tcp: Remove TCPCT
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 /* Don't override Nagle indefinitely with F-RTO */
82 if (tp->frto_counter == 2)
83 tp->frto_counter = 3;
84
85 tp->packets_out += tcp_skb_pcount(skb);
86 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
87 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
88 tcp_rearm_rto(sk);
89 }
90
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 struct tcp_sock *tp = tcp_sk(sk);
144 s32 delta = tcp_time_stamp - tp->lsndtime;
145 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166
167 if (sysctl_tcp_slow_start_after_idle &&
168 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
169 tcp_cwnd_restart(sk, __sk_dst_get(sk));
170
171 tp->lsndtime = now;
172
173 /* If it is a reply for ato after last received
174 * packet, enter pingpong mode.
175 */
176 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
177 icsk->icsk_ack.pingpong = 1;
178 }
179
180 /* Account for an ACK we sent. */
181 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
182 {
183 tcp_dec_quickack_mode(sk, pkts);
184 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
185 }
186
187 /* Determine a window scaling and initial window to offer.
188 * Based on the assumption that the given amount of space
189 * will be offered. Store the results in the tp structure.
190 * NOTE: for smooth operation initial space offering should
191 * be a multiple of mss if possible. We assume here that mss >= 1.
192 * This MUST be enforced by all callers.
193 */
194 void tcp_select_initial_window(int __space, __u32 mss,
195 __u32 *rcv_wnd, __u32 *window_clamp,
196 int wscale_ok, __u8 *rcv_wscale,
197 __u32 init_rcv_wnd)
198 {
199 unsigned int space = (__space < 0 ? 0 : __space);
200
201 /* If no clamp set the clamp to the max possible scaled window */
202 if (*window_clamp == 0)
203 (*window_clamp) = (65535 << 14);
204 space = min(*window_clamp, space);
205
206 /* Quantize space offering to a multiple of mss if possible. */
207 if (space > mss)
208 space = (space / mss) * mss;
209
210 /* NOTE: offering an initial window larger than 32767
211 * will break some buggy TCP stacks. If the admin tells us
212 * it is likely we could be speaking with such a buggy stack
213 * we will truncate our initial window offering to 32K-1
214 * unless the remote has sent us a window scaling option,
215 * which we interpret as a sign the remote TCP is not
216 * misinterpreting the window field as a signed quantity.
217 */
218 if (sysctl_tcp_workaround_signed_windows)
219 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
220 else
221 (*rcv_wnd) = space;
222
223 (*rcv_wscale) = 0;
224 if (wscale_ok) {
225 /* Set window scaling on max possible window
226 * See RFC1323 for an explanation of the limit to 14
227 */
228 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
229 space = min_t(u32, space, *window_clamp);
230 while (space > 65535 && (*rcv_wscale) < 14) {
231 space >>= 1;
232 (*rcv_wscale)++;
233 }
234 }
235
236 /* Set initial window to a value enough for senders starting with
237 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
238 * a limit on the initial window when mss is larger than 1460.
239 */
240 if (mss > (1 << *rcv_wscale)) {
241 int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
242 if (mss > 1460)
243 init_cwnd =
244 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
245 /* when initializing use the value from init_rcv_wnd
246 * rather than the default from above
247 */
248 if (init_rcv_wnd)
249 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
250 else
251 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
252 }
253
254 /* Set the clamp no higher than max representable value */
255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258
259 /* Chose a new window to advertise, update state in tcp_sock for the
260 * socket, and return result with RFC1323 scaling applied. The return
261 * value can be stuffed directly into th->window for an outgoing
262 * frame.
263 */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 struct tcp_sock *tp = tcp_sk(sk);
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
269
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
276 *
277 * Relax Will Robinson.
278 */
279 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
280 }
281 tp->rcv_wnd = new_win;
282 tp->rcv_wup = tp->rcv_nxt;
283
284 /* Make sure we do not exceed the maximum possible
285 * scaled window.
286 */
287 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
288 new_win = min(new_win, MAX_TCP_WINDOW);
289 else
290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291
292 /* RFC1323 scaling applied */
293 new_win >>= tp->rx_opt.rcv_wscale;
294
295 /* If we advertise zero window, disable fast path. */
296 if (new_win == 0)
297 tp->pred_flags = 0;
298
299 return new_win;
300 }
301
302 /* Packet ECN state for a SYN-ACK */
303 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
304 {
305 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
306 if (!(tp->ecn_flags & TCP_ECN_OK))
307 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
308 }
309
310 /* Packet ECN state for a SYN. */
311 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
312 {
313 struct tcp_sock *tp = tcp_sk(sk);
314
315 tp->ecn_flags = 0;
316 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
317 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
318 tp->ecn_flags = TCP_ECN_OK;
319 }
320 }
321
322 static __inline__ void
323 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
324 {
325 if (inet_rsk(req)->ecn_ok)
326 th->ece = 1;
327 }
328
329 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
330 * be sent.
331 */
332 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
333 int tcp_header_len)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336
337 if (tp->ecn_flags & TCP_ECN_OK) {
338 /* Not-retransmitted data segment: set ECT and inject CWR. */
339 if (skb->len != tcp_header_len &&
340 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
341 INET_ECN_xmit(sk);
342 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
343 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
344 tcp_hdr(skb)->cwr = 1;
345 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
346 }
347 } else {
348 /* ACK or retransmitted segment: clear ECT|CE */
349 INET_ECN_dontxmit(sk);
350 }
351 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
352 tcp_hdr(skb)->ece = 1;
353 }
354 }
355
356 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
357 * auto increment end seqno.
358 */
359 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
360 {
361 skb->ip_summed = CHECKSUM_PARTIAL;
362 skb->csum = 0;
363
364 TCP_SKB_CB(skb)->tcp_flags = flags;
365 TCP_SKB_CB(skb)->sacked = 0;
366
367 skb_shinfo(skb)->gso_segs = 1;
368 skb_shinfo(skb)->gso_size = 0;
369 skb_shinfo(skb)->gso_type = 0;
370
371 TCP_SKB_CB(skb)->seq = seq;
372 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
373 seq++;
374 TCP_SKB_CB(skb)->end_seq = seq;
375 }
376
377 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
378 {
379 return tp->snd_una != tp->snd_up;
380 }
381
382 #define OPTION_SACK_ADVERTISE (1 << 0)
383 #define OPTION_TS (1 << 1)
384 #define OPTION_MD5 (1 << 2)
385 #define OPTION_WSCALE (1 << 3)
386 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
387
388 struct tcp_out_options {
389 u16 options; /* bit field of OPTION_* */
390 u16 mss; /* 0 to disable */
391 u8 ws; /* window scale, 0 to disable */
392 u8 num_sack_blocks; /* number of SACK blocks to include */
393 u8 hash_size; /* bytes in hash_location */
394 __u8 *hash_location; /* temporary pointer, overloaded */
395 __u32 tsval, tsecr; /* need to include OPTION_TS */
396 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
397 };
398
399 /* Write previously computed TCP options to the packet.
400 *
401 * Beware: Something in the Internet is very sensitive to the ordering of
402 * TCP options, we learned this through the hard way, so be careful here.
403 * Luckily we can at least blame others for their non-compliance but from
404 * inter-operatibility perspective it seems that we're somewhat stuck with
405 * the ordering which we have been using if we want to keep working with
406 * those broken things (not that it currently hurts anybody as there isn't
407 * particular reason why the ordering would need to be changed).
408 *
409 * At least SACK_PERM as the first option is known to lead to a disaster
410 * (but it may well be that other scenarios fail similarly).
411 */
412 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
413 struct tcp_out_options *opts)
414 {
415 u16 options = opts->options; /* mungable copy */
416
417 if (unlikely(OPTION_MD5 & options)) {
418 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
419 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
420 /* overload cookie hash location */
421 opts->hash_location = (__u8 *)ptr;
422 ptr += 4;
423 }
424
425 if (unlikely(opts->mss)) {
426 *ptr++ = htonl((TCPOPT_MSS << 24) |
427 (TCPOLEN_MSS << 16) |
428 opts->mss);
429 }
430
431 if (likely(OPTION_TS & options)) {
432 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
433 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
434 (TCPOLEN_SACK_PERM << 16) |
435 (TCPOPT_TIMESTAMP << 8) |
436 TCPOLEN_TIMESTAMP);
437 options &= ~OPTION_SACK_ADVERTISE;
438 } else {
439 *ptr++ = htonl((TCPOPT_NOP << 24) |
440 (TCPOPT_NOP << 16) |
441 (TCPOPT_TIMESTAMP << 8) |
442 TCPOLEN_TIMESTAMP);
443 }
444 *ptr++ = htonl(opts->tsval);
445 *ptr++ = htonl(opts->tsecr);
446 }
447
448 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
449 *ptr++ = htonl((TCPOPT_NOP << 24) |
450 (TCPOPT_NOP << 16) |
451 (TCPOPT_SACK_PERM << 8) |
452 TCPOLEN_SACK_PERM);
453 }
454
455 if (unlikely(OPTION_WSCALE & options)) {
456 *ptr++ = htonl((TCPOPT_NOP << 24) |
457 (TCPOPT_WINDOW << 16) |
458 (TCPOLEN_WINDOW << 8) |
459 opts->ws);
460 }
461
462 if (unlikely(opts->num_sack_blocks)) {
463 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
464 tp->duplicate_sack : tp->selective_acks;
465 int this_sack;
466
467 *ptr++ = htonl((TCPOPT_NOP << 24) |
468 (TCPOPT_NOP << 16) |
469 (TCPOPT_SACK << 8) |
470 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
471 TCPOLEN_SACK_PERBLOCK)));
472
473 for (this_sack = 0; this_sack < opts->num_sack_blocks;
474 ++this_sack) {
475 *ptr++ = htonl(sp[this_sack].start_seq);
476 *ptr++ = htonl(sp[this_sack].end_seq);
477 }
478
479 tp->rx_opt.dsack = 0;
480 }
481
482 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
483 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
484
485 *ptr++ = htonl((TCPOPT_EXP << 24) |
486 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
487 TCPOPT_FASTOPEN_MAGIC);
488
489 memcpy(ptr, foc->val, foc->len);
490 if ((foc->len & 3) == 2) {
491 u8 *align = ((u8 *)ptr) + foc->len;
492 align[0] = align[1] = TCPOPT_NOP;
493 }
494 ptr += (foc->len + 3) >> 2;
495 }
496 }
497
498 /* Compute TCP options for SYN packets. This is not the final
499 * network wire format yet.
500 */
501 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
502 struct tcp_out_options *opts,
503 struct tcp_md5sig_key **md5)
504 {
505 struct tcp_sock *tp = tcp_sk(sk);
506 unsigned int remaining = MAX_TCP_OPTION_SPACE;
507 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
508
509 #ifdef CONFIG_TCP_MD5SIG
510 *md5 = tp->af_specific->md5_lookup(sk, sk);
511 if (*md5) {
512 opts->options |= OPTION_MD5;
513 remaining -= TCPOLEN_MD5SIG_ALIGNED;
514 }
515 #else
516 *md5 = NULL;
517 #endif
518
519 /* We always get an MSS option. The option bytes which will be seen in
520 * normal data packets should timestamps be used, must be in the MSS
521 * advertised. But we subtract them from tp->mss_cache so that
522 * calculations in tcp_sendmsg are simpler etc. So account for this
523 * fact here if necessary. If we don't do this correctly, as a
524 * receiver we won't recognize data packets as being full sized when we
525 * should, and thus we won't abide by the delayed ACK rules correctly.
526 * SACKs don't matter, we never delay an ACK when we have any of those
527 * going out. */
528 opts->mss = tcp_advertise_mss(sk);
529 remaining -= TCPOLEN_MSS_ALIGNED;
530
531 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
532 opts->options |= OPTION_TS;
533 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
534 opts->tsecr = tp->rx_opt.ts_recent;
535 remaining -= TCPOLEN_TSTAMP_ALIGNED;
536 }
537 if (likely(sysctl_tcp_window_scaling)) {
538 opts->ws = tp->rx_opt.rcv_wscale;
539 opts->options |= OPTION_WSCALE;
540 remaining -= TCPOLEN_WSCALE_ALIGNED;
541 }
542 if (likely(sysctl_tcp_sack)) {
543 opts->options |= OPTION_SACK_ADVERTISE;
544 if (unlikely(!(OPTION_TS & opts->options)))
545 remaining -= TCPOLEN_SACKPERM_ALIGNED;
546 }
547
548 if (fastopen && fastopen->cookie.len >= 0) {
549 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
550 need = (need + 3) & ~3U; /* Align to 32 bits */
551 if (remaining >= need) {
552 opts->options |= OPTION_FAST_OPEN_COOKIE;
553 opts->fastopen_cookie = &fastopen->cookie;
554 remaining -= need;
555 tp->syn_fastopen = 1;
556 }
557 }
558
559 return MAX_TCP_OPTION_SPACE - remaining;
560 }
561
562 /* Set up TCP options for SYN-ACKs. */
563 static unsigned int tcp_synack_options(struct sock *sk,
564 struct request_sock *req,
565 unsigned int mss, struct sk_buff *skb,
566 struct tcp_out_options *opts,
567 struct tcp_md5sig_key **md5,
568 struct tcp_fastopen_cookie *foc)
569 {
570 struct inet_request_sock *ireq = inet_rsk(req);
571 unsigned int remaining = MAX_TCP_OPTION_SPACE;
572
573 #ifdef CONFIG_TCP_MD5SIG
574 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
575 if (*md5) {
576 opts->options |= OPTION_MD5;
577 remaining -= TCPOLEN_MD5SIG_ALIGNED;
578
579 /* We can't fit any SACK blocks in a packet with MD5 + TS
580 * options. There was discussion about disabling SACK
581 * rather than TS in order to fit in better with old,
582 * buggy kernels, but that was deemed to be unnecessary.
583 */
584 ireq->tstamp_ok &= !ireq->sack_ok;
585 }
586 #else
587 *md5 = NULL;
588 #endif
589
590 /* We always send an MSS option. */
591 opts->mss = mss;
592 remaining -= TCPOLEN_MSS_ALIGNED;
593
594 if (likely(ireq->wscale_ok)) {
595 opts->ws = ireq->rcv_wscale;
596 opts->options |= OPTION_WSCALE;
597 remaining -= TCPOLEN_WSCALE_ALIGNED;
598 }
599 if (likely(ireq->tstamp_ok)) {
600 opts->options |= OPTION_TS;
601 opts->tsval = TCP_SKB_CB(skb)->when;
602 opts->tsecr = req->ts_recent;
603 remaining -= TCPOLEN_TSTAMP_ALIGNED;
604 }
605 if (likely(ireq->sack_ok)) {
606 opts->options |= OPTION_SACK_ADVERTISE;
607 if (unlikely(!ireq->tstamp_ok))
608 remaining -= TCPOLEN_SACKPERM_ALIGNED;
609 }
610 if (foc != NULL) {
611 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
612 need = (need + 3) & ~3U; /* Align to 32 bits */
613 if (remaining >= need) {
614 opts->options |= OPTION_FAST_OPEN_COOKIE;
615 opts->fastopen_cookie = foc;
616 remaining -= need;
617 }
618 }
619
620 return MAX_TCP_OPTION_SPACE - remaining;
621 }
622
623 /* Compute TCP options for ESTABLISHED sockets. This is not the
624 * final wire format yet.
625 */
626 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
627 struct tcp_out_options *opts,
628 struct tcp_md5sig_key **md5)
629 {
630 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
631 struct tcp_sock *tp = tcp_sk(sk);
632 unsigned int size = 0;
633 unsigned int eff_sacks;
634
635 #ifdef CONFIG_TCP_MD5SIG
636 *md5 = tp->af_specific->md5_lookup(sk, sk);
637 if (unlikely(*md5)) {
638 opts->options |= OPTION_MD5;
639 size += TCPOLEN_MD5SIG_ALIGNED;
640 }
641 #else
642 *md5 = NULL;
643 #endif
644
645 if (likely(tp->rx_opt.tstamp_ok)) {
646 opts->options |= OPTION_TS;
647 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
648 opts->tsecr = tp->rx_opt.ts_recent;
649 size += TCPOLEN_TSTAMP_ALIGNED;
650 }
651
652 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
653 if (unlikely(eff_sacks)) {
654 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
655 opts->num_sack_blocks =
656 min_t(unsigned int, eff_sacks,
657 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
658 TCPOLEN_SACK_PERBLOCK);
659 size += TCPOLEN_SACK_BASE_ALIGNED +
660 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
661 }
662
663 return size;
664 }
665
666
667 /* TCP SMALL QUEUES (TSQ)
668 *
669 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
670 * to reduce RTT and bufferbloat.
671 * We do this using a special skb destructor (tcp_wfree).
672 *
673 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
674 * needs to be reallocated in a driver.
675 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
676 *
677 * Since transmit from skb destructor is forbidden, we use a tasklet
678 * to process all sockets that eventually need to send more skbs.
679 * We use one tasklet per cpu, with its own queue of sockets.
680 */
681 struct tsq_tasklet {
682 struct tasklet_struct tasklet;
683 struct list_head head; /* queue of tcp sockets */
684 };
685 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
686
687 static void tcp_tsq_handler(struct sock *sk)
688 {
689 if ((1 << sk->sk_state) &
690 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
691 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
692 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
693 }
694 /*
695 * One tasklest per cpu tries to send more skbs.
696 * We run in tasklet context but need to disable irqs when
697 * transfering tsq->head because tcp_wfree() might
698 * interrupt us (non NAPI drivers)
699 */
700 static void tcp_tasklet_func(unsigned long data)
701 {
702 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
703 LIST_HEAD(list);
704 unsigned long flags;
705 struct list_head *q, *n;
706 struct tcp_sock *tp;
707 struct sock *sk;
708
709 local_irq_save(flags);
710 list_splice_init(&tsq->head, &list);
711 local_irq_restore(flags);
712
713 list_for_each_safe(q, n, &list) {
714 tp = list_entry(q, struct tcp_sock, tsq_node);
715 list_del(&tp->tsq_node);
716
717 sk = (struct sock *)tp;
718 bh_lock_sock(sk);
719
720 if (!sock_owned_by_user(sk)) {
721 tcp_tsq_handler(sk);
722 } else {
723 /* defer the work to tcp_release_cb() */
724 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
725 }
726 bh_unlock_sock(sk);
727
728 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
729 sk_free(sk);
730 }
731 }
732
733 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
734 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
735 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
736 (1UL << TCP_MTU_REDUCED_DEFERRED))
737 /**
738 * tcp_release_cb - tcp release_sock() callback
739 * @sk: socket
740 *
741 * called from release_sock() to perform protocol dependent
742 * actions before socket release.
743 */
744 void tcp_release_cb(struct sock *sk)
745 {
746 struct tcp_sock *tp = tcp_sk(sk);
747 unsigned long flags, nflags;
748
749 /* perform an atomic operation only if at least one flag is set */
750 do {
751 flags = tp->tsq_flags;
752 if (!(flags & TCP_DEFERRED_ALL))
753 return;
754 nflags = flags & ~TCP_DEFERRED_ALL;
755 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
756
757 if (flags & (1UL << TCP_TSQ_DEFERRED))
758 tcp_tsq_handler(sk);
759
760 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
761 tcp_write_timer_handler(sk);
762 __sock_put(sk);
763 }
764 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
765 tcp_delack_timer_handler(sk);
766 __sock_put(sk);
767 }
768 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
769 sk->sk_prot->mtu_reduced(sk);
770 __sock_put(sk);
771 }
772 }
773 EXPORT_SYMBOL(tcp_release_cb);
774
775 void __init tcp_tasklet_init(void)
776 {
777 int i;
778
779 for_each_possible_cpu(i) {
780 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
781
782 INIT_LIST_HEAD(&tsq->head);
783 tasklet_init(&tsq->tasklet,
784 tcp_tasklet_func,
785 (unsigned long)tsq);
786 }
787 }
788
789 /*
790 * Write buffer destructor automatically called from kfree_skb.
791 * We cant xmit new skbs from this context, as we might already
792 * hold qdisc lock.
793 */
794 static void tcp_wfree(struct sk_buff *skb)
795 {
796 struct sock *sk = skb->sk;
797 struct tcp_sock *tp = tcp_sk(sk);
798
799 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
800 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
801 unsigned long flags;
802 struct tsq_tasklet *tsq;
803
804 /* Keep a ref on socket.
805 * This last ref will be released in tcp_tasklet_func()
806 */
807 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
808
809 /* queue this socket to tasklet queue */
810 local_irq_save(flags);
811 tsq = &__get_cpu_var(tsq_tasklet);
812 list_add(&tp->tsq_node, &tsq->head);
813 tasklet_schedule(&tsq->tasklet);
814 local_irq_restore(flags);
815 } else {
816 sock_wfree(skb);
817 }
818 }
819
820 /* This routine actually transmits TCP packets queued in by
821 * tcp_do_sendmsg(). This is used by both the initial
822 * transmission and possible later retransmissions.
823 * All SKB's seen here are completely headerless. It is our
824 * job to build the TCP header, and pass the packet down to
825 * IP so it can do the same plus pass the packet off to the
826 * device.
827 *
828 * We are working here with either a clone of the original
829 * SKB, or a fresh unique copy made by the retransmit engine.
830 */
831 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
832 gfp_t gfp_mask)
833 {
834 const struct inet_connection_sock *icsk = inet_csk(sk);
835 struct inet_sock *inet;
836 struct tcp_sock *tp;
837 struct tcp_skb_cb *tcb;
838 struct tcp_out_options opts;
839 unsigned int tcp_options_size, tcp_header_size;
840 struct tcp_md5sig_key *md5;
841 struct tcphdr *th;
842 int err;
843
844 BUG_ON(!skb || !tcp_skb_pcount(skb));
845
846 /* If congestion control is doing timestamping, we must
847 * take such a timestamp before we potentially clone/copy.
848 */
849 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
850 __net_timestamp(skb);
851
852 if (likely(clone_it)) {
853 if (unlikely(skb_cloned(skb)))
854 skb = pskb_copy(skb, gfp_mask);
855 else
856 skb = skb_clone(skb, gfp_mask);
857 if (unlikely(!skb))
858 return -ENOBUFS;
859 }
860
861 inet = inet_sk(sk);
862 tp = tcp_sk(sk);
863 tcb = TCP_SKB_CB(skb);
864 memset(&opts, 0, sizeof(opts));
865
866 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
867 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
868 else
869 tcp_options_size = tcp_established_options(sk, skb, &opts,
870 &md5);
871 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
872
873 if (tcp_packets_in_flight(tp) == 0) {
874 tcp_ca_event(sk, CA_EVENT_TX_START);
875 skb->ooo_okay = 1;
876 } else
877 skb->ooo_okay = 0;
878
879 skb_push(skb, tcp_header_size);
880 skb_reset_transport_header(skb);
881
882 skb_orphan(skb);
883 skb->sk = sk;
884 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
885 tcp_wfree : sock_wfree;
886 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
887
888 /* Build TCP header and checksum it. */
889 th = tcp_hdr(skb);
890 th->source = inet->inet_sport;
891 th->dest = inet->inet_dport;
892 th->seq = htonl(tcb->seq);
893 th->ack_seq = htonl(tp->rcv_nxt);
894 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
895 tcb->tcp_flags);
896
897 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
898 /* RFC1323: The window in SYN & SYN/ACK segments
899 * is never scaled.
900 */
901 th->window = htons(min(tp->rcv_wnd, 65535U));
902 } else {
903 th->window = htons(tcp_select_window(sk));
904 }
905 th->check = 0;
906 th->urg_ptr = 0;
907
908 /* The urg_mode check is necessary during a below snd_una win probe */
909 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
910 if (before(tp->snd_up, tcb->seq + 0x10000)) {
911 th->urg_ptr = htons(tp->snd_up - tcb->seq);
912 th->urg = 1;
913 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
914 th->urg_ptr = htons(0xFFFF);
915 th->urg = 1;
916 }
917 }
918
919 tcp_options_write((__be32 *)(th + 1), tp, &opts);
920 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
921 TCP_ECN_send(sk, skb, tcp_header_size);
922
923 #ifdef CONFIG_TCP_MD5SIG
924 /* Calculate the MD5 hash, as we have all we need now */
925 if (md5) {
926 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
927 tp->af_specific->calc_md5_hash(opts.hash_location,
928 md5, sk, NULL, skb);
929 }
930 #endif
931
932 icsk->icsk_af_ops->send_check(sk, skb);
933
934 if (likely(tcb->tcp_flags & TCPHDR_ACK))
935 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
936
937 if (skb->len != tcp_header_size)
938 tcp_event_data_sent(tp, sk);
939
940 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
941 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
942 tcp_skb_pcount(skb));
943
944 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
945 if (likely(err <= 0))
946 return err;
947
948 tcp_enter_cwr(sk, 1);
949
950 return net_xmit_eval(err);
951 }
952
953 /* This routine just queues the buffer for sending.
954 *
955 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
956 * otherwise socket can stall.
957 */
958 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
959 {
960 struct tcp_sock *tp = tcp_sk(sk);
961
962 /* Advance write_seq and place onto the write_queue. */
963 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
964 skb_header_release(skb);
965 tcp_add_write_queue_tail(sk, skb);
966 sk->sk_wmem_queued += skb->truesize;
967 sk_mem_charge(sk, skb->truesize);
968 }
969
970 /* Initialize TSO segments for a packet. */
971 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
972 unsigned int mss_now)
973 {
974 if (skb->len <= mss_now || !sk_can_gso(sk) ||
975 skb->ip_summed == CHECKSUM_NONE) {
976 /* Avoid the costly divide in the normal
977 * non-TSO case.
978 */
979 skb_shinfo(skb)->gso_segs = 1;
980 skb_shinfo(skb)->gso_size = 0;
981 skb_shinfo(skb)->gso_type = 0;
982 } else {
983 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
984 skb_shinfo(skb)->gso_size = mss_now;
985 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
986 }
987 }
988
989 /* When a modification to fackets out becomes necessary, we need to check
990 * skb is counted to fackets_out or not.
991 */
992 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
993 int decr)
994 {
995 struct tcp_sock *tp = tcp_sk(sk);
996
997 if (!tp->sacked_out || tcp_is_reno(tp))
998 return;
999
1000 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1001 tp->fackets_out -= decr;
1002 }
1003
1004 /* Pcount in the middle of the write queue got changed, we need to do various
1005 * tweaks to fix counters
1006 */
1007 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1008 {
1009 struct tcp_sock *tp = tcp_sk(sk);
1010
1011 tp->packets_out -= decr;
1012
1013 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1014 tp->sacked_out -= decr;
1015 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1016 tp->retrans_out -= decr;
1017 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1018 tp->lost_out -= decr;
1019
1020 /* Reno case is special. Sigh... */
1021 if (tcp_is_reno(tp) && decr > 0)
1022 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1023
1024 tcp_adjust_fackets_out(sk, skb, decr);
1025
1026 if (tp->lost_skb_hint &&
1027 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1028 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1029 tp->lost_cnt_hint -= decr;
1030
1031 tcp_verify_left_out(tp);
1032 }
1033
1034 /* Function to create two new TCP segments. Shrinks the given segment
1035 * to the specified size and appends a new segment with the rest of the
1036 * packet to the list. This won't be called frequently, I hope.
1037 * Remember, these are still headerless SKBs at this point.
1038 */
1039 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1040 unsigned int mss_now)
1041 {
1042 struct tcp_sock *tp = tcp_sk(sk);
1043 struct sk_buff *buff;
1044 int nsize, old_factor;
1045 int nlen;
1046 u8 flags;
1047
1048 if (WARN_ON(len > skb->len))
1049 return -EINVAL;
1050
1051 nsize = skb_headlen(skb) - len;
1052 if (nsize < 0)
1053 nsize = 0;
1054
1055 if (skb_cloned(skb) &&
1056 skb_is_nonlinear(skb) &&
1057 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1058 return -ENOMEM;
1059
1060 /* Get a new skb... force flag on. */
1061 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1062 if (buff == NULL)
1063 return -ENOMEM; /* We'll just try again later. */
1064
1065 sk->sk_wmem_queued += buff->truesize;
1066 sk_mem_charge(sk, buff->truesize);
1067 nlen = skb->len - len - nsize;
1068 buff->truesize += nlen;
1069 skb->truesize -= nlen;
1070
1071 /* Correct the sequence numbers. */
1072 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1073 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1074 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1075
1076 /* PSH and FIN should only be set in the second packet. */
1077 flags = TCP_SKB_CB(skb)->tcp_flags;
1078 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1079 TCP_SKB_CB(buff)->tcp_flags = flags;
1080 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1081
1082 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1083 /* Copy and checksum data tail into the new buffer. */
1084 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1085 skb_put(buff, nsize),
1086 nsize, 0);
1087
1088 skb_trim(skb, len);
1089
1090 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1091 } else {
1092 skb->ip_summed = CHECKSUM_PARTIAL;
1093 skb_split(skb, buff, len);
1094 }
1095
1096 buff->ip_summed = skb->ip_summed;
1097
1098 /* Looks stupid, but our code really uses when of
1099 * skbs, which it never sent before. --ANK
1100 */
1101 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1102 buff->tstamp = skb->tstamp;
1103
1104 old_factor = tcp_skb_pcount(skb);
1105
1106 /* Fix up tso_factor for both original and new SKB. */
1107 tcp_set_skb_tso_segs(sk, skb, mss_now);
1108 tcp_set_skb_tso_segs(sk, buff, mss_now);
1109
1110 /* If this packet has been sent out already, we must
1111 * adjust the various packet counters.
1112 */
1113 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1114 int diff = old_factor - tcp_skb_pcount(skb) -
1115 tcp_skb_pcount(buff);
1116
1117 if (diff)
1118 tcp_adjust_pcount(sk, skb, diff);
1119 }
1120
1121 /* Link BUFF into the send queue. */
1122 skb_header_release(buff);
1123 tcp_insert_write_queue_after(skb, buff, sk);
1124
1125 return 0;
1126 }
1127
1128 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1129 * eventually). The difference is that pulled data not copied, but
1130 * immediately discarded.
1131 */
1132 static void __pskb_trim_head(struct sk_buff *skb, int len)
1133 {
1134 int i, k, eat;
1135
1136 eat = min_t(int, len, skb_headlen(skb));
1137 if (eat) {
1138 __skb_pull(skb, eat);
1139 skb->avail_size -= eat;
1140 len -= eat;
1141 if (!len)
1142 return;
1143 }
1144 eat = len;
1145 k = 0;
1146 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1147 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1148
1149 if (size <= eat) {
1150 skb_frag_unref(skb, i);
1151 eat -= size;
1152 } else {
1153 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1154 if (eat) {
1155 skb_shinfo(skb)->frags[k].page_offset += eat;
1156 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1157 eat = 0;
1158 }
1159 k++;
1160 }
1161 }
1162 skb_shinfo(skb)->nr_frags = k;
1163
1164 skb_reset_tail_pointer(skb);
1165 skb->data_len -= len;
1166 skb->len = skb->data_len;
1167 }
1168
1169 /* Remove acked data from a packet in the transmit queue. */
1170 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1171 {
1172 if (skb_unclone(skb, GFP_ATOMIC))
1173 return -ENOMEM;
1174
1175 __pskb_trim_head(skb, len);
1176
1177 TCP_SKB_CB(skb)->seq += len;
1178 skb->ip_summed = CHECKSUM_PARTIAL;
1179
1180 skb->truesize -= len;
1181 sk->sk_wmem_queued -= len;
1182 sk_mem_uncharge(sk, len);
1183 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1184
1185 /* Any change of skb->len requires recalculation of tso factor. */
1186 if (tcp_skb_pcount(skb) > 1)
1187 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1188
1189 return 0;
1190 }
1191
1192 /* Calculate MSS not accounting any TCP options. */
1193 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1194 {
1195 const struct tcp_sock *tp = tcp_sk(sk);
1196 const struct inet_connection_sock *icsk = inet_csk(sk);
1197 int mss_now;
1198
1199 /* Calculate base mss without TCP options:
1200 It is MMS_S - sizeof(tcphdr) of rfc1122
1201 */
1202 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1203
1204 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1205 if (icsk->icsk_af_ops->net_frag_header_len) {
1206 const struct dst_entry *dst = __sk_dst_get(sk);
1207
1208 if (dst && dst_allfrag(dst))
1209 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1210 }
1211
1212 /* Clamp it (mss_clamp does not include tcp options) */
1213 if (mss_now > tp->rx_opt.mss_clamp)
1214 mss_now = tp->rx_opt.mss_clamp;
1215
1216 /* Now subtract optional transport overhead */
1217 mss_now -= icsk->icsk_ext_hdr_len;
1218
1219 /* Then reserve room for full set of TCP options and 8 bytes of data */
1220 if (mss_now < 48)
1221 mss_now = 48;
1222 return mss_now;
1223 }
1224
1225 /* Calculate MSS. Not accounting for SACKs here. */
1226 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1227 {
1228 /* Subtract TCP options size, not including SACKs */
1229 return __tcp_mtu_to_mss(sk, pmtu) -
1230 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1231 }
1232
1233 /* Inverse of above */
1234 int tcp_mss_to_mtu(struct sock *sk, int mss)
1235 {
1236 const struct tcp_sock *tp = tcp_sk(sk);
1237 const struct inet_connection_sock *icsk = inet_csk(sk);
1238 int mtu;
1239
1240 mtu = mss +
1241 tp->tcp_header_len +
1242 icsk->icsk_ext_hdr_len +
1243 icsk->icsk_af_ops->net_header_len;
1244
1245 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1246 if (icsk->icsk_af_ops->net_frag_header_len) {
1247 const struct dst_entry *dst = __sk_dst_get(sk);
1248
1249 if (dst && dst_allfrag(dst))
1250 mtu += icsk->icsk_af_ops->net_frag_header_len;
1251 }
1252 return mtu;
1253 }
1254
1255 /* MTU probing init per socket */
1256 void tcp_mtup_init(struct sock *sk)
1257 {
1258 struct tcp_sock *tp = tcp_sk(sk);
1259 struct inet_connection_sock *icsk = inet_csk(sk);
1260
1261 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1262 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1263 icsk->icsk_af_ops->net_header_len;
1264 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1265 icsk->icsk_mtup.probe_size = 0;
1266 }
1267 EXPORT_SYMBOL(tcp_mtup_init);
1268
1269 /* This function synchronize snd mss to current pmtu/exthdr set.
1270
1271 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1272 for TCP options, but includes only bare TCP header.
1273
1274 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1275 It is minimum of user_mss and mss received with SYN.
1276 It also does not include TCP options.
1277
1278 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1279
1280 tp->mss_cache is current effective sending mss, including
1281 all tcp options except for SACKs. It is evaluated,
1282 taking into account current pmtu, but never exceeds
1283 tp->rx_opt.mss_clamp.
1284
1285 NOTE1. rfc1122 clearly states that advertised MSS
1286 DOES NOT include either tcp or ip options.
1287
1288 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1289 are READ ONLY outside this function. --ANK (980731)
1290 */
1291 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1292 {
1293 struct tcp_sock *tp = tcp_sk(sk);
1294 struct inet_connection_sock *icsk = inet_csk(sk);
1295 int mss_now;
1296
1297 if (icsk->icsk_mtup.search_high > pmtu)
1298 icsk->icsk_mtup.search_high = pmtu;
1299
1300 mss_now = tcp_mtu_to_mss(sk, pmtu);
1301 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1302
1303 /* And store cached results */
1304 icsk->icsk_pmtu_cookie = pmtu;
1305 if (icsk->icsk_mtup.enabled)
1306 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1307 tp->mss_cache = mss_now;
1308
1309 return mss_now;
1310 }
1311 EXPORT_SYMBOL(tcp_sync_mss);
1312
1313 /* Compute the current effective MSS, taking SACKs and IP options,
1314 * and even PMTU discovery events into account.
1315 */
1316 unsigned int tcp_current_mss(struct sock *sk)
1317 {
1318 const struct tcp_sock *tp = tcp_sk(sk);
1319 const struct dst_entry *dst = __sk_dst_get(sk);
1320 u32 mss_now;
1321 unsigned int header_len;
1322 struct tcp_out_options opts;
1323 struct tcp_md5sig_key *md5;
1324
1325 mss_now = tp->mss_cache;
1326
1327 if (dst) {
1328 u32 mtu = dst_mtu(dst);
1329 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1330 mss_now = tcp_sync_mss(sk, mtu);
1331 }
1332
1333 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1334 sizeof(struct tcphdr);
1335 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1336 * some common options. If this is an odd packet (because we have SACK
1337 * blocks etc) then our calculated header_len will be different, and
1338 * we have to adjust mss_now correspondingly */
1339 if (header_len != tp->tcp_header_len) {
1340 int delta = (int) header_len - tp->tcp_header_len;
1341 mss_now -= delta;
1342 }
1343
1344 return mss_now;
1345 }
1346
1347 /* Congestion window validation. (RFC2861) */
1348 static void tcp_cwnd_validate(struct sock *sk)
1349 {
1350 struct tcp_sock *tp = tcp_sk(sk);
1351
1352 if (tp->packets_out >= tp->snd_cwnd) {
1353 /* Network is feed fully. */
1354 tp->snd_cwnd_used = 0;
1355 tp->snd_cwnd_stamp = tcp_time_stamp;
1356 } else {
1357 /* Network starves. */
1358 if (tp->packets_out > tp->snd_cwnd_used)
1359 tp->snd_cwnd_used = tp->packets_out;
1360
1361 if (sysctl_tcp_slow_start_after_idle &&
1362 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1363 tcp_cwnd_application_limited(sk);
1364 }
1365 }
1366
1367 /* Returns the portion of skb which can be sent right away without
1368 * introducing MSS oddities to segment boundaries. In rare cases where
1369 * mss_now != mss_cache, we will request caller to create a small skb
1370 * per input skb which could be mostly avoided here (if desired).
1371 *
1372 * We explicitly want to create a request for splitting write queue tail
1373 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1374 * thus all the complexity (cwnd_len is always MSS multiple which we
1375 * return whenever allowed by the other factors). Basically we need the
1376 * modulo only when the receiver window alone is the limiting factor or
1377 * when we would be allowed to send the split-due-to-Nagle skb fully.
1378 */
1379 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1380 unsigned int mss_now, unsigned int max_segs)
1381 {
1382 const struct tcp_sock *tp = tcp_sk(sk);
1383 u32 needed, window, max_len;
1384
1385 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1386 max_len = mss_now * max_segs;
1387
1388 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1389 return max_len;
1390
1391 needed = min(skb->len, window);
1392
1393 if (max_len <= needed)
1394 return max_len;
1395
1396 return needed - needed % mss_now;
1397 }
1398
1399 /* Can at least one segment of SKB be sent right now, according to the
1400 * congestion window rules? If so, return how many segments are allowed.
1401 */
1402 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1403 const struct sk_buff *skb)
1404 {
1405 u32 in_flight, cwnd;
1406
1407 /* Don't be strict about the congestion window for the final FIN. */
1408 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1409 tcp_skb_pcount(skb) == 1)
1410 return 1;
1411
1412 in_flight = tcp_packets_in_flight(tp);
1413 cwnd = tp->snd_cwnd;
1414 if (in_flight < cwnd)
1415 return (cwnd - in_flight);
1416
1417 return 0;
1418 }
1419
1420 /* Initialize TSO state of a skb.
1421 * This must be invoked the first time we consider transmitting
1422 * SKB onto the wire.
1423 */
1424 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1425 unsigned int mss_now)
1426 {
1427 int tso_segs = tcp_skb_pcount(skb);
1428
1429 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1430 tcp_set_skb_tso_segs(sk, skb, mss_now);
1431 tso_segs = tcp_skb_pcount(skb);
1432 }
1433 return tso_segs;
1434 }
1435
1436 /* Minshall's variant of the Nagle send check. */
1437 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1438 {
1439 return after(tp->snd_sml, tp->snd_una) &&
1440 !after(tp->snd_sml, tp->snd_nxt);
1441 }
1442
1443 /* Return false, if packet can be sent now without violation Nagle's rules:
1444 * 1. It is full sized.
1445 * 2. Or it contains FIN. (already checked by caller)
1446 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1447 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1448 * With Minshall's modification: all sent small packets are ACKed.
1449 */
1450 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1451 const struct sk_buff *skb,
1452 unsigned int mss_now, int nonagle)
1453 {
1454 return skb->len < mss_now &&
1455 ((nonagle & TCP_NAGLE_CORK) ||
1456 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1457 }
1458
1459 /* Return true if the Nagle test allows this packet to be
1460 * sent now.
1461 */
1462 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1463 unsigned int cur_mss, int nonagle)
1464 {
1465 /* Nagle rule does not apply to frames, which sit in the middle of the
1466 * write_queue (they have no chances to get new data).
1467 *
1468 * This is implemented in the callers, where they modify the 'nonagle'
1469 * argument based upon the location of SKB in the send queue.
1470 */
1471 if (nonagle & TCP_NAGLE_PUSH)
1472 return true;
1473
1474 /* Don't use the nagle rule for urgent data (or for the final FIN).
1475 * Nagle can be ignored during F-RTO too (see RFC4138).
1476 */
1477 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1478 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1479 return true;
1480
1481 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1482 return true;
1483
1484 return false;
1485 }
1486
1487 /* Does at least the first segment of SKB fit into the send window? */
1488 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1489 const struct sk_buff *skb,
1490 unsigned int cur_mss)
1491 {
1492 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1493
1494 if (skb->len > cur_mss)
1495 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1496
1497 return !after(end_seq, tcp_wnd_end(tp));
1498 }
1499
1500 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1501 * should be put on the wire right now. If so, it returns the number of
1502 * packets allowed by the congestion window.
1503 */
1504 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1505 unsigned int cur_mss, int nonagle)
1506 {
1507 const struct tcp_sock *tp = tcp_sk(sk);
1508 unsigned int cwnd_quota;
1509
1510 tcp_init_tso_segs(sk, skb, cur_mss);
1511
1512 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1513 return 0;
1514
1515 cwnd_quota = tcp_cwnd_test(tp, skb);
1516 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1517 cwnd_quota = 0;
1518
1519 return cwnd_quota;
1520 }
1521
1522 /* Test if sending is allowed right now. */
1523 bool tcp_may_send_now(struct sock *sk)
1524 {
1525 const struct tcp_sock *tp = tcp_sk(sk);
1526 struct sk_buff *skb = tcp_send_head(sk);
1527
1528 return skb &&
1529 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1530 (tcp_skb_is_last(sk, skb) ?
1531 tp->nonagle : TCP_NAGLE_PUSH));
1532 }
1533
1534 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1535 * which is put after SKB on the list. It is very much like
1536 * tcp_fragment() except that it may make several kinds of assumptions
1537 * in order to speed up the splitting operation. In particular, we
1538 * know that all the data is in scatter-gather pages, and that the
1539 * packet has never been sent out before (and thus is not cloned).
1540 */
1541 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1542 unsigned int mss_now, gfp_t gfp)
1543 {
1544 struct sk_buff *buff;
1545 int nlen = skb->len - len;
1546 u8 flags;
1547
1548 /* All of a TSO frame must be composed of paged data. */
1549 if (skb->len != skb->data_len)
1550 return tcp_fragment(sk, skb, len, mss_now);
1551
1552 buff = sk_stream_alloc_skb(sk, 0, gfp);
1553 if (unlikely(buff == NULL))
1554 return -ENOMEM;
1555
1556 sk->sk_wmem_queued += buff->truesize;
1557 sk_mem_charge(sk, buff->truesize);
1558 buff->truesize += nlen;
1559 skb->truesize -= nlen;
1560
1561 /* Correct the sequence numbers. */
1562 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1563 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1564 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1565
1566 /* PSH and FIN should only be set in the second packet. */
1567 flags = TCP_SKB_CB(skb)->tcp_flags;
1568 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1569 TCP_SKB_CB(buff)->tcp_flags = flags;
1570
1571 /* This packet was never sent out yet, so no SACK bits. */
1572 TCP_SKB_CB(buff)->sacked = 0;
1573
1574 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1575 skb_split(skb, buff, len);
1576
1577 /* Fix up tso_factor for both original and new SKB. */
1578 tcp_set_skb_tso_segs(sk, skb, mss_now);
1579 tcp_set_skb_tso_segs(sk, buff, mss_now);
1580
1581 /* Link BUFF into the send queue. */
1582 skb_header_release(buff);
1583 tcp_insert_write_queue_after(skb, buff, sk);
1584
1585 return 0;
1586 }
1587
1588 /* Try to defer sending, if possible, in order to minimize the amount
1589 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1590 *
1591 * This algorithm is from John Heffner.
1592 */
1593 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1594 {
1595 struct tcp_sock *tp = tcp_sk(sk);
1596 const struct inet_connection_sock *icsk = inet_csk(sk);
1597 u32 send_win, cong_win, limit, in_flight;
1598 int win_divisor;
1599
1600 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1601 goto send_now;
1602
1603 if (icsk->icsk_ca_state != TCP_CA_Open)
1604 goto send_now;
1605
1606 /* Defer for less than two clock ticks. */
1607 if (tp->tso_deferred &&
1608 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1609 goto send_now;
1610
1611 in_flight = tcp_packets_in_flight(tp);
1612
1613 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1614
1615 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1616
1617 /* From in_flight test above, we know that cwnd > in_flight. */
1618 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1619
1620 limit = min(send_win, cong_win);
1621
1622 /* If a full-sized TSO skb can be sent, do it. */
1623 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1624 sk->sk_gso_max_segs * tp->mss_cache))
1625 goto send_now;
1626
1627 /* Middle in queue won't get any more data, full sendable already? */
1628 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1629 goto send_now;
1630
1631 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1632 if (win_divisor) {
1633 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1634
1635 /* If at least some fraction of a window is available,
1636 * just use it.
1637 */
1638 chunk /= win_divisor;
1639 if (limit >= chunk)
1640 goto send_now;
1641 } else {
1642 /* Different approach, try not to defer past a single
1643 * ACK. Receiver should ACK every other full sized
1644 * frame, so if we have space for more than 3 frames
1645 * then send now.
1646 */
1647 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1648 goto send_now;
1649 }
1650
1651 /* Ok, it looks like it is advisable to defer. */
1652 tp->tso_deferred = 1 | (jiffies << 1);
1653
1654 return true;
1655
1656 send_now:
1657 tp->tso_deferred = 0;
1658 return false;
1659 }
1660
1661 /* Create a new MTU probe if we are ready.
1662 * MTU probe is regularly attempting to increase the path MTU by
1663 * deliberately sending larger packets. This discovers routing
1664 * changes resulting in larger path MTUs.
1665 *
1666 * Returns 0 if we should wait to probe (no cwnd available),
1667 * 1 if a probe was sent,
1668 * -1 otherwise
1669 */
1670 static int tcp_mtu_probe(struct sock *sk)
1671 {
1672 struct tcp_sock *tp = tcp_sk(sk);
1673 struct inet_connection_sock *icsk = inet_csk(sk);
1674 struct sk_buff *skb, *nskb, *next;
1675 int len;
1676 int probe_size;
1677 int size_needed;
1678 int copy;
1679 int mss_now;
1680
1681 /* Not currently probing/verifying,
1682 * not in recovery,
1683 * have enough cwnd, and
1684 * not SACKing (the variable headers throw things off) */
1685 if (!icsk->icsk_mtup.enabled ||
1686 icsk->icsk_mtup.probe_size ||
1687 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1688 tp->snd_cwnd < 11 ||
1689 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1690 return -1;
1691
1692 /* Very simple search strategy: just double the MSS. */
1693 mss_now = tcp_current_mss(sk);
1694 probe_size = 2 * tp->mss_cache;
1695 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1696 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1697 /* TODO: set timer for probe_converge_event */
1698 return -1;
1699 }
1700
1701 /* Have enough data in the send queue to probe? */
1702 if (tp->write_seq - tp->snd_nxt < size_needed)
1703 return -1;
1704
1705 if (tp->snd_wnd < size_needed)
1706 return -1;
1707 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1708 return 0;
1709
1710 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1711 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1712 if (!tcp_packets_in_flight(tp))
1713 return -1;
1714 else
1715 return 0;
1716 }
1717
1718 /* We're allowed to probe. Build it now. */
1719 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1720 return -1;
1721 sk->sk_wmem_queued += nskb->truesize;
1722 sk_mem_charge(sk, nskb->truesize);
1723
1724 skb = tcp_send_head(sk);
1725
1726 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1727 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1728 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1729 TCP_SKB_CB(nskb)->sacked = 0;
1730 nskb->csum = 0;
1731 nskb->ip_summed = skb->ip_summed;
1732
1733 tcp_insert_write_queue_before(nskb, skb, sk);
1734
1735 len = 0;
1736 tcp_for_write_queue_from_safe(skb, next, sk) {
1737 copy = min_t(int, skb->len, probe_size - len);
1738 if (nskb->ip_summed)
1739 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1740 else
1741 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1742 skb_put(nskb, copy),
1743 copy, nskb->csum);
1744
1745 if (skb->len <= copy) {
1746 /* We've eaten all the data from this skb.
1747 * Throw it away. */
1748 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1749 tcp_unlink_write_queue(skb, sk);
1750 sk_wmem_free_skb(sk, skb);
1751 } else {
1752 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1753 ~(TCPHDR_FIN|TCPHDR_PSH);
1754 if (!skb_shinfo(skb)->nr_frags) {
1755 skb_pull(skb, copy);
1756 if (skb->ip_summed != CHECKSUM_PARTIAL)
1757 skb->csum = csum_partial(skb->data,
1758 skb->len, 0);
1759 } else {
1760 __pskb_trim_head(skb, copy);
1761 tcp_set_skb_tso_segs(sk, skb, mss_now);
1762 }
1763 TCP_SKB_CB(skb)->seq += copy;
1764 }
1765
1766 len += copy;
1767
1768 if (len >= probe_size)
1769 break;
1770 }
1771 tcp_init_tso_segs(sk, nskb, nskb->len);
1772
1773 /* We're ready to send. If this fails, the probe will
1774 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1775 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1776 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1777 /* Decrement cwnd here because we are sending
1778 * effectively two packets. */
1779 tp->snd_cwnd--;
1780 tcp_event_new_data_sent(sk, nskb);
1781
1782 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1783 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1784 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1785
1786 return 1;
1787 }
1788
1789 return -1;
1790 }
1791
1792 /* This routine writes packets to the network. It advances the
1793 * send_head. This happens as incoming acks open up the remote
1794 * window for us.
1795 *
1796 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1797 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1798 * account rare use of URG, this is not a big flaw.
1799 *
1800 * Send at most one packet when push_one > 0. Temporarily ignore
1801 * cwnd limit to force at most one packet out when push_one == 2.
1802
1803 * Returns true, if no segments are in flight and we have queued segments,
1804 * but cannot send anything now because of SWS or another problem.
1805 */
1806 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1807 int push_one, gfp_t gfp)
1808 {
1809 struct tcp_sock *tp = tcp_sk(sk);
1810 struct sk_buff *skb;
1811 unsigned int tso_segs, sent_pkts;
1812 int cwnd_quota;
1813 int result;
1814
1815 sent_pkts = 0;
1816
1817 if (!push_one) {
1818 /* Do MTU probing. */
1819 result = tcp_mtu_probe(sk);
1820 if (!result) {
1821 return false;
1822 } else if (result > 0) {
1823 sent_pkts = 1;
1824 }
1825 }
1826
1827 while ((skb = tcp_send_head(sk))) {
1828 unsigned int limit;
1829
1830
1831 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1832 BUG_ON(!tso_segs);
1833
1834 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1835 goto repair; /* Skip network transmission */
1836
1837 cwnd_quota = tcp_cwnd_test(tp, skb);
1838 if (!cwnd_quota) {
1839 if (push_one == 2)
1840 /* Force out a loss probe pkt. */
1841 cwnd_quota = 1;
1842 else
1843 break;
1844 }
1845
1846 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1847 break;
1848
1849 if (tso_segs == 1) {
1850 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1851 (tcp_skb_is_last(sk, skb) ?
1852 nonagle : TCP_NAGLE_PUSH))))
1853 break;
1854 } else {
1855 if (!push_one && tcp_tso_should_defer(sk, skb))
1856 break;
1857 }
1858
1859 /* TSQ : sk_wmem_alloc accounts skb truesize,
1860 * including skb overhead. But thats OK.
1861 */
1862 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
1863 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1864 break;
1865 }
1866 limit = mss_now;
1867 if (tso_segs > 1 && !tcp_urg_mode(tp))
1868 limit = tcp_mss_split_point(sk, skb, mss_now,
1869 min_t(unsigned int,
1870 cwnd_quota,
1871 sk->sk_gso_max_segs));
1872
1873 if (skb->len > limit &&
1874 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1875 break;
1876
1877 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1878
1879 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1880 break;
1881
1882 repair:
1883 /* Advance the send_head. This one is sent out.
1884 * This call will increment packets_out.
1885 */
1886 tcp_event_new_data_sent(sk, skb);
1887
1888 tcp_minshall_update(tp, mss_now, skb);
1889 sent_pkts += tcp_skb_pcount(skb);
1890
1891 if (push_one)
1892 break;
1893 }
1894
1895 if (likely(sent_pkts)) {
1896 if (tcp_in_cwnd_reduction(sk))
1897 tp->prr_out += sent_pkts;
1898
1899 /* Send one loss probe per tail loss episode. */
1900 if (push_one != 2)
1901 tcp_schedule_loss_probe(sk);
1902 tcp_cwnd_validate(sk);
1903 return false;
1904 }
1905 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1906 }
1907
1908 bool tcp_schedule_loss_probe(struct sock *sk)
1909 {
1910 struct inet_connection_sock *icsk = inet_csk(sk);
1911 struct tcp_sock *tp = tcp_sk(sk);
1912 u32 timeout, tlp_time_stamp, rto_time_stamp;
1913 u32 rtt = tp->srtt >> 3;
1914
1915 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1916 return false;
1917 /* No consecutive loss probes. */
1918 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1919 tcp_rearm_rto(sk);
1920 return false;
1921 }
1922 /* Don't do any loss probe on a Fast Open connection before 3WHS
1923 * finishes.
1924 */
1925 if (sk->sk_state == TCP_SYN_RECV)
1926 return false;
1927
1928 /* TLP is only scheduled when next timer event is RTO. */
1929 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1930 return false;
1931
1932 /* Schedule a loss probe in 2*RTT for SACK capable connections
1933 * in Open state, that are either limited by cwnd or application.
1934 */
1935 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1936 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1937 return false;
1938
1939 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1940 tcp_send_head(sk))
1941 return false;
1942
1943 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1944 * for delayed ack when there's one outstanding packet.
1945 */
1946 timeout = rtt << 1;
1947 if (tp->packets_out == 1)
1948 timeout = max_t(u32, timeout,
1949 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1950 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1951
1952 /* If RTO is shorter, just schedule TLP in its place. */
1953 tlp_time_stamp = tcp_time_stamp + timeout;
1954 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1955 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1956 s32 delta = rto_time_stamp - tcp_time_stamp;
1957 if (delta > 0)
1958 timeout = delta;
1959 }
1960
1961 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1962 TCP_RTO_MAX);
1963 return true;
1964 }
1965
1966 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1967 * retransmit the last segment.
1968 */
1969 void tcp_send_loss_probe(struct sock *sk)
1970 {
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 struct sk_buff *skb;
1973 int pcount;
1974 int mss = tcp_current_mss(sk);
1975 int err = -1;
1976
1977 if (tcp_send_head(sk) != NULL) {
1978 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
1979 goto rearm_timer;
1980 }
1981
1982 /* At most one outstanding TLP retransmission. */
1983 if (tp->tlp_high_seq)
1984 goto rearm_timer;
1985
1986 /* Retransmit last segment. */
1987 skb = tcp_write_queue_tail(sk);
1988 if (WARN_ON(!skb))
1989 goto rearm_timer;
1990
1991 pcount = tcp_skb_pcount(skb);
1992 if (WARN_ON(!pcount))
1993 goto rearm_timer;
1994
1995 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
1996 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
1997 goto rearm_timer;
1998 skb = tcp_write_queue_tail(sk);
1999 }
2000
2001 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2002 goto rearm_timer;
2003
2004 /* Probe with zero data doesn't trigger fast recovery. */
2005 if (skb->len > 0)
2006 err = __tcp_retransmit_skb(sk, skb);
2007
2008 /* Record snd_nxt for loss detection. */
2009 if (likely(!err))
2010 tp->tlp_high_seq = tp->snd_nxt;
2011
2012 rearm_timer:
2013 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2014 inet_csk(sk)->icsk_rto,
2015 TCP_RTO_MAX);
2016
2017 if (likely(!err))
2018 NET_INC_STATS_BH(sock_net(sk),
2019 LINUX_MIB_TCPLOSSPROBES);
2020 return;
2021 }
2022
2023 /* Push out any pending frames which were held back due to
2024 * TCP_CORK or attempt at coalescing tiny packets.
2025 * The socket must be locked by the caller.
2026 */
2027 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2028 int nonagle)
2029 {
2030 /* If we are closed, the bytes will have to remain here.
2031 * In time closedown will finish, we empty the write queue and
2032 * all will be happy.
2033 */
2034 if (unlikely(sk->sk_state == TCP_CLOSE))
2035 return;
2036
2037 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2038 sk_gfp_atomic(sk, GFP_ATOMIC)))
2039 tcp_check_probe_timer(sk);
2040 }
2041
2042 /* Send _single_ skb sitting at the send head. This function requires
2043 * true push pending frames to setup probe timer etc.
2044 */
2045 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2046 {
2047 struct sk_buff *skb = tcp_send_head(sk);
2048
2049 BUG_ON(!skb || skb->len < mss_now);
2050
2051 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2052 }
2053
2054 /* This function returns the amount that we can raise the
2055 * usable window based on the following constraints
2056 *
2057 * 1. The window can never be shrunk once it is offered (RFC 793)
2058 * 2. We limit memory per socket
2059 *
2060 * RFC 1122:
2061 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2062 * RECV.NEXT + RCV.WIN fixed until:
2063 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2064 *
2065 * i.e. don't raise the right edge of the window until you can raise
2066 * it at least MSS bytes.
2067 *
2068 * Unfortunately, the recommended algorithm breaks header prediction,
2069 * since header prediction assumes th->window stays fixed.
2070 *
2071 * Strictly speaking, keeping th->window fixed violates the receiver
2072 * side SWS prevention criteria. The problem is that under this rule
2073 * a stream of single byte packets will cause the right side of the
2074 * window to always advance by a single byte.
2075 *
2076 * Of course, if the sender implements sender side SWS prevention
2077 * then this will not be a problem.
2078 *
2079 * BSD seems to make the following compromise:
2080 *
2081 * If the free space is less than the 1/4 of the maximum
2082 * space available and the free space is less than 1/2 mss,
2083 * then set the window to 0.
2084 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2085 * Otherwise, just prevent the window from shrinking
2086 * and from being larger than the largest representable value.
2087 *
2088 * This prevents incremental opening of the window in the regime
2089 * where TCP is limited by the speed of the reader side taking
2090 * data out of the TCP receive queue. It does nothing about
2091 * those cases where the window is constrained on the sender side
2092 * because the pipeline is full.
2093 *
2094 * BSD also seems to "accidentally" limit itself to windows that are a
2095 * multiple of MSS, at least until the free space gets quite small.
2096 * This would appear to be a side effect of the mbuf implementation.
2097 * Combining these two algorithms results in the observed behavior
2098 * of having a fixed window size at almost all times.
2099 *
2100 * Below we obtain similar behavior by forcing the offered window to
2101 * a multiple of the mss when it is feasible to do so.
2102 *
2103 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2104 * Regular options like TIMESTAMP are taken into account.
2105 */
2106 u32 __tcp_select_window(struct sock *sk)
2107 {
2108 struct inet_connection_sock *icsk = inet_csk(sk);
2109 struct tcp_sock *tp = tcp_sk(sk);
2110 /* MSS for the peer's data. Previous versions used mss_clamp
2111 * here. I don't know if the value based on our guesses
2112 * of peer's MSS is better for the performance. It's more correct
2113 * but may be worse for the performance because of rcv_mss
2114 * fluctuations. --SAW 1998/11/1
2115 */
2116 int mss = icsk->icsk_ack.rcv_mss;
2117 int free_space = tcp_space(sk);
2118 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2119 int window;
2120
2121 if (mss > full_space)
2122 mss = full_space;
2123
2124 if (free_space < (full_space >> 1)) {
2125 icsk->icsk_ack.quick = 0;
2126
2127 if (sk_under_memory_pressure(sk))
2128 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2129 4U * tp->advmss);
2130
2131 if (free_space < mss)
2132 return 0;
2133 }
2134
2135 if (free_space > tp->rcv_ssthresh)
2136 free_space = tp->rcv_ssthresh;
2137
2138 /* Don't do rounding if we are using window scaling, since the
2139 * scaled window will not line up with the MSS boundary anyway.
2140 */
2141 window = tp->rcv_wnd;
2142 if (tp->rx_opt.rcv_wscale) {
2143 window = free_space;
2144
2145 /* Advertise enough space so that it won't get scaled away.
2146 * Import case: prevent zero window announcement if
2147 * 1<<rcv_wscale > mss.
2148 */
2149 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2150 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2151 << tp->rx_opt.rcv_wscale);
2152 } else {
2153 /* Get the largest window that is a nice multiple of mss.
2154 * Window clamp already applied above.
2155 * If our current window offering is within 1 mss of the
2156 * free space we just keep it. This prevents the divide
2157 * and multiply from happening most of the time.
2158 * We also don't do any window rounding when the free space
2159 * is too small.
2160 */
2161 if (window <= free_space - mss || window > free_space)
2162 window = (free_space / mss) * mss;
2163 else if (mss == full_space &&
2164 free_space > window + (full_space >> 1))
2165 window = free_space;
2166 }
2167
2168 return window;
2169 }
2170
2171 /* Collapses two adjacent SKB's during retransmission. */
2172 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2173 {
2174 struct tcp_sock *tp = tcp_sk(sk);
2175 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2176 int skb_size, next_skb_size;
2177
2178 skb_size = skb->len;
2179 next_skb_size = next_skb->len;
2180
2181 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2182
2183 tcp_highest_sack_combine(sk, next_skb, skb);
2184
2185 tcp_unlink_write_queue(next_skb, sk);
2186
2187 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2188 next_skb_size);
2189
2190 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2191 skb->ip_summed = CHECKSUM_PARTIAL;
2192
2193 if (skb->ip_summed != CHECKSUM_PARTIAL)
2194 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2195
2196 /* Update sequence range on original skb. */
2197 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2198
2199 /* Merge over control information. This moves PSH/FIN etc. over */
2200 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2201
2202 /* All done, get rid of second SKB and account for it so
2203 * packet counting does not break.
2204 */
2205 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2206
2207 /* changed transmit queue under us so clear hints */
2208 tcp_clear_retrans_hints_partial(tp);
2209 if (next_skb == tp->retransmit_skb_hint)
2210 tp->retransmit_skb_hint = skb;
2211
2212 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2213
2214 sk_wmem_free_skb(sk, next_skb);
2215 }
2216
2217 /* Check if coalescing SKBs is legal. */
2218 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2219 {
2220 if (tcp_skb_pcount(skb) > 1)
2221 return false;
2222 /* TODO: SACK collapsing could be used to remove this condition */
2223 if (skb_shinfo(skb)->nr_frags != 0)
2224 return false;
2225 if (skb_cloned(skb))
2226 return false;
2227 if (skb == tcp_send_head(sk))
2228 return false;
2229 /* Some heurestics for collapsing over SACK'd could be invented */
2230 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2231 return false;
2232
2233 return true;
2234 }
2235
2236 /* Collapse packets in the retransmit queue to make to create
2237 * less packets on the wire. This is only done on retransmission.
2238 */
2239 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2240 int space)
2241 {
2242 struct tcp_sock *tp = tcp_sk(sk);
2243 struct sk_buff *skb = to, *tmp;
2244 bool first = true;
2245
2246 if (!sysctl_tcp_retrans_collapse)
2247 return;
2248 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2249 return;
2250
2251 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2252 if (!tcp_can_collapse(sk, skb))
2253 break;
2254
2255 space -= skb->len;
2256
2257 if (first) {
2258 first = false;
2259 continue;
2260 }
2261
2262 if (space < 0)
2263 break;
2264 /* Punt if not enough space exists in the first SKB for
2265 * the data in the second
2266 */
2267 if (skb->len > skb_availroom(to))
2268 break;
2269
2270 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2271 break;
2272
2273 tcp_collapse_retrans(sk, to);
2274 }
2275 }
2276
2277 /* This retransmits one SKB. Policy decisions and retransmit queue
2278 * state updates are done by the caller. Returns non-zero if an
2279 * error occurred which prevented the send.
2280 */
2281 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2282 {
2283 struct tcp_sock *tp = tcp_sk(sk);
2284 struct inet_connection_sock *icsk = inet_csk(sk);
2285 unsigned int cur_mss;
2286
2287 /* Inconslusive MTU probe */
2288 if (icsk->icsk_mtup.probe_size) {
2289 icsk->icsk_mtup.probe_size = 0;
2290 }
2291
2292 /* Do not sent more than we queued. 1/4 is reserved for possible
2293 * copying overhead: fragmentation, tunneling, mangling etc.
2294 */
2295 if (atomic_read(&sk->sk_wmem_alloc) >
2296 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2297 return -EAGAIN;
2298
2299 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2300 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2301 BUG();
2302 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2303 return -ENOMEM;
2304 }
2305
2306 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2307 return -EHOSTUNREACH; /* Routing failure or similar. */
2308
2309 cur_mss = tcp_current_mss(sk);
2310
2311 /* If receiver has shrunk his window, and skb is out of
2312 * new window, do not retransmit it. The exception is the
2313 * case, when window is shrunk to zero. In this case
2314 * our retransmit serves as a zero window probe.
2315 */
2316 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2317 TCP_SKB_CB(skb)->seq != tp->snd_una)
2318 return -EAGAIN;
2319
2320 if (skb->len > cur_mss) {
2321 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2322 return -ENOMEM; /* We'll try again later. */
2323 } else {
2324 int oldpcount = tcp_skb_pcount(skb);
2325
2326 if (unlikely(oldpcount > 1)) {
2327 tcp_init_tso_segs(sk, skb, cur_mss);
2328 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2329 }
2330 }
2331
2332 tcp_retrans_try_collapse(sk, skb, cur_mss);
2333
2334 /* Some Solaris stacks overoptimize and ignore the FIN on a
2335 * retransmit when old data is attached. So strip it off
2336 * since it is cheap to do so and saves bytes on the network.
2337 */
2338 if (skb->len > 0 &&
2339 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2340 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2341 if (!pskb_trim(skb, 0)) {
2342 /* Reuse, even though it does some unnecessary work */
2343 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2344 TCP_SKB_CB(skb)->tcp_flags);
2345 skb->ip_summed = CHECKSUM_NONE;
2346 }
2347 }
2348
2349 /* Make a copy, if the first transmission SKB clone we made
2350 * is still in somebody's hands, else make a clone.
2351 */
2352 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2353
2354 /* make sure skb->data is aligned on arches that require it */
2355 if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) {
2356 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2357 GFP_ATOMIC);
2358 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2359 -ENOBUFS;
2360 } else {
2361 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2362 }
2363 }
2364
2365 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2366 {
2367 struct tcp_sock *tp = tcp_sk(sk);
2368 int err = __tcp_retransmit_skb(sk, skb);
2369
2370 if (err == 0) {
2371 /* Update global TCP statistics. */
2372 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2373
2374 tp->total_retrans++;
2375
2376 #if FASTRETRANS_DEBUG > 0
2377 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2378 net_dbg_ratelimited("retrans_out leaked\n");
2379 }
2380 #endif
2381 if (!tp->retrans_out)
2382 tp->lost_retrans_low = tp->snd_nxt;
2383 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2384 tp->retrans_out += tcp_skb_pcount(skb);
2385
2386 /* Save stamp of the first retransmit. */
2387 if (!tp->retrans_stamp)
2388 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2389
2390 tp->undo_retrans += tcp_skb_pcount(skb);
2391
2392 /* snd_nxt is stored to detect loss of retransmitted segment,
2393 * see tcp_input.c tcp_sacktag_write_queue().
2394 */
2395 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2396 }
2397 return err;
2398 }
2399
2400 /* Check if we forward retransmits are possible in the current
2401 * window/congestion state.
2402 */
2403 static bool tcp_can_forward_retransmit(struct sock *sk)
2404 {
2405 const struct inet_connection_sock *icsk = inet_csk(sk);
2406 const struct tcp_sock *tp = tcp_sk(sk);
2407
2408 /* Forward retransmissions are possible only during Recovery. */
2409 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2410 return false;
2411
2412 /* No forward retransmissions in Reno are possible. */
2413 if (tcp_is_reno(tp))
2414 return false;
2415
2416 /* Yeah, we have to make difficult choice between forward transmission
2417 * and retransmission... Both ways have their merits...
2418 *
2419 * For now we do not retransmit anything, while we have some new
2420 * segments to send. In the other cases, follow rule 3 for
2421 * NextSeg() specified in RFC3517.
2422 */
2423
2424 if (tcp_may_send_now(sk))
2425 return false;
2426
2427 return true;
2428 }
2429
2430 /* This gets called after a retransmit timeout, and the initially
2431 * retransmitted data is acknowledged. It tries to continue
2432 * resending the rest of the retransmit queue, until either
2433 * we've sent it all or the congestion window limit is reached.
2434 * If doing SACK, the first ACK which comes back for a timeout
2435 * based retransmit packet might feed us FACK information again.
2436 * If so, we use it to avoid unnecessarily retransmissions.
2437 */
2438 void tcp_xmit_retransmit_queue(struct sock *sk)
2439 {
2440 const struct inet_connection_sock *icsk = inet_csk(sk);
2441 struct tcp_sock *tp = tcp_sk(sk);
2442 struct sk_buff *skb;
2443 struct sk_buff *hole = NULL;
2444 u32 last_lost;
2445 int mib_idx;
2446 int fwd_rexmitting = 0;
2447
2448 if (!tp->packets_out)
2449 return;
2450
2451 if (!tp->lost_out)
2452 tp->retransmit_high = tp->snd_una;
2453
2454 if (tp->retransmit_skb_hint) {
2455 skb = tp->retransmit_skb_hint;
2456 last_lost = TCP_SKB_CB(skb)->end_seq;
2457 if (after(last_lost, tp->retransmit_high))
2458 last_lost = tp->retransmit_high;
2459 } else {
2460 skb = tcp_write_queue_head(sk);
2461 last_lost = tp->snd_una;
2462 }
2463
2464 tcp_for_write_queue_from(skb, sk) {
2465 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2466
2467 if (skb == tcp_send_head(sk))
2468 break;
2469 /* we could do better than to assign each time */
2470 if (hole == NULL)
2471 tp->retransmit_skb_hint = skb;
2472
2473 /* Assume this retransmit will generate
2474 * only one packet for congestion window
2475 * calculation purposes. This works because
2476 * tcp_retransmit_skb() will chop up the
2477 * packet to be MSS sized and all the
2478 * packet counting works out.
2479 */
2480 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2481 return;
2482
2483 if (fwd_rexmitting) {
2484 begin_fwd:
2485 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2486 break;
2487 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2488
2489 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2490 tp->retransmit_high = last_lost;
2491 if (!tcp_can_forward_retransmit(sk))
2492 break;
2493 /* Backtrack if necessary to non-L'ed skb */
2494 if (hole != NULL) {
2495 skb = hole;
2496 hole = NULL;
2497 }
2498 fwd_rexmitting = 1;
2499 goto begin_fwd;
2500
2501 } else if (!(sacked & TCPCB_LOST)) {
2502 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2503 hole = skb;
2504 continue;
2505
2506 } else {
2507 last_lost = TCP_SKB_CB(skb)->end_seq;
2508 if (icsk->icsk_ca_state != TCP_CA_Loss)
2509 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2510 else
2511 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2512 }
2513
2514 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2515 continue;
2516
2517 if (tcp_retransmit_skb(sk, skb)) {
2518 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2519 return;
2520 }
2521 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2522
2523 if (tcp_in_cwnd_reduction(sk))
2524 tp->prr_out += tcp_skb_pcount(skb);
2525
2526 if (skb == tcp_write_queue_head(sk))
2527 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2528 inet_csk(sk)->icsk_rto,
2529 TCP_RTO_MAX);
2530 }
2531 }
2532
2533 /* Send a fin. The caller locks the socket for us. This cannot be
2534 * allowed to fail queueing a FIN frame under any circumstances.
2535 */
2536 void tcp_send_fin(struct sock *sk)
2537 {
2538 struct tcp_sock *tp = tcp_sk(sk);
2539 struct sk_buff *skb = tcp_write_queue_tail(sk);
2540 int mss_now;
2541
2542 /* Optimization, tack on the FIN if we have a queue of
2543 * unsent frames. But be careful about outgoing SACKS
2544 * and IP options.
2545 */
2546 mss_now = tcp_current_mss(sk);
2547
2548 if (tcp_send_head(sk) != NULL) {
2549 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2550 TCP_SKB_CB(skb)->end_seq++;
2551 tp->write_seq++;
2552 } else {
2553 /* Socket is locked, keep trying until memory is available. */
2554 for (;;) {
2555 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2556 sk->sk_allocation);
2557 if (skb)
2558 break;
2559 yield();
2560 }
2561
2562 /* Reserve space for headers and prepare control bits. */
2563 skb_reserve(skb, MAX_TCP_HEADER);
2564 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2565 tcp_init_nondata_skb(skb, tp->write_seq,
2566 TCPHDR_ACK | TCPHDR_FIN);
2567 tcp_queue_skb(sk, skb);
2568 }
2569 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2570 }
2571
2572 /* We get here when a process closes a file descriptor (either due to
2573 * an explicit close() or as a byproduct of exit()'ing) and there
2574 * was unread data in the receive queue. This behavior is recommended
2575 * by RFC 2525, section 2.17. -DaveM
2576 */
2577 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2578 {
2579 struct sk_buff *skb;
2580
2581 /* NOTE: No TCP options attached and we never retransmit this. */
2582 skb = alloc_skb(MAX_TCP_HEADER, priority);
2583 if (!skb) {
2584 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2585 return;
2586 }
2587
2588 /* Reserve space for headers and prepare control bits. */
2589 skb_reserve(skb, MAX_TCP_HEADER);
2590 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2591 TCPHDR_ACK | TCPHDR_RST);
2592 /* Send it off. */
2593 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2594 if (tcp_transmit_skb(sk, skb, 0, priority))
2595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2596
2597 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2598 }
2599
2600 /* Send a crossed SYN-ACK during socket establishment.
2601 * WARNING: This routine must only be called when we have already sent
2602 * a SYN packet that crossed the incoming SYN that caused this routine
2603 * to get called. If this assumption fails then the initial rcv_wnd
2604 * and rcv_wscale values will not be correct.
2605 */
2606 int tcp_send_synack(struct sock *sk)
2607 {
2608 struct sk_buff *skb;
2609
2610 skb = tcp_write_queue_head(sk);
2611 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2612 pr_debug("%s: wrong queue state\n", __func__);
2613 return -EFAULT;
2614 }
2615 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2616 if (skb_cloned(skb)) {
2617 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2618 if (nskb == NULL)
2619 return -ENOMEM;
2620 tcp_unlink_write_queue(skb, sk);
2621 skb_header_release(nskb);
2622 __tcp_add_write_queue_head(sk, nskb);
2623 sk_wmem_free_skb(sk, skb);
2624 sk->sk_wmem_queued += nskb->truesize;
2625 sk_mem_charge(sk, nskb->truesize);
2626 skb = nskb;
2627 }
2628
2629 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2630 TCP_ECN_send_synack(tcp_sk(sk), skb);
2631 }
2632 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2633 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2634 }
2635
2636 /**
2637 * tcp_make_synack - Prepare a SYN-ACK.
2638 * sk: listener socket
2639 * dst: dst entry attached to the SYNACK
2640 * req: request_sock pointer
2641 *
2642 * Allocate one skb and build a SYNACK packet.
2643 * @dst is consumed : Caller should not use it again.
2644 */
2645 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2646 struct request_sock *req,
2647 struct tcp_fastopen_cookie *foc)
2648 {
2649 struct tcp_out_options opts;
2650 struct inet_request_sock *ireq = inet_rsk(req);
2651 struct tcp_sock *tp = tcp_sk(sk);
2652 struct tcphdr *th;
2653 struct sk_buff *skb;
2654 struct tcp_md5sig_key *md5;
2655 int tcp_header_size;
2656 int mss;
2657
2658 skb = alloc_skb(MAX_TCP_HEADER + 15, sk_gfp_atomic(sk, GFP_ATOMIC));
2659 if (unlikely(!skb)) {
2660 dst_release(dst);
2661 return NULL;
2662 }
2663 /* Reserve space for headers. */
2664 skb_reserve(skb, MAX_TCP_HEADER);
2665
2666 skb_dst_set(skb, dst);
2667
2668 mss = dst_metric_advmss(dst);
2669 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2670 mss = tp->rx_opt.user_mss;
2671
2672 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2673 __u8 rcv_wscale;
2674 /* Set this up on the first call only */
2675 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2676
2677 /* limit the window selection if the user enforce a smaller rx buffer */
2678 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2679 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2680 req->window_clamp = tcp_full_space(sk);
2681
2682 /* tcp_full_space because it is guaranteed to be the first packet */
2683 tcp_select_initial_window(tcp_full_space(sk),
2684 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2685 &req->rcv_wnd,
2686 &req->window_clamp,
2687 ireq->wscale_ok,
2688 &rcv_wscale,
2689 dst_metric(dst, RTAX_INITRWND));
2690 ireq->rcv_wscale = rcv_wscale;
2691 }
2692
2693 memset(&opts, 0, sizeof(opts));
2694 #ifdef CONFIG_SYN_COOKIES
2695 if (unlikely(req->cookie_ts))
2696 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2697 else
2698 #endif
2699 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2700 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2701 foc) + sizeof(*th);
2702
2703 skb_push(skb, tcp_header_size);
2704 skb_reset_transport_header(skb);
2705
2706 th = tcp_hdr(skb);
2707 memset(th, 0, sizeof(struct tcphdr));
2708 th->syn = 1;
2709 th->ack = 1;
2710 TCP_ECN_make_synack(req, th);
2711 th->source = ireq->loc_port;
2712 th->dest = ireq->rmt_port;
2713 /* Setting of flags are superfluous here for callers (and ECE is
2714 * not even correctly set)
2715 */
2716 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2717 TCPHDR_SYN | TCPHDR_ACK);
2718
2719 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2720 /* XXX data is queued and acked as is. No buffer/window check */
2721 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2722
2723 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2724 th->window = htons(min(req->rcv_wnd, 65535U));
2725 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2726 th->doff = (tcp_header_size >> 2);
2727 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2728
2729 #ifdef CONFIG_TCP_MD5SIG
2730 /* Okay, we have all we need - do the md5 hash if needed */
2731 if (md5) {
2732 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2733 md5, NULL, req, skb);
2734 }
2735 #endif
2736
2737 return skb;
2738 }
2739 EXPORT_SYMBOL(tcp_make_synack);
2740
2741 /* Do all connect socket setups that can be done AF independent. */
2742 void tcp_connect_init(struct sock *sk)
2743 {
2744 const struct dst_entry *dst = __sk_dst_get(sk);
2745 struct tcp_sock *tp = tcp_sk(sk);
2746 __u8 rcv_wscale;
2747
2748 /* We'll fix this up when we get a response from the other end.
2749 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2750 */
2751 tp->tcp_header_len = sizeof(struct tcphdr) +
2752 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2753
2754 #ifdef CONFIG_TCP_MD5SIG
2755 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2756 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2757 #endif
2758
2759 /* If user gave his TCP_MAXSEG, record it to clamp */
2760 if (tp->rx_opt.user_mss)
2761 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2762 tp->max_window = 0;
2763 tcp_mtup_init(sk);
2764 tcp_sync_mss(sk, dst_mtu(dst));
2765
2766 if (!tp->window_clamp)
2767 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2768 tp->advmss = dst_metric_advmss(dst);
2769 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2770 tp->advmss = tp->rx_opt.user_mss;
2771
2772 tcp_initialize_rcv_mss(sk);
2773
2774 /* limit the window selection if the user enforce a smaller rx buffer */
2775 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2776 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2777 tp->window_clamp = tcp_full_space(sk);
2778
2779 tcp_select_initial_window(tcp_full_space(sk),
2780 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2781 &tp->rcv_wnd,
2782 &tp->window_clamp,
2783 sysctl_tcp_window_scaling,
2784 &rcv_wscale,
2785 dst_metric(dst, RTAX_INITRWND));
2786
2787 tp->rx_opt.rcv_wscale = rcv_wscale;
2788 tp->rcv_ssthresh = tp->rcv_wnd;
2789
2790 sk->sk_err = 0;
2791 sock_reset_flag(sk, SOCK_DONE);
2792 tp->snd_wnd = 0;
2793 tcp_init_wl(tp, 0);
2794 tp->snd_una = tp->write_seq;
2795 tp->snd_sml = tp->write_seq;
2796 tp->snd_up = tp->write_seq;
2797 tp->snd_nxt = tp->write_seq;
2798
2799 if (likely(!tp->repair))
2800 tp->rcv_nxt = 0;
2801 tp->rcv_wup = tp->rcv_nxt;
2802 tp->copied_seq = tp->rcv_nxt;
2803
2804 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2805 inet_csk(sk)->icsk_retransmits = 0;
2806 tcp_clear_retrans(tp);
2807 }
2808
2809 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2810 {
2811 struct tcp_sock *tp = tcp_sk(sk);
2812 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2813
2814 tcb->end_seq += skb->len;
2815 skb_header_release(skb);
2816 __tcp_add_write_queue_tail(sk, skb);
2817 sk->sk_wmem_queued += skb->truesize;
2818 sk_mem_charge(sk, skb->truesize);
2819 tp->write_seq = tcb->end_seq;
2820 tp->packets_out += tcp_skb_pcount(skb);
2821 }
2822
2823 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2824 * queue a data-only packet after the regular SYN, such that regular SYNs
2825 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2826 * only the SYN sequence, the data are retransmitted in the first ACK.
2827 * If cookie is not cached or other error occurs, falls back to send a
2828 * regular SYN with Fast Open cookie request option.
2829 */
2830 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2831 {
2832 struct tcp_sock *tp = tcp_sk(sk);
2833 struct tcp_fastopen_request *fo = tp->fastopen_req;
2834 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2835 struct sk_buff *syn_data = NULL, *data;
2836 unsigned long last_syn_loss = 0;
2837
2838 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2839 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2840 &syn_loss, &last_syn_loss);
2841 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2842 if (syn_loss > 1 &&
2843 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2844 fo->cookie.len = -1;
2845 goto fallback;
2846 }
2847
2848 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2849 fo->cookie.len = -1;
2850 else if (fo->cookie.len <= 0)
2851 goto fallback;
2852
2853 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2854 * user-MSS. Reserve maximum option space for middleboxes that add
2855 * private TCP options. The cost is reduced data space in SYN :(
2856 */
2857 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2858 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2859 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2860 MAX_TCP_OPTION_SPACE;
2861
2862 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2863 sk->sk_allocation);
2864 if (syn_data == NULL)
2865 goto fallback;
2866
2867 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2868 struct iovec *iov = &fo->data->msg_iov[i];
2869 unsigned char __user *from = iov->iov_base;
2870 int len = iov->iov_len;
2871
2872 if (syn_data->len + len > space)
2873 len = space - syn_data->len;
2874 else if (i + 1 == iovlen)
2875 /* No more data pending in inet_wait_for_connect() */
2876 fo->data = NULL;
2877
2878 if (skb_add_data(syn_data, from, len))
2879 goto fallback;
2880 }
2881
2882 /* Queue a data-only packet after the regular SYN for retransmission */
2883 data = pskb_copy(syn_data, sk->sk_allocation);
2884 if (data == NULL)
2885 goto fallback;
2886 TCP_SKB_CB(data)->seq++;
2887 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2888 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2889 tcp_connect_queue_skb(sk, data);
2890 fo->copied = data->len;
2891
2892 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2893 tp->syn_data = (fo->copied > 0);
2894 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2895 goto done;
2896 }
2897 syn_data = NULL;
2898
2899 fallback:
2900 /* Send a regular SYN with Fast Open cookie request option */
2901 if (fo->cookie.len > 0)
2902 fo->cookie.len = 0;
2903 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2904 if (err)
2905 tp->syn_fastopen = 0;
2906 kfree_skb(syn_data);
2907 done:
2908 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2909 return err;
2910 }
2911
2912 /* Build a SYN and send it off. */
2913 int tcp_connect(struct sock *sk)
2914 {
2915 struct tcp_sock *tp = tcp_sk(sk);
2916 struct sk_buff *buff;
2917 int err;
2918
2919 tcp_connect_init(sk);
2920
2921 if (unlikely(tp->repair)) {
2922 tcp_finish_connect(sk, NULL);
2923 return 0;
2924 }
2925
2926 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2927 if (unlikely(buff == NULL))
2928 return -ENOBUFS;
2929
2930 /* Reserve space for headers. */
2931 skb_reserve(buff, MAX_TCP_HEADER);
2932
2933 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2934 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2935 tcp_connect_queue_skb(sk, buff);
2936 TCP_ECN_send_syn(sk, buff);
2937
2938 /* Send off SYN; include data in Fast Open. */
2939 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2940 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2941 if (err == -ECONNREFUSED)
2942 return err;
2943
2944 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2945 * in order to make this packet get counted in tcpOutSegs.
2946 */
2947 tp->snd_nxt = tp->write_seq;
2948 tp->pushed_seq = tp->write_seq;
2949 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2950
2951 /* Timer for repeating the SYN until an answer. */
2952 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2953 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2954 return 0;
2955 }
2956 EXPORT_SYMBOL(tcp_connect);
2957
2958 /* Send out a delayed ack, the caller does the policy checking
2959 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2960 * for details.
2961 */
2962 void tcp_send_delayed_ack(struct sock *sk)
2963 {
2964 struct inet_connection_sock *icsk = inet_csk(sk);
2965 int ato = icsk->icsk_ack.ato;
2966 unsigned long timeout;
2967
2968 if (ato > TCP_DELACK_MIN) {
2969 const struct tcp_sock *tp = tcp_sk(sk);
2970 int max_ato = HZ / 2;
2971
2972 if (icsk->icsk_ack.pingpong ||
2973 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2974 max_ato = TCP_DELACK_MAX;
2975
2976 /* Slow path, intersegment interval is "high". */
2977
2978 /* If some rtt estimate is known, use it to bound delayed ack.
2979 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2980 * directly.
2981 */
2982 if (tp->srtt) {
2983 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2984
2985 if (rtt < max_ato)
2986 max_ato = rtt;
2987 }
2988
2989 ato = min(ato, max_ato);
2990 }
2991
2992 /* Stay within the limit we were given */
2993 timeout = jiffies + ato;
2994
2995 /* Use new timeout only if there wasn't a older one earlier. */
2996 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2997 /* If delack timer was blocked or is about to expire,
2998 * send ACK now.
2999 */
3000 if (icsk->icsk_ack.blocked ||
3001 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3002 tcp_send_ack(sk);
3003 return;
3004 }
3005
3006 if (!time_before(timeout, icsk->icsk_ack.timeout))
3007 timeout = icsk->icsk_ack.timeout;
3008 }
3009 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3010 icsk->icsk_ack.timeout = timeout;
3011 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3012 }
3013
3014 /* This routine sends an ack and also updates the window. */
3015 void tcp_send_ack(struct sock *sk)
3016 {
3017 struct sk_buff *buff;
3018
3019 /* If we have been reset, we may not send again. */
3020 if (sk->sk_state == TCP_CLOSE)
3021 return;
3022
3023 /* We are not putting this on the write queue, so
3024 * tcp_transmit_skb() will set the ownership to this
3025 * sock.
3026 */
3027 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3028 if (buff == NULL) {
3029 inet_csk_schedule_ack(sk);
3030 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3031 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3032 TCP_DELACK_MAX, TCP_RTO_MAX);
3033 return;
3034 }
3035
3036 /* Reserve space for headers and prepare control bits. */
3037 skb_reserve(buff, MAX_TCP_HEADER);
3038 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3039
3040 /* Send it off, this clears delayed acks for us. */
3041 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3042 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3043 }
3044
3045 /* This routine sends a packet with an out of date sequence
3046 * number. It assumes the other end will try to ack it.
3047 *
3048 * Question: what should we make while urgent mode?
3049 * 4.4BSD forces sending single byte of data. We cannot send
3050 * out of window data, because we have SND.NXT==SND.MAX...
3051 *
3052 * Current solution: to send TWO zero-length segments in urgent mode:
3053 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3054 * out-of-date with SND.UNA-1 to probe window.
3055 */
3056 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3057 {
3058 struct tcp_sock *tp = tcp_sk(sk);
3059 struct sk_buff *skb;
3060
3061 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3062 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3063 if (skb == NULL)
3064 return -1;
3065
3066 /* Reserve space for headers and set control bits. */
3067 skb_reserve(skb, MAX_TCP_HEADER);
3068 /* Use a previous sequence. This should cause the other
3069 * end to send an ack. Don't queue or clone SKB, just
3070 * send it.
3071 */
3072 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3073 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3074 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3075 }
3076
3077 void tcp_send_window_probe(struct sock *sk)
3078 {
3079 if (sk->sk_state == TCP_ESTABLISHED) {
3080 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3081 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3082 tcp_xmit_probe_skb(sk, 0);
3083 }
3084 }
3085
3086 /* Initiate keepalive or window probe from timer. */
3087 int tcp_write_wakeup(struct sock *sk)
3088 {
3089 struct tcp_sock *tp = tcp_sk(sk);
3090 struct sk_buff *skb;
3091
3092 if (sk->sk_state == TCP_CLOSE)
3093 return -1;
3094
3095 if ((skb = tcp_send_head(sk)) != NULL &&
3096 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3097 int err;
3098 unsigned int mss = tcp_current_mss(sk);
3099 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3100
3101 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3102 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3103
3104 /* We are probing the opening of a window
3105 * but the window size is != 0
3106 * must have been a result SWS avoidance ( sender )
3107 */
3108 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3109 skb->len > mss) {
3110 seg_size = min(seg_size, mss);
3111 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3112 if (tcp_fragment(sk, skb, seg_size, mss))
3113 return -1;
3114 } else if (!tcp_skb_pcount(skb))
3115 tcp_set_skb_tso_segs(sk, skb, mss);
3116
3117 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3118 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3119 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3120 if (!err)
3121 tcp_event_new_data_sent(sk, skb);
3122 return err;
3123 } else {
3124 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3125 tcp_xmit_probe_skb(sk, 1);
3126 return tcp_xmit_probe_skb(sk, 0);
3127 }
3128 }
3129
3130 /* A window probe timeout has occurred. If window is not closed send
3131 * a partial packet else a zero probe.
3132 */
3133 void tcp_send_probe0(struct sock *sk)
3134 {
3135 struct inet_connection_sock *icsk = inet_csk(sk);
3136 struct tcp_sock *tp = tcp_sk(sk);
3137 int err;
3138
3139 err = tcp_write_wakeup(sk);
3140
3141 if (tp->packets_out || !tcp_send_head(sk)) {
3142 /* Cancel probe timer, if it is not required. */
3143 icsk->icsk_probes_out = 0;
3144 icsk->icsk_backoff = 0;
3145 return;
3146 }
3147
3148 if (err <= 0) {
3149 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3150 icsk->icsk_backoff++;
3151 icsk->icsk_probes_out++;
3152 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3153 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3154 TCP_RTO_MAX);
3155 } else {
3156 /* If packet was not sent due to local congestion,
3157 * do not backoff and do not remember icsk_probes_out.
3158 * Let local senders to fight for local resources.
3159 *
3160 * Use accumulated backoff yet.
3161 */
3162 if (!icsk->icsk_probes_out)
3163 icsk->icsk_probes_out = 1;
3164 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3165 min(icsk->icsk_rto << icsk->icsk_backoff,
3166 TCP_RESOURCE_PROBE_INTERVAL),
3167 TCP_RTO_MAX);
3168 }
3169 }