Merge tag 'ktest-v3.9' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21
22 #define pr_fmt(fmt) "IPv6: " fmt
23
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 #define RT6_DEBUG 2
42
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 FWS_S,
55 #endif
56 FWS_L,
57 FWS_R,
58 FWS_C,
59 FWS_U
60 };
61
62 struct fib6_cleaner_t
63 {
64 struct fib6_walker_t w;
65 struct net *net;
66 int (*func)(struct rt6_info *, void *arg);
67 void *arg;
68 };
69
70 static DEFINE_RWLOCK(fib6_walker_lock);
71
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84
85 /*
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
90 */
91
92 static __u32 rt_sernum;
93
94 static void fib6_gc_timer_cb(unsigned long arg);
95
96 static LIST_HEAD(fib6_walkers);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
98
99 static inline void fib6_walker_link(struct fib6_walker_t *w)
100 {
101 write_lock_bh(&fib6_walker_lock);
102 list_add(&w->lh, &fib6_walkers);
103 write_unlock_bh(&fib6_walker_lock);
104 }
105
106 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
107 {
108 write_lock_bh(&fib6_walker_lock);
109 list_del(&w->lh);
110 write_unlock_bh(&fib6_walker_lock);
111 }
112 static __inline__ u32 fib6_new_sernum(void)
113 {
114 u32 n = ++rt_sernum;
115 if ((__s32)n <= 0)
116 rt_sernum = n = 1;
117 return n;
118 }
119
120 /*
121 * Auxiliary address test functions for the radix tree.
122 *
123 * These assume a 32bit processor (although it will work on
124 * 64bit processors)
125 */
126
127 /*
128 * test bit
129 */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE 0
134 #endif
135
136 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138 const __be32 *addr = token;
139 /*
140 * Here,
141 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 * is optimized version of
143 * htonl(1 << ((~fn_bit)&0x1F))
144 * See include/asm-generic/bitops/le.h.
145 */
146 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 addr[fn_bit >> 5];
148 }
149
150 static __inline__ struct fib6_node * node_alloc(void)
151 {
152 struct fib6_node *fn;
153
154 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
155
156 return fn;
157 }
158
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161 kmem_cache_free(fib6_node_kmem, fn);
162 }
163
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166 if (atomic_dec_and_test(&rt->rt6i_ref))
167 dst_free(&rt->dst);
168 }
169
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
171 {
172 unsigned int h;
173
174 /*
175 * Initialize table lock at a single place to give lockdep a key,
176 * tables aren't visible prior to being linked to the list.
177 */
178 rwlock_init(&tb->tb6_lock);
179
180 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
181
182 /*
183 * No protection necessary, this is the only list mutatation
184 * operation, tables never disappear once they exist.
185 */
186 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
187 }
188
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
190
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
192 {
193 struct fib6_table *table;
194
195 table = kzalloc(sizeof(*table), GFP_ATOMIC);
196 if (table) {
197 table->tb6_id = id;
198 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200 inet_peer_base_init(&table->tb6_peers);
201 }
202
203 return table;
204 }
205
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208 struct fib6_table *tb;
209
210 if (id == 0)
211 id = RT6_TABLE_MAIN;
212 tb = fib6_get_table(net, id);
213 if (tb)
214 return tb;
215
216 tb = fib6_alloc_table(net, id);
217 if (tb)
218 fib6_link_table(net, tb);
219
220 return tb;
221 }
222
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225 struct fib6_table *tb;
226 struct hlist_head *head;
227 struct hlist_node *node;
228 unsigned int h;
229
230 if (id == 0)
231 id = RT6_TABLE_MAIN;
232 h = id & (FIB6_TABLE_HASHSZ - 1);
233 rcu_read_lock();
234 head = &net->ipv6.fib_table_hash[h];
235 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236 if (tb->tb6_id == id) {
237 rcu_read_unlock();
238 return tb;
239 }
240 }
241 rcu_read_unlock();
242
243 return NULL;
244 }
245
246 static void __net_init fib6_tables_init(struct net *net)
247 {
248 fib6_link_table(net, net->ipv6.fib6_main_tbl);
249 fib6_link_table(net, net->ipv6.fib6_local_tbl);
250 }
251 #else
252
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 return fib6_get_table(net, id);
256 }
257
258 struct fib6_table *fib6_get_table(struct net *net, u32 id)
259 {
260 return net->ipv6.fib6_main_tbl;
261 }
262
263 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264 int flags, pol_lookup_t lookup)
265 {
266 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267 }
268
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 }
273
274 #endif
275
276 static int fib6_dump_node(struct fib6_walker_t *w)
277 {
278 int res;
279 struct rt6_info *rt;
280
281 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282 res = rt6_dump_route(rt, w->args);
283 if (res < 0) {
284 /* Frame is full, suspend walking */
285 w->leaf = rt;
286 return 1;
287 }
288 WARN_ON(res == 0);
289 }
290 w->leaf = NULL;
291 return 0;
292 }
293
294 static void fib6_dump_end(struct netlink_callback *cb)
295 {
296 struct fib6_walker_t *w = (void*)cb->args[2];
297
298 if (w) {
299 if (cb->args[4]) {
300 cb->args[4] = 0;
301 fib6_walker_unlink(w);
302 }
303 cb->args[2] = 0;
304 kfree(w);
305 }
306 cb->done = (void*)cb->args[3];
307 cb->args[1] = 3;
308 }
309
310 static int fib6_dump_done(struct netlink_callback *cb)
311 {
312 fib6_dump_end(cb);
313 return cb->done ? cb->done(cb) : 0;
314 }
315
316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 struct netlink_callback *cb)
318 {
319 struct fib6_walker_t *w;
320 int res;
321
322 w = (void *)cb->args[2];
323 w->root = &table->tb6_root;
324
325 if (cb->args[4] == 0) {
326 w->count = 0;
327 w->skip = 0;
328
329 read_lock_bh(&table->tb6_lock);
330 res = fib6_walk(w);
331 read_unlock_bh(&table->tb6_lock);
332 if (res > 0) {
333 cb->args[4] = 1;
334 cb->args[5] = w->root->fn_sernum;
335 }
336 } else {
337 if (cb->args[5] != w->root->fn_sernum) {
338 /* Begin at the root if the tree changed */
339 cb->args[5] = w->root->fn_sernum;
340 w->state = FWS_INIT;
341 w->node = w->root;
342 w->skip = w->count;
343 } else
344 w->skip = 0;
345
346 read_lock_bh(&table->tb6_lock);
347 res = fib6_walk_continue(w);
348 read_unlock_bh(&table->tb6_lock);
349 if (res <= 0) {
350 fib6_walker_unlink(w);
351 cb->args[4] = 0;
352 }
353 }
354
355 return res;
356 }
357
358 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359 {
360 struct net *net = sock_net(skb->sk);
361 unsigned int h, s_h;
362 unsigned int e = 0, s_e;
363 struct rt6_rtnl_dump_arg arg;
364 struct fib6_walker_t *w;
365 struct fib6_table *tb;
366 struct hlist_node *node;
367 struct hlist_head *head;
368 int res = 0;
369
370 s_h = cb->args[0];
371 s_e = cb->args[1];
372
373 w = (void *)cb->args[2];
374 if (!w) {
375 /* New dump:
376 *
377 * 1. hook callback destructor.
378 */
379 cb->args[3] = (long)cb->done;
380 cb->done = fib6_dump_done;
381
382 /*
383 * 2. allocate and initialize walker.
384 */
385 w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 if (!w)
387 return -ENOMEM;
388 w->func = fib6_dump_node;
389 cb->args[2] = (long)w;
390 }
391
392 arg.skb = skb;
393 arg.cb = cb;
394 arg.net = net;
395 w->args = &arg;
396
397 rcu_read_lock();
398 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
399 e = 0;
400 head = &net->ipv6.fib_table_hash[h];
401 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
402 if (e < s_e)
403 goto next;
404 res = fib6_dump_table(tb, skb, cb);
405 if (res != 0)
406 goto out;
407 next:
408 e++;
409 }
410 }
411 out:
412 rcu_read_unlock();
413 cb->args[1] = e;
414 cb->args[0] = h;
415
416 res = res < 0 ? res : skb->len;
417 if (res <= 0)
418 fib6_dump_end(cb);
419 return res;
420 }
421
422 /*
423 * Routing Table
424 *
425 * return the appropriate node for a routing tree "add" operation
426 * by either creating and inserting or by returning an existing
427 * node.
428 */
429
430 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
431 int addrlen, int plen,
432 int offset, int allow_create,
433 int replace_required)
434 {
435 struct fib6_node *fn, *in, *ln;
436 struct fib6_node *pn = NULL;
437 struct rt6key *key;
438 int bit;
439 __be32 dir = 0;
440 __u32 sernum = fib6_new_sernum();
441
442 RT6_TRACE("fib6_add_1\n");
443
444 /* insert node in tree */
445
446 fn = root;
447
448 do {
449 key = (struct rt6key *)((u8 *)fn->leaf + offset);
450
451 /*
452 * Prefix match
453 */
454 if (plen < fn->fn_bit ||
455 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
456 if (!allow_create) {
457 if (replace_required) {
458 pr_warn("Can't replace route, no match found\n");
459 return ERR_PTR(-ENOENT);
460 }
461 pr_warn("NLM_F_CREATE should be set when creating new route\n");
462 }
463 goto insert_above;
464 }
465
466 /*
467 * Exact match ?
468 */
469
470 if (plen == fn->fn_bit) {
471 /* clean up an intermediate node */
472 if (!(fn->fn_flags & RTN_RTINFO)) {
473 rt6_release(fn->leaf);
474 fn->leaf = NULL;
475 }
476
477 fn->fn_sernum = sernum;
478
479 return fn;
480 }
481
482 /*
483 * We have more bits to go
484 */
485
486 /* Try to walk down on tree. */
487 fn->fn_sernum = sernum;
488 dir = addr_bit_set(addr, fn->fn_bit);
489 pn = fn;
490 fn = dir ? fn->right: fn->left;
491 } while (fn);
492
493 if (!allow_create) {
494 /* We should not create new node because
495 * NLM_F_REPLACE was specified without NLM_F_CREATE
496 * I assume it is safe to require NLM_F_CREATE when
497 * REPLACE flag is used! Later we may want to remove the
498 * check for replace_required, because according
499 * to netlink specification, NLM_F_CREATE
500 * MUST be specified if new route is created.
501 * That would keep IPv6 consistent with IPv4
502 */
503 if (replace_required) {
504 pr_warn("Can't replace route, no match found\n");
505 return ERR_PTR(-ENOENT);
506 }
507 pr_warn("NLM_F_CREATE should be set when creating new route\n");
508 }
509 /*
510 * We walked to the bottom of tree.
511 * Create new leaf node without children.
512 */
513
514 ln = node_alloc();
515
516 if (!ln)
517 return ERR_PTR(-ENOMEM);
518 ln->fn_bit = plen;
519
520 ln->parent = pn;
521 ln->fn_sernum = sernum;
522
523 if (dir)
524 pn->right = ln;
525 else
526 pn->left = ln;
527
528 return ln;
529
530
531 insert_above:
532 /*
533 * split since we don't have a common prefix anymore or
534 * we have a less significant route.
535 * we've to insert an intermediate node on the list
536 * this new node will point to the one we need to create
537 * and the current
538 */
539
540 pn = fn->parent;
541
542 /* find 1st bit in difference between the 2 addrs.
543
544 See comment in __ipv6_addr_diff: bit may be an invalid value,
545 but if it is >= plen, the value is ignored in any case.
546 */
547
548 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
549
550 /*
551 * (intermediate)[in]
552 * / \
553 * (new leaf node)[ln] (old node)[fn]
554 */
555 if (plen > bit) {
556 in = node_alloc();
557 ln = node_alloc();
558
559 if (!in || !ln) {
560 if (in)
561 node_free(in);
562 if (ln)
563 node_free(ln);
564 return ERR_PTR(-ENOMEM);
565 }
566
567 /*
568 * new intermediate node.
569 * RTN_RTINFO will
570 * be off since that an address that chooses one of
571 * the branches would not match less specific routes
572 * in the other branch
573 */
574
575 in->fn_bit = bit;
576
577 in->parent = pn;
578 in->leaf = fn->leaf;
579 atomic_inc(&in->leaf->rt6i_ref);
580
581 in->fn_sernum = sernum;
582
583 /* update parent pointer */
584 if (dir)
585 pn->right = in;
586 else
587 pn->left = in;
588
589 ln->fn_bit = plen;
590
591 ln->parent = in;
592 fn->parent = in;
593
594 ln->fn_sernum = sernum;
595
596 if (addr_bit_set(addr, bit)) {
597 in->right = ln;
598 in->left = fn;
599 } else {
600 in->left = ln;
601 in->right = fn;
602 }
603 } else { /* plen <= bit */
604
605 /*
606 * (new leaf node)[ln]
607 * / \
608 * (old node)[fn] NULL
609 */
610
611 ln = node_alloc();
612
613 if (!ln)
614 return ERR_PTR(-ENOMEM);
615
616 ln->fn_bit = plen;
617
618 ln->parent = pn;
619
620 ln->fn_sernum = sernum;
621
622 if (dir)
623 pn->right = ln;
624 else
625 pn->left = ln;
626
627 if (addr_bit_set(&key->addr, plen))
628 ln->right = fn;
629 else
630 ln->left = fn;
631
632 fn->parent = ln;
633 }
634 return ln;
635 }
636
637 /*
638 * Insert routing information in a node.
639 */
640
641 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
642 struct nl_info *info)
643 {
644 struct rt6_info *iter = NULL;
645 struct rt6_info **ins;
646 int replace = (info->nlh &&
647 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
648 int add = (!info->nlh ||
649 (info->nlh->nlmsg_flags & NLM_F_CREATE));
650 int found = 0;
651
652 ins = &fn->leaf;
653
654 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
655 /*
656 * Search for duplicates
657 */
658
659 if (iter->rt6i_metric == rt->rt6i_metric) {
660 /*
661 * Same priority level
662 */
663 if (info->nlh &&
664 (info->nlh->nlmsg_flags & NLM_F_EXCL))
665 return -EEXIST;
666 if (replace) {
667 found++;
668 break;
669 }
670
671 if (iter->dst.dev == rt->dst.dev &&
672 iter->rt6i_idev == rt->rt6i_idev &&
673 ipv6_addr_equal(&iter->rt6i_gateway,
674 &rt->rt6i_gateway)) {
675 if (rt->rt6i_nsiblings)
676 rt->rt6i_nsiblings = 0;
677 if (!(iter->rt6i_flags & RTF_EXPIRES))
678 return -EEXIST;
679 if (!(rt->rt6i_flags & RTF_EXPIRES))
680 rt6_clean_expires(iter);
681 else
682 rt6_set_expires(iter, rt->dst.expires);
683 return -EEXIST;
684 }
685 /* If we have the same destination and the same metric,
686 * but not the same gateway, then the route we try to
687 * add is sibling to this route, increment our counter
688 * of siblings, and later we will add our route to the
689 * list.
690 * Only static routes (which don't have flag
691 * RTF_EXPIRES) are used for ECMPv6.
692 *
693 * To avoid long list, we only had siblings if the
694 * route have a gateway.
695 */
696 if (rt->rt6i_flags & RTF_GATEWAY &&
697 !(rt->rt6i_flags & RTF_EXPIRES) &&
698 !(iter->rt6i_flags & RTF_EXPIRES))
699 rt->rt6i_nsiblings++;
700 }
701
702 if (iter->rt6i_metric > rt->rt6i_metric)
703 break;
704
705 ins = &iter->dst.rt6_next;
706 }
707
708 /* Reset round-robin state, if necessary */
709 if (ins == &fn->leaf)
710 fn->rr_ptr = NULL;
711
712 /* Link this route to others same route. */
713 if (rt->rt6i_nsiblings) {
714 unsigned int rt6i_nsiblings;
715 struct rt6_info *sibling, *temp_sibling;
716
717 /* Find the first route that have the same metric */
718 sibling = fn->leaf;
719 while (sibling) {
720 if (sibling->rt6i_metric == rt->rt6i_metric) {
721 list_add_tail(&rt->rt6i_siblings,
722 &sibling->rt6i_siblings);
723 break;
724 }
725 sibling = sibling->dst.rt6_next;
726 }
727 /* For each sibling in the list, increment the counter of
728 * siblings. BUG() if counters does not match, list of siblings
729 * is broken!
730 */
731 rt6i_nsiblings = 0;
732 list_for_each_entry_safe(sibling, temp_sibling,
733 &rt->rt6i_siblings, rt6i_siblings) {
734 sibling->rt6i_nsiblings++;
735 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
736 rt6i_nsiblings++;
737 }
738 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
739 }
740
741 /*
742 * insert node
743 */
744 if (!replace) {
745 if (!add)
746 pr_warn("NLM_F_CREATE should be set when creating new route\n");
747
748 add:
749 rt->dst.rt6_next = iter;
750 *ins = rt;
751 rt->rt6i_node = fn;
752 atomic_inc(&rt->rt6i_ref);
753 inet6_rt_notify(RTM_NEWROUTE, rt, info);
754 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
755
756 if (!(fn->fn_flags & RTN_RTINFO)) {
757 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
758 fn->fn_flags |= RTN_RTINFO;
759 }
760
761 } else {
762 if (!found) {
763 if (add)
764 goto add;
765 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
766 return -ENOENT;
767 }
768 *ins = rt;
769 rt->rt6i_node = fn;
770 rt->dst.rt6_next = iter->dst.rt6_next;
771 atomic_inc(&rt->rt6i_ref);
772 inet6_rt_notify(RTM_NEWROUTE, rt, info);
773 rt6_release(iter);
774 if (!(fn->fn_flags & RTN_RTINFO)) {
775 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
776 fn->fn_flags |= RTN_RTINFO;
777 }
778 }
779
780 return 0;
781 }
782
783 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
784 {
785 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
786 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
787 mod_timer(&net->ipv6.ip6_fib_timer,
788 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
789 }
790
791 void fib6_force_start_gc(struct net *net)
792 {
793 if (!timer_pending(&net->ipv6.ip6_fib_timer))
794 mod_timer(&net->ipv6.ip6_fib_timer,
795 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
796 }
797
798 /*
799 * Add routing information to the routing tree.
800 * <destination addr>/<source addr>
801 * with source addr info in sub-trees
802 */
803
804 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
805 {
806 struct fib6_node *fn, *pn = NULL;
807 int err = -ENOMEM;
808 int allow_create = 1;
809 int replace_required = 0;
810
811 if (info->nlh) {
812 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
813 allow_create = 0;
814 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
815 replace_required = 1;
816 }
817 if (!allow_create && !replace_required)
818 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
819
820 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
821 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
822 allow_create, replace_required);
823
824 if (IS_ERR(fn)) {
825 err = PTR_ERR(fn);
826 goto out;
827 }
828
829 pn = fn;
830
831 #ifdef CONFIG_IPV6_SUBTREES
832 if (rt->rt6i_src.plen) {
833 struct fib6_node *sn;
834
835 if (!fn->subtree) {
836 struct fib6_node *sfn;
837
838 /*
839 * Create subtree.
840 *
841 * fn[main tree]
842 * |
843 * sfn[subtree root]
844 * \
845 * sn[new leaf node]
846 */
847
848 /* Create subtree root node */
849 sfn = node_alloc();
850 if (!sfn)
851 goto st_failure;
852
853 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
854 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
855 sfn->fn_flags = RTN_ROOT;
856 sfn->fn_sernum = fib6_new_sernum();
857
858 /* Now add the first leaf node to new subtree */
859
860 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
861 sizeof(struct in6_addr), rt->rt6i_src.plen,
862 offsetof(struct rt6_info, rt6i_src),
863 allow_create, replace_required);
864
865 if (IS_ERR(sn)) {
866 /* If it is failed, discard just allocated
867 root, and then (in st_failure) stale node
868 in main tree.
869 */
870 node_free(sfn);
871 err = PTR_ERR(sn);
872 goto st_failure;
873 }
874
875 /* Now link new subtree to main tree */
876 sfn->parent = fn;
877 fn->subtree = sfn;
878 } else {
879 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
880 sizeof(struct in6_addr), rt->rt6i_src.plen,
881 offsetof(struct rt6_info, rt6i_src),
882 allow_create, replace_required);
883
884 if (IS_ERR(sn)) {
885 err = PTR_ERR(sn);
886 goto st_failure;
887 }
888 }
889
890 if (!fn->leaf) {
891 fn->leaf = rt;
892 atomic_inc(&rt->rt6i_ref);
893 }
894 fn = sn;
895 }
896 #endif
897
898 err = fib6_add_rt2node(fn, rt, info);
899 if (!err) {
900 fib6_start_gc(info->nl_net, rt);
901 if (!(rt->rt6i_flags & RTF_CACHE))
902 fib6_prune_clones(info->nl_net, pn, rt);
903 }
904
905 out:
906 if (err) {
907 #ifdef CONFIG_IPV6_SUBTREES
908 /*
909 * If fib6_add_1 has cleared the old leaf pointer in the
910 * super-tree leaf node we have to find a new one for it.
911 */
912 if (pn != fn && pn->leaf == rt) {
913 pn->leaf = NULL;
914 atomic_dec(&rt->rt6i_ref);
915 }
916 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
917 pn->leaf = fib6_find_prefix(info->nl_net, pn);
918 #if RT6_DEBUG >= 2
919 if (!pn->leaf) {
920 WARN_ON(pn->leaf == NULL);
921 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
922 }
923 #endif
924 atomic_inc(&pn->leaf->rt6i_ref);
925 }
926 #endif
927 dst_free(&rt->dst);
928 }
929 return err;
930
931 #ifdef CONFIG_IPV6_SUBTREES
932 /* Subtree creation failed, probably main tree node
933 is orphan. If it is, shoot it.
934 */
935 st_failure:
936 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
937 fib6_repair_tree(info->nl_net, fn);
938 dst_free(&rt->dst);
939 return err;
940 #endif
941 }
942
943 /*
944 * Routing tree lookup
945 *
946 */
947
948 struct lookup_args {
949 int offset; /* key offset on rt6_info */
950 const struct in6_addr *addr; /* search key */
951 };
952
953 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
954 struct lookup_args *args)
955 {
956 struct fib6_node *fn;
957 __be32 dir;
958
959 if (unlikely(args->offset == 0))
960 return NULL;
961
962 /*
963 * Descend on a tree
964 */
965
966 fn = root;
967
968 for (;;) {
969 struct fib6_node *next;
970
971 dir = addr_bit_set(args->addr, fn->fn_bit);
972
973 next = dir ? fn->right : fn->left;
974
975 if (next) {
976 fn = next;
977 continue;
978 }
979 break;
980 }
981
982 while (fn) {
983 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
984 struct rt6key *key;
985
986 key = (struct rt6key *) ((u8 *) fn->leaf +
987 args->offset);
988
989 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
990 #ifdef CONFIG_IPV6_SUBTREES
991 if (fn->subtree)
992 fn = fib6_lookup_1(fn->subtree, args + 1);
993 #endif
994 if (!fn || fn->fn_flags & RTN_RTINFO)
995 return fn;
996 }
997 }
998
999 if (fn->fn_flags & RTN_ROOT)
1000 break;
1001
1002 fn = fn->parent;
1003 }
1004
1005 return NULL;
1006 }
1007
1008 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1009 const struct in6_addr *saddr)
1010 {
1011 struct fib6_node *fn;
1012 struct lookup_args args[] = {
1013 {
1014 .offset = offsetof(struct rt6_info, rt6i_dst),
1015 .addr = daddr,
1016 },
1017 #ifdef CONFIG_IPV6_SUBTREES
1018 {
1019 .offset = offsetof(struct rt6_info, rt6i_src),
1020 .addr = saddr,
1021 },
1022 #endif
1023 {
1024 .offset = 0, /* sentinel */
1025 }
1026 };
1027
1028 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1029 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1030 fn = root;
1031
1032 return fn;
1033 }
1034
1035 /*
1036 * Get node with specified destination prefix (and source prefix,
1037 * if subtrees are used)
1038 */
1039
1040
1041 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1042 const struct in6_addr *addr,
1043 int plen, int offset)
1044 {
1045 struct fib6_node *fn;
1046
1047 for (fn = root; fn ; ) {
1048 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1049
1050 /*
1051 * Prefix match
1052 */
1053 if (plen < fn->fn_bit ||
1054 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1055 return NULL;
1056
1057 if (plen == fn->fn_bit)
1058 return fn;
1059
1060 /*
1061 * We have more bits to go
1062 */
1063 if (addr_bit_set(addr, fn->fn_bit))
1064 fn = fn->right;
1065 else
1066 fn = fn->left;
1067 }
1068 return NULL;
1069 }
1070
1071 struct fib6_node * fib6_locate(struct fib6_node *root,
1072 const struct in6_addr *daddr, int dst_len,
1073 const struct in6_addr *saddr, int src_len)
1074 {
1075 struct fib6_node *fn;
1076
1077 fn = fib6_locate_1(root, daddr, dst_len,
1078 offsetof(struct rt6_info, rt6i_dst));
1079
1080 #ifdef CONFIG_IPV6_SUBTREES
1081 if (src_len) {
1082 WARN_ON(saddr == NULL);
1083 if (fn && fn->subtree)
1084 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1085 offsetof(struct rt6_info, rt6i_src));
1086 }
1087 #endif
1088
1089 if (fn && fn->fn_flags & RTN_RTINFO)
1090 return fn;
1091
1092 return NULL;
1093 }
1094
1095
1096 /*
1097 * Deletion
1098 *
1099 */
1100
1101 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1102 {
1103 if (fn->fn_flags & RTN_ROOT)
1104 return net->ipv6.ip6_null_entry;
1105
1106 while (fn) {
1107 if (fn->left)
1108 return fn->left->leaf;
1109 if (fn->right)
1110 return fn->right->leaf;
1111
1112 fn = FIB6_SUBTREE(fn);
1113 }
1114 return NULL;
1115 }
1116
1117 /*
1118 * Called to trim the tree of intermediate nodes when possible. "fn"
1119 * is the node we want to try and remove.
1120 */
1121
1122 static struct fib6_node *fib6_repair_tree(struct net *net,
1123 struct fib6_node *fn)
1124 {
1125 int children;
1126 int nstate;
1127 struct fib6_node *child, *pn;
1128 struct fib6_walker_t *w;
1129 int iter = 0;
1130
1131 for (;;) {
1132 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1133 iter++;
1134
1135 WARN_ON(fn->fn_flags & RTN_RTINFO);
1136 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1137 WARN_ON(fn->leaf != NULL);
1138
1139 children = 0;
1140 child = NULL;
1141 if (fn->right) child = fn->right, children |= 1;
1142 if (fn->left) child = fn->left, children |= 2;
1143
1144 if (children == 3 || FIB6_SUBTREE(fn)
1145 #ifdef CONFIG_IPV6_SUBTREES
1146 /* Subtree root (i.e. fn) may have one child */
1147 || (children && fn->fn_flags & RTN_ROOT)
1148 #endif
1149 ) {
1150 fn->leaf = fib6_find_prefix(net, fn);
1151 #if RT6_DEBUG >= 2
1152 if (!fn->leaf) {
1153 WARN_ON(!fn->leaf);
1154 fn->leaf = net->ipv6.ip6_null_entry;
1155 }
1156 #endif
1157 atomic_inc(&fn->leaf->rt6i_ref);
1158 return fn->parent;
1159 }
1160
1161 pn = fn->parent;
1162 #ifdef CONFIG_IPV6_SUBTREES
1163 if (FIB6_SUBTREE(pn) == fn) {
1164 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1165 FIB6_SUBTREE(pn) = NULL;
1166 nstate = FWS_L;
1167 } else {
1168 WARN_ON(fn->fn_flags & RTN_ROOT);
1169 #endif
1170 if (pn->right == fn) pn->right = child;
1171 else if (pn->left == fn) pn->left = child;
1172 #if RT6_DEBUG >= 2
1173 else
1174 WARN_ON(1);
1175 #endif
1176 if (child)
1177 child->parent = pn;
1178 nstate = FWS_R;
1179 #ifdef CONFIG_IPV6_SUBTREES
1180 }
1181 #endif
1182
1183 read_lock(&fib6_walker_lock);
1184 FOR_WALKERS(w) {
1185 if (!child) {
1186 if (w->root == fn) {
1187 w->root = w->node = NULL;
1188 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1189 } else if (w->node == fn) {
1190 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1191 w->node = pn;
1192 w->state = nstate;
1193 }
1194 } else {
1195 if (w->root == fn) {
1196 w->root = child;
1197 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1198 }
1199 if (w->node == fn) {
1200 w->node = child;
1201 if (children&2) {
1202 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1203 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1204 } else {
1205 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1206 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1207 }
1208 }
1209 }
1210 }
1211 read_unlock(&fib6_walker_lock);
1212
1213 node_free(fn);
1214 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1215 return pn;
1216
1217 rt6_release(pn->leaf);
1218 pn->leaf = NULL;
1219 fn = pn;
1220 }
1221 }
1222
1223 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1224 struct nl_info *info)
1225 {
1226 struct fib6_walker_t *w;
1227 struct rt6_info *rt = *rtp;
1228 struct net *net = info->nl_net;
1229
1230 RT6_TRACE("fib6_del_route\n");
1231
1232 /* Unlink it */
1233 *rtp = rt->dst.rt6_next;
1234 rt->rt6i_node = NULL;
1235 net->ipv6.rt6_stats->fib_rt_entries--;
1236 net->ipv6.rt6_stats->fib_discarded_routes++;
1237
1238 /* Reset round-robin state, if necessary */
1239 if (fn->rr_ptr == rt)
1240 fn->rr_ptr = NULL;
1241
1242 /* Remove this entry from other siblings */
1243 if (rt->rt6i_nsiblings) {
1244 struct rt6_info *sibling, *next_sibling;
1245
1246 list_for_each_entry_safe(sibling, next_sibling,
1247 &rt->rt6i_siblings, rt6i_siblings)
1248 sibling->rt6i_nsiblings--;
1249 rt->rt6i_nsiblings = 0;
1250 list_del_init(&rt->rt6i_siblings);
1251 }
1252
1253 /* Adjust walkers */
1254 read_lock(&fib6_walker_lock);
1255 FOR_WALKERS(w) {
1256 if (w->state == FWS_C && w->leaf == rt) {
1257 RT6_TRACE("walker %p adjusted by delroute\n", w);
1258 w->leaf = rt->dst.rt6_next;
1259 if (!w->leaf)
1260 w->state = FWS_U;
1261 }
1262 }
1263 read_unlock(&fib6_walker_lock);
1264
1265 rt->dst.rt6_next = NULL;
1266
1267 /* If it was last route, expunge its radix tree node */
1268 if (!fn->leaf) {
1269 fn->fn_flags &= ~RTN_RTINFO;
1270 net->ipv6.rt6_stats->fib_route_nodes--;
1271 fn = fib6_repair_tree(net, fn);
1272 }
1273
1274 if (atomic_read(&rt->rt6i_ref) != 1) {
1275 /* This route is used as dummy address holder in some split
1276 * nodes. It is not leaked, but it still holds other resources,
1277 * which must be released in time. So, scan ascendant nodes
1278 * and replace dummy references to this route with references
1279 * to still alive ones.
1280 */
1281 while (fn) {
1282 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1283 fn->leaf = fib6_find_prefix(net, fn);
1284 atomic_inc(&fn->leaf->rt6i_ref);
1285 rt6_release(rt);
1286 }
1287 fn = fn->parent;
1288 }
1289 /* No more references are possible at this point. */
1290 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1291 }
1292
1293 inet6_rt_notify(RTM_DELROUTE, rt, info);
1294 rt6_release(rt);
1295 }
1296
1297 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1298 {
1299 struct net *net = info->nl_net;
1300 struct fib6_node *fn = rt->rt6i_node;
1301 struct rt6_info **rtp;
1302
1303 #if RT6_DEBUG >= 2
1304 if (rt->dst.obsolete>0) {
1305 WARN_ON(fn != NULL);
1306 return -ENOENT;
1307 }
1308 #endif
1309 if (!fn || rt == net->ipv6.ip6_null_entry)
1310 return -ENOENT;
1311
1312 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1313
1314 if (!(rt->rt6i_flags & RTF_CACHE)) {
1315 struct fib6_node *pn = fn;
1316 #ifdef CONFIG_IPV6_SUBTREES
1317 /* clones of this route might be in another subtree */
1318 if (rt->rt6i_src.plen) {
1319 while (!(pn->fn_flags & RTN_ROOT))
1320 pn = pn->parent;
1321 pn = pn->parent;
1322 }
1323 #endif
1324 fib6_prune_clones(info->nl_net, pn, rt);
1325 }
1326
1327 /*
1328 * Walk the leaf entries looking for ourself
1329 */
1330
1331 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1332 if (*rtp == rt) {
1333 fib6_del_route(fn, rtp, info);
1334 return 0;
1335 }
1336 }
1337 return -ENOENT;
1338 }
1339
1340 /*
1341 * Tree traversal function.
1342 *
1343 * Certainly, it is not interrupt safe.
1344 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1345 * It means, that we can modify tree during walking
1346 * and use this function for garbage collection, clone pruning,
1347 * cleaning tree when a device goes down etc. etc.
1348 *
1349 * It guarantees that every node will be traversed,
1350 * and that it will be traversed only once.
1351 *
1352 * Callback function w->func may return:
1353 * 0 -> continue walking.
1354 * positive value -> walking is suspended (used by tree dumps,
1355 * and probably by gc, if it will be split to several slices)
1356 * negative value -> terminate walking.
1357 *
1358 * The function itself returns:
1359 * 0 -> walk is complete.
1360 * >0 -> walk is incomplete (i.e. suspended)
1361 * <0 -> walk is terminated by an error.
1362 */
1363
1364 static int fib6_walk_continue(struct fib6_walker_t *w)
1365 {
1366 struct fib6_node *fn, *pn;
1367
1368 for (;;) {
1369 fn = w->node;
1370 if (!fn)
1371 return 0;
1372
1373 if (w->prune && fn != w->root &&
1374 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1375 w->state = FWS_C;
1376 w->leaf = fn->leaf;
1377 }
1378 switch (w->state) {
1379 #ifdef CONFIG_IPV6_SUBTREES
1380 case FWS_S:
1381 if (FIB6_SUBTREE(fn)) {
1382 w->node = FIB6_SUBTREE(fn);
1383 continue;
1384 }
1385 w->state = FWS_L;
1386 #endif
1387 case FWS_L:
1388 if (fn->left) {
1389 w->node = fn->left;
1390 w->state = FWS_INIT;
1391 continue;
1392 }
1393 w->state = FWS_R;
1394 case FWS_R:
1395 if (fn->right) {
1396 w->node = fn->right;
1397 w->state = FWS_INIT;
1398 continue;
1399 }
1400 w->state = FWS_C;
1401 w->leaf = fn->leaf;
1402 case FWS_C:
1403 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1404 int err;
1405
1406 if (w->skip) {
1407 w->skip--;
1408 continue;
1409 }
1410
1411 err = w->func(w);
1412 if (err)
1413 return err;
1414
1415 w->count++;
1416 continue;
1417 }
1418 w->state = FWS_U;
1419 case FWS_U:
1420 if (fn == w->root)
1421 return 0;
1422 pn = fn->parent;
1423 w->node = pn;
1424 #ifdef CONFIG_IPV6_SUBTREES
1425 if (FIB6_SUBTREE(pn) == fn) {
1426 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1427 w->state = FWS_L;
1428 continue;
1429 }
1430 #endif
1431 if (pn->left == fn) {
1432 w->state = FWS_R;
1433 continue;
1434 }
1435 if (pn->right == fn) {
1436 w->state = FWS_C;
1437 w->leaf = w->node->leaf;
1438 continue;
1439 }
1440 #if RT6_DEBUG >= 2
1441 WARN_ON(1);
1442 #endif
1443 }
1444 }
1445 }
1446
1447 static int fib6_walk(struct fib6_walker_t *w)
1448 {
1449 int res;
1450
1451 w->state = FWS_INIT;
1452 w->node = w->root;
1453
1454 fib6_walker_link(w);
1455 res = fib6_walk_continue(w);
1456 if (res <= 0)
1457 fib6_walker_unlink(w);
1458 return res;
1459 }
1460
1461 static int fib6_clean_node(struct fib6_walker_t *w)
1462 {
1463 int res;
1464 struct rt6_info *rt;
1465 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1466 struct nl_info info = {
1467 .nl_net = c->net,
1468 };
1469
1470 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1471 res = c->func(rt, c->arg);
1472 if (res < 0) {
1473 w->leaf = rt;
1474 res = fib6_del(rt, &info);
1475 if (res) {
1476 #if RT6_DEBUG >= 2
1477 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1478 __func__, rt, rt->rt6i_node, res);
1479 #endif
1480 continue;
1481 }
1482 return 0;
1483 }
1484 WARN_ON(res != 0);
1485 }
1486 w->leaf = rt;
1487 return 0;
1488 }
1489
1490 /*
1491 * Convenient frontend to tree walker.
1492 *
1493 * func is called on each route.
1494 * It may return -1 -> delete this route.
1495 * 0 -> continue walking
1496 *
1497 * prune==1 -> only immediate children of node (certainly,
1498 * ignoring pure split nodes) will be scanned.
1499 */
1500
1501 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1502 int (*func)(struct rt6_info *, void *arg),
1503 int prune, void *arg)
1504 {
1505 struct fib6_cleaner_t c;
1506
1507 c.w.root = root;
1508 c.w.func = fib6_clean_node;
1509 c.w.prune = prune;
1510 c.w.count = 0;
1511 c.w.skip = 0;
1512 c.func = func;
1513 c.arg = arg;
1514 c.net = net;
1515
1516 fib6_walk(&c.w);
1517 }
1518
1519 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1520 int prune, void *arg)
1521 {
1522 struct fib6_table *table;
1523 struct hlist_node *node;
1524 struct hlist_head *head;
1525 unsigned int h;
1526
1527 rcu_read_lock();
1528 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1529 head = &net->ipv6.fib_table_hash[h];
1530 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1531 read_lock_bh(&table->tb6_lock);
1532 fib6_clean_tree(net, &table->tb6_root,
1533 func, prune, arg);
1534 read_unlock_bh(&table->tb6_lock);
1535 }
1536 }
1537 rcu_read_unlock();
1538 }
1539 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1540 int prune, void *arg)
1541 {
1542 struct fib6_table *table;
1543 struct hlist_node *node;
1544 struct hlist_head *head;
1545 unsigned int h;
1546
1547 rcu_read_lock();
1548 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1549 head = &net->ipv6.fib_table_hash[h];
1550 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1551 write_lock_bh(&table->tb6_lock);
1552 fib6_clean_tree(net, &table->tb6_root,
1553 func, prune, arg);
1554 write_unlock_bh(&table->tb6_lock);
1555 }
1556 }
1557 rcu_read_unlock();
1558 }
1559
1560 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1561 {
1562 if (rt->rt6i_flags & RTF_CACHE) {
1563 RT6_TRACE("pruning clone %p\n", rt);
1564 return -1;
1565 }
1566
1567 return 0;
1568 }
1569
1570 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1571 struct rt6_info *rt)
1572 {
1573 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1574 }
1575
1576 /*
1577 * Garbage collection
1578 */
1579
1580 static struct fib6_gc_args
1581 {
1582 int timeout;
1583 int more;
1584 } gc_args;
1585
1586 static int fib6_age(struct rt6_info *rt, void *arg)
1587 {
1588 unsigned long now = jiffies;
1589
1590 /*
1591 * check addrconf expiration here.
1592 * Routes are expired even if they are in use.
1593 *
1594 * Also age clones. Note, that clones are aged out
1595 * only if they are not in use now.
1596 */
1597
1598 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1599 if (time_after(now, rt->dst.expires)) {
1600 RT6_TRACE("expiring %p\n", rt);
1601 return -1;
1602 }
1603 gc_args.more++;
1604 } else if (rt->rt6i_flags & RTF_CACHE) {
1605 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1606 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1607 RT6_TRACE("aging clone %p\n", rt);
1608 return -1;
1609 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1610 struct neighbour *neigh;
1611 __u8 neigh_flags = 0;
1612
1613 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1614 if (neigh) {
1615 neigh_flags = neigh->flags;
1616 neigh_release(neigh);
1617 }
1618 if (!(neigh_flags & NTF_ROUTER)) {
1619 RT6_TRACE("purging route %p via non-router but gateway\n",
1620 rt);
1621 return -1;
1622 }
1623 }
1624 gc_args.more++;
1625 }
1626
1627 return 0;
1628 }
1629
1630 static DEFINE_SPINLOCK(fib6_gc_lock);
1631
1632 void fib6_run_gc(unsigned long expires, struct net *net)
1633 {
1634 if (expires != ~0UL) {
1635 spin_lock_bh(&fib6_gc_lock);
1636 gc_args.timeout = expires ? (int)expires :
1637 net->ipv6.sysctl.ip6_rt_gc_interval;
1638 } else {
1639 if (!spin_trylock_bh(&fib6_gc_lock)) {
1640 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1641 return;
1642 }
1643 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1644 }
1645
1646 gc_args.more = icmp6_dst_gc();
1647
1648 fib6_clean_all(net, fib6_age, 0, NULL);
1649
1650 if (gc_args.more)
1651 mod_timer(&net->ipv6.ip6_fib_timer,
1652 round_jiffies(jiffies
1653 + net->ipv6.sysctl.ip6_rt_gc_interval));
1654 else
1655 del_timer(&net->ipv6.ip6_fib_timer);
1656 spin_unlock_bh(&fib6_gc_lock);
1657 }
1658
1659 static void fib6_gc_timer_cb(unsigned long arg)
1660 {
1661 fib6_run_gc(0, (struct net *)arg);
1662 }
1663
1664 static int __net_init fib6_net_init(struct net *net)
1665 {
1666 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1667
1668 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1669
1670 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1671 if (!net->ipv6.rt6_stats)
1672 goto out_timer;
1673
1674 /* Avoid false sharing : Use at least a full cache line */
1675 size = max_t(size_t, size, L1_CACHE_BYTES);
1676
1677 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1678 if (!net->ipv6.fib_table_hash)
1679 goto out_rt6_stats;
1680
1681 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1682 GFP_KERNEL);
1683 if (!net->ipv6.fib6_main_tbl)
1684 goto out_fib_table_hash;
1685
1686 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1687 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1688 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1689 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1690 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1691
1692 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1693 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1694 GFP_KERNEL);
1695 if (!net->ipv6.fib6_local_tbl)
1696 goto out_fib6_main_tbl;
1697 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1698 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1699 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1700 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1701 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1702 #endif
1703 fib6_tables_init(net);
1704
1705 return 0;
1706
1707 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1708 out_fib6_main_tbl:
1709 kfree(net->ipv6.fib6_main_tbl);
1710 #endif
1711 out_fib_table_hash:
1712 kfree(net->ipv6.fib_table_hash);
1713 out_rt6_stats:
1714 kfree(net->ipv6.rt6_stats);
1715 out_timer:
1716 return -ENOMEM;
1717 }
1718
1719 static void fib6_net_exit(struct net *net)
1720 {
1721 rt6_ifdown(net, NULL);
1722 del_timer_sync(&net->ipv6.ip6_fib_timer);
1723
1724 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1725 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1726 kfree(net->ipv6.fib6_local_tbl);
1727 #endif
1728 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1729 kfree(net->ipv6.fib6_main_tbl);
1730 kfree(net->ipv6.fib_table_hash);
1731 kfree(net->ipv6.rt6_stats);
1732 }
1733
1734 static struct pernet_operations fib6_net_ops = {
1735 .init = fib6_net_init,
1736 .exit = fib6_net_exit,
1737 };
1738
1739 int __init fib6_init(void)
1740 {
1741 int ret = -ENOMEM;
1742
1743 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1744 sizeof(struct fib6_node),
1745 0, SLAB_HWCACHE_ALIGN,
1746 NULL);
1747 if (!fib6_node_kmem)
1748 goto out;
1749
1750 ret = register_pernet_subsys(&fib6_net_ops);
1751 if (ret)
1752 goto out_kmem_cache_create;
1753
1754 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1755 NULL);
1756 if (ret)
1757 goto out_unregister_subsys;
1758 out:
1759 return ret;
1760
1761 out_unregister_subsys:
1762 unregister_pernet_subsys(&fib6_net_ops);
1763 out_kmem_cache_create:
1764 kmem_cache_destroy(fib6_node_kmem);
1765 goto out;
1766 }
1767
1768 void fib6_gc_cleanup(void)
1769 {
1770 unregister_pernet_subsys(&fib6_net_ops);
1771 kmem_cache_destroy(fib6_node_kmem);
1772 }