usb: dwc3: gadget: make Set Endpoint Configuration macros safe
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86
87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 tcp_skb_pcount(skb));
89 }
90
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 icsk->icsk_ack.pingpong = 1;
177 }
178
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
181 {
182 tcp_dec_quickack_mode(sk, pkts);
183 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
184 }
185
186
187 u32 tcp_default_init_rwnd(u32 mss)
188 {
189 /* Initial receive window should be twice of TCP_INIT_CWND to
190 * enable proper sending of new unsent data during fast recovery
191 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
192 * limit when mss is larger than 1460.
193 */
194 u32 init_rwnd = sysctl_tcp_default_init_rwnd;
195
196 if (mss > 1460)
197 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
198 return init_rwnd;
199 }
200
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
207 */
208 void tcp_select_initial_window(int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
211 __u32 init_rcv_wnd)
212 {
213 unsigned int space = (__space < 0 ? 0 : __space);
214
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (65535 << 14);
218 space = min(*window_clamp, space);
219
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = (space / mss) * mss;
223
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
231 */
232 if (sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = space;
236
237 (*rcv_wscale) = 0;
238 if (wscale_ok) {
239 /* Set window scaling on max possible window
240 * See RFC1323 for an explanation of the limit to 14
241 */
242 space = max_t(u32, space, sysctl_tcp_rmem[2]);
243 space = max_t(u32, space, sysctl_rmem_max);
244 space = min_t(u32, space, *window_clamp);
245 while (space > 65535 && (*rcv_wscale) < 14) {
246 space >>= 1;
247 (*rcv_wscale)++;
248 }
249 }
250
251 if (mss > (1 << *rcv_wscale)) {
252 if (!init_rcv_wnd) /* Use default unless specified otherwise */
253 init_rcv_wnd = tcp_default_init_rwnd(mss);
254 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
255 }
256
257 /* Set the clamp no higher than max representable value */
258 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
259 }
260 EXPORT_SYMBOL(tcp_select_initial_window);
261
262 /* Chose a new window to advertise, update state in tcp_sock for the
263 * socket, and return result with RFC1323 scaling applied. The return
264 * value can be stuffed directly into th->window for an outgoing
265 * frame.
266 */
267 static u16 tcp_select_window(struct sock *sk)
268 {
269 struct tcp_sock *tp = tcp_sk(sk);
270 u32 old_win = tp->rcv_wnd;
271 u32 cur_win = tcp_receive_window(tp);
272 u32 new_win = __tcp_select_window(sk);
273
274 /* Never shrink the offered window */
275 if (new_win < cur_win) {
276 /* Danger Will Robinson!
277 * Don't update rcv_wup/rcv_wnd here or else
278 * we will not be able to advertise a zero
279 * window in time. --DaveM
280 *
281 * Relax Will Robinson.
282 */
283 if (new_win == 0)
284 NET_INC_STATS(sock_net(sk),
285 LINUX_MIB_TCPWANTZEROWINDOWADV);
286 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
287 }
288 tp->rcv_wnd = new_win;
289 tp->rcv_wup = tp->rcv_nxt;
290
291 /* Make sure we do not exceed the maximum possible
292 * scaled window.
293 */
294 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
295 new_win = min(new_win, MAX_TCP_WINDOW);
296 else
297 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
298
299 /* RFC1323 scaling applied */
300 new_win >>= tp->rx_opt.rcv_wscale;
301
302 /* If we advertise zero window, disable fast path. */
303 if (new_win == 0) {
304 tp->pred_flags = 0;
305 if (old_win)
306 NET_INC_STATS(sock_net(sk),
307 LINUX_MIB_TCPTOZEROWINDOWADV);
308 } else if (old_win == 0) {
309 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
310 }
311
312 return new_win;
313 }
314
315 /* Packet ECN state for a SYN-ACK */
316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317 {
318 const struct tcp_sock *tp = tcp_sk(sk);
319
320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 if (!(tp->ecn_flags & TCP_ECN_OK))
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 else if (tcp_ca_needs_ecn(sk))
324 INET_ECN_xmit(sk);
325 }
326
327 /* Packet ECN state for a SYN. */
328 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
329 {
330 struct tcp_sock *tp = tcp_sk(sk);
331 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
332 tcp_ca_needs_ecn(sk);
333
334 if (!use_ecn) {
335 const struct dst_entry *dst = __sk_dst_get(sk);
336
337 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
338 use_ecn = true;
339 }
340
341 tp->ecn_flags = 0;
342
343 if (use_ecn) {
344 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
345 tp->ecn_flags = TCP_ECN_OK;
346 if (tcp_ca_needs_ecn(sk))
347 INET_ECN_xmit(sk);
348 }
349 }
350
351 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
352 {
353 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
354 /* tp->ecn_flags are cleared at a later point in time when
355 * SYN ACK is ultimatively being received.
356 */
357 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
358 }
359
360 static void
361 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
362 {
363 if (inet_rsk(req)->ecn_ok)
364 th->ece = 1;
365 }
366
367 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
368 * be sent.
369 */
370 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
371 int tcp_header_len)
372 {
373 struct tcp_sock *tp = tcp_sk(sk);
374
375 if (tp->ecn_flags & TCP_ECN_OK) {
376 /* Not-retransmitted data segment: set ECT and inject CWR. */
377 if (skb->len != tcp_header_len &&
378 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
379 INET_ECN_xmit(sk);
380 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
381 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
382 tcp_hdr(skb)->cwr = 1;
383 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
384 }
385 } else if (!tcp_ca_needs_ecn(sk)) {
386 /* ACK or retransmitted segment: clear ECT|CE */
387 INET_ECN_dontxmit(sk);
388 }
389 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
390 tcp_hdr(skb)->ece = 1;
391 }
392 }
393
394 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
395 * auto increment end seqno.
396 */
397 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
398 {
399 skb->ip_summed = CHECKSUM_PARTIAL;
400 skb->csum = 0;
401
402 TCP_SKB_CB(skb)->tcp_flags = flags;
403 TCP_SKB_CB(skb)->sacked = 0;
404
405 tcp_skb_pcount_set(skb, 1);
406
407 TCP_SKB_CB(skb)->seq = seq;
408 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409 seq++;
410 TCP_SKB_CB(skb)->end_seq = seq;
411 }
412
413 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414 {
415 return tp->snd_una != tp->snd_up;
416 }
417
418 #define OPTION_SACK_ADVERTISE (1 << 0)
419 #define OPTION_TS (1 << 1)
420 #define OPTION_MD5 (1 << 2)
421 #define OPTION_WSCALE (1 << 3)
422 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
423
424 struct tcp_out_options {
425 u16 options; /* bit field of OPTION_* */
426 u16 mss; /* 0 to disable */
427 u8 ws; /* window scale, 0 to disable */
428 u8 num_sack_blocks; /* number of SACK blocks to include */
429 u8 hash_size; /* bytes in hash_location */
430 __u8 *hash_location; /* temporary pointer, overloaded */
431 __u32 tsval, tsecr; /* need to include OPTION_TS */
432 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
433 };
434
435 /* Write previously computed TCP options to the packet.
436 *
437 * Beware: Something in the Internet is very sensitive to the ordering of
438 * TCP options, we learned this through the hard way, so be careful here.
439 * Luckily we can at least blame others for their non-compliance but from
440 * inter-operability perspective it seems that we're somewhat stuck with
441 * the ordering which we have been using if we want to keep working with
442 * those broken things (not that it currently hurts anybody as there isn't
443 * particular reason why the ordering would need to be changed).
444 *
445 * At least SACK_PERM as the first option is known to lead to a disaster
446 * (but it may well be that other scenarios fail similarly).
447 */
448 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
449 struct tcp_out_options *opts)
450 {
451 u16 options = opts->options; /* mungable copy */
452
453 if (unlikely(OPTION_MD5 & options)) {
454 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
455 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
456 /* overload cookie hash location */
457 opts->hash_location = (__u8 *)ptr;
458 ptr += 4;
459 }
460
461 if (unlikely(opts->mss)) {
462 *ptr++ = htonl((TCPOPT_MSS << 24) |
463 (TCPOLEN_MSS << 16) |
464 opts->mss);
465 }
466
467 if (likely(OPTION_TS & options)) {
468 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
470 (TCPOLEN_SACK_PERM << 16) |
471 (TCPOPT_TIMESTAMP << 8) |
472 TCPOLEN_TIMESTAMP);
473 options &= ~OPTION_SACK_ADVERTISE;
474 } else {
475 *ptr++ = htonl((TCPOPT_NOP << 24) |
476 (TCPOPT_NOP << 16) |
477 (TCPOPT_TIMESTAMP << 8) |
478 TCPOLEN_TIMESTAMP);
479 }
480 *ptr++ = htonl(opts->tsval);
481 *ptr++ = htonl(opts->tsecr);
482 }
483
484 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
485 *ptr++ = htonl((TCPOPT_NOP << 24) |
486 (TCPOPT_NOP << 16) |
487 (TCPOPT_SACK_PERM << 8) |
488 TCPOLEN_SACK_PERM);
489 }
490
491 if (unlikely(OPTION_WSCALE & options)) {
492 *ptr++ = htonl((TCPOPT_NOP << 24) |
493 (TCPOPT_WINDOW << 16) |
494 (TCPOLEN_WINDOW << 8) |
495 opts->ws);
496 }
497
498 if (unlikely(opts->num_sack_blocks)) {
499 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
500 tp->duplicate_sack : tp->selective_acks;
501 int this_sack;
502
503 *ptr++ = htonl((TCPOPT_NOP << 24) |
504 (TCPOPT_NOP << 16) |
505 (TCPOPT_SACK << 8) |
506 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
507 TCPOLEN_SACK_PERBLOCK)));
508
509 for (this_sack = 0; this_sack < opts->num_sack_blocks;
510 ++this_sack) {
511 *ptr++ = htonl(sp[this_sack].start_seq);
512 *ptr++ = htonl(sp[this_sack].end_seq);
513 }
514
515 tp->rx_opt.dsack = 0;
516 }
517
518 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
519 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
520 u8 *p = (u8 *)ptr;
521 u32 len; /* Fast Open option length */
522
523 if (foc->exp) {
524 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
525 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
526 TCPOPT_FASTOPEN_MAGIC);
527 p += TCPOLEN_EXP_FASTOPEN_BASE;
528 } else {
529 len = TCPOLEN_FASTOPEN_BASE + foc->len;
530 *p++ = TCPOPT_FASTOPEN;
531 *p++ = len;
532 }
533
534 memcpy(p, foc->val, foc->len);
535 if ((len & 3) == 2) {
536 p[foc->len] = TCPOPT_NOP;
537 p[foc->len + 1] = TCPOPT_NOP;
538 }
539 ptr += (len + 3) >> 2;
540 }
541 }
542
543 /* Compute TCP options for SYN packets. This is not the final
544 * network wire format yet.
545 */
546 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
547 struct tcp_out_options *opts,
548 struct tcp_md5sig_key **md5)
549 {
550 struct tcp_sock *tp = tcp_sk(sk);
551 unsigned int remaining = MAX_TCP_OPTION_SPACE;
552 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
553
554 #ifdef CONFIG_TCP_MD5SIG
555 *md5 = tp->af_specific->md5_lookup(sk, sk);
556 if (*md5) {
557 opts->options |= OPTION_MD5;
558 remaining -= TCPOLEN_MD5SIG_ALIGNED;
559 }
560 #else
561 *md5 = NULL;
562 #endif
563
564 /* We always get an MSS option. The option bytes which will be seen in
565 * normal data packets should timestamps be used, must be in the MSS
566 * advertised. But we subtract them from tp->mss_cache so that
567 * calculations in tcp_sendmsg are simpler etc. So account for this
568 * fact here if necessary. If we don't do this correctly, as a
569 * receiver we won't recognize data packets as being full sized when we
570 * should, and thus we won't abide by the delayed ACK rules correctly.
571 * SACKs don't matter, we never delay an ACK when we have any of those
572 * going out. */
573 opts->mss = tcp_advertise_mss(sk);
574 remaining -= TCPOLEN_MSS_ALIGNED;
575
576 if (likely(sysctl_tcp_timestamps && !*md5)) {
577 opts->options |= OPTION_TS;
578 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
579 opts->tsecr = tp->rx_opt.ts_recent;
580 remaining -= TCPOLEN_TSTAMP_ALIGNED;
581 }
582 if (likely(sysctl_tcp_window_scaling)) {
583 opts->ws = tp->rx_opt.rcv_wscale;
584 opts->options |= OPTION_WSCALE;
585 remaining -= TCPOLEN_WSCALE_ALIGNED;
586 }
587 if (likely(sysctl_tcp_sack)) {
588 opts->options |= OPTION_SACK_ADVERTISE;
589 if (unlikely(!(OPTION_TS & opts->options)))
590 remaining -= TCPOLEN_SACKPERM_ALIGNED;
591 }
592
593 if (fastopen && fastopen->cookie.len >= 0) {
594 u32 need = fastopen->cookie.len;
595
596 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
597 TCPOLEN_FASTOPEN_BASE;
598 need = (need + 3) & ~3U; /* Align to 32 bits */
599 if (remaining >= need) {
600 opts->options |= OPTION_FAST_OPEN_COOKIE;
601 opts->fastopen_cookie = &fastopen->cookie;
602 remaining -= need;
603 tp->syn_fastopen = 1;
604 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
605 }
606 }
607
608 return MAX_TCP_OPTION_SPACE - remaining;
609 }
610
611 /* Set up TCP options for SYN-ACKs. */
612 static unsigned int tcp_synack_options(struct request_sock *req,
613 unsigned int mss, struct sk_buff *skb,
614 struct tcp_out_options *opts,
615 const struct tcp_md5sig_key *md5,
616 struct tcp_fastopen_cookie *foc)
617 {
618 struct inet_request_sock *ireq = inet_rsk(req);
619 unsigned int remaining = MAX_TCP_OPTION_SPACE;
620
621 #ifdef CONFIG_TCP_MD5SIG
622 if (md5) {
623 opts->options |= OPTION_MD5;
624 remaining -= TCPOLEN_MD5SIG_ALIGNED;
625
626 /* We can't fit any SACK blocks in a packet with MD5 + TS
627 * options. There was discussion about disabling SACK
628 * rather than TS in order to fit in better with old,
629 * buggy kernels, but that was deemed to be unnecessary.
630 */
631 ireq->tstamp_ok &= !ireq->sack_ok;
632 }
633 #endif
634
635 /* We always send an MSS option. */
636 opts->mss = mss;
637 remaining -= TCPOLEN_MSS_ALIGNED;
638
639 if (likely(ireq->wscale_ok)) {
640 opts->ws = ireq->rcv_wscale;
641 opts->options |= OPTION_WSCALE;
642 remaining -= TCPOLEN_WSCALE_ALIGNED;
643 }
644 if (likely(ireq->tstamp_ok)) {
645 opts->options |= OPTION_TS;
646 opts->tsval = tcp_skb_timestamp(skb);
647 opts->tsecr = req->ts_recent;
648 remaining -= TCPOLEN_TSTAMP_ALIGNED;
649 }
650 if (likely(ireq->sack_ok)) {
651 opts->options |= OPTION_SACK_ADVERTISE;
652 if (unlikely(!ireq->tstamp_ok))
653 remaining -= TCPOLEN_SACKPERM_ALIGNED;
654 }
655 if (foc != NULL && foc->len >= 0) {
656 u32 need = foc->len;
657
658 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
659 TCPOLEN_FASTOPEN_BASE;
660 need = (need + 3) & ~3U; /* Align to 32 bits */
661 if (remaining >= need) {
662 opts->options |= OPTION_FAST_OPEN_COOKIE;
663 opts->fastopen_cookie = foc;
664 remaining -= need;
665 }
666 }
667
668 return MAX_TCP_OPTION_SPACE - remaining;
669 }
670
671 /* Compute TCP options for ESTABLISHED sockets. This is not the
672 * final wire format yet.
673 */
674 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
675 struct tcp_out_options *opts,
676 struct tcp_md5sig_key **md5)
677 {
678 struct tcp_sock *tp = tcp_sk(sk);
679 unsigned int size = 0;
680 unsigned int eff_sacks;
681
682 opts->options = 0;
683
684 #ifdef CONFIG_TCP_MD5SIG
685 *md5 = tp->af_specific->md5_lookup(sk, sk);
686 if (unlikely(*md5)) {
687 opts->options |= OPTION_MD5;
688 size += TCPOLEN_MD5SIG_ALIGNED;
689 }
690 #else
691 *md5 = NULL;
692 #endif
693
694 if (likely(tp->rx_opt.tstamp_ok)) {
695 opts->options |= OPTION_TS;
696 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
697 opts->tsecr = tp->rx_opt.ts_recent;
698 size += TCPOLEN_TSTAMP_ALIGNED;
699 }
700
701 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
702 if (unlikely(eff_sacks)) {
703 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
704 opts->num_sack_blocks =
705 min_t(unsigned int, eff_sacks,
706 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
707 TCPOLEN_SACK_PERBLOCK);
708 size += TCPOLEN_SACK_BASE_ALIGNED +
709 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
710 }
711
712 return size;
713 }
714
715
716 /* TCP SMALL QUEUES (TSQ)
717 *
718 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
719 * to reduce RTT and bufferbloat.
720 * We do this using a special skb destructor (tcp_wfree).
721 *
722 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
723 * needs to be reallocated in a driver.
724 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
725 *
726 * Since transmit from skb destructor is forbidden, we use a tasklet
727 * to process all sockets that eventually need to send more skbs.
728 * We use one tasklet per cpu, with its own queue of sockets.
729 */
730 struct tsq_tasklet {
731 struct tasklet_struct tasklet;
732 struct list_head head; /* queue of tcp sockets */
733 };
734 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
735
736 static void tcp_tsq_handler(struct sock *sk)
737 {
738 if ((1 << sk->sk_state) &
739 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
740 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
741 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
742 0, GFP_ATOMIC);
743 }
744 /*
745 * One tasklet per cpu tries to send more skbs.
746 * We run in tasklet context but need to disable irqs when
747 * transferring tsq->head because tcp_wfree() might
748 * interrupt us (non NAPI drivers)
749 */
750 static void tcp_tasklet_func(unsigned long data)
751 {
752 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
753 LIST_HEAD(list);
754 unsigned long flags;
755 struct list_head *q, *n;
756 struct tcp_sock *tp;
757 struct sock *sk;
758
759 local_irq_save(flags);
760 list_splice_init(&tsq->head, &list);
761 local_irq_restore(flags);
762
763 list_for_each_safe(q, n, &list) {
764 tp = list_entry(q, struct tcp_sock, tsq_node);
765 list_del(&tp->tsq_node);
766
767 sk = (struct sock *)tp;
768 bh_lock_sock(sk);
769
770 if (!sock_owned_by_user(sk)) {
771 tcp_tsq_handler(sk);
772 } else {
773 /* defer the work to tcp_release_cb() */
774 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
775 }
776 bh_unlock_sock(sk);
777
778 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
779 sk_free(sk);
780 }
781 }
782
783 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
784 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
785 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
786 (1UL << TCP_MTU_REDUCED_DEFERRED))
787 /**
788 * tcp_release_cb - tcp release_sock() callback
789 * @sk: socket
790 *
791 * called from release_sock() to perform protocol dependent
792 * actions before socket release.
793 */
794 void tcp_release_cb(struct sock *sk)
795 {
796 struct tcp_sock *tp = tcp_sk(sk);
797 unsigned long flags, nflags;
798
799 /* perform an atomic operation only if at least one flag is set */
800 do {
801 flags = tp->tsq_flags;
802 if (!(flags & TCP_DEFERRED_ALL))
803 return;
804 nflags = flags & ~TCP_DEFERRED_ALL;
805 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
806
807 if (flags & (1UL << TCP_TSQ_DEFERRED))
808 tcp_tsq_handler(sk);
809
810 /* Here begins the tricky part :
811 * We are called from release_sock() with :
812 * 1) BH disabled
813 * 2) sk_lock.slock spinlock held
814 * 3) socket owned by us (sk->sk_lock.owned == 1)
815 *
816 * But following code is meant to be called from BH handlers,
817 * so we should keep BH disabled, but early release socket ownership
818 */
819 sock_release_ownership(sk);
820
821 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
822 tcp_write_timer_handler(sk);
823 __sock_put(sk);
824 }
825 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
826 tcp_delack_timer_handler(sk);
827 __sock_put(sk);
828 }
829 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
830 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
831 __sock_put(sk);
832 }
833 }
834 EXPORT_SYMBOL(tcp_release_cb);
835
836 void __init tcp_tasklet_init(void)
837 {
838 int i;
839
840 for_each_possible_cpu(i) {
841 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
842
843 INIT_LIST_HEAD(&tsq->head);
844 tasklet_init(&tsq->tasklet,
845 tcp_tasklet_func,
846 (unsigned long)tsq);
847 }
848 }
849
850 /*
851 * Write buffer destructor automatically called from kfree_skb.
852 * We can't xmit new skbs from this context, as we might already
853 * hold qdisc lock.
854 */
855 void tcp_wfree(struct sk_buff *skb)
856 {
857 struct sock *sk = skb->sk;
858 struct tcp_sock *tp = tcp_sk(sk);
859 int wmem;
860
861 /* Keep one reference on sk_wmem_alloc.
862 * Will be released by sk_free() from here or tcp_tasklet_func()
863 */
864 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
865
866 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
867 * Wait until our queues (qdisc + devices) are drained.
868 * This gives :
869 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
870 * - chance for incoming ACK (processed by another cpu maybe)
871 * to migrate this flow (skb->ooo_okay will be eventually set)
872 */
873 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
874 goto out;
875
876 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
877 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
878 unsigned long flags;
879 struct tsq_tasklet *tsq;
880
881 /* queue this socket to tasklet queue */
882 local_irq_save(flags);
883 tsq = this_cpu_ptr(&tsq_tasklet);
884 list_add(&tp->tsq_node, &tsq->head);
885 tasklet_schedule(&tsq->tasklet);
886 local_irq_restore(flags);
887 return;
888 }
889 out:
890 sk_free(sk);
891 }
892
893 /* This routine actually transmits TCP packets queued in by
894 * tcp_do_sendmsg(). This is used by both the initial
895 * transmission and possible later retransmissions.
896 * All SKB's seen here are completely headerless. It is our
897 * job to build the TCP header, and pass the packet down to
898 * IP so it can do the same plus pass the packet off to the
899 * device.
900 *
901 * We are working here with either a clone of the original
902 * SKB, or a fresh unique copy made by the retransmit engine.
903 */
904 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
905 gfp_t gfp_mask)
906 {
907 const struct inet_connection_sock *icsk = inet_csk(sk);
908 struct inet_sock *inet;
909 struct tcp_sock *tp;
910 struct tcp_skb_cb *tcb;
911 struct tcp_out_options opts;
912 unsigned int tcp_options_size, tcp_header_size;
913 struct tcp_md5sig_key *md5;
914 struct tcphdr *th;
915 int err;
916
917 BUG_ON(!skb || !tcp_skb_pcount(skb));
918
919 if (clone_it) {
920 skb_mstamp_get(&skb->skb_mstamp);
921
922 if (unlikely(skb_cloned(skb)))
923 skb = pskb_copy(skb, gfp_mask);
924 else
925 skb = skb_clone(skb, gfp_mask);
926 if (unlikely(!skb))
927 return -ENOBUFS;
928 }
929
930 inet = inet_sk(sk);
931 tp = tcp_sk(sk);
932 tcb = TCP_SKB_CB(skb);
933 memset(&opts, 0, sizeof(opts));
934
935 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
936 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
937 else
938 tcp_options_size = tcp_established_options(sk, skb, &opts,
939 &md5);
940 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
941
942 /* if no packet is in qdisc/device queue, then allow XPS to select
943 * another queue. We can be called from tcp_tsq_handler()
944 * which holds one reference to sk_wmem_alloc.
945 *
946 * TODO: Ideally, in-flight pure ACK packets should not matter here.
947 * One way to get this would be to set skb->truesize = 2 on them.
948 */
949 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
950
951 skb_push(skb, tcp_header_size);
952 skb_reset_transport_header(skb);
953
954 skb_orphan(skb);
955 skb->sk = sk;
956 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
957 skb_set_hash_from_sk(skb, sk);
958 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
959
960 /* Build TCP header and checksum it. */
961 th = tcp_hdr(skb);
962 th->source = inet->inet_sport;
963 th->dest = inet->inet_dport;
964 th->seq = htonl(tcb->seq);
965 th->ack_seq = htonl(tp->rcv_nxt);
966 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
967 tcb->tcp_flags);
968
969 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
970 /* RFC1323: The window in SYN & SYN/ACK segments
971 * is never scaled.
972 */
973 th->window = htons(min(tp->rcv_wnd, 65535U));
974 } else {
975 th->window = htons(tcp_select_window(sk));
976 }
977 th->check = 0;
978 th->urg_ptr = 0;
979
980 /* The urg_mode check is necessary during a below snd_una win probe */
981 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
982 if (before(tp->snd_up, tcb->seq + 0x10000)) {
983 th->urg_ptr = htons(tp->snd_up - tcb->seq);
984 th->urg = 1;
985 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
986 th->urg_ptr = htons(0xFFFF);
987 th->urg = 1;
988 }
989 }
990
991 tcp_options_write((__be32 *)(th + 1), tp, &opts);
992 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
993 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
994 tcp_ecn_send(sk, skb, tcp_header_size);
995
996 #ifdef CONFIG_TCP_MD5SIG
997 /* Calculate the MD5 hash, as we have all we need now */
998 if (md5) {
999 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1000 tp->af_specific->calc_md5_hash(opts.hash_location,
1001 md5, sk, skb);
1002 }
1003 #endif
1004
1005 icsk->icsk_af_ops->send_check(sk, skb);
1006
1007 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1008 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1009
1010 if (skb->len != tcp_header_size)
1011 tcp_event_data_sent(tp, sk);
1012
1013 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1014 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1015 tcp_skb_pcount(skb));
1016
1017 tp->segs_out += tcp_skb_pcount(skb);
1018 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1019 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1020 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1021
1022 /* Our usage of tstamp should remain private */
1023 skb->tstamp.tv64 = 0;
1024
1025 /* Cleanup our debris for IP stacks */
1026 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1027 sizeof(struct inet6_skb_parm)));
1028
1029 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1030
1031 if (likely(err <= 0))
1032 return err;
1033
1034 tcp_enter_cwr(sk);
1035
1036 return net_xmit_eval(err);
1037 }
1038
1039 /* This routine just queues the buffer for sending.
1040 *
1041 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1042 * otherwise socket can stall.
1043 */
1044 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1045 {
1046 struct tcp_sock *tp = tcp_sk(sk);
1047
1048 /* Advance write_seq and place onto the write_queue. */
1049 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1050 __skb_header_release(skb);
1051 tcp_add_write_queue_tail(sk, skb);
1052 sk->sk_wmem_queued += skb->truesize;
1053 sk_mem_charge(sk, skb->truesize);
1054 }
1055
1056 /* Initialize TSO segments for a packet. */
1057 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1058 {
1059 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1060 /* Avoid the costly divide in the normal
1061 * non-TSO case.
1062 */
1063 tcp_skb_pcount_set(skb, 1);
1064 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1065 } else {
1066 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1067 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1068 }
1069 }
1070
1071 /* When a modification to fackets out becomes necessary, we need to check
1072 * skb is counted to fackets_out or not.
1073 */
1074 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1075 int decr)
1076 {
1077 struct tcp_sock *tp = tcp_sk(sk);
1078
1079 if (!tp->sacked_out || tcp_is_reno(tp))
1080 return;
1081
1082 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1083 tp->fackets_out -= decr;
1084 }
1085
1086 /* Pcount in the middle of the write queue got changed, we need to do various
1087 * tweaks to fix counters
1088 */
1089 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1090 {
1091 struct tcp_sock *tp = tcp_sk(sk);
1092
1093 tp->packets_out -= decr;
1094
1095 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1096 tp->sacked_out -= decr;
1097 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1098 tp->retrans_out -= decr;
1099 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1100 tp->lost_out -= decr;
1101
1102 /* Reno case is special. Sigh... */
1103 if (tcp_is_reno(tp) && decr > 0)
1104 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1105
1106 tcp_adjust_fackets_out(sk, skb, decr);
1107
1108 if (tp->lost_skb_hint &&
1109 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1110 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1111 tp->lost_cnt_hint -= decr;
1112
1113 tcp_verify_left_out(tp);
1114 }
1115
1116 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1117 {
1118 struct skb_shared_info *shinfo = skb_shinfo(skb);
1119
1120 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1121 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1122 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1123 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1124
1125 shinfo->tx_flags &= ~tsflags;
1126 shinfo2->tx_flags |= tsflags;
1127 swap(shinfo->tskey, shinfo2->tskey);
1128 }
1129 }
1130
1131 /* Function to create two new TCP segments. Shrinks the given segment
1132 * to the specified size and appends a new segment with the rest of the
1133 * packet to the list. This won't be called frequently, I hope.
1134 * Remember, these are still headerless SKBs at this point.
1135 */
1136 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1137 unsigned int mss_now, gfp_t gfp)
1138 {
1139 struct tcp_sock *tp = tcp_sk(sk);
1140 struct sk_buff *buff;
1141 int nsize, old_factor;
1142 int nlen;
1143 u8 flags;
1144
1145 if (WARN_ON(len > skb->len))
1146 return -EINVAL;
1147
1148 nsize = skb_headlen(skb) - len;
1149 if (nsize < 0)
1150 nsize = 0;
1151
1152 if (skb_unclone(skb, gfp))
1153 return -ENOMEM;
1154
1155 /* Get a new skb... force flag on. */
1156 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1157 if (!buff)
1158 return -ENOMEM; /* We'll just try again later. */
1159
1160 sk->sk_wmem_queued += buff->truesize;
1161 sk_mem_charge(sk, buff->truesize);
1162 nlen = skb->len - len - nsize;
1163 buff->truesize += nlen;
1164 skb->truesize -= nlen;
1165
1166 /* Correct the sequence numbers. */
1167 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1168 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1169 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1170
1171 /* PSH and FIN should only be set in the second packet. */
1172 flags = TCP_SKB_CB(skb)->tcp_flags;
1173 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1174 TCP_SKB_CB(buff)->tcp_flags = flags;
1175 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1176
1177 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1178 /* Copy and checksum data tail into the new buffer. */
1179 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1180 skb_put(buff, nsize),
1181 nsize, 0);
1182
1183 skb_trim(skb, len);
1184
1185 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1186 } else {
1187 skb->ip_summed = CHECKSUM_PARTIAL;
1188 skb_split(skb, buff, len);
1189 }
1190
1191 buff->ip_summed = skb->ip_summed;
1192
1193 buff->tstamp = skb->tstamp;
1194 tcp_fragment_tstamp(skb, buff);
1195
1196 old_factor = tcp_skb_pcount(skb);
1197
1198 /* Fix up tso_factor for both original and new SKB. */
1199 tcp_set_skb_tso_segs(skb, mss_now);
1200 tcp_set_skb_tso_segs(buff, mss_now);
1201
1202 /* If this packet has been sent out already, we must
1203 * adjust the various packet counters.
1204 */
1205 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1206 int diff = old_factor - tcp_skb_pcount(skb) -
1207 tcp_skb_pcount(buff);
1208
1209 if (diff)
1210 tcp_adjust_pcount(sk, skb, diff);
1211 }
1212
1213 /* Link BUFF into the send queue. */
1214 __skb_header_release(buff);
1215 tcp_insert_write_queue_after(skb, buff, sk);
1216
1217 return 0;
1218 }
1219
1220 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1221 * eventually). The difference is that pulled data not copied, but
1222 * immediately discarded.
1223 */
1224 static void __pskb_trim_head(struct sk_buff *skb, int len)
1225 {
1226 struct skb_shared_info *shinfo;
1227 int i, k, eat;
1228
1229 eat = min_t(int, len, skb_headlen(skb));
1230 if (eat) {
1231 __skb_pull(skb, eat);
1232 len -= eat;
1233 if (!len)
1234 return;
1235 }
1236 eat = len;
1237 k = 0;
1238 shinfo = skb_shinfo(skb);
1239 for (i = 0; i < shinfo->nr_frags; i++) {
1240 int size = skb_frag_size(&shinfo->frags[i]);
1241
1242 if (size <= eat) {
1243 skb_frag_unref(skb, i);
1244 eat -= size;
1245 } else {
1246 shinfo->frags[k] = shinfo->frags[i];
1247 if (eat) {
1248 shinfo->frags[k].page_offset += eat;
1249 skb_frag_size_sub(&shinfo->frags[k], eat);
1250 eat = 0;
1251 }
1252 k++;
1253 }
1254 }
1255 shinfo->nr_frags = k;
1256
1257 skb_reset_tail_pointer(skb);
1258 skb->data_len -= len;
1259 skb->len = skb->data_len;
1260 }
1261
1262 /* Remove acked data from a packet in the transmit queue. */
1263 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1264 {
1265 if (skb_unclone(skb, GFP_ATOMIC))
1266 return -ENOMEM;
1267
1268 __pskb_trim_head(skb, len);
1269
1270 TCP_SKB_CB(skb)->seq += len;
1271 skb->ip_summed = CHECKSUM_PARTIAL;
1272
1273 skb->truesize -= len;
1274 sk->sk_wmem_queued -= len;
1275 sk_mem_uncharge(sk, len);
1276 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1277
1278 /* Any change of skb->len requires recalculation of tso factor. */
1279 if (tcp_skb_pcount(skb) > 1)
1280 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1281
1282 return 0;
1283 }
1284
1285 /* Calculate MSS not accounting any TCP options. */
1286 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1287 {
1288 const struct tcp_sock *tp = tcp_sk(sk);
1289 const struct inet_connection_sock *icsk = inet_csk(sk);
1290 int mss_now;
1291
1292 /* Calculate base mss without TCP options:
1293 It is MMS_S - sizeof(tcphdr) of rfc1122
1294 */
1295 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1296
1297 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1298 if (icsk->icsk_af_ops->net_frag_header_len) {
1299 const struct dst_entry *dst = __sk_dst_get(sk);
1300
1301 if (dst && dst_allfrag(dst))
1302 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1303 }
1304
1305 /* Clamp it (mss_clamp does not include tcp options) */
1306 if (mss_now > tp->rx_opt.mss_clamp)
1307 mss_now = tp->rx_opt.mss_clamp;
1308
1309 /* Now subtract optional transport overhead */
1310 mss_now -= icsk->icsk_ext_hdr_len;
1311
1312 /* Then reserve room for full set of TCP options and 8 bytes of data */
1313 if (mss_now < 48)
1314 mss_now = 48;
1315 return mss_now;
1316 }
1317
1318 /* Calculate MSS. Not accounting for SACKs here. */
1319 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1320 {
1321 /* Subtract TCP options size, not including SACKs */
1322 return __tcp_mtu_to_mss(sk, pmtu) -
1323 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1324 }
1325
1326 /* Inverse of above */
1327 int tcp_mss_to_mtu(struct sock *sk, int mss)
1328 {
1329 const struct tcp_sock *tp = tcp_sk(sk);
1330 const struct inet_connection_sock *icsk = inet_csk(sk);
1331 int mtu;
1332
1333 mtu = mss +
1334 tp->tcp_header_len +
1335 icsk->icsk_ext_hdr_len +
1336 icsk->icsk_af_ops->net_header_len;
1337
1338 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1339 if (icsk->icsk_af_ops->net_frag_header_len) {
1340 const struct dst_entry *dst = __sk_dst_get(sk);
1341
1342 if (dst && dst_allfrag(dst))
1343 mtu += icsk->icsk_af_ops->net_frag_header_len;
1344 }
1345 return mtu;
1346 }
1347
1348 /* MTU probing init per socket */
1349 void tcp_mtup_init(struct sock *sk)
1350 {
1351 struct tcp_sock *tp = tcp_sk(sk);
1352 struct inet_connection_sock *icsk = inet_csk(sk);
1353 struct net *net = sock_net(sk);
1354
1355 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1356 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1357 icsk->icsk_af_ops->net_header_len;
1358 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1359 icsk->icsk_mtup.probe_size = 0;
1360 if (icsk->icsk_mtup.enabled)
1361 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1362 }
1363 EXPORT_SYMBOL(tcp_mtup_init);
1364
1365 /* This function synchronize snd mss to current pmtu/exthdr set.
1366
1367 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1368 for TCP options, but includes only bare TCP header.
1369
1370 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1371 It is minimum of user_mss and mss received with SYN.
1372 It also does not include TCP options.
1373
1374 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1375
1376 tp->mss_cache is current effective sending mss, including
1377 all tcp options except for SACKs. It is evaluated,
1378 taking into account current pmtu, but never exceeds
1379 tp->rx_opt.mss_clamp.
1380
1381 NOTE1. rfc1122 clearly states that advertised MSS
1382 DOES NOT include either tcp or ip options.
1383
1384 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1385 are READ ONLY outside this function. --ANK (980731)
1386 */
1387 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1388 {
1389 struct tcp_sock *tp = tcp_sk(sk);
1390 struct inet_connection_sock *icsk = inet_csk(sk);
1391 int mss_now;
1392
1393 if (icsk->icsk_mtup.search_high > pmtu)
1394 icsk->icsk_mtup.search_high = pmtu;
1395
1396 mss_now = tcp_mtu_to_mss(sk, pmtu);
1397 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1398
1399 /* And store cached results */
1400 icsk->icsk_pmtu_cookie = pmtu;
1401 if (icsk->icsk_mtup.enabled)
1402 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1403 tp->mss_cache = mss_now;
1404
1405 return mss_now;
1406 }
1407 EXPORT_SYMBOL(tcp_sync_mss);
1408
1409 /* Compute the current effective MSS, taking SACKs and IP options,
1410 * and even PMTU discovery events into account.
1411 */
1412 unsigned int tcp_current_mss(struct sock *sk)
1413 {
1414 const struct tcp_sock *tp = tcp_sk(sk);
1415 const struct dst_entry *dst = __sk_dst_get(sk);
1416 u32 mss_now;
1417 unsigned int header_len;
1418 struct tcp_out_options opts;
1419 struct tcp_md5sig_key *md5;
1420
1421 mss_now = tp->mss_cache;
1422
1423 if (dst) {
1424 u32 mtu = dst_mtu(dst);
1425 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1426 mss_now = tcp_sync_mss(sk, mtu);
1427 }
1428
1429 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1430 sizeof(struct tcphdr);
1431 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1432 * some common options. If this is an odd packet (because we have SACK
1433 * blocks etc) then our calculated header_len will be different, and
1434 * we have to adjust mss_now correspondingly */
1435 if (header_len != tp->tcp_header_len) {
1436 int delta = (int) header_len - tp->tcp_header_len;
1437 mss_now -= delta;
1438 }
1439
1440 return mss_now;
1441 }
1442
1443 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1444 * As additional protections, we do not touch cwnd in retransmission phases,
1445 * and if application hit its sndbuf limit recently.
1446 */
1447 static void tcp_cwnd_application_limited(struct sock *sk)
1448 {
1449 struct tcp_sock *tp = tcp_sk(sk);
1450
1451 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1452 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1453 /* Limited by application or receiver window. */
1454 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1455 u32 win_used = max(tp->snd_cwnd_used, init_win);
1456 if (win_used < tp->snd_cwnd) {
1457 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1458 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1459 }
1460 tp->snd_cwnd_used = 0;
1461 }
1462 tp->snd_cwnd_stamp = tcp_time_stamp;
1463 }
1464
1465 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1466 {
1467 struct tcp_sock *tp = tcp_sk(sk);
1468
1469 /* Track the maximum number of outstanding packets in each
1470 * window, and remember whether we were cwnd-limited then.
1471 */
1472 if (!before(tp->snd_una, tp->max_packets_seq) ||
1473 tp->packets_out > tp->max_packets_out) {
1474 tp->max_packets_out = tp->packets_out;
1475 tp->max_packets_seq = tp->snd_nxt;
1476 tp->is_cwnd_limited = is_cwnd_limited;
1477 }
1478
1479 if (tcp_is_cwnd_limited(sk)) {
1480 /* Network is feed fully. */
1481 tp->snd_cwnd_used = 0;
1482 tp->snd_cwnd_stamp = tcp_time_stamp;
1483 } else {
1484 /* Network starves. */
1485 if (tp->packets_out > tp->snd_cwnd_used)
1486 tp->snd_cwnd_used = tp->packets_out;
1487
1488 if (sysctl_tcp_slow_start_after_idle &&
1489 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1490 tcp_cwnd_application_limited(sk);
1491 }
1492 }
1493
1494 /* Minshall's variant of the Nagle send check. */
1495 static bool tcp_minshall_check(const struct tcp_sock *tp)
1496 {
1497 return after(tp->snd_sml, tp->snd_una) &&
1498 !after(tp->snd_sml, tp->snd_nxt);
1499 }
1500
1501 /* Update snd_sml if this skb is under mss
1502 * Note that a TSO packet might end with a sub-mss segment
1503 * The test is really :
1504 * if ((skb->len % mss) != 0)
1505 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1506 * But we can avoid doing the divide again given we already have
1507 * skb_pcount = skb->len / mss_now
1508 */
1509 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1510 const struct sk_buff *skb)
1511 {
1512 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1513 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1514 }
1515
1516 /* Return false, if packet can be sent now without violation Nagle's rules:
1517 * 1. It is full sized. (provided by caller in %partial bool)
1518 * 2. Or it contains FIN. (already checked by caller)
1519 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1520 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1521 * With Minshall's modification: all sent small packets are ACKed.
1522 */
1523 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1524 int nonagle)
1525 {
1526 return partial &&
1527 ((nonagle & TCP_NAGLE_CORK) ||
1528 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1529 }
1530
1531 /* Return how many segs we'd like on a TSO packet,
1532 * to send one TSO packet per ms
1533 */
1534 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1535 {
1536 u32 bytes, segs;
1537
1538 bytes = min(sk->sk_pacing_rate >> 10,
1539 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1540
1541 /* Goal is to send at least one packet per ms,
1542 * not one big TSO packet every 100 ms.
1543 * This preserves ACK clocking and is consistent
1544 * with tcp_tso_should_defer() heuristic.
1545 */
1546 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1547
1548 return min_t(u32, segs, sk->sk_gso_max_segs);
1549 }
1550
1551 /* Returns the portion of skb which can be sent right away */
1552 static unsigned int tcp_mss_split_point(const struct sock *sk,
1553 const struct sk_buff *skb,
1554 unsigned int mss_now,
1555 unsigned int max_segs,
1556 int nonagle)
1557 {
1558 const struct tcp_sock *tp = tcp_sk(sk);
1559 u32 partial, needed, window, max_len;
1560
1561 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1562 max_len = mss_now * max_segs;
1563
1564 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1565 return max_len;
1566
1567 needed = min(skb->len, window);
1568
1569 if (max_len <= needed)
1570 return max_len;
1571
1572 partial = needed % mss_now;
1573 /* If last segment is not a full MSS, check if Nagle rules allow us
1574 * to include this last segment in this skb.
1575 * Otherwise, we'll split the skb at last MSS boundary
1576 */
1577 if (tcp_nagle_check(partial != 0, tp, nonagle))
1578 return needed - partial;
1579
1580 return needed;
1581 }
1582
1583 /* Can at least one segment of SKB be sent right now, according to the
1584 * congestion window rules? If so, return how many segments are allowed.
1585 */
1586 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1587 const struct sk_buff *skb)
1588 {
1589 u32 in_flight, cwnd, halfcwnd;
1590
1591 /* Don't be strict about the congestion window for the final FIN. */
1592 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1593 tcp_skb_pcount(skb) == 1)
1594 return 1;
1595
1596 in_flight = tcp_packets_in_flight(tp);
1597 cwnd = tp->snd_cwnd;
1598 if (in_flight >= cwnd)
1599 return 0;
1600
1601 /* For better scheduling, ensure we have at least
1602 * 2 GSO packets in flight.
1603 */
1604 halfcwnd = max(cwnd >> 1, 1U);
1605 return min(halfcwnd, cwnd - in_flight);
1606 }
1607
1608 /* Initialize TSO state of a skb.
1609 * This must be invoked the first time we consider transmitting
1610 * SKB onto the wire.
1611 */
1612 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1613 {
1614 int tso_segs = tcp_skb_pcount(skb);
1615
1616 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1617 tcp_set_skb_tso_segs(skb, mss_now);
1618 tso_segs = tcp_skb_pcount(skb);
1619 }
1620 return tso_segs;
1621 }
1622
1623
1624 /* Return true if the Nagle test allows this packet to be
1625 * sent now.
1626 */
1627 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1628 unsigned int cur_mss, int nonagle)
1629 {
1630 /* Nagle rule does not apply to frames, which sit in the middle of the
1631 * write_queue (they have no chances to get new data).
1632 *
1633 * This is implemented in the callers, where they modify the 'nonagle'
1634 * argument based upon the location of SKB in the send queue.
1635 */
1636 if (nonagle & TCP_NAGLE_PUSH)
1637 return true;
1638
1639 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1640 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1641 return true;
1642
1643 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1644 return true;
1645
1646 return false;
1647 }
1648
1649 /* Does at least the first segment of SKB fit into the send window? */
1650 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1651 const struct sk_buff *skb,
1652 unsigned int cur_mss)
1653 {
1654 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1655
1656 if (skb->len > cur_mss)
1657 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1658
1659 return !after(end_seq, tcp_wnd_end(tp));
1660 }
1661
1662 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1663 * should be put on the wire right now. If so, it returns the number of
1664 * packets allowed by the congestion window.
1665 */
1666 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1667 unsigned int cur_mss, int nonagle)
1668 {
1669 const struct tcp_sock *tp = tcp_sk(sk);
1670 unsigned int cwnd_quota;
1671
1672 tcp_init_tso_segs(skb, cur_mss);
1673
1674 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1675 return 0;
1676
1677 cwnd_quota = tcp_cwnd_test(tp, skb);
1678 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1679 cwnd_quota = 0;
1680
1681 return cwnd_quota;
1682 }
1683
1684 /* Test if sending is allowed right now. */
1685 bool tcp_may_send_now(struct sock *sk)
1686 {
1687 const struct tcp_sock *tp = tcp_sk(sk);
1688 struct sk_buff *skb = tcp_send_head(sk);
1689
1690 return skb &&
1691 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1692 (tcp_skb_is_last(sk, skb) ?
1693 tp->nonagle : TCP_NAGLE_PUSH));
1694 }
1695
1696 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1697 * which is put after SKB on the list. It is very much like
1698 * tcp_fragment() except that it may make several kinds of assumptions
1699 * in order to speed up the splitting operation. In particular, we
1700 * know that all the data is in scatter-gather pages, and that the
1701 * packet has never been sent out before (and thus is not cloned).
1702 */
1703 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1704 unsigned int mss_now, gfp_t gfp)
1705 {
1706 struct sk_buff *buff;
1707 int nlen = skb->len - len;
1708 u8 flags;
1709
1710 /* All of a TSO frame must be composed of paged data. */
1711 if (skb->len != skb->data_len)
1712 return tcp_fragment(sk, skb, len, mss_now, gfp);
1713
1714 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1715 if (unlikely(!buff))
1716 return -ENOMEM;
1717
1718 sk->sk_wmem_queued += buff->truesize;
1719 sk_mem_charge(sk, buff->truesize);
1720 buff->truesize += nlen;
1721 skb->truesize -= nlen;
1722
1723 /* Correct the sequence numbers. */
1724 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1725 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1726 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1727
1728 /* PSH and FIN should only be set in the second packet. */
1729 flags = TCP_SKB_CB(skb)->tcp_flags;
1730 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1731 TCP_SKB_CB(buff)->tcp_flags = flags;
1732
1733 /* This packet was never sent out yet, so no SACK bits. */
1734 TCP_SKB_CB(buff)->sacked = 0;
1735
1736 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1737 skb_split(skb, buff, len);
1738 tcp_fragment_tstamp(skb, buff);
1739
1740 /* Fix up tso_factor for both original and new SKB. */
1741 tcp_set_skb_tso_segs(skb, mss_now);
1742 tcp_set_skb_tso_segs(buff, mss_now);
1743
1744 /* Link BUFF into the send queue. */
1745 __skb_header_release(buff);
1746 tcp_insert_write_queue_after(skb, buff, sk);
1747
1748 return 0;
1749 }
1750
1751 /* Try to defer sending, if possible, in order to minimize the amount
1752 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1753 *
1754 * This algorithm is from John Heffner.
1755 */
1756 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1757 bool *is_cwnd_limited, u32 max_segs)
1758 {
1759 const struct inet_connection_sock *icsk = inet_csk(sk);
1760 u32 age, send_win, cong_win, limit, in_flight;
1761 struct tcp_sock *tp = tcp_sk(sk);
1762 struct skb_mstamp now;
1763 struct sk_buff *head;
1764 int win_divisor;
1765
1766 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1767 goto send_now;
1768
1769 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1770 goto send_now;
1771
1772 /* Avoid bursty behavior by allowing defer
1773 * only if the last write was recent.
1774 */
1775 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1776 goto send_now;
1777
1778 in_flight = tcp_packets_in_flight(tp);
1779
1780 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1781
1782 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1783
1784 /* From in_flight test above, we know that cwnd > in_flight. */
1785 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1786
1787 limit = min(send_win, cong_win);
1788
1789 /* If a full-sized TSO skb can be sent, do it. */
1790 if (limit >= max_segs * tp->mss_cache)
1791 goto send_now;
1792
1793 /* Middle in queue won't get any more data, full sendable already? */
1794 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1795 goto send_now;
1796
1797 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1798 if (win_divisor) {
1799 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1800
1801 /* If at least some fraction of a window is available,
1802 * just use it.
1803 */
1804 chunk /= win_divisor;
1805 if (limit >= chunk)
1806 goto send_now;
1807 } else {
1808 /* Different approach, try not to defer past a single
1809 * ACK. Receiver should ACK every other full sized
1810 * frame, so if we have space for more than 3 frames
1811 * then send now.
1812 */
1813 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1814 goto send_now;
1815 }
1816
1817 head = tcp_write_queue_head(sk);
1818 skb_mstamp_get(&now);
1819 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1820 /* If next ACK is likely to come too late (half srtt), do not defer */
1821 if (age < (tp->srtt_us >> 4))
1822 goto send_now;
1823
1824 /* Ok, it looks like it is advisable to defer. */
1825
1826 if (cong_win < send_win && cong_win <= skb->len)
1827 *is_cwnd_limited = true;
1828
1829 return true;
1830
1831 send_now:
1832 return false;
1833 }
1834
1835 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1836 {
1837 struct inet_connection_sock *icsk = inet_csk(sk);
1838 struct tcp_sock *tp = tcp_sk(sk);
1839 struct net *net = sock_net(sk);
1840 u32 interval;
1841 s32 delta;
1842
1843 interval = net->ipv4.sysctl_tcp_probe_interval;
1844 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1845 if (unlikely(delta >= interval * HZ)) {
1846 int mss = tcp_current_mss(sk);
1847
1848 /* Update current search range */
1849 icsk->icsk_mtup.probe_size = 0;
1850 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1851 sizeof(struct tcphdr) +
1852 icsk->icsk_af_ops->net_header_len;
1853 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1854
1855 /* Update probe time stamp */
1856 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1857 }
1858 }
1859
1860 /* Create a new MTU probe if we are ready.
1861 * MTU probe is regularly attempting to increase the path MTU by
1862 * deliberately sending larger packets. This discovers routing
1863 * changes resulting in larger path MTUs.
1864 *
1865 * Returns 0 if we should wait to probe (no cwnd available),
1866 * 1 if a probe was sent,
1867 * -1 otherwise
1868 */
1869 static int tcp_mtu_probe(struct sock *sk)
1870 {
1871 struct tcp_sock *tp = tcp_sk(sk);
1872 struct inet_connection_sock *icsk = inet_csk(sk);
1873 struct sk_buff *skb, *nskb, *next;
1874 struct net *net = sock_net(sk);
1875 int len;
1876 int probe_size;
1877 int size_needed;
1878 int copy;
1879 int mss_now;
1880 int interval;
1881
1882 /* Not currently probing/verifying,
1883 * not in recovery,
1884 * have enough cwnd, and
1885 * not SACKing (the variable headers throw things off) */
1886 if (!icsk->icsk_mtup.enabled ||
1887 icsk->icsk_mtup.probe_size ||
1888 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1889 tp->snd_cwnd < 11 ||
1890 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1891 return -1;
1892
1893 /* Use binary search for probe_size between tcp_mss_base,
1894 * and current mss_clamp. if (search_high - search_low)
1895 * smaller than a threshold, backoff from probing.
1896 */
1897 mss_now = tcp_current_mss(sk);
1898 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1899 icsk->icsk_mtup.search_low) >> 1);
1900 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1901 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1902 /* When misfortune happens, we are reprobing actively,
1903 * and then reprobe timer has expired. We stick with current
1904 * probing process by not resetting search range to its orignal.
1905 */
1906 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1907 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1908 /* Check whether enough time has elaplased for
1909 * another round of probing.
1910 */
1911 tcp_mtu_check_reprobe(sk);
1912 return -1;
1913 }
1914
1915 /* Have enough data in the send queue to probe? */
1916 if (tp->write_seq - tp->snd_nxt < size_needed)
1917 return -1;
1918
1919 if (tp->snd_wnd < size_needed)
1920 return -1;
1921 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1922 return 0;
1923
1924 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1925 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1926 if (!tcp_packets_in_flight(tp))
1927 return -1;
1928 else
1929 return 0;
1930 }
1931
1932 /* We're allowed to probe. Build it now. */
1933 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1934 if (!nskb)
1935 return -1;
1936 sk->sk_wmem_queued += nskb->truesize;
1937 sk_mem_charge(sk, nskb->truesize);
1938
1939 skb = tcp_send_head(sk);
1940
1941 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1942 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1943 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1944 TCP_SKB_CB(nskb)->sacked = 0;
1945 nskb->csum = 0;
1946 nskb->ip_summed = skb->ip_summed;
1947
1948 tcp_insert_write_queue_before(nskb, skb, sk);
1949
1950 len = 0;
1951 tcp_for_write_queue_from_safe(skb, next, sk) {
1952 copy = min_t(int, skb->len, probe_size - len);
1953 if (nskb->ip_summed) {
1954 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1955 } else {
1956 __wsum csum = skb_copy_and_csum_bits(skb, 0,
1957 skb_put(nskb, copy),
1958 copy, 0);
1959 nskb->csum = csum_block_add(nskb->csum, csum, len);
1960 }
1961
1962 if (skb->len <= copy) {
1963 /* We've eaten all the data from this skb.
1964 * Throw it away. */
1965 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1966 tcp_unlink_write_queue(skb, sk);
1967 sk_wmem_free_skb(sk, skb);
1968 } else {
1969 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1970 ~(TCPHDR_FIN|TCPHDR_PSH);
1971 if (!skb_shinfo(skb)->nr_frags) {
1972 skb_pull(skb, copy);
1973 if (skb->ip_summed != CHECKSUM_PARTIAL)
1974 skb->csum = csum_partial(skb->data,
1975 skb->len, 0);
1976 } else {
1977 __pskb_trim_head(skb, copy);
1978 tcp_set_skb_tso_segs(skb, mss_now);
1979 }
1980 TCP_SKB_CB(skb)->seq += copy;
1981 }
1982
1983 len += copy;
1984
1985 if (len >= probe_size)
1986 break;
1987 }
1988 tcp_init_tso_segs(nskb, nskb->len);
1989
1990 /* We're ready to send. If this fails, the probe will
1991 * be resegmented into mss-sized pieces by tcp_write_xmit().
1992 */
1993 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1994 /* Decrement cwnd here because we are sending
1995 * effectively two packets. */
1996 tp->snd_cwnd--;
1997 tcp_event_new_data_sent(sk, nskb);
1998
1999 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2000 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2001 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2002
2003 return 1;
2004 }
2005
2006 return -1;
2007 }
2008
2009 /* This routine writes packets to the network. It advances the
2010 * send_head. This happens as incoming acks open up the remote
2011 * window for us.
2012 *
2013 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2014 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2015 * account rare use of URG, this is not a big flaw.
2016 *
2017 * Send at most one packet when push_one > 0. Temporarily ignore
2018 * cwnd limit to force at most one packet out when push_one == 2.
2019
2020 * Returns true, if no segments are in flight and we have queued segments,
2021 * but cannot send anything now because of SWS or another problem.
2022 */
2023 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2024 int push_one, gfp_t gfp)
2025 {
2026 struct tcp_sock *tp = tcp_sk(sk);
2027 struct sk_buff *skb;
2028 unsigned int tso_segs, sent_pkts;
2029 int cwnd_quota;
2030 int result;
2031 bool is_cwnd_limited = false;
2032 u32 max_segs;
2033
2034 sent_pkts = 0;
2035
2036 if (!push_one) {
2037 /* Do MTU probing. */
2038 result = tcp_mtu_probe(sk);
2039 if (!result) {
2040 return false;
2041 } else if (result > 0) {
2042 sent_pkts = 1;
2043 }
2044 }
2045
2046 max_segs = tcp_tso_autosize(sk, mss_now);
2047 while ((skb = tcp_send_head(sk))) {
2048 unsigned int limit;
2049
2050 tso_segs = tcp_init_tso_segs(skb, mss_now);
2051 BUG_ON(!tso_segs);
2052
2053 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2054 /* "skb_mstamp" is used as a start point for the retransmit timer */
2055 skb_mstamp_get(&skb->skb_mstamp);
2056 goto repair; /* Skip network transmission */
2057 }
2058
2059 cwnd_quota = tcp_cwnd_test(tp, skb);
2060 if (!cwnd_quota) {
2061 if (push_one == 2)
2062 /* Force out a loss probe pkt. */
2063 cwnd_quota = 1;
2064 else
2065 break;
2066 }
2067
2068 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2069 break;
2070
2071 if (tso_segs == 1) {
2072 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2073 (tcp_skb_is_last(sk, skb) ?
2074 nonagle : TCP_NAGLE_PUSH))))
2075 break;
2076 } else {
2077 if (!push_one &&
2078 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2079 max_segs))
2080 break;
2081 }
2082
2083 limit = mss_now;
2084 if (tso_segs > 1 && !tcp_urg_mode(tp))
2085 limit = tcp_mss_split_point(sk, skb, mss_now,
2086 min_t(unsigned int,
2087 cwnd_quota,
2088 max_segs),
2089 nonagle);
2090
2091 if (skb->len > limit &&
2092 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2093 break;
2094
2095 /* TCP Small Queues :
2096 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2097 * This allows for :
2098 * - better RTT estimation and ACK scheduling
2099 * - faster recovery
2100 * - high rates
2101 * Alas, some drivers / subsystems require a fair amount
2102 * of queued bytes to ensure line rate.
2103 * One example is wifi aggregation (802.11 AMPDU)
2104 */
2105 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2106 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2107
2108 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2109 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2110 /* It is possible TX completion already happened
2111 * before we set TSQ_THROTTLED, so we must
2112 * test again the condition.
2113 */
2114 smp_mb__after_atomic();
2115 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2116 break;
2117 }
2118
2119 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2120 break;
2121
2122 repair:
2123 /* Advance the send_head. This one is sent out.
2124 * This call will increment packets_out.
2125 */
2126 tcp_event_new_data_sent(sk, skb);
2127
2128 tcp_minshall_update(tp, mss_now, skb);
2129 sent_pkts += tcp_skb_pcount(skb);
2130
2131 if (push_one)
2132 break;
2133 }
2134
2135 if (likely(sent_pkts)) {
2136 if (tcp_in_cwnd_reduction(sk))
2137 tp->prr_out += sent_pkts;
2138
2139 /* Send one loss probe per tail loss episode. */
2140 if (push_one != 2)
2141 tcp_schedule_loss_probe(sk);
2142 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2143 tcp_cwnd_validate(sk, is_cwnd_limited);
2144 return false;
2145 }
2146 return !tp->packets_out && tcp_send_head(sk);
2147 }
2148
2149 bool tcp_schedule_loss_probe(struct sock *sk)
2150 {
2151 struct inet_connection_sock *icsk = inet_csk(sk);
2152 struct tcp_sock *tp = tcp_sk(sk);
2153 u32 timeout, tlp_time_stamp, rto_time_stamp;
2154 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2155
2156 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2157 return false;
2158 /* No consecutive loss probes. */
2159 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2160 tcp_rearm_rto(sk);
2161 return false;
2162 }
2163 /* Don't do any loss probe on a Fast Open connection before 3WHS
2164 * finishes.
2165 */
2166 if (tp->fastopen_rsk)
2167 return false;
2168
2169 /* TLP is only scheduled when next timer event is RTO. */
2170 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2171 return false;
2172
2173 /* Schedule a loss probe in 2*RTT for SACK capable connections
2174 * in Open state, that are either limited by cwnd or application.
2175 */
2176 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2177 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2178 return false;
2179
2180 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2181 tcp_send_head(sk))
2182 return false;
2183
2184 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2185 * for delayed ack when there's one outstanding packet. If no RTT
2186 * sample is available then probe after TCP_TIMEOUT_INIT.
2187 */
2188 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2189 if (tp->packets_out == 1)
2190 timeout = max_t(u32, timeout,
2191 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2192 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2193
2194 /* If RTO is shorter, just schedule TLP in its place. */
2195 tlp_time_stamp = tcp_time_stamp + timeout;
2196 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2197 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2198 s32 delta = rto_time_stamp - tcp_time_stamp;
2199 if (delta > 0)
2200 timeout = delta;
2201 }
2202
2203 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2204 TCP_RTO_MAX);
2205 return true;
2206 }
2207
2208 /* Thanks to skb fast clones, we can detect if a prior transmit of
2209 * a packet is still in a qdisc or driver queue.
2210 * In this case, there is very little point doing a retransmit !
2211 * Note: This is called from BH context only.
2212 */
2213 static bool skb_still_in_host_queue(const struct sock *sk,
2214 const struct sk_buff *skb)
2215 {
2216 if (unlikely(skb_fclone_busy(sk, skb))) {
2217 NET_INC_STATS_BH(sock_net(sk),
2218 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2219 return true;
2220 }
2221 return false;
2222 }
2223
2224 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2225 * retransmit the last segment.
2226 */
2227 void tcp_send_loss_probe(struct sock *sk)
2228 {
2229 struct tcp_sock *tp = tcp_sk(sk);
2230 struct sk_buff *skb;
2231 int pcount;
2232 int mss = tcp_current_mss(sk);
2233
2234 skb = tcp_send_head(sk);
2235 if (skb) {
2236 if (tcp_snd_wnd_test(tp, skb, mss)) {
2237 pcount = tp->packets_out;
2238 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2239 if (tp->packets_out > pcount)
2240 goto probe_sent;
2241 goto rearm_timer;
2242 }
2243 skb = tcp_write_queue_prev(sk, skb);
2244 } else {
2245 skb = tcp_write_queue_tail(sk);
2246 }
2247
2248 /* At most one outstanding TLP retransmission. */
2249 if (tp->tlp_high_seq)
2250 goto rearm_timer;
2251
2252 /* Retransmit last segment. */
2253 if (WARN_ON(!skb))
2254 goto rearm_timer;
2255
2256 if (skb_still_in_host_queue(sk, skb))
2257 goto rearm_timer;
2258
2259 pcount = tcp_skb_pcount(skb);
2260 if (WARN_ON(!pcount))
2261 goto rearm_timer;
2262
2263 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2264 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2265 GFP_ATOMIC)))
2266 goto rearm_timer;
2267 skb = tcp_write_queue_next(sk, skb);
2268 }
2269
2270 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2271 goto rearm_timer;
2272
2273 if (__tcp_retransmit_skb(sk, skb))
2274 goto rearm_timer;
2275
2276 /* Record snd_nxt for loss detection. */
2277 tp->tlp_high_seq = tp->snd_nxt;
2278
2279 probe_sent:
2280 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2281 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2282 inet_csk(sk)->icsk_pending = 0;
2283 rearm_timer:
2284 tcp_rearm_rto(sk);
2285 }
2286
2287 /* Push out any pending frames which were held back due to
2288 * TCP_CORK or attempt at coalescing tiny packets.
2289 * The socket must be locked by the caller.
2290 */
2291 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2292 int nonagle)
2293 {
2294 /* If we are closed, the bytes will have to remain here.
2295 * In time closedown will finish, we empty the write queue and
2296 * all will be happy.
2297 */
2298 if (unlikely(sk->sk_state == TCP_CLOSE))
2299 return;
2300
2301 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2302 sk_gfp_atomic(sk, GFP_ATOMIC)))
2303 tcp_check_probe_timer(sk);
2304 }
2305
2306 /* Send _single_ skb sitting at the send head. This function requires
2307 * true push pending frames to setup probe timer etc.
2308 */
2309 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2310 {
2311 struct sk_buff *skb = tcp_send_head(sk);
2312
2313 BUG_ON(!skb || skb->len < mss_now);
2314
2315 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2316 }
2317
2318 /* This function returns the amount that we can raise the
2319 * usable window based on the following constraints
2320 *
2321 * 1. The window can never be shrunk once it is offered (RFC 793)
2322 * 2. We limit memory per socket
2323 *
2324 * RFC 1122:
2325 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2326 * RECV.NEXT + RCV.WIN fixed until:
2327 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2328 *
2329 * i.e. don't raise the right edge of the window until you can raise
2330 * it at least MSS bytes.
2331 *
2332 * Unfortunately, the recommended algorithm breaks header prediction,
2333 * since header prediction assumes th->window stays fixed.
2334 *
2335 * Strictly speaking, keeping th->window fixed violates the receiver
2336 * side SWS prevention criteria. The problem is that under this rule
2337 * a stream of single byte packets will cause the right side of the
2338 * window to always advance by a single byte.
2339 *
2340 * Of course, if the sender implements sender side SWS prevention
2341 * then this will not be a problem.
2342 *
2343 * BSD seems to make the following compromise:
2344 *
2345 * If the free space is less than the 1/4 of the maximum
2346 * space available and the free space is less than 1/2 mss,
2347 * then set the window to 0.
2348 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2349 * Otherwise, just prevent the window from shrinking
2350 * and from being larger than the largest representable value.
2351 *
2352 * This prevents incremental opening of the window in the regime
2353 * where TCP is limited by the speed of the reader side taking
2354 * data out of the TCP receive queue. It does nothing about
2355 * those cases where the window is constrained on the sender side
2356 * because the pipeline is full.
2357 *
2358 * BSD also seems to "accidentally" limit itself to windows that are a
2359 * multiple of MSS, at least until the free space gets quite small.
2360 * This would appear to be a side effect of the mbuf implementation.
2361 * Combining these two algorithms results in the observed behavior
2362 * of having a fixed window size at almost all times.
2363 *
2364 * Below we obtain similar behavior by forcing the offered window to
2365 * a multiple of the mss when it is feasible to do so.
2366 *
2367 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2368 * Regular options like TIMESTAMP are taken into account.
2369 */
2370 u32 __tcp_select_window(struct sock *sk)
2371 {
2372 struct inet_connection_sock *icsk = inet_csk(sk);
2373 struct tcp_sock *tp = tcp_sk(sk);
2374 /* MSS for the peer's data. Previous versions used mss_clamp
2375 * here. I don't know if the value based on our guesses
2376 * of peer's MSS is better for the performance. It's more correct
2377 * but may be worse for the performance because of rcv_mss
2378 * fluctuations. --SAW 1998/11/1
2379 */
2380 int mss = icsk->icsk_ack.rcv_mss;
2381 int free_space = tcp_space(sk);
2382 int allowed_space = tcp_full_space(sk);
2383 int full_space = min_t(int, tp->window_clamp, allowed_space);
2384 int window;
2385
2386 if (unlikely(mss > full_space)) {
2387 mss = full_space;
2388 if (mss <= 0)
2389 return 0;
2390 }
2391 if (free_space < (full_space >> 1)) {
2392 icsk->icsk_ack.quick = 0;
2393
2394 if (tcp_under_memory_pressure(sk))
2395 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2396 4U * tp->advmss);
2397
2398 /* free_space might become our new window, make sure we don't
2399 * increase it due to wscale.
2400 */
2401 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2402
2403 /* if free space is less than mss estimate, or is below 1/16th
2404 * of the maximum allowed, try to move to zero-window, else
2405 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2406 * new incoming data is dropped due to memory limits.
2407 * With large window, mss test triggers way too late in order
2408 * to announce zero window in time before rmem limit kicks in.
2409 */
2410 if (free_space < (allowed_space >> 4) || free_space < mss)
2411 return 0;
2412 }
2413
2414 if (free_space > tp->rcv_ssthresh)
2415 free_space = tp->rcv_ssthresh;
2416
2417 /* Don't do rounding if we are using window scaling, since the
2418 * scaled window will not line up with the MSS boundary anyway.
2419 */
2420 window = tp->rcv_wnd;
2421 if (tp->rx_opt.rcv_wscale) {
2422 window = free_space;
2423
2424 /* Advertise enough space so that it won't get scaled away.
2425 * Import case: prevent zero window announcement if
2426 * 1<<rcv_wscale > mss.
2427 */
2428 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2429 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2430 << tp->rx_opt.rcv_wscale);
2431 } else {
2432 /* Get the largest window that is a nice multiple of mss.
2433 * Window clamp already applied above.
2434 * If our current window offering is within 1 mss of the
2435 * free space we just keep it. This prevents the divide
2436 * and multiply from happening most of the time.
2437 * We also don't do any window rounding when the free space
2438 * is too small.
2439 */
2440 if (window <= free_space - mss || window > free_space)
2441 window = (free_space / mss) * mss;
2442 else if (mss == full_space &&
2443 free_space > window + (full_space >> 1))
2444 window = free_space;
2445 }
2446
2447 return window;
2448 }
2449
2450 /* Collapses two adjacent SKB's during retransmission. */
2451 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2452 {
2453 struct tcp_sock *tp = tcp_sk(sk);
2454 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2455 int skb_size, next_skb_size;
2456
2457 skb_size = skb->len;
2458 next_skb_size = next_skb->len;
2459
2460 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2461
2462 tcp_highest_sack_combine(sk, next_skb, skb);
2463
2464 tcp_unlink_write_queue(next_skb, sk);
2465
2466 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2467 next_skb_size);
2468
2469 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2470 skb->ip_summed = CHECKSUM_PARTIAL;
2471
2472 if (skb->ip_summed != CHECKSUM_PARTIAL)
2473 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2474
2475 /* Update sequence range on original skb. */
2476 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2477
2478 /* Merge over control information. This moves PSH/FIN etc. over */
2479 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2480
2481 /* All done, get rid of second SKB and account for it so
2482 * packet counting does not break.
2483 */
2484 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2485
2486 /* changed transmit queue under us so clear hints */
2487 tcp_clear_retrans_hints_partial(tp);
2488 if (next_skb == tp->retransmit_skb_hint)
2489 tp->retransmit_skb_hint = skb;
2490
2491 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2492
2493 sk_wmem_free_skb(sk, next_skb);
2494 }
2495
2496 /* Check if coalescing SKBs is legal. */
2497 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2498 {
2499 if (tcp_skb_pcount(skb) > 1)
2500 return false;
2501 /* TODO: SACK collapsing could be used to remove this condition */
2502 if (skb_shinfo(skb)->nr_frags != 0)
2503 return false;
2504 if (skb_cloned(skb))
2505 return false;
2506 if (skb == tcp_send_head(sk))
2507 return false;
2508 /* Some heurestics for collapsing over SACK'd could be invented */
2509 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2510 return false;
2511
2512 return true;
2513 }
2514
2515 /* Collapse packets in the retransmit queue to make to create
2516 * less packets on the wire. This is only done on retransmission.
2517 */
2518 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2519 int space)
2520 {
2521 struct tcp_sock *tp = tcp_sk(sk);
2522 struct sk_buff *skb = to, *tmp;
2523 bool first = true;
2524
2525 if (!sysctl_tcp_retrans_collapse)
2526 return;
2527 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2528 return;
2529
2530 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2531 if (!tcp_can_collapse(sk, skb))
2532 break;
2533
2534 space -= skb->len;
2535
2536 if (first) {
2537 first = false;
2538 continue;
2539 }
2540
2541 if (space < 0)
2542 break;
2543 /* Punt if not enough space exists in the first SKB for
2544 * the data in the second
2545 */
2546 if (skb->len > skb_availroom(to))
2547 break;
2548
2549 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2550 break;
2551
2552 tcp_collapse_retrans(sk, to);
2553 }
2554 }
2555
2556 /* This retransmits one SKB. Policy decisions and retransmit queue
2557 * state updates are done by the caller. Returns non-zero if an
2558 * error occurred which prevented the send.
2559 */
2560 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2561 {
2562 struct tcp_sock *tp = tcp_sk(sk);
2563 struct inet_connection_sock *icsk = inet_csk(sk);
2564 unsigned int cur_mss;
2565 int err;
2566
2567 /* Inconslusive MTU probe */
2568 if (icsk->icsk_mtup.probe_size) {
2569 icsk->icsk_mtup.probe_size = 0;
2570 }
2571
2572 /* Do not sent more than we queued. 1/4 is reserved for possible
2573 * copying overhead: fragmentation, tunneling, mangling etc.
2574 */
2575 if (atomic_read(&sk->sk_wmem_alloc) >
2576 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2577 sk->sk_sndbuf))
2578 return -EAGAIN;
2579
2580 if (skb_still_in_host_queue(sk, skb))
2581 return -EBUSY;
2582
2583 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2584 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2585 BUG();
2586 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2587 return -ENOMEM;
2588 }
2589
2590 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2591 return -EHOSTUNREACH; /* Routing failure or similar. */
2592
2593 cur_mss = tcp_current_mss(sk);
2594
2595 /* If receiver has shrunk his window, and skb is out of
2596 * new window, do not retransmit it. The exception is the
2597 * case, when window is shrunk to zero. In this case
2598 * our retransmit serves as a zero window probe.
2599 */
2600 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2601 TCP_SKB_CB(skb)->seq != tp->snd_una)
2602 return -EAGAIN;
2603
2604 if (skb->len > cur_mss) {
2605 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2606 return -ENOMEM; /* We'll try again later. */
2607 } else {
2608 int oldpcount = tcp_skb_pcount(skb);
2609
2610 if (unlikely(oldpcount > 1)) {
2611 if (skb_unclone(skb, GFP_ATOMIC))
2612 return -ENOMEM;
2613 tcp_init_tso_segs(skb, cur_mss);
2614 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2615 }
2616 }
2617
2618 /* RFC3168, section 6.1.1.1. ECN fallback */
2619 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2620 tcp_ecn_clear_syn(sk, skb);
2621
2622 tcp_retrans_try_collapse(sk, skb, cur_mss);
2623
2624 /* Make a copy, if the first transmission SKB clone we made
2625 * is still in somebody's hands, else make a clone.
2626 */
2627
2628 /* make sure skb->data is aligned on arches that require it
2629 * and check if ack-trimming & collapsing extended the headroom
2630 * beyond what csum_start can cover.
2631 */
2632 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2633 skb_headroom(skb) >= 0xFFFF)) {
2634 struct sk_buff *nskb;
2635
2636 skb_mstamp_get(&skb->skb_mstamp);
2637 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2638 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2639 -ENOBUFS;
2640 } else {
2641 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2642 }
2643
2644 if (likely(!err)) {
2645 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2646 /* Update global TCP statistics. */
2647 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2648 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2649 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2650 tp->total_retrans++;
2651 }
2652 return err;
2653 }
2654
2655 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2656 {
2657 struct tcp_sock *tp = tcp_sk(sk);
2658 int err = __tcp_retransmit_skb(sk, skb);
2659
2660 if (err == 0) {
2661 #if FASTRETRANS_DEBUG > 0
2662 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2663 net_dbg_ratelimited("retrans_out leaked\n");
2664 }
2665 #endif
2666 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2667 tp->retrans_out += tcp_skb_pcount(skb);
2668
2669 /* Save stamp of the first retransmit. */
2670 if (!tp->retrans_stamp)
2671 tp->retrans_stamp = tcp_skb_timestamp(skb);
2672
2673 } else if (err != -EBUSY) {
2674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2675 }
2676
2677 if (tp->undo_retrans < 0)
2678 tp->undo_retrans = 0;
2679 tp->undo_retrans += tcp_skb_pcount(skb);
2680 return err;
2681 }
2682
2683 /* Check if we forward retransmits are possible in the current
2684 * window/congestion state.
2685 */
2686 static bool tcp_can_forward_retransmit(struct sock *sk)
2687 {
2688 const struct inet_connection_sock *icsk = inet_csk(sk);
2689 const struct tcp_sock *tp = tcp_sk(sk);
2690
2691 /* Forward retransmissions are possible only during Recovery. */
2692 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2693 return false;
2694
2695 /* No forward retransmissions in Reno are possible. */
2696 if (tcp_is_reno(tp))
2697 return false;
2698
2699 /* Yeah, we have to make difficult choice between forward transmission
2700 * and retransmission... Both ways have their merits...
2701 *
2702 * For now we do not retransmit anything, while we have some new
2703 * segments to send. In the other cases, follow rule 3 for
2704 * NextSeg() specified in RFC3517.
2705 */
2706
2707 if (tcp_may_send_now(sk))
2708 return false;
2709
2710 return true;
2711 }
2712
2713 /* This gets called after a retransmit timeout, and the initially
2714 * retransmitted data is acknowledged. It tries to continue
2715 * resending the rest of the retransmit queue, until either
2716 * we've sent it all or the congestion window limit is reached.
2717 * If doing SACK, the first ACK which comes back for a timeout
2718 * based retransmit packet might feed us FACK information again.
2719 * If so, we use it to avoid unnecessarily retransmissions.
2720 */
2721 void tcp_xmit_retransmit_queue(struct sock *sk)
2722 {
2723 const struct inet_connection_sock *icsk = inet_csk(sk);
2724 struct tcp_sock *tp = tcp_sk(sk);
2725 struct sk_buff *skb;
2726 struct sk_buff *hole = NULL;
2727 u32 last_lost;
2728 int mib_idx;
2729 int fwd_rexmitting = 0;
2730
2731 if (!tp->packets_out)
2732 return;
2733
2734 if (!tp->lost_out)
2735 tp->retransmit_high = tp->snd_una;
2736
2737 if (tp->retransmit_skb_hint) {
2738 skb = tp->retransmit_skb_hint;
2739 last_lost = TCP_SKB_CB(skb)->end_seq;
2740 if (after(last_lost, tp->retransmit_high))
2741 last_lost = tp->retransmit_high;
2742 } else {
2743 skb = tcp_write_queue_head(sk);
2744 last_lost = tp->snd_una;
2745 }
2746
2747 tcp_for_write_queue_from(skb, sk) {
2748 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2749
2750 if (skb == tcp_send_head(sk))
2751 break;
2752 /* we could do better than to assign each time */
2753 if (!hole)
2754 tp->retransmit_skb_hint = skb;
2755
2756 /* Assume this retransmit will generate
2757 * only one packet for congestion window
2758 * calculation purposes. This works because
2759 * tcp_retransmit_skb() will chop up the
2760 * packet to be MSS sized and all the
2761 * packet counting works out.
2762 */
2763 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2764 return;
2765
2766 if (fwd_rexmitting) {
2767 begin_fwd:
2768 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2769 break;
2770 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2771
2772 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2773 tp->retransmit_high = last_lost;
2774 if (!tcp_can_forward_retransmit(sk))
2775 break;
2776 /* Backtrack if necessary to non-L'ed skb */
2777 if (hole) {
2778 skb = hole;
2779 hole = NULL;
2780 }
2781 fwd_rexmitting = 1;
2782 goto begin_fwd;
2783
2784 } else if (!(sacked & TCPCB_LOST)) {
2785 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2786 hole = skb;
2787 continue;
2788
2789 } else {
2790 last_lost = TCP_SKB_CB(skb)->end_seq;
2791 if (icsk->icsk_ca_state != TCP_CA_Loss)
2792 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2793 else
2794 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2795 }
2796
2797 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2798 continue;
2799
2800 if (tcp_retransmit_skb(sk, skb))
2801 return;
2802
2803 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2804
2805 if (tcp_in_cwnd_reduction(sk))
2806 tp->prr_out += tcp_skb_pcount(skb);
2807
2808 if (skb == tcp_write_queue_head(sk))
2809 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2810 inet_csk(sk)->icsk_rto,
2811 TCP_RTO_MAX);
2812 }
2813 }
2814
2815 /* We allow to exceed memory limits for FIN packets to expedite
2816 * connection tear down and (memory) recovery.
2817 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2818 * or even be forced to close flow without any FIN.
2819 * In general, we want to allow one skb per socket to avoid hangs
2820 * with edge trigger epoll()
2821 */
2822 void sk_forced_mem_schedule(struct sock *sk, int size)
2823 {
2824 int amt, status;
2825
2826 if (size <= sk->sk_forward_alloc)
2827 return;
2828 amt = sk_mem_pages(size);
2829 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2830 sk_memory_allocated_add(sk, amt, &status);
2831 }
2832
2833 /* Send a FIN. The caller locks the socket for us.
2834 * We should try to send a FIN packet really hard, but eventually give up.
2835 */
2836 void tcp_send_fin(struct sock *sk)
2837 {
2838 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2839 struct tcp_sock *tp = tcp_sk(sk);
2840
2841 /* Optimization, tack on the FIN if we have one skb in write queue and
2842 * this skb was not yet sent, or we are under memory pressure.
2843 * Note: in the latter case, FIN packet will be sent after a timeout,
2844 * as TCP stack thinks it has already been transmitted.
2845 */
2846 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2847 coalesce:
2848 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2849 TCP_SKB_CB(tskb)->end_seq++;
2850 tp->write_seq++;
2851 if (!tcp_send_head(sk)) {
2852 /* This means tskb was already sent.
2853 * Pretend we included the FIN on previous transmit.
2854 * We need to set tp->snd_nxt to the value it would have
2855 * if FIN had been sent. This is because retransmit path
2856 * does not change tp->snd_nxt.
2857 */
2858 tp->snd_nxt++;
2859 return;
2860 }
2861 } else {
2862 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2863 if (unlikely(!skb)) {
2864 if (tskb)
2865 goto coalesce;
2866 return;
2867 }
2868 skb_reserve(skb, MAX_TCP_HEADER);
2869 sk_forced_mem_schedule(sk, skb->truesize);
2870 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2871 tcp_init_nondata_skb(skb, tp->write_seq,
2872 TCPHDR_ACK | TCPHDR_FIN);
2873 tcp_queue_skb(sk, skb);
2874 }
2875 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2876 }
2877
2878 /* We get here when a process closes a file descriptor (either due to
2879 * an explicit close() or as a byproduct of exit()'ing) and there
2880 * was unread data in the receive queue. This behavior is recommended
2881 * by RFC 2525, section 2.17. -DaveM
2882 */
2883 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2884 {
2885 struct sk_buff *skb;
2886
2887 /* NOTE: No TCP options attached and we never retransmit this. */
2888 skb = alloc_skb(MAX_TCP_HEADER, priority);
2889 if (!skb) {
2890 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2891 return;
2892 }
2893
2894 /* Reserve space for headers and prepare control bits. */
2895 skb_reserve(skb, MAX_TCP_HEADER);
2896 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2897 TCPHDR_ACK | TCPHDR_RST);
2898 skb_mstamp_get(&skb->skb_mstamp);
2899 /* Send it off. */
2900 if (tcp_transmit_skb(sk, skb, 0, priority))
2901 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2902
2903 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2904 }
2905
2906 /* Send a crossed SYN-ACK during socket establishment.
2907 * WARNING: This routine must only be called when we have already sent
2908 * a SYN packet that crossed the incoming SYN that caused this routine
2909 * to get called. If this assumption fails then the initial rcv_wnd
2910 * and rcv_wscale values will not be correct.
2911 */
2912 int tcp_send_synack(struct sock *sk)
2913 {
2914 struct sk_buff *skb;
2915
2916 skb = tcp_write_queue_head(sk);
2917 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2918 pr_debug("%s: wrong queue state\n", __func__);
2919 return -EFAULT;
2920 }
2921 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2922 if (skb_cloned(skb)) {
2923 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2924 if (!nskb)
2925 return -ENOMEM;
2926 tcp_unlink_write_queue(skb, sk);
2927 __skb_header_release(nskb);
2928 __tcp_add_write_queue_head(sk, nskb);
2929 sk_wmem_free_skb(sk, skb);
2930 sk->sk_wmem_queued += nskb->truesize;
2931 sk_mem_charge(sk, nskb->truesize);
2932 skb = nskb;
2933 }
2934
2935 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2936 tcp_ecn_send_synack(sk, skb);
2937 }
2938 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2939 }
2940
2941 /**
2942 * tcp_make_synack - Prepare a SYN-ACK.
2943 * sk: listener socket
2944 * dst: dst entry attached to the SYNACK
2945 * req: request_sock pointer
2946 *
2947 * Allocate one skb and build a SYNACK packet.
2948 * @dst is consumed : Caller should not use it again.
2949 */
2950 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2951 struct request_sock *req,
2952 struct tcp_fastopen_cookie *foc,
2953 bool attach_req)
2954 {
2955 struct inet_request_sock *ireq = inet_rsk(req);
2956 const struct tcp_sock *tp = tcp_sk(sk);
2957 struct tcp_md5sig_key *md5 = NULL;
2958 struct tcp_out_options opts;
2959 struct sk_buff *skb;
2960 int tcp_header_size;
2961 struct tcphdr *th;
2962 u16 user_mss;
2963 int mss;
2964
2965 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2966 if (unlikely(!skb)) {
2967 dst_release(dst);
2968 return NULL;
2969 }
2970 /* Reserve space for headers. */
2971 skb_reserve(skb, MAX_TCP_HEADER);
2972
2973 if (attach_req) {
2974 skb_set_owner_w(skb, req_to_sk(req));
2975 } else {
2976 /* sk is a const pointer, because we want to express multiple
2977 * cpu might call us concurrently.
2978 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2979 */
2980 skb_set_owner_w(skb, (struct sock *)sk);
2981 }
2982 skb_dst_set(skb, dst);
2983
2984 mss = dst_metric_advmss(dst);
2985 user_mss = READ_ONCE(tp->rx_opt.user_mss);
2986 if (user_mss && user_mss < mss)
2987 mss = user_mss;
2988
2989 memset(&opts, 0, sizeof(opts));
2990 #ifdef CONFIG_SYN_COOKIES
2991 if (unlikely(req->cookie_ts))
2992 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2993 else
2994 #endif
2995 skb_mstamp_get(&skb->skb_mstamp);
2996
2997 #ifdef CONFIG_TCP_MD5SIG
2998 rcu_read_lock();
2999 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3000 #endif
3001 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3002 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3003 sizeof(*th);
3004
3005 skb_push(skb, tcp_header_size);
3006 skb_reset_transport_header(skb);
3007
3008 th = tcp_hdr(skb);
3009 memset(th, 0, sizeof(struct tcphdr));
3010 th->syn = 1;
3011 th->ack = 1;
3012 tcp_ecn_make_synack(req, th);
3013 th->source = htons(ireq->ir_num);
3014 th->dest = ireq->ir_rmt_port;
3015 /* Setting of flags are superfluous here for callers (and ECE is
3016 * not even correctly set)
3017 */
3018 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3019 TCPHDR_SYN | TCPHDR_ACK);
3020
3021 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3022 /* XXX data is queued and acked as is. No buffer/window check */
3023 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3024
3025 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3026 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3027 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3028 th->doff = (tcp_header_size >> 2);
3029 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3030
3031 #ifdef CONFIG_TCP_MD5SIG
3032 /* Okay, we have all we need - do the md5 hash if needed */
3033 if (md5)
3034 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3035 md5, req_to_sk(req), skb);
3036 rcu_read_unlock();
3037 #endif
3038
3039 /* Do not fool tcpdump (if any), clean our debris */
3040 skb->tstamp.tv64 = 0;
3041 return skb;
3042 }
3043 EXPORT_SYMBOL(tcp_make_synack);
3044
3045 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3046 {
3047 struct inet_connection_sock *icsk = inet_csk(sk);
3048 const struct tcp_congestion_ops *ca;
3049 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3050
3051 if (ca_key == TCP_CA_UNSPEC)
3052 return;
3053
3054 rcu_read_lock();
3055 ca = tcp_ca_find_key(ca_key);
3056 if (likely(ca && try_module_get(ca->owner))) {
3057 module_put(icsk->icsk_ca_ops->owner);
3058 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3059 icsk->icsk_ca_ops = ca;
3060 }
3061 rcu_read_unlock();
3062 }
3063
3064 /* Do all connect socket setups that can be done AF independent. */
3065 static void tcp_connect_init(struct sock *sk)
3066 {
3067 const struct dst_entry *dst = __sk_dst_get(sk);
3068 struct tcp_sock *tp = tcp_sk(sk);
3069 __u8 rcv_wscale;
3070
3071 /* We'll fix this up when we get a response from the other end.
3072 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3073 */
3074 tp->tcp_header_len = sizeof(struct tcphdr) +
3075 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3076
3077 #ifdef CONFIG_TCP_MD5SIG
3078 if (tp->af_specific->md5_lookup(sk, sk))
3079 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3080 #endif
3081
3082 /* If user gave his TCP_MAXSEG, record it to clamp */
3083 if (tp->rx_opt.user_mss)
3084 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3085 tp->max_window = 0;
3086 tcp_mtup_init(sk);
3087 tcp_sync_mss(sk, dst_mtu(dst));
3088
3089 tcp_ca_dst_init(sk, dst);
3090
3091 if (!tp->window_clamp)
3092 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3093 tp->advmss = dst_metric_advmss(dst);
3094 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3095 tp->advmss = tp->rx_opt.user_mss;
3096
3097 tcp_initialize_rcv_mss(sk);
3098
3099 /* limit the window selection if the user enforce a smaller rx buffer */
3100 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3101 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3102 tp->window_clamp = tcp_full_space(sk);
3103
3104 tcp_select_initial_window(tcp_full_space(sk),
3105 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3106 &tp->rcv_wnd,
3107 &tp->window_clamp,
3108 sysctl_tcp_window_scaling,
3109 &rcv_wscale,
3110 dst_metric(dst, RTAX_INITRWND));
3111
3112 tp->rx_opt.rcv_wscale = rcv_wscale;
3113 tp->rcv_ssthresh = tp->rcv_wnd;
3114
3115 sk->sk_err = 0;
3116 sock_reset_flag(sk, SOCK_DONE);
3117 tp->snd_wnd = 0;
3118 tcp_init_wl(tp, 0);
3119 tp->snd_una = tp->write_seq;
3120 tp->snd_sml = tp->write_seq;
3121 tp->snd_up = tp->write_seq;
3122 tp->snd_nxt = tp->write_seq;
3123
3124 if (likely(!tp->repair))
3125 tp->rcv_nxt = 0;
3126 else
3127 tp->rcv_tstamp = tcp_time_stamp;
3128 tp->rcv_wup = tp->rcv_nxt;
3129 tp->copied_seq = tp->rcv_nxt;
3130
3131 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3132 inet_csk(sk)->icsk_retransmits = 0;
3133 tcp_clear_retrans(tp);
3134 }
3135
3136 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3137 {
3138 struct tcp_sock *tp = tcp_sk(sk);
3139 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3140
3141 tcb->end_seq += skb->len;
3142 __skb_header_release(skb);
3143 __tcp_add_write_queue_tail(sk, skb);
3144 sk->sk_wmem_queued += skb->truesize;
3145 sk_mem_charge(sk, skb->truesize);
3146 tp->write_seq = tcb->end_seq;
3147 tp->packets_out += tcp_skb_pcount(skb);
3148 }
3149
3150 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3151 * queue a data-only packet after the regular SYN, such that regular SYNs
3152 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3153 * only the SYN sequence, the data are retransmitted in the first ACK.
3154 * If cookie is not cached or other error occurs, falls back to send a
3155 * regular SYN with Fast Open cookie request option.
3156 */
3157 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3158 {
3159 struct tcp_sock *tp = tcp_sk(sk);
3160 struct tcp_fastopen_request *fo = tp->fastopen_req;
3161 int syn_loss = 0, space, err = 0;
3162 unsigned long last_syn_loss = 0;
3163 struct sk_buff *syn_data;
3164
3165 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3166 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3167 &syn_loss, &last_syn_loss);
3168 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3169 if (syn_loss > 1 &&
3170 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3171 fo->cookie.len = -1;
3172 goto fallback;
3173 }
3174
3175 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3176 fo->cookie.len = -1;
3177 else if (fo->cookie.len <= 0)
3178 goto fallback;
3179
3180 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3181 * user-MSS. Reserve maximum option space for middleboxes that add
3182 * private TCP options. The cost is reduced data space in SYN :(
3183 */
3184 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3185 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3186 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3187 MAX_TCP_OPTION_SPACE;
3188
3189 space = min_t(size_t, space, fo->size);
3190
3191 /* limit to order-0 allocations */
3192 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3193
3194 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3195 if (!syn_data)
3196 goto fallback;
3197 syn_data->ip_summed = CHECKSUM_PARTIAL;
3198 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3199 if (space) {
3200 int copied = copy_from_iter(skb_put(syn_data, space), space,
3201 &fo->data->msg_iter);
3202 if (unlikely(!copied)) {
3203 kfree_skb(syn_data);
3204 goto fallback;
3205 }
3206 if (copied != space) {
3207 skb_trim(syn_data, copied);
3208 space = copied;
3209 }
3210 }
3211 /* No more data pending in inet_wait_for_connect() */
3212 if (space == fo->size)
3213 fo->data = NULL;
3214 fo->copied = space;
3215
3216 tcp_connect_queue_skb(sk, syn_data);
3217
3218 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3219
3220 syn->skb_mstamp = syn_data->skb_mstamp;
3221
3222 /* Now full SYN+DATA was cloned and sent (or not),
3223 * remove the SYN from the original skb (syn_data)
3224 * we keep in write queue in case of a retransmit, as we
3225 * also have the SYN packet (with no data) in the same queue.
3226 */
3227 TCP_SKB_CB(syn_data)->seq++;
3228 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3229 if (!err) {
3230 tp->syn_data = (fo->copied > 0);
3231 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3232 goto done;
3233 }
3234
3235 fallback:
3236 /* Send a regular SYN with Fast Open cookie request option */
3237 if (fo->cookie.len > 0)
3238 fo->cookie.len = 0;
3239 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3240 if (err)
3241 tp->syn_fastopen = 0;
3242 done:
3243 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3244 return err;
3245 }
3246
3247 /* Build a SYN and send it off. */
3248 int tcp_connect(struct sock *sk)
3249 {
3250 struct tcp_sock *tp = tcp_sk(sk);
3251 struct sk_buff *buff;
3252 int err;
3253
3254 tcp_connect_init(sk);
3255
3256 if (unlikely(tp->repair)) {
3257 tcp_finish_connect(sk, NULL);
3258 return 0;
3259 }
3260
3261 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3262 if (unlikely(!buff))
3263 return -ENOBUFS;
3264
3265 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3266 tp->retrans_stamp = tcp_time_stamp;
3267 tcp_connect_queue_skb(sk, buff);
3268 tcp_ecn_send_syn(sk, buff);
3269
3270 /* Send off SYN; include data in Fast Open. */
3271 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3272 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3273 if (err == -ECONNREFUSED)
3274 return err;
3275
3276 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3277 * in order to make this packet get counted in tcpOutSegs.
3278 */
3279 tp->snd_nxt = tp->write_seq;
3280 tp->pushed_seq = tp->write_seq;
3281 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3282
3283 /* Timer for repeating the SYN until an answer. */
3284 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3285 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3286 return 0;
3287 }
3288 EXPORT_SYMBOL(tcp_connect);
3289
3290 /* Send out a delayed ack, the caller does the policy checking
3291 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3292 * for details.
3293 */
3294 void tcp_send_delayed_ack(struct sock *sk)
3295 {
3296 struct inet_connection_sock *icsk = inet_csk(sk);
3297 int ato = icsk->icsk_ack.ato;
3298 unsigned long timeout;
3299
3300 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3301
3302 if (ato > TCP_DELACK_MIN) {
3303 const struct tcp_sock *tp = tcp_sk(sk);
3304 int max_ato = HZ / 2;
3305
3306 if (icsk->icsk_ack.pingpong ||
3307 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3308 max_ato = TCP_DELACK_MAX;
3309
3310 /* Slow path, intersegment interval is "high". */
3311
3312 /* If some rtt estimate is known, use it to bound delayed ack.
3313 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3314 * directly.
3315 */
3316 if (tp->srtt_us) {
3317 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3318 TCP_DELACK_MIN);
3319
3320 if (rtt < max_ato)
3321 max_ato = rtt;
3322 }
3323
3324 ato = min(ato, max_ato);
3325 }
3326
3327 /* Stay within the limit we were given */
3328 timeout = jiffies + ato;
3329
3330 /* Use new timeout only if there wasn't a older one earlier. */
3331 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3332 /* If delack timer was blocked or is about to expire,
3333 * send ACK now.
3334 */
3335 if (icsk->icsk_ack.blocked ||
3336 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3337 tcp_send_ack(sk);
3338 return;
3339 }
3340
3341 if (!time_before(timeout, icsk->icsk_ack.timeout))
3342 timeout = icsk->icsk_ack.timeout;
3343 }
3344 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3345 icsk->icsk_ack.timeout = timeout;
3346 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3347 }
3348
3349 /* This routine sends an ack and also updates the window. */
3350 void tcp_send_ack(struct sock *sk)
3351 {
3352 struct sk_buff *buff;
3353
3354 /* If we have been reset, we may not send again. */
3355 if (sk->sk_state == TCP_CLOSE)
3356 return;
3357
3358 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3359
3360 /* We are not putting this on the write queue, so
3361 * tcp_transmit_skb() will set the ownership to this
3362 * sock.
3363 */
3364 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3365 if (!buff) {
3366 inet_csk_schedule_ack(sk);
3367 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3368 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3369 TCP_DELACK_MAX, TCP_RTO_MAX);
3370 return;
3371 }
3372
3373 /* Reserve space for headers and prepare control bits. */
3374 skb_reserve(buff, MAX_TCP_HEADER);
3375 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3376
3377 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3378 * too much.
3379 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3380 * We also avoid tcp_wfree() overhead (cache line miss accessing
3381 * tp->tsq_flags) by using regular sock_wfree()
3382 */
3383 skb_set_tcp_pure_ack(buff);
3384
3385 /* Send it off, this clears delayed acks for us. */
3386 skb_mstamp_get(&buff->skb_mstamp);
3387 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3388 }
3389 EXPORT_SYMBOL_GPL(tcp_send_ack);
3390
3391 /* This routine sends a packet with an out of date sequence
3392 * number. It assumes the other end will try to ack it.
3393 *
3394 * Question: what should we make while urgent mode?
3395 * 4.4BSD forces sending single byte of data. We cannot send
3396 * out of window data, because we have SND.NXT==SND.MAX...
3397 *
3398 * Current solution: to send TWO zero-length segments in urgent mode:
3399 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3400 * out-of-date with SND.UNA-1 to probe window.
3401 */
3402 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3403 {
3404 struct tcp_sock *tp = tcp_sk(sk);
3405 struct sk_buff *skb;
3406
3407 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3408 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3409 if (!skb)
3410 return -1;
3411
3412 /* Reserve space for headers and set control bits. */
3413 skb_reserve(skb, MAX_TCP_HEADER);
3414 /* Use a previous sequence. This should cause the other
3415 * end to send an ack. Don't queue or clone SKB, just
3416 * send it.
3417 */
3418 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3419 skb_mstamp_get(&skb->skb_mstamp);
3420 NET_INC_STATS(sock_net(sk), mib);
3421 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3422 }
3423
3424 void tcp_send_window_probe(struct sock *sk)
3425 {
3426 if (sk->sk_state == TCP_ESTABLISHED) {
3427 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3428 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3429 }
3430 }
3431
3432 /* Initiate keepalive or window probe from timer. */
3433 int tcp_write_wakeup(struct sock *sk, int mib)
3434 {
3435 struct tcp_sock *tp = tcp_sk(sk);
3436 struct sk_buff *skb;
3437
3438 if (sk->sk_state == TCP_CLOSE)
3439 return -1;
3440
3441 skb = tcp_send_head(sk);
3442 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3443 int err;
3444 unsigned int mss = tcp_current_mss(sk);
3445 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3446
3447 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3448 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3449
3450 /* We are probing the opening of a window
3451 * but the window size is != 0
3452 * must have been a result SWS avoidance ( sender )
3453 */
3454 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3455 skb->len > mss) {
3456 seg_size = min(seg_size, mss);
3457 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3458 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3459 return -1;
3460 } else if (!tcp_skb_pcount(skb))
3461 tcp_set_skb_tso_segs(skb, mss);
3462
3463 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3464 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3465 if (!err)
3466 tcp_event_new_data_sent(sk, skb);
3467 return err;
3468 } else {
3469 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3470 tcp_xmit_probe_skb(sk, 1, mib);
3471 return tcp_xmit_probe_skb(sk, 0, mib);
3472 }
3473 }
3474
3475 /* A window probe timeout has occurred. If window is not closed send
3476 * a partial packet else a zero probe.
3477 */
3478 void tcp_send_probe0(struct sock *sk)
3479 {
3480 struct inet_connection_sock *icsk = inet_csk(sk);
3481 struct tcp_sock *tp = tcp_sk(sk);
3482 unsigned long probe_max;
3483 int err;
3484
3485 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3486
3487 if (tp->packets_out || !tcp_send_head(sk)) {
3488 /* Cancel probe timer, if it is not required. */
3489 icsk->icsk_probes_out = 0;
3490 icsk->icsk_backoff = 0;
3491 return;
3492 }
3493
3494 if (err <= 0) {
3495 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3496 icsk->icsk_backoff++;
3497 icsk->icsk_probes_out++;
3498 probe_max = TCP_RTO_MAX;
3499 } else {
3500 /* If packet was not sent due to local congestion,
3501 * do not backoff and do not remember icsk_probes_out.
3502 * Let local senders to fight for local resources.
3503 *
3504 * Use accumulated backoff yet.
3505 */
3506 if (!icsk->icsk_probes_out)
3507 icsk->icsk_probes_out = 1;
3508 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3509 }
3510 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3511 tcp_probe0_when(sk, probe_max),
3512 TCP_RTO_MAX);
3513 }
3514
3515 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3516 {
3517 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3518 struct flowi fl;
3519 int res;
3520
3521 tcp_rsk(req)->txhash = net_tx_rndhash();
3522 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
3523 if (!res) {
3524 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3525 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3526 }
3527 return res;
3528 }
3529 EXPORT_SYMBOL(tcp_rtx_synack);