif_seq_ops = {
462 .start = ip6mr_vif_seq_start,
463 .next = ip6mr_vif_seq_next,
464 .stop = ip6mr_vif_seq_stop,
465 .show = ip6mr_vif_seq_show,
466 };
467
468 static int ip6mr_vif_open(struct inode *inode, struct file *file)
469 {
470 return seq_open_net(inode, file, &ip6mr_vif_seq_ops,
471 sizeof(struct ipmr_vif_iter));
472 }
473
474 static const struct file_operations ip6mr_vif_fops = {
475 .owner = THIS_MODULE,
476 .open = ip6mr_vif_open,
477 .read = seq_read,
478 .llseek = seq_lseek,
479 .release = seq_release_net,
480 };
481
482 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
483 {
484 struct ipmr_mfc_iter *it = seq->private;
485 struct net *net = seq_file_net(seq);
486 struct mr6_table *mrt;
487
488 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
489 if (mrt == NULL)
490 return ERR_PTR(-ENOENT);
491
492 it->mrt = mrt;
493 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
494 : SEQ_START_TOKEN;
495 }
496
497 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
498 {
499 struct mfc6_cache *mfc = v;
500 struct ipmr_mfc_iter *it = seq->private;
501 struct net *net = seq_file_net(seq);
502 struct mr6_table *mrt = it->mrt;
503
504 ++*pos;
505
506 if (v == SEQ_START_TOKEN)
507 return ipmr_mfc_seq_idx(net, seq->private, 0);
508
509 if (mfc->list.next != it->cache)
510 return list_entry(mfc->list.next, struct mfc6_cache, list);
511
512 if (it->cache == &mrt->mfc6_unres_queue)
513 goto end_of_list;
514
515 BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]);
516
517 while (++it->ct < MFC6_LINES) {
518 it->cache = &mrt->mfc6_cache_array[it->ct];
519 if (list_empty(it->cache))
520 continue;
521 return list_first_entry(it->cache, struct mfc6_cache, list);
522 }
523
524 /* exhausted cache_array, show unresolved */
525 read_unlock(&mrt_lock);
526 it->cache = &mrt->mfc6_unres_queue;
527 it->ct = 0;
528
529 spin_lock_bh(&mfc_unres_lock);
530 if (!list_empty(it->cache))
531 return list_first_entry(it->cache, struct mfc6_cache, list);
532
533 end_of_list:
534 spin_unlock_bh(&mfc_unres_lock);
535 it->cache = NULL;
536
537 return NULL;
538 }
539
540 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
541 {
542 struct ipmr_mfc_iter *it = seq->private;
543 struct mr6_table *mrt = it->mrt;
544
545 if (it->cache == &mrt->mfc6_unres_queue)
546 spin_unlock_bh(&mfc_unres_lock);
547 else if (it->cache == mrt->mfc6_cache_array)
548 read_unlock(&mrt_lock);
549 }
550
551 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
552 {
553 int n;
554
555 if (v == SEQ_START_TOKEN) {
556 seq_puts(seq,
557 "Group "
558 "Origin "
559 "Iif Pkts Bytes Wrong Oifs\n");
560 } else {
561 const struct mfc6_cache *mfc = v;
562 const struct ipmr_mfc_iter *it = seq->private;
563 struct mr6_table *mrt = it->mrt;
564
565 seq_printf(seq, "%pI6 %pI6 %-3hd",
566 &mfc->mf6c_mcastgrp, &mfc->mf6c_origin,
567 mfc->mf6c_parent);
568
569 if (it->cache != &mrt->mfc6_unres_queue) {
570 seq_printf(seq, " %8lu %8lu %8lu",
571 mfc->mfc_un.res.pkt,
572 mfc->mfc_un.res.bytes,
573 mfc->mfc_un.res.wrong_if);
574 for (n = mfc->mfc_un.res.minvif;
575 n < mfc->mfc_un.res.maxvif; n++) {
576 if (MIF_EXISTS(mrt, n) &&
577 mfc->mfc_un.res.ttls[n] < 255)
578 seq_printf(seq,
579 " %2d:%-3d",
580 n, mfc->mfc_un.res.ttls[n]);
581 }
582 } else {
583 /* unresolved mfc_caches don't contain
584 * pkt, bytes and wrong_if values
585 */
586 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
587 }
588 seq_putc(seq, '\n');
589 }
590 return 0;
591 }
592
593 static const struct seq_operations ipmr_mfc_seq_ops = {
594 .start = ipmr_mfc_seq_start,
595 .next = ipmr_mfc_seq_next,
596 .stop = ipmr_mfc_seq_stop,
597 .show = ipmr_mfc_seq_show,
598 };
599
600 static int ipmr_mfc_open(struct inode *inode, struct file *file)
601 {
602 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
603 sizeof(struct ipmr_mfc_iter));
604 }
605
606 static const struct file_operations ip6mr_mfc_fops = {
607 .owner = THIS_MODULE,
608 .open = ipmr_mfc_open,
609 .read = seq_read,
610 .llseek = seq_lseek,
611 .release = seq_release_net,
612 };
613 #endif
614
615 #ifdef CONFIG_IPV6_PIMSM_V2
616
617 static int pim6_rcv(struct sk_buff *skb)
618 {
619 struct pimreghdr *pim;
620 struct ipv6hdr *encap;
621 struct net_device *reg_dev = NULL;
622 struct net *net = dev_net(skb->dev);
623 struct mr6_table *mrt;
624 struct flowi6 fl6 = {
625 .flowi6_iif = skb->dev->ifindex,
626 .flowi6_mark = skb->mark,
627 };
628 int reg_vif_num;
629
630 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
631 goto drop;
632
633 pim = (struct pimreghdr *)skb_transport_header(skb);
634 if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) ||
635 (pim->flags & PIM_NULL_REGISTER) ||
636 (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
637 sizeof(*pim), IPPROTO_PIM,
638 csum_partial((void *)pim, sizeof(*pim), 0)) &&
639 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
640 goto drop;
641
642 /* check if the inner packet is destined to mcast group */
643 encap = (struct ipv6hdr *)(skb_transport_header(skb) +
644 sizeof(*pim));
645
646 if (!ipv6_addr_is_multicast(&encap->daddr) ||
647 encap->payload_len == 0 ||
648 ntohs(encap->payload_len) + sizeof(*pim) > skb->len)
649 goto drop;
650
651 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
652 goto drop;
653 reg_vif_num = mrt->mroute_reg_vif_num;
654
655 read_lock(&mrt_lock);
656 if (reg_vif_num >= 0)
657 reg_dev = mrt->vif6_table[reg_vif_num].dev;
658 if (reg_dev)
659 dev_hold(reg_dev);
660 read_unlock(&mrt_lock);
661
662 if (reg_dev == NULL)
663 goto drop;
664
665 skb->mac_header = skb->network_header;
666 skb_pull(skb, (u8 *)encap - skb->data);
667 skb_reset_network_header(skb);
668 skb->protocol = htons(ETH_P_IPV6);
669 skb->ip_summed = CHECKSUM_NONE;
670 skb->pkt_type = PACKET_HOST;
671
672 skb_tunnel_rx(skb, reg_dev);
673
674 netif_rx(skb);
675
676 dev_put(reg_dev);
677 return 0;
678 drop:
679 kfree_skb(skb);
680 return 0;
681 }
682
683 static const struct inet6_protocol pim6_protocol = {
684 .handler = pim6_rcv,
685 };
686
687 /* Service routines creating virtual interfaces: PIMREG */
688
689 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb,
690 struct net_device *dev)
691 {
692 struct net *net = dev_net(dev);
693 struct mr6_table *mrt;
694 struct flowi6 fl6 = {
695 .flowi6_oif = dev->ifindex,
696 .flowi6_iif = skb->skb_iif,
697 .flowi6_mark = skb->mark,
698 };
699 int err;
700
701 err = ip6mr_fib_lookup(net, &fl6, &mrt);
702 if (err < 0) {
703 kfree_skb(skb);
704 return err;
705 }
706
707 read_lock(&mrt_lock);
708 dev->stats.tx_bytes += skb->len;
709 dev->stats.tx_packets++;
710 ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT);
711 read_unlock(&mrt_lock);
712 kfree_skb(skb);
713 return NETDEV_TX_OK;
714 }
715
716 static const struct net_device_ops reg_vif_netdev_ops = {
717 .ndo_start_xmit = reg_vif_xmit,
718 };
719
720 static void reg_vif_setup(struct net_device *dev)
721 {
722 dev->type = ARPHRD_PIMREG;
723 dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8;
724 dev->flags = IFF_NOARP;
725 dev->netdev_ops = &reg_vif_netdev_ops;
726 dev->destructor = free_netdev;
727 dev->features |= NETIF_F_NETNS_LOCAL;
728 }
729
730 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt)
731 {
732 struct net_device *dev;
733 char name[IFNAMSIZ];
734
735 if (mrt->id == RT6_TABLE_DFLT)
736 sprintf(name, "pim6reg");
737 else
738 sprintf(name, "pim6reg%u", mrt->id);
739
740 dev = alloc_netdev(0, name, reg_vif_setup);
741 if (dev == NULL)
742 return NULL;
743
744 dev_net_set(dev, net);
745
746 if (register_netdevice(dev)) {
747 free_netdev(dev);
748 return NULL;
749 }
750 dev->iflink = 0;
751
752 if (dev_open(dev))
753 goto failure;
754
755 dev_hold(dev);
756 return dev;
757
758 failure:
759 /* allow the register to be completed before unregistering. */
760 rtnl_unlock();
761 rtnl_lock();
762
763 unregister_netdevice(dev);
764 return NULL;
765 }
766 #endif
767
768 /*
769 * Delete a VIF entry
770 */
771
772 static int mif6_delete(struct mr6_table *mrt, int vifi, struct list_head *head)
773 {
774 struct mif_device *v;
775 struct net_device *dev;
776 struct inet6_dev *in6_dev;
777
778 if (vifi < 0 || vifi >= mrt->maxvif)
779 return -EADDRNOTAVAIL;
780
781 v = &mrt->vif6_table[vifi];
782
783 write_lock_bh(&mrt_lock);
784 dev = v->dev;
785 v->dev = NULL;
786
787 if (!dev) {
788 write_unlock_bh(&mrt_lock);
789 return -EADDRNOTAVAIL;
790 }
791
792 #ifdef CONFIG_IPV6_PIMSM_V2
793 if (vifi == mrt->mroute_reg_vif_num)
794 mrt->mroute_reg_vif_num = -1;
795 #endif
796
797 if (vifi + 1 == mrt->maxvif) {
798 int tmp;
799 for (tmp = vifi - 1; tmp >= 0; tmp--) {
800 if (MIF_EXISTS(mrt, tmp))
801 break;
802 }
803 mrt->maxvif = tmp + 1;
804 }
805
806 write_unlock_bh(&mrt_lock);
807
808 dev_set_allmulti(dev, -1);
809
810 in6_dev = __in6_dev_get(dev);
811 if (in6_dev) {
812 in6_dev->cnf.mc_forwarding--;
813 inet6_netconf_notify_devconf(dev_net(dev),
814 NETCONFA_MC_FORWARDING,
815 dev->ifindex, &in6_dev->cnf);
816 }
817
818 if (v->flags & MIFF_REGISTER)
819 unregister_netdevice_queue(dev, head);
820
821 dev_put(dev);
822 return 0;
823 }
824
825 static inline void ip6mr_cache_free(struct mfc6_cache *c)
826 {
827 kmem_cache_free(mrt_cachep, c);
828 }
829
830 /* Destroy an unresolved cache entry, killing queued skbs
831 and reporting error to netlink readers.
832 */
833
834 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c)
835 {
836 struct net *net = read_pnet(&mrt->net);
837 struct sk_buff *skb;
838
839 atomic_dec(&mrt->cache_resolve_queue_len);
840
841 while((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) {
842 if (ipv6_hdr(skb)->version == 0) {
843 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
844 nlh->nlmsg_type = NLMSG_ERROR;
845 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
846 skb_trim(skb, nlh->nlmsg_len);
847 ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -ETIMEDOUT;
848 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
849 } else
850 kfree_skb(skb);
851 }
852
853 ip6mr_cache_free(c);
854 }
855
856
857 /* Timer process for all the unresolved queue. */
858
859 static void ipmr_do_expire_process(struct mr6_table *mrt)
860 {
861 unsigned long now = jiffies;
862 unsigned long expires = 10 * HZ;
863 struct mfc6_cache *c, *next;
864
865 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
866 if (time_after(c->mfc_un.unres.expires, now)) {
867 /* not yet... */
868 unsigned long interval = c->mfc_un.unres.expires - now;
869 if (interval < expires)
870 expires = interval;
871 continue;
872 }
873
874 list_del(&c->list);
875 mr6_netlink_event(mrt, c, RTM_DELROUTE);
876 ip6mr_destroy_unres(mrt, c);
877 }
878
879 if (!list_empty(&mrt->mfc6_unres_queue))
880 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
881 }
882
883 static void ipmr_expire_process(unsigned long arg)
884 {
885 struct mr6_table *mrt = (struct mr6_table *)arg;
886
887 if (!spin_trylock(&mfc_unres_lock)) {
888 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1);
889 return;
890 }
891
892 if (!list_empty(&mrt->mfc6_unres_queue))
893 ipmr_do_expire_process(mrt);
894
895 spin_unlock(&mfc_unres_lock);
896 }
897
898 /* Fill oifs list. It is called under write locked mrt_lock. */
899
900 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache,
901 unsigned char *ttls)
902 {
903 int vifi;
904
905 cache->mfc_un.res.minvif = MAXMIFS;
906 cache->mfc_un.res.maxvif = 0;
907 memset(cache->mfc_un.res.ttls, 255, MAXMIFS);
908
909 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
910 if (MIF_EXISTS(mrt, vifi) &&
911 ttls[vifi] && ttls[vifi] < 255) {
912 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
913 if (cache->mfc_un.res.minvif > vifi)
914 cache->mfc_un.res.minvif = vifi;
915 if (cache->mfc_un.res.maxvif <= vifi)
916 cache->mfc_un.res.maxvif = vifi + 1;
917 }
918 }
919 }
920
921 static int mif6_add(struct net *net, struct mr6_table *mrt,
922 struct mif6ctl *vifc, int mrtsock)
923 {
924 int vifi = vifc->mif6c_mifi;
925 struct mif_device *v = &mrt->vif6_table[vifi];
926 struct net_device *dev;
927 struct inet6_dev *in6_dev;
928 int err;
929
930 /* Is vif busy ? */
931 if (MIF_EXISTS(mrt, vifi))
932 return -EADDRINUSE;
933
934 switch (vifc->mif6c_flags) {
935 #ifdef CONFIG_IPV6_PIMSM_V2
936 case MIFF_REGISTER:
937 /*
938 * Special Purpose VIF in PIM
939 * All the packets will be sent to the daemon
940 */
941 if (mrt->mroute_reg_vif_num >= 0)
942 return -EADDRINUSE;
943 dev = ip6mr_reg_vif(net, mrt);
944 if (!dev)
945 return -ENOBUFS;
946 err = dev_set_allmulti(dev, 1);
947 if (err) {
948 unregister_netdevice(dev);
949 dev_put(dev);
950 return err;
951 }
952 break;
953 #endif
954 case 0:
955 dev = dev_get_by_index(net, vifc->mif6c_pifi);
956 if (!dev)
957 return -EADDRNOTAVAIL;
958 err = dev_set_allmulti(dev, 1);
959 if (err) {
960 dev_put(dev);
961 return err;
962 }
963 break;
964 default:
965 return -EINVAL;
966 }
967
968 in6_dev = __in6_dev_get(dev);
969 if (in6_dev) {
970 in6_dev->cnf.mc_forwarding++;
971 inet6_netconf_notify_devconf(dev_net(dev),
972 NETCONFA_MC_FORWARDING,
973 dev->ifindex, &in6_dev->cnf);
974 }
975
976 /*
977 * Fill in the VIF structures
978 */
979 v->rate_limit = vifc->vifc_rate_limit;
980 v->flags = vifc->mif6c_flags;
981 if (!mrtsock)
982 v->flags |= VIFF_STATIC;
983 v->threshold = vifc->vifc_threshold;
984 v->bytes_in = 0;
985 v->bytes_out = 0;
986 v->pkt_in = 0;
987 v->pkt_out = 0;
988 v->link = dev->ifindex;
989 if (v->flags & MIFF_REGISTER)
990 v->link = dev->iflink;
991
992 /* And finish update writing critical data */
993 write_lock_bh(&mrt_lock);
994 v->dev = dev;
995 #ifdef CONFIG_IPV6_PIMSM_V2
996 if (v->flags & MIFF_REGISTER)
997 mrt->mroute_reg_vif_num = vifi;
998 #endif
999 if (vifi + 1 > mrt->maxvif)
1000 mrt->maxvif = vifi + 1;
1001 write_unlock_bh(&mrt_lock);
1002 return 0;
1003 }
1004
1005 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt,
1006 const struct in6_addr *origin,
1007 const struct in6_addr *mcastgrp)
1008 {
1009 int line = MFC6_HASH(mcastgrp, origin);
1010 struct mfc6_cache *c;
1011
1012 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1013 if (ipv6_addr_equal(&c->mf6c_origin, origin) &&
1014 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp))
1015 return c;
1016 }
1017 return NULL;
1018 }
1019
1020 /*
1021 * Allocate a multicast cache entry
1022 */
1023 static struct mfc6_cache *ip6mr_cache_alloc(void)
1024 {
1025 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
1026 if (c == NULL)
1027 return NULL;
1028 c->mfc_un.res.minvif = MAXMIFS;
1029 return c;
1030 }
1031
1032 static struct mfc6_cache *ip6mr_cache_alloc_unres(void)
1033 {
1034 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1035 if (c == NULL)
1036 return NULL;
1037 skb_queue_head_init(&c->mfc_un.unres.unresolved);
1038 c->mfc_un.unres.expires = jiffies + 10 * HZ;
1039 return c;
1040 }
1041
1042 /*
1043 * A cache entry has gone into a resolved state from queued
1044 */
1045
1046 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt,
1047 struct mfc6_cache *uc, struct mfc6_cache *c)
1048 {
1049 struct sk_buff *skb;
1050
1051 /*
1052 * Play the pending entries through our router
1053 */
1054
1055 while((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
1056 if (ipv6_hdr(skb)->version == 0) {
1057 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
1058
1059 if (__ip6mr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
1060 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh;
1061 } else {
1062 nlh->nlmsg_type = NLMSG_ERROR;
1063 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
1064 skb_trim(skb, nlh->nlmsg_len);
1065 ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -EMSGSIZE;
1066 }
1067 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1068 } else
1069 ip6_mr_forward(net, mrt, skb, c);
1070 }
1071 }
1072
1073 /*
1074 * Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd
1075 * expects the following bizarre scheme.
1076 *
1077 * Called under mrt_lock.
1078 */
1079
1080 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
1081 mifi_t mifi, int assert)
1082 {
1083 struct sk_buff *skb;
1084 struct mrt6msg *msg;
1085 int ret;
1086
1087 #ifdef CONFIG_IPV6_PIMSM_V2
1088 if (assert == MRT6MSG_WHOLEPKT)
1089 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt)
1090 +sizeof(*msg));
1091 else
1092 #endif
1093 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC);
1094
1095 if (!skb)
1096 return -ENOBUFS;
1097
1098 /* I suppose that internal messages
1099 * do not require checksums */
1100
1101 skb->ip_summed = CHECKSUM_UNNECESSARY;
1102
1103 #ifdef CONFIG_IPV6_PIMSM_V2
1104 if (assert == MRT6MSG_WHOLEPKT) {
1105 /* Ugly, but we have no choice with this interface.
1106 Duplicate old header, fix length etc.
1107 And all this only to mangle msg->im6_msgtype and
1108 to set msg->im6_mbz to "mbz" :-)
1109 */
1110 skb_push(skb, -skb_network_offset(pkt));
1111
1112 skb_push(skb, sizeof(*msg));
1113 skb_reset_transport_header(skb);
1114 msg = (struct mrt6msg *)skb_transport_header(skb);
1115 msg->im6_mbz = 0;
1116 msg->im6_msgtype = MRT6MSG_WHOLEPKT;
1117 msg->im6_mif = mrt->mroute_reg_vif_num;
1118 msg->im6_pad = 0;
1119 msg->im6_src = ipv6_hdr(pkt)->saddr;
1120 msg->im6_dst = ipv6_hdr(pkt)->daddr;
1121
1122 skb->ip_summed = CHECKSUM_UNNECESSARY;
1123 } else
1124 #endif
1125 {
1126 /*
1127 * Copy the IP header
1128 */
1129
1130 skb_put(skb, sizeof(struct ipv6hdr));
1131 skb_reset_network_header(skb);
1132 skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr));
1133
1134 /*
1135 * Add our header
1136 */
1137 skb_put(skb, sizeof(*msg));
1138 skb_reset_transport_header(skb);
1139 msg = (struct mrt6msg *)skb_transport_header(skb);
1140
1141 msg->im6_mbz = 0;
1142 msg->im6_msgtype = assert;
1143 msg->im6_mif = mifi;
1144 msg->im6_pad = 0;
1145 msg->im6_src = ipv6_hdr(pkt)->saddr;
1146 msg->im6_dst = ipv6_hdr(pkt)->daddr;
1147
1148 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1149 skb->ip_summed = CHECKSUM_UNNECESSARY;
1150 }
1151
1152 if (mrt->mroute6_sk == NULL) {
1153 kfree_skb(skb);
1154 return -EINVAL;
1155 }
1156
1157 /*
1158 * Deliver to user space multicast routing algorithms
1159 */
1160 ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb);
1161 if (ret < 0) {
1162 net_warn_ratelimited("mroute6: pending queue full, dropping entries\n");
1163 kfree_skb(skb);
1164 }
1165
1166 return ret;
1167 }
1168
1169 /*
1170 * Queue a packet for resolution. It gets locked cache entry!
1171 */
1172
1173 static int
1174 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb)
1175 {
1176 bool found = false;
1177 int err;
1178 struct mfc6_cache *c;
1179
1180 spin_lock_bh(&mfc_unres_lock);
1181 list_for_each_entry(c, &mrt->mfc6_unres_queue, list) {
1182 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) &&
1183 ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) {
1184 found = true;
1185 break;
1186 }
1187 }
1188
1189 if (!found) {
1190 /*
1191 * Create a new entry if allowable
1192 */
1193
1194 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1195 (c = ip6mr_cache_alloc_unres()) == NULL) {
1196 spin_unlock_bh(&mfc_unres_lock);
1197
1198 kfree_skb(skb);
1199 return -ENOBUFS;
1200 }
1201
1202 /*
1203 * Fill in the new cache entry
1204 */
1205 c->mf6c_parent = -1;
1206 c->mf6c_origin = ipv6_hdr(skb)->saddr;
1207 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr;
1208
1209 /*
1210 * Reflect first query at pim6sd
1211 */
1212 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE);
1213 if (err < 0) {
1214 /* If the report failed throw the cache entry
1215 out - Brad Parker
1216 */
1217 spin_unlock_bh(&mfc_unres_lock);
1218
1219 ip6mr_cache_free(c);
1220 kfree_skb(skb);
1221 return err;
1222 }
1223
1224 atomic_inc(&mrt->cache_resolve_queue_len);
1225 list_add(&c->list, &mrt->mfc6_unres_queue);
1226 mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1227
1228 ipmr_do_expire_process(mrt);
1229 }
1230
1231 /*
1232 * See if we can append the packet
1233 */
1234 if (c->mfc_un.unres.unresolved.qlen > 3) {
1235 kfree_skb(skb);
1236 err = -ENOBUFS;
1237 } else {
1238 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1239 err = 0;
1240 }
1241
1242 spin_unlock_bh(&mfc_unres_lock);
1243 return err;
1244 }
1245
1246 /*
1247 * MFC6 cache manipulation by user space
1248 */
1249
1250 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc)
1251 {
1252 int line;
1253 struct mfc6_cache *c, *next;
1254
1255 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1256
1257 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) {
1258 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1259 ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) {
1260 write_lock_bh(&mrt_lock);
1261 list_del(&c->list);
1262 write_unlock_bh(&mrt_lock);
1263
1264 mr6_netlink_event(mrt, c, RTM_DELROUTE);
1265 ip6mr_cache_free(c);
1266 return 0;
1267 }
1268 }
1269 return -ENOENT;
1270 }
1271
1272 static int ip6mr_device_event(struct notifier_block *this,
1273 unsigned long event, void *ptr)
1274 {
1275 struct net_device *dev = ptr;
1276 struct net *net = dev_net(dev);
1277 struct mr6_table *mrt;
1278 struct mif_device *v;
1279 int ct;
1280 LIST_HEAD(list);
1281
1282 if (event != NETDEV_UNREGISTER)
1283 return NOTIFY_DONE;
1284
1285 ip6mr_for_each_table(mrt, net) {
1286 v = &mrt->vif6_table[0];
1287 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1288 if (v->dev == dev)
1289 mif6_delete(mrt, ct, &list);
1290 }
1291 }
1292 unregister_netdevice_many(&list);
1293
1294 return NOTIFY_DONE;
1295 }
1296
1297 static struct notifier_block ip6_mr_notifier = {
1298 .notifier_call = ip6mr_device_event
1299 };
1300
1301 /*
1302 * Setup for IP multicast routing
1303 */
1304
1305 static int __net_init ip6mr_net_init(struct net *net)
1306 {
1307 int err;
1308
1309 err = ip6mr_rules_init(net);
1310 if (err < 0)
1311 goto fail;
1312
1313 #ifdef CONFIG_PROC_FS
1314 err = -ENOMEM;
1315 if (!proc_net_fops_create(net, "ip6_mr_vif", 0, &ip6mr_vif_fops))
1316 goto proc_vif_fail;
1317 if (!proc_net_fops_create(net, "ip6_mr_cache", 0, &ip6mr_mfc_fops))
1318 goto proc_cache_fail;
1319 #endif
1320
1321 return 0;
1322
1323 #ifdef CONFIG_PROC_FS
1324 proc_cache_fail:
1325 proc_net_remove(net, "ip6_mr_vif");
1326 proc_vif_fail:
1327 ip6mr_rules_exit(net);
1328 #endif
1329 fail:
1330 return err;
1331 }
1332
1333 static void __net_exit ip6mr_net_exit(struct net *net)
1334 {
1335 #ifdef CONFIG_PROC_FS
1336 proc_net_remove(net, "ip6_mr_cache");
1337 proc_net_remove(net, "ip6_mr_vif");
1338 #endif
1339 ip6mr_rules_exit(net);
1340 }
1341
1342 static struct pernet_operations ip6mr_net_ops = {
1343 .init = ip6mr_net_init,
1344 .exit = ip6mr_net_exit,
1345 };
1346
1347 int __init ip6_mr_init(void)
1348 {
1349 int err;
1350
1351 mrt_cachep = kmem_cache_create("ip6_mrt_cache",
1352 sizeof(struct mfc6_cache),
1353 0, SLAB_HWCACHE_ALIGN,
1354 NULL);
1355 if (!mrt_cachep)
1356 return -ENOMEM;
1357
1358 err = register_pernet_subsys(&ip6mr_net_ops);
1359 if (err)
1360 goto reg_pernet_fail;
1361
1362 err = register_netdevice_notifier(&ip6_mr_notifier);
1363 if (err)
1364 goto reg_notif_fail;
1365 #ifdef CONFIG_IPV6_PIMSM_V2
1366 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) {
1367 pr_err("%s: can't add PIM protocol\n", __func__);
1368 err = -EAGAIN;
1369 goto add_proto_fail;
1370 }
1371 #endif
1372 rtnl_register(RTNL_FAMILY_IP6MR, RTM_GETROUTE, NULL,
1373 ip6mr_rtm_dumproute, NULL);
1374 return 0;
1375 #ifdef CONFIG_IPV6_PIMSM_V2
1376 add_proto_fail:
1377 unregister_netdevice_notifier(&ip6_mr_notifier);
1378 #endif
1379 reg_notif_fail:
1380 unregister_pernet_subsys(&ip6mr_net_ops);
1381 reg_pernet_fail:
1382 kmem_cache_destroy(mrt_cachep);
1383 return err;
1384 }
1385
1386 void ip6_mr_cleanup(void)
1387 {
1388 unregister_netdevice_notifier(&ip6_mr_notifier);
1389 unregister_pernet_subsys(&ip6mr_net_ops);
1390 kmem_cache_destroy(mrt_cachep);
1391 }
1392
1393 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt,
1394 struct mf6cctl *mfc, int mrtsock)
1395 {
1396 bool found = false;
1397 int line;
1398 struct mfc6_cache *uc, *c;
1399 unsigned char ttls[MAXMIFS];
1400 int i;
1401
1402 if (mfc->mf6cc_parent >= MAXMIFS)
1403 return -ENFILE;
1404
1405 memset(ttls, 255, MAXMIFS);
1406 for (i = 0; i < MAXMIFS; i++) {
1407 if (IF_ISSET(i, &mfc->mf6cc_ifset))
1408 ttls[i] = 1;
1409
1410 }
1411
1412 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1413
1414 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1415 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1416 ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) {
1417 found = true;
1418 break;
1419 }
1420 }
1421
1422 if (found) {
1423 write_lock_bh(&mrt_lock);
1424 c->mf6c_parent = mfc->mf6cc_parent;
1425 ip6mr_update_thresholds(mrt, c, ttls);
1426 if (!mrtsock)
1427 c->mfc_flags |= MFC_STATIC;
1428 write_unlock_bh(&mrt_lock);
1429 mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1430 return 0;
1431 }
1432
1433 if (!ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr))
1434 return -EINVAL;
1435
1436 c = ip6mr_cache_alloc();
1437 if (c == NULL)
1438 return -ENOMEM;
1439
1440 c->mf6c_origin = mfc->mf6cc_origin.sin6_addr;
1441 c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr;
1442 c->mf6c_parent = mfc->mf6cc_parent;
1443 ip6mr_update_thresholds(mrt, c, ttls);
1444 if (!mrtsock)
1445 c->mfc_flags |= MFC_STATIC;
1446
1447 write_lock_bh(&mrt_lock);
1448 list_add(&c->list, &mrt->mfc6_cache_array[line]);
1449 write_unlock_bh(&mrt_lock);
1450
1451 /*
1452 * Check to see if we resolved a queued list. If so we
1453 * need to send on the frames and tidy up.
1454 */
1455 found = false;
1456 spin_lock_bh(&mfc_unres_lock);
1457 list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) {
1458 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) &&
1459 ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) {
1460 list_del(&uc->list);
1461 atomic_dec(&mrt->cache_resolve_queue_len);
1462 found = true;
1463 break;
1464 }
1465 }
1466 if (list_empty(&mrt->mfc6_unres_queue))
1467 del_timer(&mrt->ipmr_expire_timer);
1468 spin_unlock_bh(&mfc_unres_lock);
1469
1470 if (found) {
1471 ip6mr_cache_resolve(net, mrt, uc, c);
1472 ip6mr_cache_free(uc);
1473 }
1474 mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1475 return 0;
1476 }
1477
1478 /*
1479 * Close the multicast socket, and clear the vif tables etc
1480 */
1481
1482 static void mroute_clean_tables(struct mr6_table *mrt)
1483 {
1484 int i;
1485 LIST_HEAD(list);
1486 struct mfc6_cache *c, *next;
1487
1488 /*
1489 * Shut down all active vif entries
1490 */
1491 for (i = 0; i < mrt->maxvif; i++) {
1492 if (!(mrt->vif6_table[i].flags & VIFF_STATIC))
1493 mif6_delete(mrt, i, &list);
1494 }
1495 unregister_netdevice_many(&list);
1496
1497 /*
1498 * Wipe the cache
1499 */
1500 for (i = 0; i < MFC6_LINES; i++) {
1501 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) {
1502 if (c->mfc_flags & MFC_STATIC)
1503 continue;
1504 write_lock_bh(&mrt_lock);
1505 list_del(&c->list);
1506 write_unlock_bh(&mrt_lock);
1507
1508 mr6_netlink_event(mrt, c, RTM_DELROUTE);
1509 ip6mr_cache_free(c);
1510 }
1511 }
1512
1513 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1514 spin_lock_bh(&mfc_unres_lock);
1515 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
1516 list_del(&c->list);
1517 mr6_netlink_event(mrt, c, RTM_DELROUTE);
1518 ip6mr_destroy_unres(mrt, c);
1519 }
1520 spin_unlock_bh(&mfc_unres_lock);
1521 }
1522 }
1523
1524 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk)
1525 {
1526 int err = 0;
1527 struct net *net = sock_net(sk);
1528
1529 rtnl_lock();
1530 write_lock_bh(&mrt_lock);
1531 if (likely(mrt->mroute6_sk == NULL)) {
1532 mrt->mroute6_sk = sk;
1533 net->ipv6.devconf_all->mc_forwarding++;
1534 inet6_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1535 NETCONFA_IFINDEX_ALL,
1536 net->ipv6.devconf_all);
1537 }
1538 else
1539 err = -EADDRINUSE;
1540 write_unlock_bh(&mrt_lock);
1541
1542 rtnl_unlock();
1543
1544 return err;
1545 }
1546
1547 int ip6mr_sk_done(struct sock *sk)
1548 {
1549 int err = -EACCES;
1550 struct net *net = sock_net(sk);
1551 struct mr6_table *mrt;
1552
1553 rtnl_lock();
1554 ip6mr_for_each_table(mrt, net) {
1555 if (sk == mrt->mroute6_sk) {
1556 write_lock_bh(&mrt_lock);
1557 mrt->mroute6_sk = NULL;
1558 net->ipv6.devconf_all->mc_forwarding--;
1559 inet6_netconf_notify_devconf(net,
1560 NETCONFA_MC_FORWARDING,
1561 NETCONFA_IFINDEX_ALL,
1562 net->ipv6.devconf_all);
1563 write_unlock_bh(&mrt_lock);
1564
1565 mroute_clean_tables(mrt);
1566 err = 0;
1567 break;
1568 }
1569 }
1570 rtnl_unlock();
1571
1572 return err;
1573 }
1574
1575 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb)
1576 {
1577 struct mr6_table *mrt;
1578 struct flowi6 fl6 = {
1579 .flowi6_iif = skb->skb_iif,
1580 .flowi6_oif = skb->dev->ifindex,
1581 .flowi6_mark = skb->mark,
1582 };
1583
1584 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
1585 return NULL;
1586
1587 return mrt->mroute6_sk;
1588 }
1589
1590 /*
1591 * Socket options and virtual interface manipulation. The whole
1592 * virtual interface system is a complete heap, but unfortunately
1593 * that's how BSD mrouted happens to think. Maybe one day with a proper
1594 * MOSPF/PIM router set up we can clean this up.
1595 */
1596
1597 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1598 {
1599 int ret;
1600 struct mif6ctl vif;
1601 struct mf6cctl mfc;
1602 mifi_t mifi;
1603 struct net *net = sock_net(sk);
1604 struct mr6_table *mrt;
1605
1606 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1607 if (mrt == NULL)
1608 return -ENOENT;
1609
1610 if (optname != MRT6_INIT) {
1611 if (sk != mrt->mroute6_sk && !ns_capable(net->user_ns, CAP_NET_ADMIN))
1612 return -EACCES;
1613 }
1614
1615 switch (optname) {
1616 case MRT6_INIT:
1617 if (sk->sk_type != SOCK_RAW ||
1618 inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
1619 return -EOPNOTSUPP;
1620 if (optlen < sizeof(int))
1621 return -EINVAL;
1622
1623 return ip6mr_sk_init(mrt, sk);
1624
1625 case MRT6_DONE:
1626 return ip6mr_sk_done(sk);
1627
1628 case MRT6_ADD_MIF:
1629 if (optlen < sizeof(vif))
1630 return -EINVAL;
1631 if (copy_from_user(&vif, optval, sizeof(vif)))
1632 return -EFAULT;
1633 if (vif.mif6c_mifi >= MAXMIFS)
1634 return -ENFILE;
1635 rtnl_lock();
1636 ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk);
1637 rtnl_unlock();
1638 return ret;
1639
1640 case MRT6_DEL_MIF:
1641 if (optlen < sizeof(mifi_t))
1642 return -EINVAL;
1643 if (copy_from_user(&mifi, optval, sizeof(mifi_t)))
1644 return -EFAULT;
1645 rtnl_lock();
1646 ret = mif6_delete(mrt, mifi, NULL);
1647 rtnl_unlock();
1648 return ret;
1649
1650 /*
1651 * Manipulate the forwarding caches. These live
1652 * in a sort of kernel/user symbiosis.
1653 */
1654 case MRT6_ADD_MFC:
1655 case MRT6_DEL_MFC:
1656 if (optlen < sizeof(mfc))
1657 return -EINVAL;
1658 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1659 return -EFAULT;
1660 rtnl_lock();
1661 if (optname == MRT6_DEL_MFC)
1662 ret = ip6mr_mfc_delete(mrt, &mfc);
1663 else
1664 ret = ip6mr_mfc_add(net, mrt, &mfc, sk == mrt->mroute6_sk);
1665 rtnl_unlock();
1666 return ret;
1667
1668 /*
1669 * Control PIM assert (to activate pim will activate assert)
1670 */
1671 case MRT6_ASSERT:
1672 {
1673 int v;
1674
1675 if (optlen != sizeof(v))
1676 return -EINVAL;
1677 if (get_user(v, (int __user *)optval))
1678 return -EFAULT;
1679 mrt->mroute_do_assert = v;
1680 return 0;
1681 }
1682
1683 #ifdef CONFIG_IPV6_PIMSM_V2
1684 case MRT6_PIM:
1685 {
1686 int v;
1687
1688 if (optlen != sizeof(v))
1689 return -EINVAL;
1690 if (get_user(v, (int __user *)optval))
1691 return -EFAULT;
1692 v = !!v;
1693 rtnl_lock();
1694 ret = 0;
1695 if (v != mrt->mroute_do_pim) {
1696 mrt->mroute_do_pim = v;
1697 mrt->mroute_do_assert = v;
1698 }
1699 rtnl_unlock();
1700 return ret;
1701 }
1702
1703 #endif
1704 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
1705 case MRT6_TABLE:
1706 {
1707 u32 v;
1708
1709 if (optlen != sizeof(u32))
1710 return -EINVAL;
1711 if (get_user(v, (u32 __user *)optval))
1712 return -EFAULT;
1713 /* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */
1714 if (v != RT_TABLE_DEFAULT && v >= 100000000)
1715 return -EINVAL;
1716 if (sk == mrt->mroute6_sk)
1717 return -EBUSY;
1718
1719 rtnl_lock();
1720 ret = 0;
1721 if (!ip6mr_new_table(net, v))
1722 ret = -ENOMEM;
1723 raw6_sk(sk)->ip6mr_table = v;
1724 rtnl_unlock();
1725 return ret;
1726 }
1727 #endif
1728 /*
1729 * Spurious command, or MRT6_VERSION which you cannot
1730 * set.
1731 */
1732 default:
1733 return -ENOPROTOOPT;
1734 }
1735 }
1736
1737 /*
1738 * Getsock opt support for the multicast routing system.
1739 */
1740
1741 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval,
1742 int __user *optlen)
1743 {
1744 int olr;
1745 int val;
1746 struct net *net = sock_net(sk);
1747 struct mr6_table *mrt;
1748
1749 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1750 if (mrt == NULL)
1751 return -ENOENT;
1752
1753 switch (optname) {
1754 case MRT6_VERSION:
1755 val = 0x0305;
1756 break;
1757 #ifdef CONFIG_IPV6_PIMSM_V2
1758 case MRT6_PIM:
1759 val = mrt->mroute_do_pim;
1760 break;
1761 #endif
1762 case MRT6_ASSERT:
1763 val = mrt->mroute_do_assert;
1764 break;
1765 default:
1766 return -ENOPROTOOPT;
1767 }
1768
1769 if (get_user(olr, optlen))
1770 return -EFAULT;
1771
1772 olr = min_t(int, olr, sizeof(int));
1773 if (olr < 0)
1774 return -EINVAL;
1775
1776 if (put_user(olr, optlen))
1777 return -EFAULT;
1778 if (copy_to_user(optval, &val, olr))
1779 return -EFAULT;
1780 return 0;
1781 }
1782
1783 /*
1784 * The IP multicast ioctl support routines.
1785 */
1786
1787 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg)
1788 {
1789 struct sioc_sg_req6 sr;
1790 struct sioc_mif_req6 vr;
1791 struct mif_device *vif;
1792 struct mfc6_cache *c;
1793 struct net *net = sock_net(sk);
1794 struct mr6_table *mrt;
1795
1796 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1797 if (mrt == NULL)
1798 return -ENOENT;
1799
1800 switch (cmd) {
1801 case SIOCGETMIFCNT_IN6:
1802 if (copy_from_user(&vr, arg, sizeof(vr)))
1803 return -EFAULT;
1804 if (vr.mifi >= mrt->maxvif)
1805 return -EINVAL;
1806 read_lock(&mrt_lock);
1807 vif = &mrt->vif6_table[vr.mifi];
1808 if (MIF_EXISTS(mrt, vr.mifi)) {
1809 vr.icount = vif->pkt_in;
1810 vr.ocount = vif->pkt_out;
1811 vr.ibytes = vif->bytes_in;
1812 vr.obytes = vif->bytes_out;
1813 read_unlock(&mrt_lock);
1814
1815 if (copy_to_user(arg, &vr, sizeof(vr)))
1816 return -EFAULT;
1817 return 0;
1818 }
1819 read_unlock(&mrt_lock);
1820 return -EADDRNOTAVAIL;
1821 case SIOCGETSGCNT_IN6:
1822 if (copy_from_user(&sr, arg, sizeof(sr)))
1823 return -EFAULT;
1824
1825 read_lock(&mrt_lock);
1826 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1827 if (c) {
1828 sr.pktcnt = c->mfc_un.res.pkt;
1829 sr.bytecnt = c->mfc_un.res.bytes;
1830 sr.wrong_if = c->mfc_un.res.wrong_if;
1831 read_unlock(&mrt_lock);
1832
1833 if (copy_to_user(arg, &sr, sizeof(sr)))
1834 return -EFAULT;
1835 return 0;
1836 }
1837 read_unlock(&mrt_lock);
1838 return -EADDRNOTAVAIL;
1839 default:
1840 return -ENOIOCTLCMD;
1841 }
1842 }
1843
1844 #ifdef CONFIG_COMPAT
1845 struct compat_sioc_sg_req6 {
1846 struct sockaddr_in6 src;
1847 struct sockaddr_in6 grp;
1848 compat_ulong_t pktcnt;
1849 compat_ulong_t bytecnt;
1850 compat_ulong_t wrong_if;
1851 };
1852
1853 struct compat_sioc_mif_req6 {
1854 mifi_t mifi;
1855 compat_ulong_t icount;
1856 compat_ulong_t ocount;
1857 compat_ulong_t ibytes;
1858 compat_ulong_t obytes;
1859 };
1860
1861 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1862 {
1863 struct compat_sioc_sg_req6 sr;
1864 struct compat_sioc_mif_req6 vr;
1865 struct mif_device *vif;
1866 struct mfc6_cache *c;
1867 struct net *net = sock_net(sk);
1868 struct mr6_table *mrt;
1869
1870 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1871 if (mrt == NULL)
1872 return -ENOENT;
1873
1874 switch (cmd) {
1875 case SIOCGETMIFCNT_IN6:
1876 if (copy_from_user(&vr, arg, sizeof(vr)))
1877 return -EFAULT;
1878 if (vr.mifi >= mrt->maxvif)
1879 return -EINVAL;
1880 read_lock(&mrt_lock);
1881 vif = &mrt->vif6_table[vr.mifi];
1882 if (MIF_EXISTS(mrt, vr.mifi)) {
1883 vr.icount = vif->pkt_in;
1884 vr.ocount = vif->pkt_out;
1885 vr.ibytes = vif->bytes_in;
1886 vr.obytes = vif->bytes_out;
1887 read_unlock(&mrt_lock);
1888
1889 if (copy_to_user(arg, &vr, sizeof(vr)))
1890 return -EFAULT;
1891 return 0;
1892 }
1893 read_unlock(&mrt_lock);
1894 return -EADDRNOTAVAIL;
1895 case SIOCGETSGCNT_IN6:
1896 if (copy_from_user(&sr, arg, sizeof(sr)))
1897 return -EFAULT;
1898
1899 read_lock(&mrt_lock);
1900 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1901 if (c) {
1902 sr.pktcnt = c->mfc_un.res.pkt;
1903 sr.bytecnt = c->mfc_un.res.bytes;
1904 sr.wrong_if = c->mfc_un.res.wrong_if;
1905 read_unlock(&mrt_lock);
1906
1907 if (copy_to_user(arg, &sr, sizeof(sr)))
1908 return -EFAULT;
1909 return 0;
1910 }
1911 read_unlock(&mrt_lock);
1912 return -EADDRNOTAVAIL;
1913 default:
1914 return -ENOIOCTLCMD;
1915 }
1916 }
1917 #endif
1918
1919 static inline int ip6mr_forward2_finish(struct sk_buff *skb)
1920 {
1921 IP6_INC_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)),
1922 IPSTATS_MIB_OUTFORWDATAGRAMS);
1923 IP6_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)),
1924 IPSTATS_MIB_OUTOCTETS, skb->len);
1925 return dst_output(skb);
1926 }
1927
1928 /*
1929 * Processing handlers for ip6mr_forward
1930 */
1931
1932 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt,
1933 struct sk_buff *skb, struct mfc6_cache *c, int vifi)
1934 {
1935 struct ipv6hdr *ipv6h;
1936 struct mif_device *vif = &mrt->vif6_table[vifi];
1937 struct net_device *dev;
1938 struct dst_entry *dst;
1939 struct flowi6 fl6;
1940
1941 if (vif->dev == NULL)
1942 goto out_free;
1943
1944 #ifdef CONFIG_IPV6_PIMSM_V2
1945 if (vif->flags & MIFF_REGISTER) {
1946 vif->pkt_out++;
1947 vif->bytes_out += skb->len;
1948 vif->dev->stats.tx_bytes += skb->len;
1949 vif->dev->stats.tx_packets++;
1950 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT);
1951 goto out_free;
1952 }
1953 #endif
1954
1955 ipv6h = ipv6_hdr(skb);
1956
1957 fl6 = (struct flowi6) {
1958 .flowi6_oif = vif->link,
1959 .daddr = ipv6h->daddr,
1960 };
1961
1962 dst = ip6_route_output(net, NULL, &fl6);
1963 if (dst->error) {
1964 dst_release(dst);
1965 goto out_free;
1966 }
1967
1968 skb_dst_drop(skb);
1969 skb_dst_set(skb, dst);
1970
1971 /*
1972 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1973 * not only before forwarding, but after forwarding on all output
1974 * interfaces. It is clear, if mrouter runs a multicasting
1975 * program, it should receive packets not depending to what interface
1976 * program is joined.
1977 * If we will not make it, the program will have to join on all
1978 * interfaces. On the other hand, multihoming host (or router, but
1979 * not mrouter) cannot join to more than one interface - it will
1980 * result in receiving multiple packets.
1981 */
1982 dev = vif->dev;
1983 skb->dev = dev;
1984 vif->pkt_out++;
1985 vif->bytes_out += skb->len;
1986
1987 /* We are about to write */
1988 /* XXX: extension headers? */
1989 if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev)))
1990 goto out_free;
1991
1992 ipv6h = ipv6_hdr(skb);
1993 ipv6h->hop_limit--;
1994
1995 IP6CB(skb)->flags |= IP6SKB_FORWARDED;
1996
1997 return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, skb, skb->dev, dev,
1998 ip6mr_forward2_finish);
1999
2000 out_free:
2001 kfree_skb(skb);
2002 return 0;
2003 }
2004
2005 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev)
2006 {
2007 int ct;
2008
2009 for (ct = mrt->maxvif - 1; ct >= 0; ct--) {
2010 if (mrt->vif6_table[ct].dev == dev)
2011 break;
2012 }
2013 return ct;
2014 }
2015
2016 static int ip6_mr_forward(struct net *net, struct mr6_table *mrt,
2017 struct sk_buff *skb, struct mfc6_cache *cache)
2018 {
2019 int psend = -1;
2020 int vif, ct;
2021
2022 vif = cache->mf6c_parent;
2023 cache->mfc_un.res.pkt++;
2024 cache->mfc_un.res.bytes += skb->len;
2025
2026 /*
2027 * Wrong interface: drop packet and (maybe) send PIM assert.
2028 */
2029 if (mrt->vif6_table[vif].dev != skb->dev) {
2030 int true_vifi;
2031
2032 cache->mfc_un.res.wrong_if++;
2033 true_vifi = ip6mr_find_vif(mrt, skb->dev);
2034
2035 if (true_vifi >= 0 && mrt->mroute_do_assert &&
2036 /* pimsm uses asserts, when switching from RPT to SPT,
2037 so that we cannot check that packet arrived on an oif.
2038 It is bad, but otherwise we would need to move pretty
2039 large chunk of pimd to kernel. Ough... --ANK
2040 */
2041 (mrt->mroute_do_pim ||
2042 cache->mfc_un.res.ttls[true_vifi] < 255) &&
2043 time_after(jiffies,
2044 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
2045 cache->mfc_un.res.last_assert = jiffies;
2046 ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF);
2047 }
2048 goto dont_forward;
2049 }
2050
2051 mrt->vif6_table[vif].pkt_in++;
2052 mrt->vif6_table[vif].bytes_in += skb->len;
2053
2054 /*
2055 * Forward the frame
2056 */
2057 for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) {
2058 if (ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) {
2059 if (psend != -1) {
2060 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2061 if (skb2)
2062 ip6mr_forward2(net, mrt, skb2, cache, psend);
2063 }
2064 psend = ct;
2065 }
2066 }
2067 if (psend != -1) {
2068 ip6mr_forward2(net, mrt, skb, cache, psend);
2069 return 0;
2070 }
2071
2072 dont_forward:
2073 kfree_skb(skb);
2074 return 0;
2075 }
2076
2077
2078 /*
2079 * Multicast packets for forwarding arrive here
2080 */
2081
2082 int ip6_mr_input(struct sk_buff *skb)
2083 {
2084 struct mfc6_cache *cache;
2085 struct net *net = dev_net(skb->dev);
2086 struct mr6_table *mrt;
2087 struct flowi6 fl6 = {
2088 .flowi6_iif = skb->dev->ifindex,
2089 .flowi6_mark = skb->mark,
2090 };
2091 int err;
2092
2093 err = ip6mr_fib_lookup(net, &fl6, &mrt);
2094 if (err < 0) {
2095 kfree_skb(skb);
2096 return err;
2097 }
2098
2099 read_lock(&mrt_lock);
2100 cache = ip6mr_cache_find(mrt,
2101 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr);
2102
2103 /*
2104 * No usable cache entry
2105 */
2106 if (cache == NULL) {
2107 int vif;
2108
2109 vif = ip6mr_find_vif(mrt, skb->dev);
2110 if (vif >= 0) {
2111 int err = ip6mr_cache_unresolved(mrt, vif, skb);
2112 read_unlock(&mrt_lock);
2113
2114 return err;
2115 }
2116 read_unlock(&mrt_lock);
2117 kfree_skb(skb);
2118 return -ENODEV;
2119 }
2120
2121 ip6_mr_forward(net, mrt, skb, cache);
2122
2123 read_unlock(&mrt_lock);
2124
2125 return 0;
2126 }
2127
2128
2129 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2130 struct mfc6_cache *c, struct rtmsg *rtm)
2131 {
2132 int ct;
2133 struct rtnexthop *nhp;
2134 struct nlattr *mp_attr;
2135 struct rta_mfc_stats mfcs;
2136
2137 /* If cache is unresolved, don't try to parse IIF and OIF */
2138 if (c->mf6c_parent >= MAXMIFS)
2139 return -ENOENT;
2140
2141 if (MIF_EXISTS(mrt, c->mf6c_parent) &&
2142 nla_put_u32(skb, RTA_IIF, mrt->vif6_table[c->mf6c_parent].dev->ifindex) < 0)
2143 return -EMSGSIZE;
2144 mp_attr = nla_nest_start(skb, RTA_MULTIPATH);
2145 if (mp_attr == NULL)
2146 return -EMSGSIZE;
2147
2148 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2149 if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2150 nhp = nla_reserve_nohdr(skb, sizeof(*nhp));
2151 if (nhp == NULL) {
2152 nla_nest_cancel(skb, mp_attr);
2153 return -EMSGSIZE;
2154 }
2155
2156 nhp->rtnh_flags = 0;
2157 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2158 nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex;
2159 nhp->rtnh_len = sizeof(*nhp);
2160 }
2161 }
2162
2163 nla_nest_end(skb, mp_attr);
2164
2165 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2166 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2167 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2168 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2169 return -EMSGSIZE;
2170
2171 rtm->rtm_type = RTN_MULTICAST;
2172 return 1;
2173 }
2174
2175 int ip6mr_get_route(struct net *net,
2176 struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2177 {
2178 int err;
2179 struct mr6_table *mrt;
2180 struct mfc6_cache *cache;
2181 struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
2182
2183 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
2184 if (mrt == NULL)
2185 return -ENOENT;
2186
2187 read_lock(&mrt_lock);
2188 cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr);
2189
2190 if (!cache) {
2191 struct sk_buff *skb2;
2192 struct ipv6hdr *iph;
2193 struct net_device *dev;
2194 int vif;
2195
2196 if (nowait) {
2197 read_unlock(&mrt_lock);
2198 return -EAGAIN;
2199 }
2200
2201 dev = skb->dev;
2202 if (dev == NULL || (vif = ip6mr_find_vif(mrt, dev)) < 0) {
2203 read_unlock(&mrt_lock);
2204 return -ENODEV;
2205 }
2206
2207 /* really correct? */
2208 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
2209 if (!skb2) {
2210 read_unlock(&mrt_lock);
2211 return -ENOMEM;
2212 }
2213
2214 skb_reset_transport_header(skb2);
2215
2216 skb_put(skb2, sizeof(struct ipv6hdr));
2217 skb_reset_network_header(skb2);
2218
2219 iph = ipv6_hdr(skb2);
2220 iph->version = 0;
2221 iph->priority = 0;
2222 iph->flow_lbl[0] = 0;
2223 iph->flow_lbl[1] = 0;
2224 iph->flow_lbl[2] = 0;
2225 iph->payload_len = 0;
2226 iph->nexthdr = IPPROTO_NONE;
2227 iph->hop_limit = 0;
2228 iph->saddr = rt->rt6i_src.addr;
2229 iph->daddr = rt->rt6i_dst.addr;
2230
2231 err = ip6mr_cache_unresolved(mrt, vif, skb2);
2232 read_unlock(&mrt_lock);
2233
2234 return err;
2235 }
2236
2237 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
2238 cache->mfc_flags |= MFC_NOTIFY;
2239
2240 err = __ip6mr_fill_mroute(mrt, skb, cache, rtm);
2241 read_unlock(&mrt_lock);
2242 return err;
2243 }
2244
2245 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2246 u32 portid, u32 seq, struct mfc6_cache *c, int cmd)
2247 {
2248 struct nlmsghdr *nlh;
2249 struct rtmsg *rtm;
2250 int err;
2251
2252 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), NLM_F_MULTI);
2253 if (nlh == NULL)
2254 return -EMSGSIZE;
2255
2256 rtm = nlmsg_data(nlh);
2257 rtm->rtm_family = RTNL_FAMILY_IP6MR;
2258 rtm->rtm_dst_len = 128;
2259 rtm->rtm_src_len = 128;
2260 rtm->rtm_tos = 0;
2261 rtm->rtm_table = mrt->id;
2262 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2263 goto nla_put_failure;
2264 rtm->rtm_type = RTN_MULTICAST;
2265 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2266 if (c->mfc_flags & MFC_STATIC)
2267 rtm->rtm_protocol = RTPROT_STATIC;
2268 else
2269 rtm->rtm_protocol = RTPROT_MROUTED;
2270 rtm->rtm_flags = 0;
2271
2272 if (nla_put(skb, RTA_SRC, 16, &c->mf6c_origin) ||
2273 nla_put(skb, RTA_DST, 16, &c->mf6c_mcastgrp))
2274 goto nla_put_failure;
2275 err = __ip6mr_fill_mroute(mrt, skb, c, rtm);
2276 /* do not break the dump if cache is unresolved */
2277 if (err < 0 && err != -ENOENT)
2278 goto nla_put_failure;
2279
2280 return nlmsg_end(skb, nlh);
2281
2282 nla_put_failure:
2283 nlmsg_cancel(skb, nlh);
2284 return -EMSGSIZE;
2285 }
2286
2287 static int mr6_msgsize(bool unresolved, int maxvif)
2288 {
2289 size_t len =
2290 NLMSG_ALIGN(sizeof(struct rtmsg))
2291 + nla_total_size(4) /* RTA_TABLE */
2292 + nla_total_size(sizeof(struct in6_addr)) /* RTA_SRC */
2293 + nla_total_size(sizeof(struct in6_addr)) /* RTA_DST */
2294 ;
2295
2296 if (!unresolved)
2297 len = len
2298 + nla_total_size(4) /* RTA_IIF */
2299 + nla_total_size(0) /* RTA_MULTIPATH */
2300 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2301 /* RTA_MFC_STATS */
2302 + nla_total_size(sizeof(struct rta_mfc_stats))
2303 ;
2304
2305 return len;
2306 }
2307
2308 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc,
2309 int cmd)
2310 {
2311 struct net *net = read_pnet(&mrt->net);
2312 struct sk_buff *skb;
2313 int err = -ENOBUFS;
2314
2315 skb = nlmsg_new(mr6_msgsize(mfc->mf6c_parent >= MAXMIFS, mrt->maxvif),
2316 GFP_ATOMIC);
2317 if (skb == NULL)
2318 goto errout;
2319
2320 err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd);
2321 if (err < 0)
2322 goto errout;
2323
2324 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC);
2325 return;
2326
2327 errout:
2328 kfree_skb(skb);
2329 if (err < 0)
2330 rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err);
2331 }
2332
2333 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2334 {
2335 struct net *net = sock_net(skb->sk);
2336 struct mr6_table *mrt;
2337 struct mfc6_cache *mfc;
2338 unsigned int t = 0, s_t;
2339 unsigned int h = 0, s_h;
2340 unsigned int e = 0, s_e;
2341
2342 s_t = cb->args[0];
2343 s_h = cb->args[1];
2344 s_e = cb->args[2];
2345
2346 read_lock(&mrt_lock);
2347 ip6mr_for_each_table(mrt, net) {
2348 if (t < s_t)
2349 goto next_table;
2350 if (t > s_t)
2351 s_h = 0;
2352 for (h = s_h; h < MFC6_LINES; h++) {
2353 list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) {
2354 if (e < s_e)
2355 goto next_entry;
2356 if (ip6mr_fill_mroute(mrt, skb,
2357 NETLINK_CB(cb->skb).portid,
2358 cb->nlh->nlmsg_seq,
2359 mfc, RTM_NEWROUTE) < 0)
2360 goto done;
2361 next_entry:
2362 e++;
2363 }
2364 e = s_e = 0;
2365 }
2366 spin_lock_bh(&mfc_unres_lock);
2367 list_for_each_entry(mfc, &mrt->mfc6_unres_queue, list) {
2368 if (e < s_e)
2369 goto next_entry2;
2370 if (ip6mr_fill_mroute(mrt, skb,
2371 NETLINK_CB(cb->skb).portid,
2372 cb->nlh->nlmsg_seq,
2373 mfc, RTM_NEWROUTE) < 0) {
2374 spin_unlock_bh(&mfc_unres_lock);
2375 goto done;
2376 }
2377 next_entry2:
2378 e++;
2379 }
2380 spin_unlock_bh(&mfc_unres_lock);
2381 e = s_e = 0;
2382 s_h = 0;
2383 next_table:
2384 t++;
2385 }
2386 done:
2387 read_unlock(&mrt_lock);
2388
2389 cb->args[2] = e;
2390 cb->args[1] = h;
2391 cb->args[0] = t;
2392
2393 return skb->len;
2394 }