Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21
22 #define pr_fmt(fmt) "IPv6: " fmt
23
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 #define RT6_DEBUG 2
42
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 FWS_S,
55 #endif
56 FWS_L,
57 FWS_R,
58 FWS_C,
59 FWS_U
60 };
61
62 struct fib6_cleaner_t
63 {
64 struct fib6_walker_t w;
65 struct net *net;
66 int (*func)(struct rt6_info *, void *arg);
67 void *arg;
68 };
69
70 static DEFINE_RWLOCK(fib6_walker_lock);
71
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84
85 /*
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
90 */
91
92 static __u32 rt_sernum;
93
94 static void fib6_gc_timer_cb(unsigned long arg);
95
96 static LIST_HEAD(fib6_walkers);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
98
99 static inline void fib6_walker_link(struct fib6_walker_t *w)
100 {
101 write_lock_bh(&fib6_walker_lock);
102 list_add(&w->lh, &fib6_walkers);
103 write_unlock_bh(&fib6_walker_lock);
104 }
105
106 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
107 {
108 write_lock_bh(&fib6_walker_lock);
109 list_del(&w->lh);
110 write_unlock_bh(&fib6_walker_lock);
111 }
112 static __inline__ u32 fib6_new_sernum(void)
113 {
114 u32 n = ++rt_sernum;
115 if ((__s32)n <= 0)
116 rt_sernum = n = 1;
117 return n;
118 }
119
120 /*
121 * Auxiliary address test functions for the radix tree.
122 *
123 * These assume a 32bit processor (although it will work on
124 * 64bit processors)
125 */
126
127 /*
128 * test bit
129 */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE 0
134 #endif
135
136 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138 const __be32 *addr = token;
139 /*
140 * Here,
141 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 * is optimized version of
143 * htonl(1 << ((~fn_bit)&0x1F))
144 * See include/asm-generic/bitops/le.h.
145 */
146 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 addr[fn_bit >> 5];
148 }
149
150 static __inline__ struct fib6_node * node_alloc(void)
151 {
152 struct fib6_node *fn;
153
154 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
155
156 return fn;
157 }
158
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161 kmem_cache_free(fib6_node_kmem, fn);
162 }
163
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166 if (atomic_dec_and_test(&rt->rt6i_ref))
167 dst_free(&rt->dst);
168 }
169
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
171 {
172 unsigned int h;
173
174 /*
175 * Initialize table lock at a single place to give lockdep a key,
176 * tables aren't visible prior to being linked to the list.
177 */
178 rwlock_init(&tb->tb6_lock);
179
180 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
181
182 /*
183 * No protection necessary, this is the only list mutatation
184 * operation, tables never disappear once they exist.
185 */
186 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
187 }
188
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
190
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
192 {
193 struct fib6_table *table;
194
195 table = kzalloc(sizeof(*table), GFP_ATOMIC);
196 if (table) {
197 table->tb6_id = id;
198 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200 inet_peer_base_init(&table->tb6_peers);
201 }
202
203 return table;
204 }
205
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208 struct fib6_table *tb;
209
210 if (id == 0)
211 id = RT6_TABLE_MAIN;
212 tb = fib6_get_table(net, id);
213 if (tb)
214 return tb;
215
216 tb = fib6_alloc_table(net, id);
217 if (tb)
218 fib6_link_table(net, tb);
219
220 return tb;
221 }
222
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225 struct fib6_table *tb;
226 struct hlist_head *head;
227 struct hlist_node *node;
228 unsigned int h;
229
230 if (id == 0)
231 id = RT6_TABLE_MAIN;
232 h = id & (FIB6_TABLE_HASHSZ - 1);
233 rcu_read_lock();
234 head = &net->ipv6.fib_table_hash[h];
235 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236 if (tb->tb6_id == id) {
237 rcu_read_unlock();
238 return tb;
239 }
240 }
241 rcu_read_unlock();
242
243 return NULL;
244 }
245
246 static void __net_init fib6_tables_init(struct net *net)
247 {
248 fib6_link_table(net, net->ipv6.fib6_main_tbl);
249 fib6_link_table(net, net->ipv6.fib6_local_tbl);
250 }
251 #else
252
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 return fib6_get_table(net, id);
256 }
257
258 struct fib6_table *fib6_get_table(struct net *net, u32 id)
259 {
260 return net->ipv6.fib6_main_tbl;
261 }
262
263 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264 int flags, pol_lookup_t lookup)
265 {
266 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267 }
268
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 }
273
274 #endif
275
276 static int fib6_dump_node(struct fib6_walker_t *w)
277 {
278 int res;
279 struct rt6_info *rt;
280
281 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282 res = rt6_dump_route(rt, w->args);
283 if (res < 0) {
284 /* Frame is full, suspend walking */
285 w->leaf = rt;
286 return 1;
287 }
288 WARN_ON(res == 0);
289 }
290 w->leaf = NULL;
291 return 0;
292 }
293
294 static void fib6_dump_end(struct netlink_callback *cb)
295 {
296 struct fib6_walker_t *w = (void*)cb->args[2];
297
298 if (w) {
299 if (cb->args[4]) {
300 cb->args[4] = 0;
301 fib6_walker_unlink(w);
302 }
303 cb->args[2] = 0;
304 kfree(w);
305 }
306 cb->done = (void*)cb->args[3];
307 cb->args[1] = 3;
308 }
309
310 static int fib6_dump_done(struct netlink_callback *cb)
311 {
312 fib6_dump_end(cb);
313 return cb->done ? cb->done(cb) : 0;
314 }
315
316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 struct netlink_callback *cb)
318 {
319 struct fib6_walker_t *w;
320 int res;
321
322 w = (void *)cb->args[2];
323 w->root = &table->tb6_root;
324
325 if (cb->args[4] == 0) {
326 w->count = 0;
327 w->skip = 0;
328
329 read_lock_bh(&table->tb6_lock);
330 res = fib6_walk(w);
331 read_unlock_bh(&table->tb6_lock);
332 if (res > 0) {
333 cb->args[4] = 1;
334 cb->args[5] = w->root->fn_sernum;
335 }
336 } else {
337 if (cb->args[5] != w->root->fn_sernum) {
338 /* Begin at the root if the tree changed */
339 cb->args[5] = w->root->fn_sernum;
340 w->state = FWS_INIT;
341 w->node = w->root;
342 w->skip = w->count;
343 } else
344 w->skip = 0;
345
346 read_lock_bh(&table->tb6_lock);
347 res = fib6_walk_continue(w);
348 read_unlock_bh(&table->tb6_lock);
349 if (res <= 0) {
350 fib6_walker_unlink(w);
351 cb->args[4] = 0;
352 }
353 }
354
355 return res;
356 }
357
358 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359 {
360 struct net *net = sock_net(skb->sk);
361 unsigned int h, s_h;
362 unsigned int e = 0, s_e;
363 struct rt6_rtnl_dump_arg arg;
364 struct fib6_walker_t *w;
365 struct fib6_table *tb;
366 struct hlist_node *node;
367 struct hlist_head *head;
368 int res = 0;
369
370 s_h = cb->args[0];
371 s_e = cb->args[1];
372
373 w = (void *)cb->args[2];
374 if (!w) {
375 /* New dump:
376 *
377 * 1. hook callback destructor.
378 */
379 cb->args[3] = (long)cb->done;
380 cb->done = fib6_dump_done;
381
382 /*
383 * 2. allocate and initialize walker.
384 */
385 w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 if (!w)
387 return -ENOMEM;
388 w->func = fib6_dump_node;
389 cb->args[2] = (long)w;
390 }
391
392 arg.skb = skb;
393 arg.cb = cb;
394 arg.net = net;
395 w->args = &arg;
396
397 rcu_read_lock();
398 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
399 e = 0;
400 head = &net->ipv6.fib_table_hash[h];
401 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
402 if (e < s_e)
403 goto next;
404 res = fib6_dump_table(tb, skb, cb);
405 if (res != 0)
406 goto out;
407 next:
408 e++;
409 }
410 }
411 out:
412 rcu_read_unlock();
413 cb->args[1] = e;
414 cb->args[0] = h;
415
416 res = res < 0 ? res : skb->len;
417 if (res <= 0)
418 fib6_dump_end(cb);
419 return res;
420 }
421
422 /*
423 * Routing Table
424 *
425 * return the appropriate node for a routing tree "add" operation
426 * by either creating and inserting or by returning an existing
427 * node.
428 */
429
430 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
431 int addrlen, int plen,
432 int offset, int allow_create,
433 int replace_required)
434 {
435 struct fib6_node *fn, *in, *ln;
436 struct fib6_node *pn = NULL;
437 struct rt6key *key;
438 int bit;
439 __be32 dir = 0;
440 __u32 sernum = fib6_new_sernum();
441
442 RT6_TRACE("fib6_add_1\n");
443
444 /* insert node in tree */
445
446 fn = root;
447
448 do {
449 key = (struct rt6key *)((u8 *)fn->leaf + offset);
450
451 /*
452 * Prefix match
453 */
454 if (plen < fn->fn_bit ||
455 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
456 if (!allow_create) {
457 if (replace_required) {
458 pr_warn("Can't replace route, no match found\n");
459 return ERR_PTR(-ENOENT);
460 }
461 pr_warn("NLM_F_CREATE should be set when creating new route\n");
462 }
463 goto insert_above;
464 }
465
466 /*
467 * Exact match ?
468 */
469
470 if (plen == fn->fn_bit) {
471 /* clean up an intermediate node */
472 if (!(fn->fn_flags & RTN_RTINFO)) {
473 rt6_release(fn->leaf);
474 fn->leaf = NULL;
475 }
476
477 fn->fn_sernum = sernum;
478
479 return fn;
480 }
481
482 /*
483 * We have more bits to go
484 */
485
486 /* Try to walk down on tree. */
487 fn->fn_sernum = sernum;
488 dir = addr_bit_set(addr, fn->fn_bit);
489 pn = fn;
490 fn = dir ? fn->right: fn->left;
491 } while (fn);
492
493 if (!allow_create) {
494 /* We should not create new node because
495 * NLM_F_REPLACE was specified without NLM_F_CREATE
496 * I assume it is safe to require NLM_F_CREATE when
497 * REPLACE flag is used! Later we may want to remove the
498 * check for replace_required, because according
499 * to netlink specification, NLM_F_CREATE
500 * MUST be specified if new route is created.
501 * That would keep IPv6 consistent with IPv4
502 */
503 if (replace_required) {
504 pr_warn("Can't replace route, no match found\n");
505 return ERR_PTR(-ENOENT);
506 }
507 pr_warn("NLM_F_CREATE should be set when creating new route\n");
508 }
509 /*
510 * We walked to the bottom of tree.
511 * Create new leaf node without children.
512 */
513
514 ln = node_alloc();
515
516 if (!ln)
517 return NULL;
518 ln->fn_bit = plen;
519
520 ln->parent = pn;
521 ln->fn_sernum = sernum;
522
523 if (dir)
524 pn->right = ln;
525 else
526 pn->left = ln;
527
528 return ln;
529
530
531 insert_above:
532 /*
533 * split since we don't have a common prefix anymore or
534 * we have a less significant route.
535 * we've to insert an intermediate node on the list
536 * this new node will point to the one we need to create
537 * and the current
538 */
539
540 pn = fn->parent;
541
542 /* find 1st bit in difference between the 2 addrs.
543
544 See comment in __ipv6_addr_diff: bit may be an invalid value,
545 but if it is >= plen, the value is ignored in any case.
546 */
547
548 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
549
550 /*
551 * (intermediate)[in]
552 * / \
553 * (new leaf node)[ln] (old node)[fn]
554 */
555 if (plen > bit) {
556 in = node_alloc();
557 ln = node_alloc();
558
559 if (!in || !ln) {
560 if (in)
561 node_free(in);
562 if (ln)
563 node_free(ln);
564 return NULL;
565 }
566
567 /*
568 * new intermediate node.
569 * RTN_RTINFO will
570 * be off since that an address that chooses one of
571 * the branches would not match less specific routes
572 * in the other branch
573 */
574
575 in->fn_bit = bit;
576
577 in->parent = pn;
578 in->leaf = fn->leaf;
579 atomic_inc(&in->leaf->rt6i_ref);
580
581 in->fn_sernum = sernum;
582
583 /* update parent pointer */
584 if (dir)
585 pn->right = in;
586 else
587 pn->left = in;
588
589 ln->fn_bit = plen;
590
591 ln->parent = in;
592 fn->parent = in;
593
594 ln->fn_sernum = sernum;
595
596 if (addr_bit_set(addr, bit)) {
597 in->right = ln;
598 in->left = fn;
599 } else {
600 in->left = ln;
601 in->right = fn;
602 }
603 } else { /* plen <= bit */
604
605 /*
606 * (new leaf node)[ln]
607 * / \
608 * (old node)[fn] NULL
609 */
610
611 ln = node_alloc();
612
613 if (!ln)
614 return NULL;
615
616 ln->fn_bit = plen;
617
618 ln->parent = pn;
619
620 ln->fn_sernum = sernum;
621
622 if (dir)
623 pn->right = ln;
624 else
625 pn->left = ln;
626
627 if (addr_bit_set(&key->addr, plen))
628 ln->right = fn;
629 else
630 ln->left = fn;
631
632 fn->parent = ln;
633 }
634 return ln;
635 }
636
637 /*
638 * Insert routing information in a node.
639 */
640
641 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
642 struct nl_info *info)
643 {
644 struct rt6_info *iter = NULL;
645 struct rt6_info **ins;
646 int replace = (info->nlh &&
647 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
648 int add = (!info->nlh ||
649 (info->nlh->nlmsg_flags & NLM_F_CREATE));
650 int found = 0;
651
652 ins = &fn->leaf;
653
654 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
655 /*
656 * Search for duplicates
657 */
658
659 if (iter->rt6i_metric == rt->rt6i_metric) {
660 /*
661 * Same priority level
662 */
663 if (info->nlh &&
664 (info->nlh->nlmsg_flags & NLM_F_EXCL))
665 return -EEXIST;
666 if (replace) {
667 found++;
668 break;
669 }
670
671 if (iter->dst.dev == rt->dst.dev &&
672 iter->rt6i_idev == rt->rt6i_idev &&
673 ipv6_addr_equal(&iter->rt6i_gateway,
674 &rt->rt6i_gateway)) {
675 if (!(iter->rt6i_flags & RTF_EXPIRES))
676 return -EEXIST;
677 if (!(rt->rt6i_flags & RTF_EXPIRES))
678 rt6_clean_expires(iter);
679 else
680 rt6_set_expires(iter, rt->dst.expires);
681 return -EEXIST;
682 }
683 }
684
685 if (iter->rt6i_metric > rt->rt6i_metric)
686 break;
687
688 ins = &iter->dst.rt6_next;
689 }
690
691 /* Reset round-robin state, if necessary */
692 if (ins == &fn->leaf)
693 fn->rr_ptr = NULL;
694
695 /*
696 * insert node
697 */
698 if (!replace) {
699 if (!add)
700 pr_warn("NLM_F_CREATE should be set when creating new route\n");
701
702 add:
703 rt->dst.rt6_next = iter;
704 *ins = rt;
705 rt->rt6i_node = fn;
706 atomic_inc(&rt->rt6i_ref);
707 inet6_rt_notify(RTM_NEWROUTE, rt, info);
708 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
709
710 if (!(fn->fn_flags & RTN_RTINFO)) {
711 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
712 fn->fn_flags |= RTN_RTINFO;
713 }
714
715 } else {
716 if (!found) {
717 if (add)
718 goto add;
719 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
720 return -ENOENT;
721 }
722 *ins = rt;
723 rt->rt6i_node = fn;
724 rt->dst.rt6_next = iter->dst.rt6_next;
725 atomic_inc(&rt->rt6i_ref);
726 inet6_rt_notify(RTM_NEWROUTE, rt, info);
727 rt6_release(iter);
728 if (!(fn->fn_flags & RTN_RTINFO)) {
729 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
730 fn->fn_flags |= RTN_RTINFO;
731 }
732 }
733
734 return 0;
735 }
736
737 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
738 {
739 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
740 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
741 mod_timer(&net->ipv6.ip6_fib_timer,
742 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
743 }
744
745 void fib6_force_start_gc(struct net *net)
746 {
747 if (!timer_pending(&net->ipv6.ip6_fib_timer))
748 mod_timer(&net->ipv6.ip6_fib_timer,
749 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
750 }
751
752 /*
753 * Add routing information to the routing tree.
754 * <destination addr>/<source addr>
755 * with source addr info in sub-trees
756 */
757
758 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
759 {
760 struct fib6_node *fn, *pn = NULL;
761 int err = -ENOMEM;
762 int allow_create = 1;
763 int replace_required = 0;
764
765 if (info->nlh) {
766 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
767 allow_create = 0;
768 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
769 replace_required = 1;
770 }
771 if (!allow_create && !replace_required)
772 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
773
774 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
775 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
776 allow_create, replace_required);
777
778 if (IS_ERR(fn)) {
779 err = PTR_ERR(fn);
780 fn = NULL;
781 }
782
783 if (!fn)
784 goto out;
785
786 pn = fn;
787
788 #ifdef CONFIG_IPV6_SUBTREES
789 if (rt->rt6i_src.plen) {
790 struct fib6_node *sn;
791
792 if (!fn->subtree) {
793 struct fib6_node *sfn;
794
795 /*
796 * Create subtree.
797 *
798 * fn[main tree]
799 * |
800 * sfn[subtree root]
801 * \
802 * sn[new leaf node]
803 */
804
805 /* Create subtree root node */
806 sfn = node_alloc();
807 if (!sfn)
808 goto st_failure;
809
810 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
811 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
812 sfn->fn_flags = RTN_ROOT;
813 sfn->fn_sernum = fib6_new_sernum();
814
815 /* Now add the first leaf node to new subtree */
816
817 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
818 sizeof(struct in6_addr), rt->rt6i_src.plen,
819 offsetof(struct rt6_info, rt6i_src),
820 allow_create, replace_required);
821
822 if (!sn) {
823 /* If it is failed, discard just allocated
824 root, and then (in st_failure) stale node
825 in main tree.
826 */
827 node_free(sfn);
828 goto st_failure;
829 }
830
831 /* Now link new subtree to main tree */
832 sfn->parent = fn;
833 fn->subtree = sfn;
834 } else {
835 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
836 sizeof(struct in6_addr), rt->rt6i_src.plen,
837 offsetof(struct rt6_info, rt6i_src),
838 allow_create, replace_required);
839
840 if (IS_ERR(sn)) {
841 err = PTR_ERR(sn);
842 sn = NULL;
843 }
844 if (!sn)
845 goto st_failure;
846 }
847
848 if (!fn->leaf) {
849 fn->leaf = rt;
850 atomic_inc(&rt->rt6i_ref);
851 }
852 fn = sn;
853 }
854 #endif
855
856 err = fib6_add_rt2node(fn, rt, info);
857 if (!err) {
858 fib6_start_gc(info->nl_net, rt);
859 if (!(rt->rt6i_flags & RTF_CACHE))
860 fib6_prune_clones(info->nl_net, pn, rt);
861 }
862
863 out:
864 if (err) {
865 #ifdef CONFIG_IPV6_SUBTREES
866 /*
867 * If fib6_add_1 has cleared the old leaf pointer in the
868 * super-tree leaf node we have to find a new one for it.
869 */
870 if (pn != fn && pn->leaf == rt) {
871 pn->leaf = NULL;
872 atomic_dec(&rt->rt6i_ref);
873 }
874 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
875 pn->leaf = fib6_find_prefix(info->nl_net, pn);
876 #if RT6_DEBUG >= 2
877 if (!pn->leaf) {
878 WARN_ON(pn->leaf == NULL);
879 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
880 }
881 #endif
882 atomic_inc(&pn->leaf->rt6i_ref);
883 }
884 #endif
885 dst_free(&rt->dst);
886 }
887 return err;
888
889 #ifdef CONFIG_IPV6_SUBTREES
890 /* Subtree creation failed, probably main tree node
891 is orphan. If it is, shoot it.
892 */
893 st_failure:
894 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
895 fib6_repair_tree(info->nl_net, fn);
896 dst_free(&rt->dst);
897 return err;
898 #endif
899 }
900
901 /*
902 * Routing tree lookup
903 *
904 */
905
906 struct lookup_args {
907 int offset; /* key offset on rt6_info */
908 const struct in6_addr *addr; /* search key */
909 };
910
911 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
912 struct lookup_args *args)
913 {
914 struct fib6_node *fn;
915 __be32 dir;
916
917 if (unlikely(args->offset == 0))
918 return NULL;
919
920 /*
921 * Descend on a tree
922 */
923
924 fn = root;
925
926 for (;;) {
927 struct fib6_node *next;
928
929 dir = addr_bit_set(args->addr, fn->fn_bit);
930
931 next = dir ? fn->right : fn->left;
932
933 if (next) {
934 fn = next;
935 continue;
936 }
937 break;
938 }
939
940 while (fn) {
941 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
942 struct rt6key *key;
943
944 key = (struct rt6key *) ((u8 *) fn->leaf +
945 args->offset);
946
947 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
948 #ifdef CONFIG_IPV6_SUBTREES
949 if (fn->subtree)
950 fn = fib6_lookup_1(fn->subtree, args + 1);
951 #endif
952 if (!fn || fn->fn_flags & RTN_RTINFO)
953 return fn;
954 }
955 }
956
957 if (fn->fn_flags & RTN_ROOT)
958 break;
959
960 fn = fn->parent;
961 }
962
963 return NULL;
964 }
965
966 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
967 const struct in6_addr *saddr)
968 {
969 struct fib6_node *fn;
970 struct lookup_args args[] = {
971 {
972 .offset = offsetof(struct rt6_info, rt6i_dst),
973 .addr = daddr,
974 },
975 #ifdef CONFIG_IPV6_SUBTREES
976 {
977 .offset = offsetof(struct rt6_info, rt6i_src),
978 .addr = saddr,
979 },
980 #endif
981 {
982 .offset = 0, /* sentinel */
983 }
984 };
985
986 fn = fib6_lookup_1(root, daddr ? args : args + 1);
987 if (!fn || fn->fn_flags & RTN_TL_ROOT)
988 fn = root;
989
990 return fn;
991 }
992
993 /*
994 * Get node with specified destination prefix (and source prefix,
995 * if subtrees are used)
996 */
997
998
999 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1000 const struct in6_addr *addr,
1001 int plen, int offset)
1002 {
1003 struct fib6_node *fn;
1004
1005 for (fn = root; fn ; ) {
1006 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1007
1008 /*
1009 * Prefix match
1010 */
1011 if (plen < fn->fn_bit ||
1012 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1013 return NULL;
1014
1015 if (plen == fn->fn_bit)
1016 return fn;
1017
1018 /*
1019 * We have more bits to go
1020 */
1021 if (addr_bit_set(addr, fn->fn_bit))
1022 fn = fn->right;
1023 else
1024 fn = fn->left;
1025 }
1026 return NULL;
1027 }
1028
1029 struct fib6_node * fib6_locate(struct fib6_node *root,
1030 const struct in6_addr *daddr, int dst_len,
1031 const struct in6_addr *saddr, int src_len)
1032 {
1033 struct fib6_node *fn;
1034
1035 fn = fib6_locate_1(root, daddr, dst_len,
1036 offsetof(struct rt6_info, rt6i_dst));
1037
1038 #ifdef CONFIG_IPV6_SUBTREES
1039 if (src_len) {
1040 WARN_ON(saddr == NULL);
1041 if (fn && fn->subtree)
1042 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1043 offsetof(struct rt6_info, rt6i_src));
1044 }
1045 #endif
1046
1047 if (fn && fn->fn_flags & RTN_RTINFO)
1048 return fn;
1049
1050 return NULL;
1051 }
1052
1053
1054 /*
1055 * Deletion
1056 *
1057 */
1058
1059 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1060 {
1061 if (fn->fn_flags & RTN_ROOT)
1062 return net->ipv6.ip6_null_entry;
1063
1064 while (fn) {
1065 if (fn->left)
1066 return fn->left->leaf;
1067 if (fn->right)
1068 return fn->right->leaf;
1069
1070 fn = FIB6_SUBTREE(fn);
1071 }
1072 return NULL;
1073 }
1074
1075 /*
1076 * Called to trim the tree of intermediate nodes when possible. "fn"
1077 * is the node we want to try and remove.
1078 */
1079
1080 static struct fib6_node *fib6_repair_tree(struct net *net,
1081 struct fib6_node *fn)
1082 {
1083 int children;
1084 int nstate;
1085 struct fib6_node *child, *pn;
1086 struct fib6_walker_t *w;
1087 int iter = 0;
1088
1089 for (;;) {
1090 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1091 iter++;
1092
1093 WARN_ON(fn->fn_flags & RTN_RTINFO);
1094 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1095 WARN_ON(fn->leaf != NULL);
1096
1097 children = 0;
1098 child = NULL;
1099 if (fn->right) child = fn->right, children |= 1;
1100 if (fn->left) child = fn->left, children |= 2;
1101
1102 if (children == 3 || FIB6_SUBTREE(fn)
1103 #ifdef CONFIG_IPV6_SUBTREES
1104 /* Subtree root (i.e. fn) may have one child */
1105 || (children && fn->fn_flags & RTN_ROOT)
1106 #endif
1107 ) {
1108 fn->leaf = fib6_find_prefix(net, fn);
1109 #if RT6_DEBUG >= 2
1110 if (!fn->leaf) {
1111 WARN_ON(!fn->leaf);
1112 fn->leaf = net->ipv6.ip6_null_entry;
1113 }
1114 #endif
1115 atomic_inc(&fn->leaf->rt6i_ref);
1116 return fn->parent;
1117 }
1118
1119 pn = fn->parent;
1120 #ifdef CONFIG_IPV6_SUBTREES
1121 if (FIB6_SUBTREE(pn) == fn) {
1122 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1123 FIB6_SUBTREE(pn) = NULL;
1124 nstate = FWS_L;
1125 } else {
1126 WARN_ON(fn->fn_flags & RTN_ROOT);
1127 #endif
1128 if (pn->right == fn) pn->right = child;
1129 else if (pn->left == fn) pn->left = child;
1130 #if RT6_DEBUG >= 2
1131 else
1132 WARN_ON(1);
1133 #endif
1134 if (child)
1135 child->parent = pn;
1136 nstate = FWS_R;
1137 #ifdef CONFIG_IPV6_SUBTREES
1138 }
1139 #endif
1140
1141 read_lock(&fib6_walker_lock);
1142 FOR_WALKERS(w) {
1143 if (!child) {
1144 if (w->root == fn) {
1145 w->root = w->node = NULL;
1146 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1147 } else if (w->node == fn) {
1148 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1149 w->node = pn;
1150 w->state = nstate;
1151 }
1152 } else {
1153 if (w->root == fn) {
1154 w->root = child;
1155 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1156 }
1157 if (w->node == fn) {
1158 w->node = child;
1159 if (children&2) {
1160 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1161 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1162 } else {
1163 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1164 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1165 }
1166 }
1167 }
1168 }
1169 read_unlock(&fib6_walker_lock);
1170
1171 node_free(fn);
1172 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1173 return pn;
1174
1175 rt6_release(pn->leaf);
1176 pn->leaf = NULL;
1177 fn = pn;
1178 }
1179 }
1180
1181 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1182 struct nl_info *info)
1183 {
1184 struct fib6_walker_t *w;
1185 struct rt6_info *rt = *rtp;
1186 struct net *net = info->nl_net;
1187
1188 RT6_TRACE("fib6_del_route\n");
1189
1190 /* Unlink it */
1191 *rtp = rt->dst.rt6_next;
1192 rt->rt6i_node = NULL;
1193 net->ipv6.rt6_stats->fib_rt_entries--;
1194 net->ipv6.rt6_stats->fib_discarded_routes++;
1195
1196 /* Reset round-robin state, if necessary */
1197 if (fn->rr_ptr == rt)
1198 fn->rr_ptr = NULL;
1199
1200 /* Adjust walkers */
1201 read_lock(&fib6_walker_lock);
1202 FOR_WALKERS(w) {
1203 if (w->state == FWS_C && w->leaf == rt) {
1204 RT6_TRACE("walker %p adjusted by delroute\n", w);
1205 w->leaf = rt->dst.rt6_next;
1206 if (!w->leaf)
1207 w->state = FWS_U;
1208 }
1209 }
1210 read_unlock(&fib6_walker_lock);
1211
1212 rt->dst.rt6_next = NULL;
1213
1214 /* If it was last route, expunge its radix tree node */
1215 if (!fn->leaf) {
1216 fn->fn_flags &= ~RTN_RTINFO;
1217 net->ipv6.rt6_stats->fib_route_nodes--;
1218 fn = fib6_repair_tree(net, fn);
1219 }
1220
1221 if (atomic_read(&rt->rt6i_ref) != 1) {
1222 /* This route is used as dummy address holder in some split
1223 * nodes. It is not leaked, but it still holds other resources,
1224 * which must be released in time. So, scan ascendant nodes
1225 * and replace dummy references to this route with references
1226 * to still alive ones.
1227 */
1228 while (fn) {
1229 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1230 fn->leaf = fib6_find_prefix(net, fn);
1231 atomic_inc(&fn->leaf->rt6i_ref);
1232 rt6_release(rt);
1233 }
1234 fn = fn->parent;
1235 }
1236 /* No more references are possible at this point. */
1237 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1238 }
1239
1240 inet6_rt_notify(RTM_DELROUTE, rt, info);
1241 rt6_release(rt);
1242 }
1243
1244 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1245 {
1246 struct net *net = info->nl_net;
1247 struct fib6_node *fn = rt->rt6i_node;
1248 struct rt6_info **rtp;
1249
1250 #if RT6_DEBUG >= 2
1251 if (rt->dst.obsolete>0) {
1252 WARN_ON(fn != NULL);
1253 return -ENOENT;
1254 }
1255 #endif
1256 if (!fn || rt == net->ipv6.ip6_null_entry)
1257 return -ENOENT;
1258
1259 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1260
1261 if (!(rt->rt6i_flags & RTF_CACHE)) {
1262 struct fib6_node *pn = fn;
1263 #ifdef CONFIG_IPV6_SUBTREES
1264 /* clones of this route might be in another subtree */
1265 if (rt->rt6i_src.plen) {
1266 while (!(pn->fn_flags & RTN_ROOT))
1267 pn = pn->parent;
1268 pn = pn->parent;
1269 }
1270 #endif
1271 fib6_prune_clones(info->nl_net, pn, rt);
1272 }
1273
1274 /*
1275 * Walk the leaf entries looking for ourself
1276 */
1277
1278 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1279 if (*rtp == rt) {
1280 fib6_del_route(fn, rtp, info);
1281 return 0;
1282 }
1283 }
1284 return -ENOENT;
1285 }
1286
1287 /*
1288 * Tree traversal function.
1289 *
1290 * Certainly, it is not interrupt safe.
1291 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1292 * It means, that we can modify tree during walking
1293 * and use this function for garbage collection, clone pruning,
1294 * cleaning tree when a device goes down etc. etc.
1295 *
1296 * It guarantees that every node will be traversed,
1297 * and that it will be traversed only once.
1298 *
1299 * Callback function w->func may return:
1300 * 0 -> continue walking.
1301 * positive value -> walking is suspended (used by tree dumps,
1302 * and probably by gc, if it will be split to several slices)
1303 * negative value -> terminate walking.
1304 *
1305 * The function itself returns:
1306 * 0 -> walk is complete.
1307 * >0 -> walk is incomplete (i.e. suspended)
1308 * <0 -> walk is terminated by an error.
1309 */
1310
1311 static int fib6_walk_continue(struct fib6_walker_t *w)
1312 {
1313 struct fib6_node *fn, *pn;
1314
1315 for (;;) {
1316 fn = w->node;
1317 if (!fn)
1318 return 0;
1319
1320 if (w->prune && fn != w->root &&
1321 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1322 w->state = FWS_C;
1323 w->leaf = fn->leaf;
1324 }
1325 switch (w->state) {
1326 #ifdef CONFIG_IPV6_SUBTREES
1327 case FWS_S:
1328 if (FIB6_SUBTREE(fn)) {
1329 w->node = FIB6_SUBTREE(fn);
1330 continue;
1331 }
1332 w->state = FWS_L;
1333 #endif
1334 case FWS_L:
1335 if (fn->left) {
1336 w->node = fn->left;
1337 w->state = FWS_INIT;
1338 continue;
1339 }
1340 w->state = FWS_R;
1341 case FWS_R:
1342 if (fn->right) {
1343 w->node = fn->right;
1344 w->state = FWS_INIT;
1345 continue;
1346 }
1347 w->state = FWS_C;
1348 w->leaf = fn->leaf;
1349 case FWS_C:
1350 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1351 int err;
1352
1353 if (w->skip) {
1354 w->skip--;
1355 continue;
1356 }
1357
1358 err = w->func(w);
1359 if (err)
1360 return err;
1361
1362 w->count++;
1363 continue;
1364 }
1365 w->state = FWS_U;
1366 case FWS_U:
1367 if (fn == w->root)
1368 return 0;
1369 pn = fn->parent;
1370 w->node = pn;
1371 #ifdef CONFIG_IPV6_SUBTREES
1372 if (FIB6_SUBTREE(pn) == fn) {
1373 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1374 w->state = FWS_L;
1375 continue;
1376 }
1377 #endif
1378 if (pn->left == fn) {
1379 w->state = FWS_R;
1380 continue;
1381 }
1382 if (pn->right == fn) {
1383 w->state = FWS_C;
1384 w->leaf = w->node->leaf;
1385 continue;
1386 }
1387 #if RT6_DEBUG >= 2
1388 WARN_ON(1);
1389 #endif
1390 }
1391 }
1392 }
1393
1394 static int fib6_walk(struct fib6_walker_t *w)
1395 {
1396 int res;
1397
1398 w->state = FWS_INIT;
1399 w->node = w->root;
1400
1401 fib6_walker_link(w);
1402 res = fib6_walk_continue(w);
1403 if (res <= 0)
1404 fib6_walker_unlink(w);
1405 return res;
1406 }
1407
1408 static int fib6_clean_node(struct fib6_walker_t *w)
1409 {
1410 int res;
1411 struct rt6_info *rt;
1412 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1413 struct nl_info info = {
1414 .nl_net = c->net,
1415 };
1416
1417 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1418 res = c->func(rt, c->arg);
1419 if (res < 0) {
1420 w->leaf = rt;
1421 res = fib6_del(rt, &info);
1422 if (res) {
1423 #if RT6_DEBUG >= 2
1424 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1425 __func__, rt, rt->rt6i_node, res);
1426 #endif
1427 continue;
1428 }
1429 return 0;
1430 }
1431 WARN_ON(res != 0);
1432 }
1433 w->leaf = rt;
1434 return 0;
1435 }
1436
1437 /*
1438 * Convenient frontend to tree walker.
1439 *
1440 * func is called on each route.
1441 * It may return -1 -> delete this route.
1442 * 0 -> continue walking
1443 *
1444 * prune==1 -> only immediate children of node (certainly,
1445 * ignoring pure split nodes) will be scanned.
1446 */
1447
1448 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1449 int (*func)(struct rt6_info *, void *arg),
1450 int prune, void *arg)
1451 {
1452 struct fib6_cleaner_t c;
1453
1454 c.w.root = root;
1455 c.w.func = fib6_clean_node;
1456 c.w.prune = prune;
1457 c.w.count = 0;
1458 c.w.skip = 0;
1459 c.func = func;
1460 c.arg = arg;
1461 c.net = net;
1462
1463 fib6_walk(&c.w);
1464 }
1465
1466 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1467 int prune, void *arg)
1468 {
1469 struct fib6_table *table;
1470 struct hlist_node *node;
1471 struct hlist_head *head;
1472 unsigned int h;
1473
1474 rcu_read_lock();
1475 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1476 head = &net->ipv6.fib_table_hash[h];
1477 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1478 read_lock_bh(&table->tb6_lock);
1479 fib6_clean_tree(net, &table->tb6_root,
1480 func, prune, arg);
1481 read_unlock_bh(&table->tb6_lock);
1482 }
1483 }
1484 rcu_read_unlock();
1485 }
1486 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1487 int prune, void *arg)
1488 {
1489 struct fib6_table *table;
1490 struct hlist_node *node;
1491 struct hlist_head *head;
1492 unsigned int h;
1493
1494 rcu_read_lock();
1495 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1496 head = &net->ipv6.fib_table_hash[h];
1497 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1498 write_lock_bh(&table->tb6_lock);
1499 fib6_clean_tree(net, &table->tb6_root,
1500 func, prune, arg);
1501 write_unlock_bh(&table->tb6_lock);
1502 }
1503 }
1504 rcu_read_unlock();
1505 }
1506
1507 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1508 {
1509 if (rt->rt6i_flags & RTF_CACHE) {
1510 RT6_TRACE("pruning clone %p\n", rt);
1511 return -1;
1512 }
1513
1514 return 0;
1515 }
1516
1517 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1518 struct rt6_info *rt)
1519 {
1520 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1521 }
1522
1523 /*
1524 * Garbage collection
1525 */
1526
1527 static struct fib6_gc_args
1528 {
1529 int timeout;
1530 int more;
1531 } gc_args;
1532
1533 static int fib6_age(struct rt6_info *rt, void *arg)
1534 {
1535 unsigned long now = jiffies;
1536
1537 /*
1538 * check addrconf expiration here.
1539 * Routes are expired even if they are in use.
1540 *
1541 * Also age clones. Note, that clones are aged out
1542 * only if they are not in use now.
1543 */
1544
1545 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1546 if (time_after(now, rt->dst.expires)) {
1547 RT6_TRACE("expiring %p\n", rt);
1548 return -1;
1549 }
1550 gc_args.more++;
1551 } else if (rt->rt6i_flags & RTF_CACHE) {
1552 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1553 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1554 RT6_TRACE("aging clone %p\n", rt);
1555 return -1;
1556 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1557 struct neighbour *neigh;
1558 __u8 neigh_flags = 0;
1559
1560 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1561 if (neigh) {
1562 neigh_flags = neigh->flags;
1563 neigh_release(neigh);
1564 }
1565 if (!(neigh_flags & NTF_ROUTER)) {
1566 RT6_TRACE("purging route %p via non-router but gateway\n",
1567 rt);
1568 return -1;
1569 }
1570 }
1571 gc_args.more++;
1572 }
1573
1574 return 0;
1575 }
1576
1577 static DEFINE_SPINLOCK(fib6_gc_lock);
1578
1579 void fib6_run_gc(unsigned long expires, struct net *net)
1580 {
1581 if (expires != ~0UL) {
1582 spin_lock_bh(&fib6_gc_lock);
1583 gc_args.timeout = expires ? (int)expires :
1584 net->ipv6.sysctl.ip6_rt_gc_interval;
1585 } else {
1586 if (!spin_trylock_bh(&fib6_gc_lock)) {
1587 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1588 return;
1589 }
1590 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1591 }
1592
1593 gc_args.more = icmp6_dst_gc();
1594
1595 fib6_clean_all(net, fib6_age, 0, NULL);
1596
1597 if (gc_args.more)
1598 mod_timer(&net->ipv6.ip6_fib_timer,
1599 round_jiffies(jiffies
1600 + net->ipv6.sysctl.ip6_rt_gc_interval));
1601 else
1602 del_timer(&net->ipv6.ip6_fib_timer);
1603 spin_unlock_bh(&fib6_gc_lock);
1604 }
1605
1606 static void fib6_gc_timer_cb(unsigned long arg)
1607 {
1608 fib6_run_gc(0, (struct net *)arg);
1609 }
1610
1611 static int __net_init fib6_net_init(struct net *net)
1612 {
1613 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1614
1615 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1616
1617 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1618 if (!net->ipv6.rt6_stats)
1619 goto out_timer;
1620
1621 /* Avoid false sharing : Use at least a full cache line */
1622 size = max_t(size_t, size, L1_CACHE_BYTES);
1623
1624 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1625 if (!net->ipv6.fib_table_hash)
1626 goto out_rt6_stats;
1627
1628 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1629 GFP_KERNEL);
1630 if (!net->ipv6.fib6_main_tbl)
1631 goto out_fib_table_hash;
1632
1633 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1634 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1635 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1636 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1637 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1638
1639 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1640 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1641 GFP_KERNEL);
1642 if (!net->ipv6.fib6_local_tbl)
1643 goto out_fib6_main_tbl;
1644 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1645 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1646 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1647 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1648 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1649 #endif
1650 fib6_tables_init(net);
1651
1652 return 0;
1653
1654 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1655 out_fib6_main_tbl:
1656 kfree(net->ipv6.fib6_main_tbl);
1657 #endif
1658 out_fib_table_hash:
1659 kfree(net->ipv6.fib_table_hash);
1660 out_rt6_stats:
1661 kfree(net->ipv6.rt6_stats);
1662 out_timer:
1663 return -ENOMEM;
1664 }
1665
1666 static void fib6_net_exit(struct net *net)
1667 {
1668 rt6_ifdown(net, NULL);
1669 del_timer_sync(&net->ipv6.ip6_fib_timer);
1670
1671 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1672 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1673 kfree(net->ipv6.fib6_local_tbl);
1674 #endif
1675 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1676 kfree(net->ipv6.fib6_main_tbl);
1677 kfree(net->ipv6.fib_table_hash);
1678 kfree(net->ipv6.rt6_stats);
1679 }
1680
1681 static struct pernet_operations fib6_net_ops = {
1682 .init = fib6_net_init,
1683 .exit = fib6_net_exit,
1684 };
1685
1686 int __init fib6_init(void)
1687 {
1688 int ret = -ENOMEM;
1689
1690 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1691 sizeof(struct fib6_node),
1692 0, SLAB_HWCACHE_ALIGN,
1693 NULL);
1694 if (!fib6_node_kmem)
1695 goto out;
1696
1697 ret = register_pernet_subsys(&fib6_net_ops);
1698 if (ret)
1699 goto out_kmem_cache_create;
1700
1701 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1702 NULL);
1703 if (ret)
1704 goto out_unregister_subsys;
1705 out:
1706 return ret;
1707
1708 out_unregister_subsys:
1709 unregister_pernet_subsys(&fib6_net_ops);
1710 out_kmem_cache_create:
1711 kmem_cache_destroy(fib6_node_kmem);
1712 goto out;
1713 }
1714
1715 void fib6_gc_cleanup(void)
1716 {
1717 unregister_pernet_subsys(&fib6_net_ops);
1718 kmem_cache_destroy(fib6_node_kmem);
1719 }