revert "ipv4: Should use consistent conditional judgement for ip fragment in __ip_app...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116
117 struct udp_table udp_table __read_mostly;
118 EXPORT_SYMBOL(udp_table);
119
120 long sysctl_udp_mem[3] __read_mostly;
121 EXPORT_SYMBOL(sysctl_udp_mem);
122
123 int sysctl_udp_rmem_min __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_rmem_min);
125
126 int sysctl_udp_wmem_min __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_wmem_min);
128
129 atomic_long_t udp_memory_allocated;
130 EXPORT_SYMBOL(udp_memory_allocated);
131
132 #define MAX_UDP_PORTS 65536
133 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
134
135 static int udp_lib_lport_inuse(struct net *net, __u16 num,
136 const struct udp_hslot *hslot,
137 unsigned long *bitmap,
138 struct sock *sk,
139 int (*saddr_comp)(const struct sock *sk1,
140 const struct sock *sk2),
141 unsigned int log)
142 {
143 struct sock *sk2;
144 struct hlist_nulls_node *node;
145 kuid_t uid = sock_i_uid(sk);
146
147 sk_nulls_for_each(sk2, node, &hslot->head) {
148 if (net_eq(sock_net(sk2), net) &&
149 sk2 != sk &&
150 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
151 (!sk2->sk_reuse || !sk->sk_reuse) &&
152 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
153 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
154 (!sk2->sk_reuseport || !sk->sk_reuseport ||
155 !uid_eq(uid, sock_i_uid(sk2))) &&
156 saddr_comp(sk, sk2)) {
157 if (!bitmap)
158 return 1;
159 __set_bit(udp_sk(sk2)->udp_port_hash >> log, bitmap);
160 }
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
174 {
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
179
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head) {
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 saddr_comp(sk, sk2)) {
191 res = 1;
192 break;
193 }
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
199 /**
200 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
201 *
202 * @sk: socket struct in question
203 * @snum: port number to look up
204 * @saddr_comp: AF-dependent comparison of bound local IP addresses
205 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
206 * with NULL address
207 */
208 int udp_lib_get_port(struct sock *sk, unsigned short snum,
209 int (*saddr_comp)(const struct sock *sk1,
210 const struct sock *sk2),
211 unsigned int hash2_nulladdr)
212 {
213 struct udp_hslot *hslot, *hslot2;
214 struct udp_table *udptable = sk->sk_prot->h.udp_table;
215 int error = 1;
216 struct net *net = sock_net(sk);
217
218 if (!snum) {
219 int low, high, remaining;
220 unsigned int rand;
221 unsigned short first, last;
222 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
223
224 inet_get_local_port_range(net, &low, &high);
225 remaining = (high - low) + 1;
226
227 rand = prandom_u32();
228 first = reciprocal_scale(rand, remaining) + low;
229 /*
230 * force rand to be an odd multiple of UDP_HTABLE_SIZE
231 */
232 rand = (rand | 1) * (udptable->mask + 1);
233 last = first + udptable->mask + 1;
234 do {
235 hslot = udp_hashslot(udptable, net, first);
236 bitmap_zero(bitmap, PORTS_PER_CHAIN);
237 spin_lock_bh(&hslot->lock);
238 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
239 saddr_comp, udptable->log);
240
241 snum = first;
242 /*
243 * Iterate on all possible values of snum for this hash.
244 * Using steps of an odd multiple of UDP_HTABLE_SIZE
245 * give us randomization and full range coverage.
246 */
247 do {
248 if (low <= snum && snum <= high &&
249 !test_bit(snum >> udptable->log, bitmap) &&
250 !inet_is_local_reserved_port(net, snum))
251 goto found;
252 snum += rand;
253 } while (snum != first);
254 spin_unlock_bh(&hslot->lock);
255 } while (++first != last);
256 goto fail;
257 } else {
258 hslot = udp_hashslot(udptable, net, snum);
259 spin_lock_bh(&hslot->lock);
260 if (hslot->count > 10) {
261 int exist;
262 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
263
264 slot2 &= udptable->mask;
265 hash2_nulladdr &= udptable->mask;
266
267 hslot2 = udp_hashslot2(udptable, slot2);
268 if (hslot->count < hslot2->count)
269 goto scan_primary_hash;
270
271 exist = udp_lib_lport_inuse2(net, snum, hslot2,
272 sk, saddr_comp);
273 if (!exist && (hash2_nulladdr != slot2)) {
274 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
275 exist = udp_lib_lport_inuse2(net, snum, hslot2,
276 sk, saddr_comp);
277 }
278 if (exist)
279 goto fail_unlock;
280 else
281 goto found;
282 }
283 scan_primary_hash:
284 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
285 saddr_comp, 0))
286 goto fail_unlock;
287 }
288 found:
289 inet_sk(sk)->inet_num = snum;
290 udp_sk(sk)->udp_port_hash = snum;
291 udp_sk(sk)->udp_portaddr_hash ^= snum;
292 if (sk_unhashed(sk)) {
293 sk_nulls_add_node_rcu(sk, &hslot->head);
294 hslot->count++;
295 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
296
297 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
298 spin_lock(&hslot2->lock);
299 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
300 &hslot2->head);
301 hslot2->count++;
302 spin_unlock(&hslot2->lock);
303 }
304 error = 0;
305 fail_unlock:
306 spin_unlock_bh(&hslot->lock);
307 fail:
308 return error;
309 }
310 EXPORT_SYMBOL(udp_lib_get_port);
311
312 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
313 {
314 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
315
316 return (!ipv6_only_sock(sk2) &&
317 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
318 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
319 }
320
321 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
322 unsigned int port)
323 {
324 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
325 }
326
327 int udp_v4_get_port(struct sock *sk, unsigned short snum)
328 {
329 unsigned int hash2_nulladdr =
330 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
331 unsigned int hash2_partial =
332 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
333
334 /* precompute partial secondary hash */
335 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
336 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
337 }
338
339 static inline int compute_score(struct sock *sk, struct net *net,
340 __be32 saddr, unsigned short hnum, __be16 sport,
341 __be32 daddr, __be16 dport, int dif)
342 {
343 int score;
344 struct inet_sock *inet;
345
346 if (!net_eq(sock_net(sk), net) ||
347 udp_sk(sk)->udp_port_hash != hnum ||
348 ipv6_only_sock(sk))
349 return -1;
350
351 score = (sk->sk_family == PF_INET) ? 2 : 1;
352 inet = inet_sk(sk);
353
354 if (inet->inet_rcv_saddr) {
355 if (inet->inet_rcv_saddr != daddr)
356 return -1;
357 score += 4;
358 }
359
360 if (inet->inet_daddr) {
361 if (inet->inet_daddr != saddr)
362 return -1;
363 score += 4;
364 }
365
366 if (inet->inet_dport) {
367 if (inet->inet_dport != sport)
368 return -1;
369 score += 4;
370 }
371
372 if (sk->sk_bound_dev_if) {
373 if (sk->sk_bound_dev_if != dif)
374 return -1;
375 score += 4;
376 }
377 if (sk->sk_incoming_cpu == raw_smp_processor_id())
378 score++;
379 return score;
380 }
381
382 /*
383 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
384 */
385 static inline int compute_score2(struct sock *sk, struct net *net,
386 __be32 saddr, __be16 sport,
387 __be32 daddr, unsigned int hnum, int dif)
388 {
389 int score;
390 struct inet_sock *inet;
391
392 if (!net_eq(sock_net(sk), net) ||
393 ipv6_only_sock(sk))
394 return -1;
395
396 inet = inet_sk(sk);
397
398 if (inet->inet_rcv_saddr != daddr ||
399 inet->inet_num != hnum)
400 return -1;
401
402 score = (sk->sk_family == PF_INET) ? 2 : 1;
403
404 if (inet->inet_daddr) {
405 if (inet->inet_daddr != saddr)
406 return -1;
407 score += 4;
408 }
409
410 if (inet->inet_dport) {
411 if (inet->inet_dport != sport)
412 return -1;
413 score += 4;
414 }
415
416 if (sk->sk_bound_dev_if) {
417 if (sk->sk_bound_dev_if != dif)
418 return -1;
419 score += 4;
420 }
421
422 if (sk->sk_incoming_cpu == raw_smp_processor_id())
423 score++;
424
425 return score;
426 }
427
428 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
429 const __u16 lport, const __be32 faddr,
430 const __be16 fport)
431 {
432 static u32 udp_ehash_secret __read_mostly;
433
434 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
435
436 return __inet_ehashfn(laddr, lport, faddr, fport,
437 udp_ehash_secret + net_hash_mix(net));
438 }
439
440 /* called with read_rcu_lock() */
441 static struct sock *udp4_lib_lookup2(struct net *net,
442 __be32 saddr, __be16 sport,
443 __be32 daddr, unsigned int hnum, int dif,
444 struct udp_hslot *hslot2, unsigned int slot2)
445 {
446 struct sock *sk, *result;
447 struct hlist_nulls_node *node;
448 int score, badness, matches = 0, reuseport = 0;
449 u32 hash = 0;
450
451 begin:
452 result = NULL;
453 badness = 0;
454 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
455 score = compute_score2(sk, net, saddr, sport,
456 daddr, hnum, dif);
457 if (score > badness) {
458 result = sk;
459 badness = score;
460 reuseport = sk->sk_reuseport;
461 if (reuseport) {
462 hash = udp_ehashfn(net, daddr, hnum,
463 saddr, sport);
464 matches = 1;
465 }
466 } else if (score == badness && reuseport) {
467 matches++;
468 if (reciprocal_scale(hash, matches) == 0)
469 result = sk;
470 hash = next_pseudo_random32(hash);
471 }
472 }
473 /*
474 * if the nulls value we got at the end of this lookup is
475 * not the expected one, we must restart lookup.
476 * We probably met an item that was moved to another chain.
477 */
478 if (get_nulls_value(node) != slot2)
479 goto begin;
480 if (result) {
481 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
482 result = NULL;
483 else if (unlikely(compute_score2(result, net, saddr, sport,
484 daddr, hnum, dif) < badness)) {
485 sock_put(result);
486 goto begin;
487 }
488 }
489 return result;
490 }
491
492 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
493 * harder than this. -DaveM
494 */
495 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
496 __be16 sport, __be32 daddr, __be16 dport,
497 int dif, struct udp_table *udptable)
498 {
499 struct sock *sk, *result;
500 struct hlist_nulls_node *node;
501 unsigned short hnum = ntohs(dport);
502 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
503 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
504 int score, badness, matches = 0, reuseport = 0;
505 u32 hash = 0;
506
507 rcu_read_lock();
508 if (hslot->count > 10) {
509 hash2 = udp4_portaddr_hash(net, daddr, hnum);
510 slot2 = hash2 & udptable->mask;
511 hslot2 = &udptable->hash2[slot2];
512 if (hslot->count < hslot2->count)
513 goto begin;
514
515 result = udp4_lib_lookup2(net, saddr, sport,
516 daddr, hnum, dif,
517 hslot2, slot2);
518 if (!result) {
519 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
520 slot2 = hash2 & udptable->mask;
521 hslot2 = &udptable->hash2[slot2];
522 if (hslot->count < hslot2->count)
523 goto begin;
524
525 result = udp4_lib_lookup2(net, saddr, sport,
526 htonl(INADDR_ANY), hnum, dif,
527 hslot2, slot2);
528 }
529 rcu_read_unlock();
530 return result;
531 }
532 begin:
533 result = NULL;
534 badness = 0;
535 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
536 score = compute_score(sk, net, saddr, hnum, sport,
537 daddr, dport, dif);
538 if (score > badness) {
539 result = sk;
540 badness = score;
541 reuseport = sk->sk_reuseport;
542 if (reuseport) {
543 hash = udp_ehashfn(net, daddr, hnum,
544 saddr, sport);
545 matches = 1;
546 }
547 } else if (score == badness && reuseport) {
548 matches++;
549 if (reciprocal_scale(hash, matches) == 0)
550 result = sk;
551 hash = next_pseudo_random32(hash);
552 }
553 }
554 /*
555 * if the nulls value we got at the end of this lookup is
556 * not the expected one, we must restart lookup.
557 * We probably met an item that was moved to another chain.
558 */
559 if (get_nulls_value(node) != slot)
560 goto begin;
561
562 if (result) {
563 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
564 result = NULL;
565 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
566 daddr, dport, dif) < badness)) {
567 sock_put(result);
568 goto begin;
569 }
570 }
571 rcu_read_unlock();
572 return result;
573 }
574 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
575
576 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
577 __be16 sport, __be16 dport,
578 struct udp_table *udptable)
579 {
580 const struct iphdr *iph = ip_hdr(skb);
581
582 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
583 iph->daddr, dport, inet_iif(skb),
584 udptable);
585 }
586
587 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
588 __be32 daddr, __be16 dport, int dif)
589 {
590 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
591 }
592 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
593
594 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
595 __be16 loc_port, __be32 loc_addr,
596 __be16 rmt_port, __be32 rmt_addr,
597 int dif, unsigned short hnum)
598 {
599 struct inet_sock *inet = inet_sk(sk);
600
601 if (!net_eq(sock_net(sk), net) ||
602 udp_sk(sk)->udp_port_hash != hnum ||
603 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
604 (inet->inet_dport != rmt_port && inet->inet_dport) ||
605 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
606 ipv6_only_sock(sk) ||
607 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
608 return false;
609 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
610 return false;
611 return true;
612 }
613
614 /*
615 * This routine is called by the ICMP module when it gets some
616 * sort of error condition. If err < 0 then the socket should
617 * be closed and the error returned to the user. If err > 0
618 * it's just the icmp type << 8 | icmp code.
619 * Header points to the ip header of the error packet. We move
620 * on past this. Then (as it used to claim before adjustment)
621 * header points to the first 8 bytes of the udp header. We need
622 * to find the appropriate port.
623 */
624
625 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
626 {
627 struct inet_sock *inet;
628 const struct iphdr *iph = (const struct iphdr *)skb->data;
629 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
630 const int type = icmp_hdr(skb)->type;
631 const int code = icmp_hdr(skb)->code;
632 struct sock *sk;
633 int harderr;
634 int err;
635 struct net *net = dev_net(skb->dev);
636
637 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
638 iph->saddr, uh->source, skb->dev->ifindex, udptable);
639 if (!sk) {
640 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
641 return; /* No socket for error */
642 }
643
644 err = 0;
645 harderr = 0;
646 inet = inet_sk(sk);
647
648 switch (type) {
649 default:
650 case ICMP_TIME_EXCEEDED:
651 err = EHOSTUNREACH;
652 break;
653 case ICMP_SOURCE_QUENCH:
654 goto out;
655 case ICMP_PARAMETERPROB:
656 err = EPROTO;
657 harderr = 1;
658 break;
659 case ICMP_DEST_UNREACH:
660 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
661 ipv4_sk_update_pmtu(skb, sk, info);
662 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
663 err = EMSGSIZE;
664 harderr = 1;
665 break;
666 }
667 goto out;
668 }
669 err = EHOSTUNREACH;
670 if (code <= NR_ICMP_UNREACH) {
671 harderr = icmp_err_convert[code].fatal;
672 err = icmp_err_convert[code].errno;
673 }
674 break;
675 case ICMP_REDIRECT:
676 ipv4_sk_redirect(skb, sk);
677 goto out;
678 }
679
680 /*
681 * RFC1122: OK. Passes ICMP errors back to application, as per
682 * 4.1.3.3.
683 */
684 if (!inet->recverr) {
685 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
686 goto out;
687 } else
688 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
689
690 sk->sk_err = err;
691 sk->sk_error_report(sk);
692 out:
693 sock_put(sk);
694 }
695
696 void udp_err(struct sk_buff *skb, u32 info)
697 {
698 __udp4_lib_err(skb, info, &udp_table);
699 }
700
701 /*
702 * Throw away all pending data and cancel the corking. Socket is locked.
703 */
704 void udp_flush_pending_frames(struct sock *sk)
705 {
706 struct udp_sock *up = udp_sk(sk);
707
708 if (up->pending) {
709 up->len = 0;
710 up->pending = 0;
711 ip_flush_pending_frames(sk);
712 }
713 }
714 EXPORT_SYMBOL(udp_flush_pending_frames);
715
716 /**
717 * udp4_hwcsum - handle outgoing HW checksumming
718 * @skb: sk_buff containing the filled-in UDP header
719 * (checksum field must be zeroed out)
720 * @src: source IP address
721 * @dst: destination IP address
722 */
723 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
724 {
725 struct udphdr *uh = udp_hdr(skb);
726 int offset = skb_transport_offset(skb);
727 int len = skb->len - offset;
728 int hlen = len;
729 __wsum csum = 0;
730
731 if (!skb_has_frag_list(skb)) {
732 /*
733 * Only one fragment on the socket.
734 */
735 skb->csum_start = skb_transport_header(skb) - skb->head;
736 skb->csum_offset = offsetof(struct udphdr, check);
737 uh->check = ~csum_tcpudp_magic(src, dst, len,
738 IPPROTO_UDP, 0);
739 } else {
740 struct sk_buff *frags;
741
742 /*
743 * HW-checksum won't work as there are two or more
744 * fragments on the socket so that all csums of sk_buffs
745 * should be together
746 */
747 skb_walk_frags(skb, frags) {
748 csum = csum_add(csum, frags->csum);
749 hlen -= frags->len;
750 }
751
752 csum = skb_checksum(skb, offset, hlen, csum);
753 skb->ip_summed = CHECKSUM_NONE;
754
755 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
756 if (uh->check == 0)
757 uh->check = CSUM_MANGLED_0;
758 }
759 }
760 EXPORT_SYMBOL_GPL(udp4_hwcsum);
761
762 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
763 * for the simple case like when setting the checksum for a UDP tunnel.
764 */
765 void udp_set_csum(bool nocheck, struct sk_buff *skb,
766 __be32 saddr, __be32 daddr, int len)
767 {
768 struct udphdr *uh = udp_hdr(skb);
769
770 if (nocheck)
771 uh->check = 0;
772 else if (skb_is_gso(skb))
773 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
774 else if (skb_dst(skb) && skb_dst(skb)->dev &&
775 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
776
777 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
778
779 skb->ip_summed = CHECKSUM_PARTIAL;
780 skb->csum_start = skb_transport_header(skb) - skb->head;
781 skb->csum_offset = offsetof(struct udphdr, check);
782 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
783 } else {
784 __wsum csum;
785
786 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
787
788 uh->check = 0;
789 csum = skb_checksum(skb, 0, len, 0);
790 uh->check = udp_v4_check(len, saddr, daddr, csum);
791 if (uh->check == 0)
792 uh->check = CSUM_MANGLED_0;
793
794 skb->ip_summed = CHECKSUM_UNNECESSARY;
795 }
796 }
797 EXPORT_SYMBOL(udp_set_csum);
798
799 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
800 {
801 struct sock *sk = skb->sk;
802 struct inet_sock *inet = inet_sk(sk);
803 struct udphdr *uh;
804 int err = 0;
805 int is_udplite = IS_UDPLITE(sk);
806 int offset = skb_transport_offset(skb);
807 int len = skb->len - offset;
808 __wsum csum = 0;
809
810 /*
811 * Create a UDP header
812 */
813 uh = udp_hdr(skb);
814 uh->source = inet->inet_sport;
815 uh->dest = fl4->fl4_dport;
816 uh->len = htons(len);
817 uh->check = 0;
818
819 if (is_udplite) /* UDP-Lite */
820 csum = udplite_csum(skb);
821
822 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
823
824 skb->ip_summed = CHECKSUM_NONE;
825 goto send;
826
827 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
828
829 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
830 goto send;
831
832 } else
833 csum = udp_csum(skb);
834
835 /* add protocol-dependent pseudo-header */
836 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
837 sk->sk_protocol, csum);
838 if (uh->check == 0)
839 uh->check = CSUM_MANGLED_0;
840
841 send:
842 err = ip_send_skb(sock_net(sk), skb);
843 if (err) {
844 if (err == -ENOBUFS && !inet->recverr) {
845 UDP_INC_STATS_USER(sock_net(sk),
846 UDP_MIB_SNDBUFERRORS, is_udplite);
847 err = 0;
848 }
849 } else
850 UDP_INC_STATS_USER(sock_net(sk),
851 UDP_MIB_OUTDATAGRAMS, is_udplite);
852 return err;
853 }
854
855 /*
856 * Push out all pending data as one UDP datagram. Socket is locked.
857 */
858 int udp_push_pending_frames(struct sock *sk)
859 {
860 struct udp_sock *up = udp_sk(sk);
861 struct inet_sock *inet = inet_sk(sk);
862 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
863 struct sk_buff *skb;
864 int err = 0;
865
866 skb = ip_finish_skb(sk, fl4);
867 if (!skb)
868 goto out;
869
870 err = udp_send_skb(skb, fl4);
871
872 out:
873 up->len = 0;
874 up->pending = 0;
875 return err;
876 }
877 EXPORT_SYMBOL(udp_push_pending_frames);
878
879 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
880 {
881 struct inet_sock *inet = inet_sk(sk);
882 struct udp_sock *up = udp_sk(sk);
883 struct flowi4 fl4_stack;
884 struct flowi4 *fl4;
885 int ulen = len;
886 struct ipcm_cookie ipc;
887 struct rtable *rt = NULL;
888 int free = 0;
889 int connected = 0;
890 __be32 daddr, faddr, saddr;
891 __be16 dport;
892 u8 tos;
893 int err, is_udplite = IS_UDPLITE(sk);
894 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
895 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
896 struct sk_buff *skb;
897 struct ip_options_data opt_copy;
898
899 if (len > 0xFFFF)
900 return -EMSGSIZE;
901
902 /*
903 * Check the flags.
904 */
905
906 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
907 return -EOPNOTSUPP;
908
909 ipc.opt = NULL;
910 ipc.tx_flags = 0;
911 ipc.ttl = 0;
912 ipc.tos = -1;
913
914 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
915
916 fl4 = &inet->cork.fl.u.ip4;
917 if (up->pending) {
918 /*
919 * There are pending frames.
920 * The socket lock must be held while it's corked.
921 */
922 lock_sock(sk);
923 if (likely(up->pending)) {
924 if (unlikely(up->pending != AF_INET)) {
925 release_sock(sk);
926 return -EINVAL;
927 }
928 goto do_append_data;
929 }
930 release_sock(sk);
931 }
932 ulen += sizeof(struct udphdr);
933
934 /*
935 * Get and verify the address.
936 */
937 if (msg->msg_name) {
938 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
939 if (msg->msg_namelen < sizeof(*usin))
940 return -EINVAL;
941 if (usin->sin_family != AF_INET) {
942 if (usin->sin_family != AF_UNSPEC)
943 return -EAFNOSUPPORT;
944 }
945
946 daddr = usin->sin_addr.s_addr;
947 dport = usin->sin_port;
948 if (dport == 0)
949 return -EINVAL;
950 } else {
951 if (sk->sk_state != TCP_ESTABLISHED)
952 return -EDESTADDRREQ;
953 daddr = inet->inet_daddr;
954 dport = inet->inet_dport;
955 /* Open fast path for connected socket.
956 Route will not be used, if at least one option is set.
957 */
958 connected = 1;
959 }
960 ipc.addr = inet->inet_saddr;
961
962 ipc.oif = sk->sk_bound_dev_if;
963
964 sock_tx_timestamp(sk, &ipc.tx_flags);
965
966 if (msg->msg_controllen) {
967 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
968 sk->sk_family == AF_INET6);
969 if (unlikely(err)) {
970 kfree(ipc.opt);
971 return err;
972 }
973 if (ipc.opt)
974 free = 1;
975 connected = 0;
976 }
977 if (!ipc.opt) {
978 struct ip_options_rcu *inet_opt;
979
980 rcu_read_lock();
981 inet_opt = rcu_dereference(inet->inet_opt);
982 if (inet_opt) {
983 memcpy(&opt_copy, inet_opt,
984 sizeof(*inet_opt) + inet_opt->opt.optlen);
985 ipc.opt = &opt_copy.opt;
986 }
987 rcu_read_unlock();
988 }
989
990 saddr = ipc.addr;
991 ipc.addr = faddr = daddr;
992
993 if (ipc.opt && ipc.opt->opt.srr) {
994 if (!daddr)
995 return -EINVAL;
996 faddr = ipc.opt->opt.faddr;
997 connected = 0;
998 }
999 tos = get_rttos(&ipc, inet);
1000 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1001 (msg->msg_flags & MSG_DONTROUTE) ||
1002 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1003 tos |= RTO_ONLINK;
1004 connected = 0;
1005 }
1006
1007 if (ipv4_is_multicast(daddr)) {
1008 if (!ipc.oif)
1009 ipc.oif = inet->mc_index;
1010 if (!saddr)
1011 saddr = inet->mc_addr;
1012 connected = 0;
1013 } else if (!ipc.oif)
1014 ipc.oif = inet->uc_index;
1015
1016 if (connected)
1017 rt = (struct rtable *)sk_dst_check(sk, 0);
1018
1019 if (!rt) {
1020 struct net *net = sock_net(sk);
1021 __u8 flow_flags = inet_sk_flowi_flags(sk);
1022
1023 fl4 = &fl4_stack;
1024
1025 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1026 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1027 flow_flags,
1028 faddr, saddr, dport, inet->inet_sport);
1029
1030 if (!saddr && ipc.oif) {
1031 err = l3mdev_get_saddr(net, ipc.oif, fl4);
1032 if (err < 0)
1033 goto out;
1034 }
1035
1036 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1037 rt = ip_route_output_flow(net, fl4, sk);
1038 if (IS_ERR(rt)) {
1039 err = PTR_ERR(rt);
1040 rt = NULL;
1041 if (err == -ENETUNREACH)
1042 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1043 goto out;
1044 }
1045
1046 err = -EACCES;
1047 if ((rt->rt_flags & RTCF_BROADCAST) &&
1048 !sock_flag(sk, SOCK_BROADCAST))
1049 goto out;
1050 if (connected)
1051 sk_dst_set(sk, dst_clone(&rt->dst));
1052 }
1053
1054 if (msg->msg_flags&MSG_CONFIRM)
1055 goto do_confirm;
1056 back_from_confirm:
1057
1058 saddr = fl4->saddr;
1059 if (!ipc.addr)
1060 daddr = ipc.addr = fl4->daddr;
1061
1062 /* Lockless fast path for the non-corking case. */
1063 if (!corkreq) {
1064 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1065 sizeof(struct udphdr), &ipc, &rt,
1066 msg->msg_flags);
1067 err = PTR_ERR(skb);
1068 if (!IS_ERR_OR_NULL(skb))
1069 err = udp_send_skb(skb, fl4);
1070 goto out;
1071 }
1072
1073 lock_sock(sk);
1074 if (unlikely(up->pending)) {
1075 /* The socket is already corked while preparing it. */
1076 /* ... which is an evident application bug. --ANK */
1077 release_sock(sk);
1078
1079 net_dbg_ratelimited("cork app bug 2\n");
1080 err = -EINVAL;
1081 goto out;
1082 }
1083 /*
1084 * Now cork the socket to pend data.
1085 */
1086 fl4 = &inet->cork.fl.u.ip4;
1087 fl4->daddr = daddr;
1088 fl4->saddr = saddr;
1089 fl4->fl4_dport = dport;
1090 fl4->fl4_sport = inet->inet_sport;
1091 up->pending = AF_INET;
1092
1093 do_append_data:
1094 up->len += ulen;
1095 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1096 sizeof(struct udphdr), &ipc, &rt,
1097 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1098 if (err)
1099 udp_flush_pending_frames(sk);
1100 else if (!corkreq)
1101 err = udp_push_pending_frames(sk);
1102 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1103 up->pending = 0;
1104 release_sock(sk);
1105
1106 out:
1107 ip_rt_put(rt);
1108 if (free)
1109 kfree(ipc.opt);
1110 if (!err)
1111 return len;
1112 /*
1113 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1114 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1115 * we don't have a good statistic (IpOutDiscards but it can be too many
1116 * things). We could add another new stat but at least for now that
1117 * seems like overkill.
1118 */
1119 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1120 UDP_INC_STATS_USER(sock_net(sk),
1121 UDP_MIB_SNDBUFERRORS, is_udplite);
1122 }
1123 return err;
1124
1125 do_confirm:
1126 dst_confirm(&rt->dst);
1127 if (!(msg->msg_flags&MSG_PROBE) || len)
1128 goto back_from_confirm;
1129 err = 0;
1130 goto out;
1131 }
1132 EXPORT_SYMBOL(udp_sendmsg);
1133
1134 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1135 size_t size, int flags)
1136 {
1137 struct inet_sock *inet = inet_sk(sk);
1138 struct udp_sock *up = udp_sk(sk);
1139 int ret;
1140
1141 if (flags & MSG_SENDPAGE_NOTLAST)
1142 flags |= MSG_MORE;
1143
1144 if (!up->pending) {
1145 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1146
1147 /* Call udp_sendmsg to specify destination address which
1148 * sendpage interface can't pass.
1149 * This will succeed only when the socket is connected.
1150 */
1151 ret = udp_sendmsg(sk, &msg, 0);
1152 if (ret < 0)
1153 return ret;
1154 }
1155
1156 lock_sock(sk);
1157
1158 if (unlikely(!up->pending)) {
1159 release_sock(sk);
1160
1161 net_dbg_ratelimited("udp cork app bug 3\n");
1162 return -EINVAL;
1163 }
1164
1165 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1166 page, offset, size, flags);
1167 if (ret == -EOPNOTSUPP) {
1168 release_sock(sk);
1169 return sock_no_sendpage(sk->sk_socket, page, offset,
1170 size, flags);
1171 }
1172 if (ret < 0) {
1173 udp_flush_pending_frames(sk);
1174 goto out;
1175 }
1176
1177 up->len += size;
1178 if (!(up->corkflag || (flags&MSG_MORE)))
1179 ret = udp_push_pending_frames(sk);
1180 if (!ret)
1181 ret = size;
1182 out:
1183 release_sock(sk);
1184 return ret;
1185 }
1186
1187 /**
1188 * first_packet_length - return length of first packet in receive queue
1189 * @sk: socket
1190 *
1191 * Drops all bad checksum frames, until a valid one is found.
1192 * Returns the length of found skb, or 0 if none is found.
1193 */
1194 static unsigned int first_packet_length(struct sock *sk)
1195 {
1196 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1197 struct sk_buff *skb;
1198 unsigned int res;
1199
1200 __skb_queue_head_init(&list_kill);
1201
1202 spin_lock_bh(&rcvq->lock);
1203 while ((skb = skb_peek(rcvq)) != NULL &&
1204 udp_lib_checksum_complete(skb)) {
1205 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1206 IS_UDPLITE(sk));
1207 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1208 IS_UDPLITE(sk));
1209 atomic_inc(&sk->sk_drops);
1210 __skb_unlink(skb, rcvq);
1211 __skb_queue_tail(&list_kill, skb);
1212 }
1213 res = skb ? skb->len : 0;
1214 spin_unlock_bh(&rcvq->lock);
1215
1216 if (!skb_queue_empty(&list_kill)) {
1217 bool slow = lock_sock_fast(sk);
1218
1219 __skb_queue_purge(&list_kill);
1220 sk_mem_reclaim_partial(sk);
1221 unlock_sock_fast(sk, slow);
1222 }
1223 return res;
1224 }
1225
1226 /*
1227 * IOCTL requests applicable to the UDP protocol
1228 */
1229
1230 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1231 {
1232 switch (cmd) {
1233 case SIOCOUTQ:
1234 {
1235 int amount = sk_wmem_alloc_get(sk);
1236
1237 return put_user(amount, (int __user *)arg);
1238 }
1239
1240 case SIOCINQ:
1241 {
1242 unsigned int amount = first_packet_length(sk);
1243
1244 if (amount)
1245 /*
1246 * We will only return the amount
1247 * of this packet since that is all
1248 * that will be read.
1249 */
1250 amount -= sizeof(struct udphdr);
1251
1252 return put_user(amount, (int __user *)arg);
1253 }
1254
1255 default:
1256 return -ENOIOCTLCMD;
1257 }
1258
1259 return 0;
1260 }
1261 EXPORT_SYMBOL(udp_ioctl);
1262
1263 /*
1264 * This should be easy, if there is something there we
1265 * return it, otherwise we block.
1266 */
1267
1268 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1269 int flags, int *addr_len)
1270 {
1271 struct inet_sock *inet = inet_sk(sk);
1272 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1273 struct sk_buff *skb;
1274 unsigned int ulen, copied;
1275 int peeked, off = 0;
1276 int err;
1277 int is_udplite = IS_UDPLITE(sk);
1278 bool checksum_valid = false;
1279 bool slow;
1280
1281 if (flags & MSG_ERRQUEUE)
1282 return ip_recv_error(sk, msg, len, addr_len);
1283
1284 try_again:
1285 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1286 &peeked, &off, &err);
1287 if (!skb)
1288 goto out;
1289
1290 ulen = skb->len - sizeof(struct udphdr);
1291 copied = len;
1292 if (copied > ulen)
1293 copied = ulen;
1294 else if (copied < ulen)
1295 msg->msg_flags |= MSG_TRUNC;
1296
1297 /*
1298 * If checksum is needed at all, try to do it while copying the
1299 * data. If the data is truncated, or if we only want a partial
1300 * coverage checksum (UDP-Lite), do it before the copy.
1301 */
1302
1303 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1304 checksum_valid = !udp_lib_checksum_complete(skb);
1305 if (!checksum_valid)
1306 goto csum_copy_err;
1307 }
1308
1309 if (checksum_valid || skb_csum_unnecessary(skb))
1310 err = skb_copy_datagram_msg(skb, sizeof(struct udphdr),
1311 msg, copied);
1312 else {
1313 err = skb_copy_and_csum_datagram_msg(skb, sizeof(struct udphdr),
1314 msg);
1315
1316 if (err == -EINVAL)
1317 goto csum_copy_err;
1318 }
1319
1320 if (unlikely(err)) {
1321 trace_kfree_skb(skb, udp_recvmsg);
1322 if (!peeked) {
1323 atomic_inc(&sk->sk_drops);
1324 UDP_INC_STATS_USER(sock_net(sk),
1325 UDP_MIB_INERRORS, is_udplite);
1326 }
1327 goto out_free;
1328 }
1329
1330 if (!peeked)
1331 UDP_INC_STATS_USER(sock_net(sk),
1332 UDP_MIB_INDATAGRAMS, is_udplite);
1333
1334 sock_recv_ts_and_drops(msg, sk, skb);
1335
1336 /* Copy the address. */
1337 if (sin) {
1338 sin->sin_family = AF_INET;
1339 sin->sin_port = udp_hdr(skb)->source;
1340 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1341 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1342 *addr_len = sizeof(*sin);
1343 }
1344 if (inet->cmsg_flags)
1345 ip_cmsg_recv_offset(msg, skb, sizeof(struct udphdr), off);
1346
1347 err = copied;
1348 if (flags & MSG_TRUNC)
1349 err = ulen;
1350
1351 out_free:
1352 skb_free_datagram_locked(sk, skb);
1353 out:
1354 return err;
1355
1356 csum_copy_err:
1357 slow = lock_sock_fast(sk);
1358 if (!skb_kill_datagram(sk, skb, flags)) {
1359 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1360 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1361 }
1362 unlock_sock_fast(sk, slow);
1363
1364 /* starting over for a new packet, but check if we need to yield */
1365 cond_resched();
1366 msg->msg_flags &= ~MSG_TRUNC;
1367 goto try_again;
1368 }
1369
1370 int udp_disconnect(struct sock *sk, int flags)
1371 {
1372 struct inet_sock *inet = inet_sk(sk);
1373 /*
1374 * 1003.1g - break association.
1375 */
1376
1377 sk->sk_state = TCP_CLOSE;
1378 inet->inet_daddr = 0;
1379 inet->inet_dport = 0;
1380 sock_rps_reset_rxhash(sk);
1381 sk->sk_bound_dev_if = 0;
1382 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1383 inet_reset_saddr(sk);
1384
1385 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1386 sk->sk_prot->unhash(sk);
1387 inet->inet_sport = 0;
1388 }
1389 sk_dst_reset(sk);
1390 return 0;
1391 }
1392 EXPORT_SYMBOL(udp_disconnect);
1393
1394 void udp_lib_unhash(struct sock *sk)
1395 {
1396 if (sk_hashed(sk)) {
1397 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1398 struct udp_hslot *hslot, *hslot2;
1399
1400 hslot = udp_hashslot(udptable, sock_net(sk),
1401 udp_sk(sk)->udp_port_hash);
1402 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1403
1404 spin_lock_bh(&hslot->lock);
1405 if (sk_nulls_del_node_init_rcu(sk)) {
1406 hslot->count--;
1407 inet_sk(sk)->inet_num = 0;
1408 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1409
1410 spin_lock(&hslot2->lock);
1411 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1412 hslot2->count--;
1413 spin_unlock(&hslot2->lock);
1414 }
1415 spin_unlock_bh(&hslot->lock);
1416 }
1417 }
1418 EXPORT_SYMBOL(udp_lib_unhash);
1419
1420 /*
1421 * inet_rcv_saddr was changed, we must rehash secondary hash
1422 */
1423 void udp_lib_rehash(struct sock *sk, u16 newhash)
1424 {
1425 if (sk_hashed(sk)) {
1426 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1427 struct udp_hslot *hslot, *hslot2, *nhslot2;
1428
1429 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1430 nhslot2 = udp_hashslot2(udptable, newhash);
1431 udp_sk(sk)->udp_portaddr_hash = newhash;
1432 if (hslot2 != nhslot2) {
1433 hslot = udp_hashslot(udptable, sock_net(sk),
1434 udp_sk(sk)->udp_port_hash);
1435 /* we must lock primary chain too */
1436 spin_lock_bh(&hslot->lock);
1437
1438 spin_lock(&hslot2->lock);
1439 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1440 hslot2->count--;
1441 spin_unlock(&hslot2->lock);
1442
1443 spin_lock(&nhslot2->lock);
1444 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1445 &nhslot2->head);
1446 nhslot2->count++;
1447 spin_unlock(&nhslot2->lock);
1448
1449 spin_unlock_bh(&hslot->lock);
1450 }
1451 }
1452 }
1453 EXPORT_SYMBOL(udp_lib_rehash);
1454
1455 static void udp_v4_rehash(struct sock *sk)
1456 {
1457 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1458 inet_sk(sk)->inet_rcv_saddr,
1459 inet_sk(sk)->inet_num);
1460 udp_lib_rehash(sk, new_hash);
1461 }
1462
1463 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1464 {
1465 int rc;
1466
1467 if (inet_sk(sk)->inet_daddr) {
1468 sock_rps_save_rxhash(sk, skb);
1469 sk_mark_napi_id(sk, skb);
1470 sk_incoming_cpu_update(sk);
1471 }
1472
1473 rc = sock_queue_rcv_skb(sk, skb);
1474 if (rc < 0) {
1475 int is_udplite = IS_UDPLITE(sk);
1476
1477 /* Note that an ENOMEM error is charged twice */
1478 if (rc == -ENOMEM)
1479 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1480 is_udplite);
1481 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1482 kfree_skb(skb);
1483 trace_udp_fail_queue_rcv_skb(rc, sk);
1484 return -1;
1485 }
1486
1487 return 0;
1488
1489 }
1490
1491 static struct static_key udp_encap_needed __read_mostly;
1492 void udp_encap_enable(void)
1493 {
1494 if (!static_key_enabled(&udp_encap_needed))
1495 static_key_slow_inc(&udp_encap_needed);
1496 }
1497 EXPORT_SYMBOL(udp_encap_enable);
1498
1499 /* returns:
1500 * -1: error
1501 * 0: success
1502 * >0: "udp encap" protocol resubmission
1503 *
1504 * Note that in the success and error cases, the skb is assumed to
1505 * have either been requeued or freed.
1506 */
1507 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1508 {
1509 struct udp_sock *up = udp_sk(sk);
1510 int rc;
1511 int is_udplite = IS_UDPLITE(sk);
1512
1513 /*
1514 * Charge it to the socket, dropping if the queue is full.
1515 */
1516 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1517 goto drop;
1518 nf_reset(skb);
1519
1520 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1521 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1522
1523 /*
1524 * This is an encapsulation socket so pass the skb to
1525 * the socket's udp_encap_rcv() hook. Otherwise, just
1526 * fall through and pass this up the UDP socket.
1527 * up->encap_rcv() returns the following value:
1528 * =0 if skb was successfully passed to the encap
1529 * handler or was discarded by it.
1530 * >0 if skb should be passed on to UDP.
1531 * <0 if skb should be resubmitted as proto -N
1532 */
1533
1534 /* if we're overly short, let UDP handle it */
1535 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1536 if (encap_rcv) {
1537 int ret;
1538
1539 /* Verify checksum before giving to encap */
1540 if (udp_lib_checksum_complete(skb))
1541 goto csum_error;
1542
1543 ret = encap_rcv(sk, skb);
1544 if (ret <= 0) {
1545 UDP_INC_STATS_BH(sock_net(sk),
1546 UDP_MIB_INDATAGRAMS,
1547 is_udplite);
1548 return -ret;
1549 }
1550 }
1551
1552 /* FALLTHROUGH -- it's a UDP Packet */
1553 }
1554
1555 /*
1556 * UDP-Lite specific tests, ignored on UDP sockets
1557 */
1558 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1559
1560 /*
1561 * MIB statistics other than incrementing the error count are
1562 * disabled for the following two types of errors: these depend
1563 * on the application settings, not on the functioning of the
1564 * protocol stack as such.
1565 *
1566 * RFC 3828 here recommends (sec 3.3): "There should also be a
1567 * way ... to ... at least let the receiving application block
1568 * delivery of packets with coverage values less than a value
1569 * provided by the application."
1570 */
1571 if (up->pcrlen == 0) { /* full coverage was set */
1572 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1573 UDP_SKB_CB(skb)->cscov, skb->len);
1574 goto drop;
1575 }
1576 /* The next case involves violating the min. coverage requested
1577 * by the receiver. This is subtle: if receiver wants x and x is
1578 * greater than the buffersize/MTU then receiver will complain
1579 * that it wants x while sender emits packets of smaller size y.
1580 * Therefore the above ...()->partial_cov statement is essential.
1581 */
1582 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1583 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1584 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1585 goto drop;
1586 }
1587 }
1588
1589 if (rcu_access_pointer(sk->sk_filter) &&
1590 udp_lib_checksum_complete(skb))
1591 goto csum_error;
1592
1593 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1594 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1595 is_udplite);
1596 goto drop;
1597 }
1598
1599 rc = 0;
1600
1601 ipv4_pktinfo_prepare(sk, skb);
1602 bh_lock_sock(sk);
1603 if (!sock_owned_by_user(sk))
1604 rc = __udp_queue_rcv_skb(sk, skb);
1605 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1606 bh_unlock_sock(sk);
1607 goto drop;
1608 }
1609 bh_unlock_sock(sk);
1610
1611 return rc;
1612
1613 csum_error:
1614 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1615 drop:
1616 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1617 atomic_inc(&sk->sk_drops);
1618 kfree_skb(skb);
1619 return -1;
1620 }
1621
1622 static void flush_stack(struct sock **stack, unsigned int count,
1623 struct sk_buff *skb, unsigned int final)
1624 {
1625 unsigned int i;
1626 struct sk_buff *skb1 = NULL;
1627 struct sock *sk;
1628
1629 for (i = 0; i < count; i++) {
1630 sk = stack[i];
1631 if (likely(!skb1))
1632 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1633
1634 if (!skb1) {
1635 atomic_inc(&sk->sk_drops);
1636 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1637 IS_UDPLITE(sk));
1638 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1639 IS_UDPLITE(sk));
1640 }
1641
1642 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1643 skb1 = NULL;
1644
1645 sock_put(sk);
1646 }
1647 if (unlikely(skb1))
1648 kfree_skb(skb1);
1649 }
1650
1651 /* For TCP sockets, sk_rx_dst is protected by socket lock
1652 * For UDP, we use xchg() to guard against concurrent changes.
1653 */
1654 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1655 {
1656 struct dst_entry *old;
1657
1658 dst_hold(dst);
1659 old = xchg(&sk->sk_rx_dst, dst);
1660 dst_release(old);
1661 }
1662
1663 /*
1664 * Multicasts and broadcasts go to each listener.
1665 *
1666 * Note: called only from the BH handler context.
1667 */
1668 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1669 struct udphdr *uh,
1670 __be32 saddr, __be32 daddr,
1671 struct udp_table *udptable,
1672 int proto)
1673 {
1674 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1675 struct hlist_nulls_node *node;
1676 unsigned short hnum = ntohs(uh->dest);
1677 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1678 int dif = skb->dev->ifindex;
1679 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1680 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1681 bool inner_flushed = false;
1682
1683 if (use_hash2) {
1684 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1685 udp_table.mask;
1686 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1687 start_lookup:
1688 hslot = &udp_table.hash2[hash2];
1689 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1690 }
1691
1692 spin_lock(&hslot->lock);
1693 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1694 if (__udp_is_mcast_sock(net, sk,
1695 uh->dest, daddr,
1696 uh->source, saddr,
1697 dif, hnum)) {
1698 if (unlikely(count == ARRAY_SIZE(stack))) {
1699 flush_stack(stack, count, skb, ~0);
1700 inner_flushed = true;
1701 count = 0;
1702 }
1703 stack[count++] = sk;
1704 sock_hold(sk);
1705 }
1706 }
1707
1708 spin_unlock(&hslot->lock);
1709
1710 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1711 if (use_hash2 && hash2 != hash2_any) {
1712 hash2 = hash2_any;
1713 goto start_lookup;
1714 }
1715
1716 /*
1717 * do the slow work with no lock held
1718 */
1719 if (count) {
1720 flush_stack(stack, count, skb, count - 1);
1721 } else {
1722 if (!inner_flushed)
1723 UDP_INC_STATS_BH(net, UDP_MIB_IGNOREDMULTI,
1724 proto == IPPROTO_UDPLITE);
1725 consume_skb(skb);
1726 }
1727 return 0;
1728 }
1729
1730 /* Initialize UDP checksum. If exited with zero value (success),
1731 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1732 * Otherwise, csum completion requires chacksumming packet body,
1733 * including udp header and folding it to skb->csum.
1734 */
1735 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1736 int proto)
1737 {
1738 int err;
1739
1740 UDP_SKB_CB(skb)->partial_cov = 0;
1741 UDP_SKB_CB(skb)->cscov = skb->len;
1742
1743 if (proto == IPPROTO_UDPLITE) {
1744 err = udplite_checksum_init(skb, uh);
1745 if (err)
1746 return err;
1747 }
1748
1749 return skb_checksum_init_zero_check(skb, proto, uh->check,
1750 inet_compute_pseudo);
1751 }
1752
1753 /*
1754 * All we need to do is get the socket, and then do a checksum.
1755 */
1756
1757 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1758 int proto)
1759 {
1760 struct sock *sk;
1761 struct udphdr *uh;
1762 unsigned short ulen;
1763 struct rtable *rt = skb_rtable(skb);
1764 __be32 saddr, daddr;
1765 struct net *net = dev_net(skb->dev);
1766
1767 /*
1768 * Validate the packet.
1769 */
1770 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1771 goto drop; /* No space for header. */
1772
1773 uh = udp_hdr(skb);
1774 ulen = ntohs(uh->len);
1775 saddr = ip_hdr(skb)->saddr;
1776 daddr = ip_hdr(skb)->daddr;
1777
1778 if (ulen > skb->len)
1779 goto short_packet;
1780
1781 if (proto == IPPROTO_UDP) {
1782 /* UDP validates ulen. */
1783 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1784 goto short_packet;
1785 uh = udp_hdr(skb);
1786 }
1787
1788 if (udp4_csum_init(skb, uh, proto))
1789 goto csum_error;
1790
1791 sk = skb_steal_sock(skb);
1792 if (sk) {
1793 struct dst_entry *dst = skb_dst(skb);
1794 int ret;
1795
1796 if (unlikely(sk->sk_rx_dst != dst))
1797 udp_sk_rx_dst_set(sk, dst);
1798
1799 ret = udp_queue_rcv_skb(sk, skb);
1800 sock_put(sk);
1801 /* a return value > 0 means to resubmit the input, but
1802 * it wants the return to be -protocol, or 0
1803 */
1804 if (ret > 0)
1805 return -ret;
1806 return 0;
1807 }
1808
1809 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1810 return __udp4_lib_mcast_deliver(net, skb, uh,
1811 saddr, daddr, udptable, proto);
1812
1813 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1814 if (sk) {
1815 int ret;
1816
1817 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
1818 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
1819 inet_compute_pseudo);
1820
1821 ret = udp_queue_rcv_skb(sk, skb);
1822 sock_put(sk);
1823
1824 /* a return value > 0 means to resubmit the input, but
1825 * it wants the return to be -protocol, or 0
1826 */
1827 if (ret > 0)
1828 return -ret;
1829 return 0;
1830 }
1831
1832 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1833 goto drop;
1834 nf_reset(skb);
1835
1836 /* No socket. Drop packet silently, if checksum is wrong */
1837 if (udp_lib_checksum_complete(skb))
1838 goto csum_error;
1839
1840 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1841 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1842
1843 /*
1844 * Hmm. We got an UDP packet to a port to which we
1845 * don't wanna listen. Ignore it.
1846 */
1847 kfree_skb(skb);
1848 return 0;
1849
1850 short_packet:
1851 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1852 proto == IPPROTO_UDPLITE ? "Lite" : "",
1853 &saddr, ntohs(uh->source),
1854 ulen, skb->len,
1855 &daddr, ntohs(uh->dest));
1856 goto drop;
1857
1858 csum_error:
1859 /*
1860 * RFC1122: OK. Discards the bad packet silently (as far as
1861 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1862 */
1863 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1864 proto == IPPROTO_UDPLITE ? "Lite" : "",
1865 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1866 ulen);
1867 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1868 drop:
1869 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1870 kfree_skb(skb);
1871 return 0;
1872 }
1873
1874 /* We can only early demux multicast if there is a single matching socket.
1875 * If more than one socket found returns NULL
1876 */
1877 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1878 __be16 loc_port, __be32 loc_addr,
1879 __be16 rmt_port, __be32 rmt_addr,
1880 int dif)
1881 {
1882 struct sock *sk, *result;
1883 struct hlist_nulls_node *node;
1884 unsigned short hnum = ntohs(loc_port);
1885 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1886 struct udp_hslot *hslot = &udp_table.hash[slot];
1887
1888 /* Do not bother scanning a too big list */
1889 if (hslot->count > 10)
1890 return NULL;
1891
1892 rcu_read_lock();
1893 begin:
1894 count = 0;
1895 result = NULL;
1896 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1897 if (__udp_is_mcast_sock(net, sk,
1898 loc_port, loc_addr,
1899 rmt_port, rmt_addr,
1900 dif, hnum)) {
1901 result = sk;
1902 ++count;
1903 }
1904 }
1905 /*
1906 * if the nulls value we got at the end of this lookup is
1907 * not the expected one, we must restart lookup.
1908 * We probably met an item that was moved to another chain.
1909 */
1910 if (get_nulls_value(node) != slot)
1911 goto begin;
1912
1913 if (result) {
1914 if (count != 1 ||
1915 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1916 result = NULL;
1917 else if (unlikely(!__udp_is_mcast_sock(net, result,
1918 loc_port, loc_addr,
1919 rmt_port, rmt_addr,
1920 dif, hnum))) {
1921 sock_put(result);
1922 result = NULL;
1923 }
1924 }
1925 rcu_read_unlock();
1926 return result;
1927 }
1928
1929 /* For unicast we should only early demux connected sockets or we can
1930 * break forwarding setups. The chains here can be long so only check
1931 * if the first socket is an exact match and if not move on.
1932 */
1933 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1934 __be16 loc_port, __be32 loc_addr,
1935 __be16 rmt_port, __be32 rmt_addr,
1936 int dif)
1937 {
1938 struct sock *sk, *result;
1939 struct hlist_nulls_node *node;
1940 unsigned short hnum = ntohs(loc_port);
1941 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1942 unsigned int slot2 = hash2 & udp_table.mask;
1943 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1944 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1945 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1946
1947 rcu_read_lock();
1948 result = NULL;
1949 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1950 if (INET_MATCH(sk, net, acookie,
1951 rmt_addr, loc_addr, ports, dif))
1952 result = sk;
1953 /* Only check first socket in chain */
1954 break;
1955 }
1956
1957 if (result) {
1958 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1959 result = NULL;
1960 else if (unlikely(!INET_MATCH(sk, net, acookie,
1961 rmt_addr, loc_addr,
1962 ports, dif))) {
1963 sock_put(result);
1964 result = NULL;
1965 }
1966 }
1967 rcu_read_unlock();
1968 return result;
1969 }
1970
1971 void udp_v4_early_demux(struct sk_buff *skb)
1972 {
1973 struct net *net = dev_net(skb->dev);
1974 const struct iphdr *iph;
1975 const struct udphdr *uh;
1976 struct sock *sk;
1977 struct dst_entry *dst;
1978 int dif = skb->dev->ifindex;
1979 int ours;
1980
1981 /* validate the packet */
1982 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1983 return;
1984
1985 iph = ip_hdr(skb);
1986 uh = udp_hdr(skb);
1987
1988 if (skb->pkt_type == PACKET_BROADCAST ||
1989 skb->pkt_type == PACKET_MULTICAST) {
1990 struct in_device *in_dev = __in_dev_get_rcu(skb->dev);
1991
1992 if (!in_dev)
1993 return;
1994
1995 /* we are supposed to accept bcast packets */
1996 if (skb->pkt_type == PACKET_MULTICAST) {
1997 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
1998 iph->protocol);
1999 if (!ours)
2000 return;
2001 }
2002
2003 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2004 uh->source, iph->saddr, dif);
2005 } else if (skb->pkt_type == PACKET_HOST) {
2006 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2007 uh->source, iph->saddr, dif);
2008 } else {
2009 return;
2010 }
2011
2012 if (!sk)
2013 return;
2014
2015 skb->sk = sk;
2016 skb->destructor = sock_efree;
2017 dst = READ_ONCE(sk->sk_rx_dst);
2018
2019 if (dst)
2020 dst = dst_check(dst, 0);
2021 if (dst) {
2022 /* DST_NOCACHE can not be used without taking a reference */
2023 if (dst->flags & DST_NOCACHE) {
2024 if (likely(atomic_inc_not_zero(&dst->__refcnt)))
2025 skb_dst_set(skb, dst);
2026 } else {
2027 skb_dst_set_noref(skb, dst);
2028 }
2029 }
2030 }
2031
2032 int udp_rcv(struct sk_buff *skb)
2033 {
2034 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2035 }
2036
2037 void udp_destroy_sock(struct sock *sk)
2038 {
2039 struct udp_sock *up = udp_sk(sk);
2040 bool slow = lock_sock_fast(sk);
2041 udp_flush_pending_frames(sk);
2042 unlock_sock_fast(sk, slow);
2043 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2044 void (*encap_destroy)(struct sock *sk);
2045 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2046 if (encap_destroy)
2047 encap_destroy(sk);
2048 }
2049 }
2050
2051 /*
2052 * Socket option code for UDP
2053 */
2054 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2055 char __user *optval, unsigned int optlen,
2056 int (*push_pending_frames)(struct sock *))
2057 {
2058 struct udp_sock *up = udp_sk(sk);
2059 int val, valbool;
2060 int err = 0;
2061 int is_udplite = IS_UDPLITE(sk);
2062
2063 if (optlen < sizeof(int))
2064 return -EINVAL;
2065
2066 if (get_user(val, (int __user *)optval))
2067 return -EFAULT;
2068
2069 valbool = val ? 1 : 0;
2070
2071 switch (optname) {
2072 case UDP_CORK:
2073 if (val != 0) {
2074 up->corkflag = 1;
2075 } else {
2076 up->corkflag = 0;
2077 lock_sock(sk);
2078 push_pending_frames(sk);
2079 release_sock(sk);
2080 }
2081 break;
2082
2083 case UDP_ENCAP:
2084 switch (val) {
2085 case 0:
2086 case UDP_ENCAP_ESPINUDP:
2087 case UDP_ENCAP_ESPINUDP_NON_IKE:
2088 up->encap_rcv = xfrm4_udp_encap_rcv;
2089 /* FALLTHROUGH */
2090 case UDP_ENCAP_L2TPINUDP:
2091 up->encap_type = val;
2092 udp_encap_enable();
2093 break;
2094 default:
2095 err = -ENOPROTOOPT;
2096 break;
2097 }
2098 break;
2099
2100 case UDP_NO_CHECK6_TX:
2101 up->no_check6_tx = valbool;
2102 break;
2103
2104 case UDP_NO_CHECK6_RX:
2105 up->no_check6_rx = valbool;
2106 break;
2107
2108 /*
2109 * UDP-Lite's partial checksum coverage (RFC 3828).
2110 */
2111 /* The sender sets actual checksum coverage length via this option.
2112 * The case coverage > packet length is handled by send module. */
2113 case UDPLITE_SEND_CSCOV:
2114 if (!is_udplite) /* Disable the option on UDP sockets */
2115 return -ENOPROTOOPT;
2116 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2117 val = 8;
2118 else if (val > USHRT_MAX)
2119 val = USHRT_MAX;
2120 up->pcslen = val;
2121 up->pcflag |= UDPLITE_SEND_CC;
2122 break;
2123
2124 /* The receiver specifies a minimum checksum coverage value. To make
2125 * sense, this should be set to at least 8 (as done below). If zero is
2126 * used, this again means full checksum coverage. */
2127 case UDPLITE_RECV_CSCOV:
2128 if (!is_udplite) /* Disable the option on UDP sockets */
2129 return -ENOPROTOOPT;
2130 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2131 val = 8;
2132 else if (val > USHRT_MAX)
2133 val = USHRT_MAX;
2134 up->pcrlen = val;
2135 up->pcflag |= UDPLITE_RECV_CC;
2136 break;
2137
2138 default:
2139 err = -ENOPROTOOPT;
2140 break;
2141 }
2142
2143 return err;
2144 }
2145 EXPORT_SYMBOL(udp_lib_setsockopt);
2146
2147 int udp_setsockopt(struct sock *sk, int level, int optname,
2148 char __user *optval, unsigned int optlen)
2149 {
2150 if (level == SOL_UDP || level == SOL_UDPLITE)
2151 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2152 udp_push_pending_frames);
2153 return ip_setsockopt(sk, level, optname, optval, optlen);
2154 }
2155
2156 #ifdef CONFIG_COMPAT
2157 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2158 char __user *optval, unsigned int optlen)
2159 {
2160 if (level == SOL_UDP || level == SOL_UDPLITE)
2161 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2162 udp_push_pending_frames);
2163 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2164 }
2165 #endif
2166
2167 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2168 char __user *optval, int __user *optlen)
2169 {
2170 struct udp_sock *up = udp_sk(sk);
2171 int val, len;
2172
2173 if (get_user(len, optlen))
2174 return -EFAULT;
2175
2176 len = min_t(unsigned int, len, sizeof(int));
2177
2178 if (len < 0)
2179 return -EINVAL;
2180
2181 switch (optname) {
2182 case UDP_CORK:
2183 val = up->corkflag;
2184 break;
2185
2186 case UDP_ENCAP:
2187 val = up->encap_type;
2188 break;
2189
2190 case UDP_NO_CHECK6_TX:
2191 val = up->no_check6_tx;
2192 break;
2193
2194 case UDP_NO_CHECK6_RX:
2195 val = up->no_check6_rx;
2196 break;
2197
2198 /* The following two cannot be changed on UDP sockets, the return is
2199 * always 0 (which corresponds to the full checksum coverage of UDP). */
2200 case UDPLITE_SEND_CSCOV:
2201 val = up->pcslen;
2202 break;
2203
2204 case UDPLITE_RECV_CSCOV:
2205 val = up->pcrlen;
2206 break;
2207
2208 default:
2209 return -ENOPROTOOPT;
2210 }
2211
2212 if (put_user(len, optlen))
2213 return -EFAULT;
2214 if (copy_to_user(optval, &val, len))
2215 return -EFAULT;
2216 return 0;
2217 }
2218 EXPORT_SYMBOL(udp_lib_getsockopt);
2219
2220 int udp_getsockopt(struct sock *sk, int level, int optname,
2221 char __user *optval, int __user *optlen)
2222 {
2223 if (level == SOL_UDP || level == SOL_UDPLITE)
2224 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2225 return ip_getsockopt(sk, level, optname, optval, optlen);
2226 }
2227
2228 #ifdef CONFIG_COMPAT
2229 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2230 char __user *optval, int __user *optlen)
2231 {
2232 if (level == SOL_UDP || level == SOL_UDPLITE)
2233 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2234 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2235 }
2236 #endif
2237 /**
2238 * udp_poll - wait for a UDP event.
2239 * @file - file struct
2240 * @sock - socket
2241 * @wait - poll table
2242 *
2243 * This is same as datagram poll, except for the special case of
2244 * blocking sockets. If application is using a blocking fd
2245 * and a packet with checksum error is in the queue;
2246 * then it could get return from select indicating data available
2247 * but then block when reading it. Add special case code
2248 * to work around these arguably broken applications.
2249 */
2250 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2251 {
2252 unsigned int mask = datagram_poll(file, sock, wait);
2253 struct sock *sk = sock->sk;
2254
2255 sock_rps_record_flow(sk);
2256
2257 /* Check for false positives due to checksum errors */
2258 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2259 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2260 mask &= ~(POLLIN | POLLRDNORM);
2261
2262 return mask;
2263
2264 }
2265 EXPORT_SYMBOL(udp_poll);
2266
2267 struct proto udp_prot = {
2268 .name = "UDP",
2269 .owner = THIS_MODULE,
2270 .close = udp_lib_close,
2271 .connect = ip4_datagram_connect,
2272 .disconnect = udp_disconnect,
2273 .ioctl = udp_ioctl,
2274 .destroy = udp_destroy_sock,
2275 .setsockopt = udp_setsockopt,
2276 .getsockopt = udp_getsockopt,
2277 .sendmsg = udp_sendmsg,
2278 .recvmsg = udp_recvmsg,
2279 .sendpage = udp_sendpage,
2280 .backlog_rcv = __udp_queue_rcv_skb,
2281 .release_cb = ip4_datagram_release_cb,
2282 .hash = udp_lib_hash,
2283 .unhash = udp_lib_unhash,
2284 .rehash = udp_v4_rehash,
2285 .get_port = udp_v4_get_port,
2286 .memory_allocated = &udp_memory_allocated,
2287 .sysctl_mem = sysctl_udp_mem,
2288 .sysctl_wmem = &sysctl_udp_wmem_min,
2289 .sysctl_rmem = &sysctl_udp_rmem_min,
2290 .obj_size = sizeof(struct udp_sock),
2291 .slab_flags = SLAB_DESTROY_BY_RCU,
2292 .h.udp_table = &udp_table,
2293 #ifdef CONFIG_COMPAT
2294 .compat_setsockopt = compat_udp_setsockopt,
2295 .compat_getsockopt = compat_udp_getsockopt,
2296 #endif
2297 .clear_sk = sk_prot_clear_portaddr_nulls,
2298 };
2299 EXPORT_SYMBOL(udp_prot);
2300
2301 /* ------------------------------------------------------------------------ */
2302 #ifdef CONFIG_PROC_FS
2303
2304 static struct sock *udp_get_first(struct seq_file *seq, int start)
2305 {
2306 struct sock *sk;
2307 struct udp_iter_state *state = seq->private;
2308 struct net *net = seq_file_net(seq);
2309
2310 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2311 ++state->bucket) {
2312 struct hlist_nulls_node *node;
2313 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2314
2315 if (hlist_nulls_empty(&hslot->head))
2316 continue;
2317
2318 spin_lock_bh(&hslot->lock);
2319 sk_nulls_for_each(sk, node, &hslot->head) {
2320 if (!net_eq(sock_net(sk), net))
2321 continue;
2322 if (sk->sk_family == state->family)
2323 goto found;
2324 }
2325 spin_unlock_bh(&hslot->lock);
2326 }
2327 sk = NULL;
2328 found:
2329 return sk;
2330 }
2331
2332 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2333 {
2334 struct udp_iter_state *state = seq->private;
2335 struct net *net = seq_file_net(seq);
2336
2337 do {
2338 sk = sk_nulls_next(sk);
2339 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2340
2341 if (!sk) {
2342 if (state->bucket <= state->udp_table->mask)
2343 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2344 return udp_get_first(seq, state->bucket + 1);
2345 }
2346 return sk;
2347 }
2348
2349 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2350 {
2351 struct sock *sk = udp_get_first(seq, 0);
2352
2353 if (sk)
2354 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2355 --pos;
2356 return pos ? NULL : sk;
2357 }
2358
2359 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2360 {
2361 struct udp_iter_state *state = seq->private;
2362 state->bucket = MAX_UDP_PORTS;
2363
2364 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2365 }
2366
2367 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2368 {
2369 struct sock *sk;
2370
2371 if (v == SEQ_START_TOKEN)
2372 sk = udp_get_idx(seq, 0);
2373 else
2374 sk = udp_get_next(seq, v);
2375
2376 ++*pos;
2377 return sk;
2378 }
2379
2380 static void udp_seq_stop(struct seq_file *seq, void *v)
2381 {
2382 struct udp_iter_state *state = seq->private;
2383
2384 if (state->bucket <= state->udp_table->mask)
2385 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2386 }
2387
2388 int udp_seq_open(struct inode *inode, struct file *file)
2389 {
2390 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2391 struct udp_iter_state *s;
2392 int err;
2393
2394 err = seq_open_net(inode, file, &afinfo->seq_ops,
2395 sizeof(struct udp_iter_state));
2396 if (err < 0)
2397 return err;
2398
2399 s = ((struct seq_file *)file->private_data)->private;
2400 s->family = afinfo->family;
2401 s->udp_table = afinfo->udp_table;
2402 return err;
2403 }
2404 EXPORT_SYMBOL(udp_seq_open);
2405
2406 /* ------------------------------------------------------------------------ */
2407 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2408 {
2409 struct proc_dir_entry *p;
2410 int rc = 0;
2411
2412 afinfo->seq_ops.start = udp_seq_start;
2413 afinfo->seq_ops.next = udp_seq_next;
2414 afinfo->seq_ops.stop = udp_seq_stop;
2415
2416 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2417 afinfo->seq_fops, afinfo);
2418 if (!p)
2419 rc = -ENOMEM;
2420 return rc;
2421 }
2422 EXPORT_SYMBOL(udp_proc_register);
2423
2424 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2425 {
2426 remove_proc_entry(afinfo->name, net->proc_net);
2427 }
2428 EXPORT_SYMBOL(udp_proc_unregister);
2429
2430 /* ------------------------------------------------------------------------ */
2431 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2432 int bucket)
2433 {
2434 struct inet_sock *inet = inet_sk(sp);
2435 __be32 dest = inet->inet_daddr;
2436 __be32 src = inet->inet_rcv_saddr;
2437 __u16 destp = ntohs(inet->inet_dport);
2438 __u16 srcp = ntohs(inet->inet_sport);
2439
2440 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2441 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2442 bucket, src, srcp, dest, destp, sp->sk_state,
2443 sk_wmem_alloc_get(sp),
2444 sk_rmem_alloc_get(sp),
2445 0, 0L, 0,
2446 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2447 0, sock_i_ino(sp),
2448 atomic_read(&sp->sk_refcnt), sp,
2449 atomic_read(&sp->sk_drops));
2450 }
2451
2452 int udp4_seq_show(struct seq_file *seq, void *v)
2453 {
2454 seq_setwidth(seq, 127);
2455 if (v == SEQ_START_TOKEN)
2456 seq_puts(seq, " sl local_address rem_address st tx_queue "
2457 "rx_queue tr tm->when retrnsmt uid timeout "
2458 "inode ref pointer drops");
2459 else {
2460 struct udp_iter_state *state = seq->private;
2461
2462 udp4_format_sock(v, seq, state->bucket);
2463 }
2464 seq_pad(seq, '\n');
2465 return 0;
2466 }
2467
2468 static const struct file_operations udp_afinfo_seq_fops = {
2469 .owner = THIS_MODULE,
2470 .open = udp_seq_open,
2471 .read = seq_read,
2472 .llseek = seq_lseek,
2473 .release = seq_release_net
2474 };
2475
2476 /* ------------------------------------------------------------------------ */
2477 static struct udp_seq_afinfo udp4_seq_afinfo = {
2478 .name = "udp",
2479 .family = AF_INET,
2480 .udp_table = &udp_table,
2481 .seq_fops = &udp_afinfo_seq_fops,
2482 .seq_ops = {
2483 .show = udp4_seq_show,
2484 },
2485 };
2486
2487 static int __net_init udp4_proc_init_net(struct net *net)
2488 {
2489 return udp_proc_register(net, &udp4_seq_afinfo);
2490 }
2491
2492 static void __net_exit udp4_proc_exit_net(struct net *net)
2493 {
2494 udp_proc_unregister(net, &udp4_seq_afinfo);
2495 }
2496
2497 static struct pernet_operations udp4_net_ops = {
2498 .init = udp4_proc_init_net,
2499 .exit = udp4_proc_exit_net,
2500 };
2501
2502 int __init udp4_proc_init(void)
2503 {
2504 return register_pernet_subsys(&udp4_net_ops);
2505 }
2506
2507 void udp4_proc_exit(void)
2508 {
2509 unregister_pernet_subsys(&udp4_net_ops);
2510 }
2511 #endif /* CONFIG_PROC_FS */
2512
2513 static __initdata unsigned long uhash_entries;
2514 static int __init set_uhash_entries(char *str)
2515 {
2516 ssize_t ret;
2517
2518 if (!str)
2519 return 0;
2520
2521 ret = kstrtoul(str, 0, &uhash_entries);
2522 if (ret)
2523 return 0;
2524
2525 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2526 uhash_entries = UDP_HTABLE_SIZE_MIN;
2527 return 1;
2528 }
2529 __setup("uhash_entries=", set_uhash_entries);
2530
2531 void __init udp_table_init(struct udp_table *table, const char *name)
2532 {
2533 unsigned int i;
2534
2535 table->hash = alloc_large_system_hash(name,
2536 2 * sizeof(struct udp_hslot),
2537 uhash_entries,
2538 21, /* one slot per 2 MB */
2539 0,
2540 &table->log,
2541 &table->mask,
2542 UDP_HTABLE_SIZE_MIN,
2543 64 * 1024);
2544
2545 table->hash2 = table->hash + (table->mask + 1);
2546 for (i = 0; i <= table->mask; i++) {
2547 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2548 table->hash[i].count = 0;
2549 spin_lock_init(&table->hash[i].lock);
2550 }
2551 for (i = 0; i <= table->mask; i++) {
2552 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2553 table->hash2[i].count = 0;
2554 spin_lock_init(&table->hash2[i].lock);
2555 }
2556 }
2557
2558 u32 udp_flow_hashrnd(void)
2559 {
2560 static u32 hashrnd __read_mostly;
2561
2562 net_get_random_once(&hashrnd, sizeof(hashrnd));
2563
2564 return hashrnd;
2565 }
2566 EXPORT_SYMBOL(udp_flow_hashrnd);
2567
2568 void __init udp_init(void)
2569 {
2570 unsigned long limit;
2571
2572 udp_table_init(&udp_table, "UDP");
2573 limit = nr_free_buffer_pages() / 8;
2574 limit = max(limit, 128UL);
2575 sysctl_udp_mem[0] = limit / 4 * 3;
2576 sysctl_udp_mem[1] = limit;
2577 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2578
2579 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2580 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2581 }