Merge 4.14.59 into android-4.14-p
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
81
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
84 }
85
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
92 */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 const struct tcp_sock *tp = tcp_sk(sk);
96
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
103 }
104
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 *
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
118 */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
124
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
127
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
131 }
132 }
133
134 return (__u16)mss;
135 }
136
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
139 */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
145
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
150
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_jiffies32;
155 tp->snd_cwnd_used = 0;
156 }
157
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
161 {
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_jiffies32;
164
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 u32 rcv_nxt)
180 {
181 struct tcp_sock *tp = tcp_sk(sk);
182
183 if (unlikely(rcv_nxt != tp->rcv_nxt))
184 return; /* Special ACK sent by DCTCP to reflect ECN */
185 tcp_dec_quickack_mode(sk, pkts);
186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188
189
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
196 */
197 u32 init_rwnd = sysctl_tcp_default_init_rwnd;
198
199 if (mss > 1460)
200 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 return init_rwnd;
202 }
203
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
210 */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 __u32 *rcv_wnd, __u32 *window_clamp,
213 int wscale_ok, __u8 *rcv_wscale,
214 __u32 init_rcv_wnd)
215 {
216 unsigned int space = (__space < 0 ? 0 : __space);
217
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp == 0)
220 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
221 space = min(*window_clamp, space);
222
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = rounddown(space, mss);
226
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
234 */
235 if (sysctl_tcp_workaround_signed_windows)
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
239
240 (*rcv_wscale) = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, sysctl_tcp_rmem[2]);
244 space = max_t(u32, space, sysctl_rmem_max);
245 space = min_t(u32, space, *window_clamp);
246 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
247 space >>= 1;
248 (*rcv_wscale)++;
249 }
250 }
251
252 if (mss > (1 << *rcv_wscale)) {
253 if (!init_rcv_wnd) /* Use default unless specified otherwise */
254 init_rcv_wnd = tcp_default_init_rwnd(mss);
255 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
256 }
257
258 /* Set the clamp no higher than max representable value */
259 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
260 }
261 EXPORT_SYMBOL(tcp_select_initial_window);
262
263 /* Chose a new window to advertise, update state in tcp_sock for the
264 * socket, and return result with RFC1323 scaling applied. The return
265 * value can be stuffed directly into th->window for an outgoing
266 * frame.
267 */
268 static u16 tcp_select_window(struct sock *sk)
269 {
270 struct tcp_sock *tp = tcp_sk(sk);
271 u32 old_win = tp->rcv_wnd;
272 u32 cur_win = tcp_receive_window(tp);
273 u32 new_win = __tcp_select_window(sk);
274
275 /* Never shrink the offered window */
276 if (new_win < cur_win) {
277 /* Danger Will Robinson!
278 * Don't update rcv_wup/rcv_wnd here or else
279 * we will not be able to advertise a zero
280 * window in time. --DaveM
281 *
282 * Relax Will Robinson.
283 */
284 if (new_win == 0)
285 NET_INC_STATS(sock_net(sk),
286 LINUX_MIB_TCPWANTZEROWINDOWADV);
287 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
288 }
289 tp->rcv_wnd = new_win;
290 tp->rcv_wup = tp->rcv_nxt;
291
292 /* Make sure we do not exceed the maximum possible
293 * scaled window.
294 */
295 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
296 new_win = min(new_win, MAX_TCP_WINDOW);
297 else
298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299
300 /* RFC1323 scaling applied */
301 new_win >>= tp->rx_opt.rcv_wscale;
302
303 /* If we advertise zero window, disable fast path. */
304 if (new_win == 0) {
305 tp->pred_flags = 0;
306 if (old_win)
307 NET_INC_STATS(sock_net(sk),
308 LINUX_MIB_TCPTOZEROWINDOWADV);
309 } else if (old_win == 0) {
310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
311 }
312
313 return new_win;
314 }
315
316 /* Packet ECN state for a SYN-ACK */
317 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
318 {
319 const struct tcp_sock *tp = tcp_sk(sk);
320
321 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
322 if (!(tp->ecn_flags & TCP_ECN_OK))
323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
324 else if (tcp_ca_needs_ecn(sk) ||
325 tcp_bpf_ca_needs_ecn(sk))
326 INET_ECN_xmit(sk);
327 }
328
329 /* Packet ECN state for a SYN. */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 struct tcp_sock *tp = tcp_sk(sk);
333 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
334 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
335 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
336
337 if (!use_ecn) {
338 const struct dst_entry *dst = __sk_dst_get(sk);
339
340 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
341 use_ecn = true;
342 }
343
344 tp->ecn_flags = 0;
345
346 if (use_ecn) {
347 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
348 tp->ecn_flags = TCP_ECN_OK;
349 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
350 INET_ECN_xmit(sk);
351 }
352 }
353
354 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
355 {
356 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
357 /* tp->ecn_flags are cleared at a later point in time when
358 * SYN ACK is ultimatively being received.
359 */
360 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
361 }
362
363 static void
364 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
365 {
366 if (inet_rsk(req)->ecn_ok)
367 th->ece = 1;
368 }
369
370 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
371 * be sent.
372 */
373 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
374 struct tcphdr *th, int tcp_header_len)
375 {
376 struct tcp_sock *tp = tcp_sk(sk);
377
378 if (tp->ecn_flags & TCP_ECN_OK) {
379 /* Not-retransmitted data segment: set ECT and inject CWR. */
380 if (skb->len != tcp_header_len &&
381 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
382 INET_ECN_xmit(sk);
383 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
384 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
385 th->cwr = 1;
386 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
387 }
388 } else if (!tcp_ca_needs_ecn(sk)) {
389 /* ACK or retransmitted segment: clear ECT|CE */
390 INET_ECN_dontxmit(sk);
391 }
392 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
393 th->ece = 1;
394 }
395 }
396
397 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
398 * auto increment end seqno.
399 */
400 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
401 {
402 skb->ip_summed = CHECKSUM_PARTIAL;
403 skb->csum = 0;
404
405 TCP_SKB_CB(skb)->tcp_flags = flags;
406 TCP_SKB_CB(skb)->sacked = 0;
407
408 tcp_skb_pcount_set(skb, 1);
409
410 TCP_SKB_CB(skb)->seq = seq;
411 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
412 seq++;
413 TCP_SKB_CB(skb)->end_seq = seq;
414 }
415
416 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
417 {
418 return tp->snd_una != tp->snd_up;
419 }
420
421 #define OPTION_SACK_ADVERTISE (1 << 0)
422 #define OPTION_TS (1 << 1)
423 #define OPTION_MD5 (1 << 2)
424 #define OPTION_WSCALE (1 << 3)
425 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
426
427 struct tcp_out_options {
428 u16 options; /* bit field of OPTION_* */
429 u16 mss; /* 0 to disable */
430 u8 ws; /* window scale, 0 to disable */
431 u8 num_sack_blocks; /* number of SACK blocks to include */
432 u8 hash_size; /* bytes in hash_location */
433 __u8 *hash_location; /* temporary pointer, overloaded */
434 __u32 tsval, tsecr; /* need to include OPTION_TS */
435 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
436 };
437
438 /* Write previously computed TCP options to the packet.
439 *
440 * Beware: Something in the Internet is very sensitive to the ordering of
441 * TCP options, we learned this through the hard way, so be careful here.
442 * Luckily we can at least blame others for their non-compliance but from
443 * inter-operability perspective it seems that we're somewhat stuck with
444 * the ordering which we have been using if we want to keep working with
445 * those broken things (not that it currently hurts anybody as there isn't
446 * particular reason why the ordering would need to be changed).
447 *
448 * At least SACK_PERM as the first option is known to lead to a disaster
449 * (but it may well be that other scenarios fail similarly).
450 */
451 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
452 struct tcp_out_options *opts)
453 {
454 u16 options = opts->options; /* mungable copy */
455
456 if (unlikely(OPTION_MD5 & options)) {
457 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
458 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
459 /* overload cookie hash location */
460 opts->hash_location = (__u8 *)ptr;
461 ptr += 4;
462 }
463
464 if (unlikely(opts->mss)) {
465 *ptr++ = htonl((TCPOPT_MSS << 24) |
466 (TCPOLEN_MSS << 16) |
467 opts->mss);
468 }
469
470 if (likely(OPTION_TS & options)) {
471 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
472 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
473 (TCPOLEN_SACK_PERM << 16) |
474 (TCPOPT_TIMESTAMP << 8) |
475 TCPOLEN_TIMESTAMP);
476 options &= ~OPTION_SACK_ADVERTISE;
477 } else {
478 *ptr++ = htonl((TCPOPT_NOP << 24) |
479 (TCPOPT_NOP << 16) |
480 (TCPOPT_TIMESTAMP << 8) |
481 TCPOLEN_TIMESTAMP);
482 }
483 *ptr++ = htonl(opts->tsval);
484 *ptr++ = htonl(opts->tsecr);
485 }
486
487 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_NOP << 16) |
490 (TCPOPT_SACK_PERM << 8) |
491 TCPOLEN_SACK_PERM);
492 }
493
494 if (unlikely(OPTION_WSCALE & options)) {
495 *ptr++ = htonl((TCPOPT_NOP << 24) |
496 (TCPOPT_WINDOW << 16) |
497 (TCPOLEN_WINDOW << 8) |
498 opts->ws);
499 }
500
501 if (unlikely(opts->num_sack_blocks)) {
502 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
503 tp->duplicate_sack : tp->selective_acks;
504 int this_sack;
505
506 *ptr++ = htonl((TCPOPT_NOP << 24) |
507 (TCPOPT_NOP << 16) |
508 (TCPOPT_SACK << 8) |
509 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
510 TCPOLEN_SACK_PERBLOCK)));
511
512 for (this_sack = 0; this_sack < opts->num_sack_blocks;
513 ++this_sack) {
514 *ptr++ = htonl(sp[this_sack].start_seq);
515 *ptr++ = htonl(sp[this_sack].end_seq);
516 }
517
518 tp->rx_opt.dsack = 0;
519 }
520
521 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
522 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
523 u8 *p = (u8 *)ptr;
524 u32 len; /* Fast Open option length */
525
526 if (foc->exp) {
527 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
528 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
529 TCPOPT_FASTOPEN_MAGIC);
530 p += TCPOLEN_EXP_FASTOPEN_BASE;
531 } else {
532 len = TCPOLEN_FASTOPEN_BASE + foc->len;
533 *p++ = TCPOPT_FASTOPEN;
534 *p++ = len;
535 }
536
537 memcpy(p, foc->val, foc->len);
538 if ((len & 3) == 2) {
539 p[foc->len] = TCPOPT_NOP;
540 p[foc->len + 1] = TCPOPT_NOP;
541 }
542 ptr += (len + 3) >> 2;
543 }
544 }
545
546 /* Compute TCP options for SYN packets. This is not the final
547 * network wire format yet.
548 */
549 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
550 struct tcp_out_options *opts,
551 struct tcp_md5sig_key **md5)
552 {
553 struct tcp_sock *tp = tcp_sk(sk);
554 unsigned int remaining = MAX_TCP_OPTION_SPACE;
555 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
556
557 #ifdef CONFIG_TCP_MD5SIG
558 *md5 = tp->af_specific->md5_lookup(sk, sk);
559 if (*md5) {
560 opts->options |= OPTION_MD5;
561 remaining -= TCPOLEN_MD5SIG_ALIGNED;
562 }
563 #else
564 *md5 = NULL;
565 #endif
566
567 /* We always get an MSS option. The option bytes which will be seen in
568 * normal data packets should timestamps be used, must be in the MSS
569 * advertised. But we subtract them from tp->mss_cache so that
570 * calculations in tcp_sendmsg are simpler etc. So account for this
571 * fact here if necessary. If we don't do this correctly, as a
572 * receiver we won't recognize data packets as being full sized when we
573 * should, and thus we won't abide by the delayed ACK rules correctly.
574 * SACKs don't matter, we never delay an ACK when we have any of those
575 * going out. */
576 opts->mss = tcp_advertise_mss(sk);
577 remaining -= TCPOLEN_MSS_ALIGNED;
578
579 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
580 opts->options |= OPTION_TS;
581 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
582 opts->tsecr = tp->rx_opt.ts_recent;
583 remaining -= TCPOLEN_TSTAMP_ALIGNED;
584 }
585 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
586 opts->ws = tp->rx_opt.rcv_wscale;
587 opts->options |= OPTION_WSCALE;
588 remaining -= TCPOLEN_WSCALE_ALIGNED;
589 }
590 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
591 opts->options |= OPTION_SACK_ADVERTISE;
592 if (unlikely(!(OPTION_TS & opts->options)))
593 remaining -= TCPOLEN_SACKPERM_ALIGNED;
594 }
595
596 if (fastopen && fastopen->cookie.len >= 0) {
597 u32 need = fastopen->cookie.len;
598
599 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
600 TCPOLEN_FASTOPEN_BASE;
601 need = (need + 3) & ~3U; /* Align to 32 bits */
602 if (remaining >= need) {
603 opts->options |= OPTION_FAST_OPEN_COOKIE;
604 opts->fastopen_cookie = &fastopen->cookie;
605 remaining -= need;
606 tp->syn_fastopen = 1;
607 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
608 }
609 }
610
611 return MAX_TCP_OPTION_SPACE - remaining;
612 }
613
614 /* Set up TCP options for SYN-ACKs. */
615 static unsigned int tcp_synack_options(struct request_sock *req,
616 unsigned int mss, struct sk_buff *skb,
617 struct tcp_out_options *opts,
618 const struct tcp_md5sig_key *md5,
619 struct tcp_fastopen_cookie *foc)
620 {
621 struct inet_request_sock *ireq = inet_rsk(req);
622 unsigned int remaining = MAX_TCP_OPTION_SPACE;
623
624 #ifdef CONFIG_TCP_MD5SIG
625 if (md5) {
626 opts->options |= OPTION_MD5;
627 remaining -= TCPOLEN_MD5SIG_ALIGNED;
628
629 /* We can't fit any SACK blocks in a packet with MD5 + TS
630 * options. There was discussion about disabling SACK
631 * rather than TS in order to fit in better with old,
632 * buggy kernels, but that was deemed to be unnecessary.
633 */
634 ireq->tstamp_ok &= !ireq->sack_ok;
635 }
636 #endif
637
638 /* We always send an MSS option. */
639 opts->mss = mss;
640 remaining -= TCPOLEN_MSS_ALIGNED;
641
642 if (likely(ireq->wscale_ok)) {
643 opts->ws = ireq->rcv_wscale;
644 opts->options |= OPTION_WSCALE;
645 remaining -= TCPOLEN_WSCALE_ALIGNED;
646 }
647 if (likely(ireq->tstamp_ok)) {
648 opts->options |= OPTION_TS;
649 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
650 opts->tsecr = req->ts_recent;
651 remaining -= TCPOLEN_TSTAMP_ALIGNED;
652 }
653 if (likely(ireq->sack_ok)) {
654 opts->options |= OPTION_SACK_ADVERTISE;
655 if (unlikely(!ireq->tstamp_ok))
656 remaining -= TCPOLEN_SACKPERM_ALIGNED;
657 }
658 if (foc != NULL && foc->len >= 0) {
659 u32 need = foc->len;
660
661 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
662 TCPOLEN_FASTOPEN_BASE;
663 need = (need + 3) & ~3U; /* Align to 32 bits */
664 if (remaining >= need) {
665 opts->options |= OPTION_FAST_OPEN_COOKIE;
666 opts->fastopen_cookie = foc;
667 remaining -= need;
668 }
669 }
670
671 return MAX_TCP_OPTION_SPACE - remaining;
672 }
673
674 /* Compute TCP options for ESTABLISHED sockets. This is not the
675 * final wire format yet.
676 */
677 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
678 struct tcp_out_options *opts,
679 struct tcp_md5sig_key **md5)
680 {
681 struct tcp_sock *tp = tcp_sk(sk);
682 unsigned int size = 0;
683 unsigned int eff_sacks;
684
685 opts->options = 0;
686
687 #ifdef CONFIG_TCP_MD5SIG
688 *md5 = tp->af_specific->md5_lookup(sk, sk);
689 if (unlikely(*md5)) {
690 opts->options |= OPTION_MD5;
691 size += TCPOLEN_MD5SIG_ALIGNED;
692 }
693 #else
694 *md5 = NULL;
695 #endif
696
697 if (likely(tp->rx_opt.tstamp_ok)) {
698 opts->options |= OPTION_TS;
699 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
700 opts->tsecr = tp->rx_opt.ts_recent;
701 size += TCPOLEN_TSTAMP_ALIGNED;
702 }
703
704 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
705 if (unlikely(eff_sacks)) {
706 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
707 opts->num_sack_blocks =
708 min_t(unsigned int, eff_sacks,
709 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
710 TCPOLEN_SACK_PERBLOCK);
711 size += TCPOLEN_SACK_BASE_ALIGNED +
712 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
713 }
714
715 return size;
716 }
717
718
719 /* TCP SMALL QUEUES (TSQ)
720 *
721 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
722 * to reduce RTT and bufferbloat.
723 * We do this using a special skb destructor (tcp_wfree).
724 *
725 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
726 * needs to be reallocated in a driver.
727 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
728 *
729 * Since transmit from skb destructor is forbidden, we use a tasklet
730 * to process all sockets that eventually need to send more skbs.
731 * We use one tasklet per cpu, with its own queue of sockets.
732 */
733 struct tsq_tasklet {
734 struct tasklet_struct tasklet;
735 struct list_head head; /* queue of tcp sockets */
736 };
737 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
738
739 static void tcp_tsq_handler(struct sock *sk)
740 {
741 if ((1 << sk->sk_state) &
742 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
743 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
744 struct tcp_sock *tp = tcp_sk(sk);
745
746 if (tp->lost_out > tp->retrans_out &&
747 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
748 tcp_mstamp_refresh(tp);
749 tcp_xmit_retransmit_queue(sk);
750 }
751
752 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
753 0, GFP_ATOMIC);
754 }
755 }
756 /*
757 * One tasklet per cpu tries to send more skbs.
758 * We run in tasklet context but need to disable irqs when
759 * transferring tsq->head because tcp_wfree() might
760 * interrupt us (non NAPI drivers)
761 */
762 static void tcp_tasklet_func(unsigned long data)
763 {
764 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
765 LIST_HEAD(list);
766 unsigned long flags;
767 struct list_head *q, *n;
768 struct tcp_sock *tp;
769 struct sock *sk;
770
771 local_irq_save(flags);
772 list_splice_init(&tsq->head, &list);
773 local_irq_restore(flags);
774
775 list_for_each_safe(q, n, &list) {
776 tp = list_entry(q, struct tcp_sock, tsq_node);
777 list_del(&tp->tsq_node);
778
779 sk = (struct sock *)tp;
780 smp_mb__before_atomic();
781 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
782
783 if (!sk->sk_lock.owned &&
784 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
785 bh_lock_sock(sk);
786 if (!sock_owned_by_user(sk)) {
787 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
788 tcp_tsq_handler(sk);
789 }
790 bh_unlock_sock(sk);
791 }
792
793 sk_free(sk);
794 }
795 }
796
797 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
798 TCPF_WRITE_TIMER_DEFERRED | \
799 TCPF_DELACK_TIMER_DEFERRED | \
800 TCPF_MTU_REDUCED_DEFERRED)
801 /**
802 * tcp_release_cb - tcp release_sock() callback
803 * @sk: socket
804 *
805 * called from release_sock() to perform protocol dependent
806 * actions before socket release.
807 */
808 void tcp_release_cb(struct sock *sk)
809 {
810 unsigned long flags, nflags;
811
812 /* perform an atomic operation only if at least one flag is set */
813 do {
814 flags = sk->sk_tsq_flags;
815 if (!(flags & TCP_DEFERRED_ALL))
816 return;
817 nflags = flags & ~TCP_DEFERRED_ALL;
818 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
819
820 if (flags & TCPF_TSQ_DEFERRED)
821 tcp_tsq_handler(sk);
822
823 /* Here begins the tricky part :
824 * We are called from release_sock() with :
825 * 1) BH disabled
826 * 2) sk_lock.slock spinlock held
827 * 3) socket owned by us (sk->sk_lock.owned == 1)
828 *
829 * But following code is meant to be called from BH handlers,
830 * so we should keep BH disabled, but early release socket ownership
831 */
832 sock_release_ownership(sk);
833
834 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
835 tcp_write_timer_handler(sk);
836 __sock_put(sk);
837 }
838 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
839 tcp_delack_timer_handler(sk);
840 __sock_put(sk);
841 }
842 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
843 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
844 __sock_put(sk);
845 }
846 }
847 EXPORT_SYMBOL(tcp_release_cb);
848
849 void __init tcp_tasklet_init(void)
850 {
851 int i;
852
853 for_each_possible_cpu(i) {
854 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
855
856 INIT_LIST_HEAD(&tsq->head);
857 tasklet_init(&tsq->tasklet,
858 tcp_tasklet_func,
859 (unsigned long)tsq);
860 }
861 }
862
863 /*
864 * Write buffer destructor automatically called from kfree_skb.
865 * We can't xmit new skbs from this context, as we might already
866 * hold qdisc lock.
867 */
868 void tcp_wfree(struct sk_buff *skb)
869 {
870 struct sock *sk = skb->sk;
871 struct tcp_sock *tp = tcp_sk(sk);
872 unsigned long flags, nval, oval;
873
874 /* Keep one reference on sk_wmem_alloc.
875 * Will be released by sk_free() from here or tcp_tasklet_func()
876 */
877 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
878
879 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
880 * Wait until our queues (qdisc + devices) are drained.
881 * This gives :
882 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
883 * - chance for incoming ACK (processed by another cpu maybe)
884 * to migrate this flow (skb->ooo_okay will be eventually set)
885 */
886 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
887 goto out;
888
889 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
890 struct tsq_tasklet *tsq;
891 bool empty;
892
893 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
894 goto out;
895
896 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
897 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
898 if (nval != oval)
899 continue;
900
901 /* queue this socket to tasklet queue */
902 local_irq_save(flags);
903 tsq = this_cpu_ptr(&tsq_tasklet);
904 empty = list_empty(&tsq->head);
905 list_add(&tp->tsq_node, &tsq->head);
906 if (empty)
907 tasklet_schedule(&tsq->tasklet);
908 local_irq_restore(flags);
909 return;
910 }
911 out:
912 sk_free(sk);
913 }
914
915 /* Note: Called under hard irq.
916 * We can not call TCP stack right away.
917 */
918 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
919 {
920 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
921 struct sock *sk = (struct sock *)tp;
922 unsigned long nval, oval;
923
924 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
925 struct tsq_tasklet *tsq;
926 bool empty;
927
928 if (oval & TSQF_QUEUED)
929 break;
930
931 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
932 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
933 if (nval != oval)
934 continue;
935
936 if (!refcount_inc_not_zero(&sk->sk_wmem_alloc))
937 break;
938 /* queue this socket to tasklet queue */
939 tsq = this_cpu_ptr(&tsq_tasklet);
940 empty = list_empty(&tsq->head);
941 list_add(&tp->tsq_node, &tsq->head);
942 if (empty)
943 tasklet_schedule(&tsq->tasklet);
944 break;
945 }
946 return HRTIMER_NORESTART;
947 }
948
949 /* BBR congestion control needs pacing.
950 * Same remark for SO_MAX_PACING_RATE.
951 * sch_fq packet scheduler is efficiently handling pacing,
952 * but is not always installed/used.
953 * Return true if TCP stack should pace packets itself.
954 */
955 static bool tcp_needs_internal_pacing(const struct sock *sk)
956 {
957 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
958 }
959
960 static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
961 {
962 u64 len_ns;
963 u32 rate;
964
965 if (!tcp_needs_internal_pacing(sk))
966 return;
967 rate = sk->sk_pacing_rate;
968 if (!rate || rate == ~0U)
969 return;
970
971 /* Should account for header sizes as sch_fq does,
972 * but lets make things simple.
973 */
974 len_ns = (u64)skb->len * NSEC_PER_SEC;
975 do_div(len_ns, rate);
976 hrtimer_start(&tcp_sk(sk)->pacing_timer,
977 ktime_add_ns(ktime_get(), len_ns),
978 HRTIMER_MODE_ABS_PINNED);
979 }
980
981 /* This routine actually transmits TCP packets queued in by
982 * tcp_do_sendmsg(). This is used by both the initial
983 * transmission and possible later retransmissions.
984 * All SKB's seen here are completely headerless. It is our
985 * job to build the TCP header, and pass the packet down to
986 * IP so it can do the same plus pass the packet off to the
987 * device.
988 *
989 * We are working here with either a clone of the original
990 * SKB, or a fresh unique copy made by the retransmit engine.
991 */
992 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
993 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
994 {
995 const struct inet_connection_sock *icsk = inet_csk(sk);
996 struct inet_sock *inet;
997 struct tcp_sock *tp;
998 struct tcp_skb_cb *tcb;
999 struct tcp_out_options opts;
1000 unsigned int tcp_options_size, tcp_header_size;
1001 struct sk_buff *oskb = NULL;
1002 struct tcp_md5sig_key *md5;
1003 struct tcphdr *th;
1004 int err;
1005
1006 BUG_ON(!skb || !tcp_skb_pcount(skb));
1007 tp = tcp_sk(sk);
1008
1009 if (clone_it) {
1010 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1011 - tp->snd_una;
1012 oskb = skb;
1013 if (unlikely(skb_cloned(skb)))
1014 skb = pskb_copy(skb, gfp_mask);
1015 else
1016 skb = skb_clone(skb, gfp_mask);
1017 if (unlikely(!skb))
1018 return -ENOBUFS;
1019 }
1020 skb->skb_mstamp = tp->tcp_mstamp;
1021
1022 inet = inet_sk(sk);
1023 tcb = TCP_SKB_CB(skb);
1024 memset(&opts, 0, sizeof(opts));
1025
1026 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1027 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1028 else
1029 tcp_options_size = tcp_established_options(sk, skb, &opts,
1030 &md5);
1031 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1032
1033 /* if no packet is in qdisc/device queue, then allow XPS to select
1034 * another queue. We can be called from tcp_tsq_handler()
1035 * which holds one reference to sk_wmem_alloc.
1036 *
1037 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1038 * One way to get this would be to set skb->truesize = 2 on them.
1039 */
1040 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1041
1042 /* If we had to use memory reserve to allocate this skb,
1043 * this might cause drops if packet is looped back :
1044 * Other socket might not have SOCK_MEMALLOC.
1045 * Packets not looped back do not care about pfmemalloc.
1046 */
1047 skb->pfmemalloc = 0;
1048
1049 skb_push(skb, tcp_header_size);
1050 skb_reset_transport_header(skb);
1051
1052 skb_orphan(skb);
1053 skb->sk = sk;
1054 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1055 skb_set_hash_from_sk(skb, sk);
1056 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1057
1058 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1059
1060 /* Build TCP header and checksum it. */
1061 th = (struct tcphdr *)skb->data;
1062 th->source = inet->inet_sport;
1063 th->dest = inet->inet_dport;
1064 th->seq = htonl(tcb->seq);
1065 th->ack_seq = htonl(rcv_nxt);
1066 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1067 tcb->tcp_flags);
1068
1069 th->check = 0;
1070 th->urg_ptr = 0;
1071
1072 /* The urg_mode check is necessary during a below snd_una win probe */
1073 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1074 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1075 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1076 th->urg = 1;
1077 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1078 th->urg_ptr = htons(0xFFFF);
1079 th->urg = 1;
1080 }
1081 }
1082
1083 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1084 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1085 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1086 th->window = htons(tcp_select_window(sk));
1087 tcp_ecn_send(sk, skb, th, tcp_header_size);
1088 } else {
1089 /* RFC1323: The window in SYN & SYN/ACK segments
1090 * is never scaled.
1091 */
1092 th->window = htons(min(tp->rcv_wnd, 65535U));
1093 }
1094 #ifdef CONFIG_TCP_MD5SIG
1095 /* Calculate the MD5 hash, as we have all we need now */
1096 if (md5) {
1097 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1098 tp->af_specific->calc_md5_hash(opts.hash_location,
1099 md5, sk, skb);
1100 }
1101 #endif
1102
1103 icsk->icsk_af_ops->send_check(sk, skb);
1104
1105 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1106 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1107
1108 if (skb->len != tcp_header_size) {
1109 tcp_event_data_sent(tp, sk);
1110 tp->data_segs_out += tcp_skb_pcount(skb);
1111 tcp_internal_pacing(sk, skb);
1112 }
1113
1114 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1115 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1116 tcp_skb_pcount(skb));
1117
1118 tp->segs_out += tcp_skb_pcount(skb);
1119 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1120 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1121 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1122
1123 /* Our usage of tstamp should remain private */
1124 skb->tstamp = 0;
1125
1126 /* Cleanup our debris for IP stacks */
1127 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1128 sizeof(struct inet6_skb_parm)));
1129
1130 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1131
1132 if (unlikely(err > 0)) {
1133 tcp_enter_cwr(sk);
1134 err = net_xmit_eval(err);
1135 }
1136 if (!err && oskb) {
1137 oskb->skb_mstamp = tp->tcp_mstamp;
1138 tcp_rate_skb_sent(sk, oskb);
1139 }
1140 return err;
1141 }
1142
1143 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1144 gfp_t gfp_mask)
1145 {
1146 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1147 tcp_sk(sk)->rcv_nxt);
1148 }
1149
1150 /* This routine just queues the buffer for sending.
1151 *
1152 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1153 * otherwise socket can stall.
1154 */
1155 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1156 {
1157 struct tcp_sock *tp = tcp_sk(sk);
1158
1159 /* Advance write_seq and place onto the write_queue. */
1160 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1161 __skb_header_release(skb);
1162 tcp_add_write_queue_tail(sk, skb);
1163 sk->sk_wmem_queued += skb->truesize;
1164 sk_mem_charge(sk, skb->truesize);
1165 }
1166
1167 /* Initialize TSO segments for a packet. */
1168 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1169 {
1170 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1171 /* Avoid the costly divide in the normal
1172 * non-TSO case.
1173 */
1174 tcp_skb_pcount_set(skb, 1);
1175 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1176 } else {
1177 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1178 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1179 }
1180 }
1181
1182 /* When a modification to fackets out becomes necessary, we need to check
1183 * skb is counted to fackets_out or not.
1184 */
1185 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1186 int decr)
1187 {
1188 struct tcp_sock *tp = tcp_sk(sk);
1189
1190 if (!tp->sacked_out || tcp_is_reno(tp))
1191 return;
1192
1193 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1194 tp->fackets_out -= decr;
1195 }
1196
1197 /* Pcount in the middle of the write queue got changed, we need to do various
1198 * tweaks to fix counters
1199 */
1200 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1201 {
1202 struct tcp_sock *tp = tcp_sk(sk);
1203
1204 tp->packets_out -= decr;
1205
1206 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1207 tp->sacked_out -= decr;
1208 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1209 tp->retrans_out -= decr;
1210 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1211 tp->lost_out -= decr;
1212
1213 /* Reno case is special. Sigh... */
1214 if (tcp_is_reno(tp) && decr > 0)
1215 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1216
1217 tcp_adjust_fackets_out(sk, skb, decr);
1218
1219 if (tp->lost_skb_hint &&
1220 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1221 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1222 tp->lost_cnt_hint -= decr;
1223
1224 tcp_verify_left_out(tp);
1225 }
1226
1227 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1228 {
1229 return TCP_SKB_CB(skb)->txstamp_ack ||
1230 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1231 }
1232
1233 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1234 {
1235 struct skb_shared_info *shinfo = skb_shinfo(skb);
1236
1237 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1238 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1239 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1240 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1241
1242 shinfo->tx_flags &= ~tsflags;
1243 shinfo2->tx_flags |= tsflags;
1244 swap(shinfo->tskey, shinfo2->tskey);
1245 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1246 TCP_SKB_CB(skb)->txstamp_ack = 0;
1247 }
1248 }
1249
1250 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1251 {
1252 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1253 TCP_SKB_CB(skb)->eor = 0;
1254 }
1255
1256 /* Function to create two new TCP segments. Shrinks the given segment
1257 * to the specified size and appends a new segment with the rest of the
1258 * packet to the list. This won't be called frequently, I hope.
1259 * Remember, these are still headerless SKBs at this point.
1260 */
1261 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1262 unsigned int mss_now, gfp_t gfp)
1263 {
1264 struct tcp_sock *tp = tcp_sk(sk);
1265 struct sk_buff *buff;
1266 int nsize, old_factor;
1267 int nlen;
1268 u8 flags;
1269
1270 if (WARN_ON(len > skb->len))
1271 return -EINVAL;
1272
1273 nsize = skb_headlen(skb) - len;
1274 if (nsize < 0)
1275 nsize = 0;
1276
1277 if (skb_unclone(skb, gfp))
1278 return -ENOMEM;
1279
1280 /* Get a new skb... force flag on. */
1281 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1282 if (!buff)
1283 return -ENOMEM; /* We'll just try again later. */
1284
1285 sk->sk_wmem_queued += buff->truesize;
1286 sk_mem_charge(sk, buff->truesize);
1287 nlen = skb->len - len - nsize;
1288 buff->truesize += nlen;
1289 skb->truesize -= nlen;
1290
1291 /* Correct the sequence numbers. */
1292 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1293 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1294 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1295
1296 /* PSH and FIN should only be set in the second packet. */
1297 flags = TCP_SKB_CB(skb)->tcp_flags;
1298 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1299 TCP_SKB_CB(buff)->tcp_flags = flags;
1300 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1301 tcp_skb_fragment_eor(skb, buff);
1302
1303 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1304 /* Copy and checksum data tail into the new buffer. */
1305 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1306 skb_put(buff, nsize),
1307 nsize, 0);
1308
1309 skb_trim(skb, len);
1310
1311 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1312 } else {
1313 skb->ip_summed = CHECKSUM_PARTIAL;
1314 skb_split(skb, buff, len);
1315 }
1316
1317 buff->ip_summed = skb->ip_summed;
1318
1319 buff->tstamp = skb->tstamp;
1320 tcp_fragment_tstamp(skb, buff);
1321
1322 old_factor = tcp_skb_pcount(skb);
1323
1324 /* Fix up tso_factor for both original and new SKB. */
1325 tcp_set_skb_tso_segs(skb, mss_now);
1326 tcp_set_skb_tso_segs(buff, mss_now);
1327
1328 /* Update delivered info for the new segment */
1329 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1330
1331 /* If this packet has been sent out already, we must
1332 * adjust the various packet counters.
1333 */
1334 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1335 int diff = old_factor - tcp_skb_pcount(skb) -
1336 tcp_skb_pcount(buff);
1337
1338 if (diff)
1339 tcp_adjust_pcount(sk, skb, diff);
1340 }
1341
1342 /* Link BUFF into the send queue. */
1343 __skb_header_release(buff);
1344 tcp_insert_write_queue_after(skb, buff, sk);
1345
1346 return 0;
1347 }
1348
1349 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1350 * data is not copied, but immediately discarded.
1351 */
1352 static int __pskb_trim_head(struct sk_buff *skb, int len)
1353 {
1354 struct skb_shared_info *shinfo;
1355 int i, k, eat;
1356
1357 eat = min_t(int, len, skb_headlen(skb));
1358 if (eat) {
1359 __skb_pull(skb, eat);
1360 len -= eat;
1361 if (!len)
1362 return 0;
1363 }
1364 eat = len;
1365 k = 0;
1366 shinfo = skb_shinfo(skb);
1367 for (i = 0; i < shinfo->nr_frags; i++) {
1368 int size = skb_frag_size(&shinfo->frags[i]);
1369
1370 if (size <= eat) {
1371 skb_frag_unref(skb, i);
1372 eat -= size;
1373 } else {
1374 shinfo->frags[k] = shinfo->frags[i];
1375 if (eat) {
1376 shinfo->frags[k].page_offset += eat;
1377 skb_frag_size_sub(&shinfo->frags[k], eat);
1378 eat = 0;
1379 }
1380 k++;
1381 }
1382 }
1383 shinfo->nr_frags = k;
1384
1385 skb->data_len -= len;
1386 skb->len = skb->data_len;
1387 return len;
1388 }
1389
1390 /* Remove acked data from a packet in the transmit queue. */
1391 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1392 {
1393 u32 delta_truesize;
1394
1395 if (skb_unclone(skb, GFP_ATOMIC))
1396 return -ENOMEM;
1397
1398 delta_truesize = __pskb_trim_head(skb, len);
1399
1400 TCP_SKB_CB(skb)->seq += len;
1401 skb->ip_summed = CHECKSUM_PARTIAL;
1402
1403 if (delta_truesize) {
1404 skb->truesize -= delta_truesize;
1405 sk->sk_wmem_queued -= delta_truesize;
1406 sk_mem_uncharge(sk, delta_truesize);
1407 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1408 }
1409
1410 /* Any change of skb->len requires recalculation of tso factor. */
1411 if (tcp_skb_pcount(skb) > 1)
1412 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1413
1414 return 0;
1415 }
1416
1417 /* Calculate MSS not accounting any TCP options. */
1418 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1419 {
1420 const struct tcp_sock *tp = tcp_sk(sk);
1421 const struct inet_connection_sock *icsk = inet_csk(sk);
1422 int mss_now;
1423
1424 /* Calculate base mss without TCP options:
1425 It is MMS_S - sizeof(tcphdr) of rfc1122
1426 */
1427 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1428
1429 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1430 if (icsk->icsk_af_ops->net_frag_header_len) {
1431 const struct dst_entry *dst = __sk_dst_get(sk);
1432
1433 if (dst && dst_allfrag(dst))
1434 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1435 }
1436
1437 /* Clamp it (mss_clamp does not include tcp options) */
1438 if (mss_now > tp->rx_opt.mss_clamp)
1439 mss_now = tp->rx_opt.mss_clamp;
1440
1441 /* Now subtract optional transport overhead */
1442 mss_now -= icsk->icsk_ext_hdr_len;
1443
1444 /* Then reserve room for full set of TCP options and 8 bytes of data */
1445 if (mss_now < 48)
1446 mss_now = 48;
1447 return mss_now;
1448 }
1449
1450 /* Calculate MSS. Not accounting for SACKs here. */
1451 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1452 {
1453 /* Subtract TCP options size, not including SACKs */
1454 return __tcp_mtu_to_mss(sk, pmtu) -
1455 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1456 }
1457
1458 /* Inverse of above */
1459 int tcp_mss_to_mtu(struct sock *sk, int mss)
1460 {
1461 const struct tcp_sock *tp = tcp_sk(sk);
1462 const struct inet_connection_sock *icsk = inet_csk(sk);
1463 int mtu;
1464
1465 mtu = mss +
1466 tp->tcp_header_len +
1467 icsk->icsk_ext_hdr_len +
1468 icsk->icsk_af_ops->net_header_len;
1469
1470 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1471 if (icsk->icsk_af_ops->net_frag_header_len) {
1472 const struct dst_entry *dst = __sk_dst_get(sk);
1473
1474 if (dst && dst_allfrag(dst))
1475 mtu += icsk->icsk_af_ops->net_frag_header_len;
1476 }
1477 return mtu;
1478 }
1479 EXPORT_SYMBOL(tcp_mss_to_mtu);
1480
1481 /* MTU probing init per socket */
1482 void tcp_mtup_init(struct sock *sk)
1483 {
1484 struct tcp_sock *tp = tcp_sk(sk);
1485 struct inet_connection_sock *icsk = inet_csk(sk);
1486 struct net *net = sock_net(sk);
1487
1488 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1489 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1490 icsk->icsk_af_ops->net_header_len;
1491 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1492 icsk->icsk_mtup.probe_size = 0;
1493 if (icsk->icsk_mtup.enabled)
1494 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1495 }
1496 EXPORT_SYMBOL(tcp_mtup_init);
1497
1498 /* This function synchronize snd mss to current pmtu/exthdr set.
1499
1500 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1501 for TCP options, but includes only bare TCP header.
1502
1503 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1504 It is minimum of user_mss and mss received with SYN.
1505 It also does not include TCP options.
1506
1507 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1508
1509 tp->mss_cache is current effective sending mss, including
1510 all tcp options except for SACKs. It is evaluated,
1511 taking into account current pmtu, but never exceeds
1512 tp->rx_opt.mss_clamp.
1513
1514 NOTE1. rfc1122 clearly states that advertised MSS
1515 DOES NOT include either tcp or ip options.
1516
1517 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1518 are READ ONLY outside this function. --ANK (980731)
1519 */
1520 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1521 {
1522 struct tcp_sock *tp = tcp_sk(sk);
1523 struct inet_connection_sock *icsk = inet_csk(sk);
1524 int mss_now;
1525
1526 if (icsk->icsk_mtup.search_high > pmtu)
1527 icsk->icsk_mtup.search_high = pmtu;
1528
1529 mss_now = tcp_mtu_to_mss(sk, pmtu);
1530 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1531
1532 /* And store cached results */
1533 icsk->icsk_pmtu_cookie = pmtu;
1534 if (icsk->icsk_mtup.enabled)
1535 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1536 tp->mss_cache = mss_now;
1537
1538 return mss_now;
1539 }
1540 EXPORT_SYMBOL(tcp_sync_mss);
1541
1542 /* Compute the current effective MSS, taking SACKs and IP options,
1543 * and even PMTU discovery events into account.
1544 */
1545 unsigned int tcp_current_mss(struct sock *sk)
1546 {
1547 const struct tcp_sock *tp = tcp_sk(sk);
1548 const struct dst_entry *dst = __sk_dst_get(sk);
1549 u32 mss_now;
1550 unsigned int header_len;
1551 struct tcp_out_options opts;
1552 struct tcp_md5sig_key *md5;
1553
1554 mss_now = tp->mss_cache;
1555
1556 if (dst) {
1557 u32 mtu = dst_mtu(dst);
1558 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1559 mss_now = tcp_sync_mss(sk, mtu);
1560 }
1561
1562 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1563 sizeof(struct tcphdr);
1564 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1565 * some common options. If this is an odd packet (because we have SACK
1566 * blocks etc) then our calculated header_len will be different, and
1567 * we have to adjust mss_now correspondingly */
1568 if (header_len != tp->tcp_header_len) {
1569 int delta = (int) header_len - tp->tcp_header_len;
1570 mss_now -= delta;
1571 }
1572
1573 return mss_now;
1574 }
1575
1576 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1577 * As additional protections, we do not touch cwnd in retransmission phases,
1578 * and if application hit its sndbuf limit recently.
1579 */
1580 static void tcp_cwnd_application_limited(struct sock *sk)
1581 {
1582 struct tcp_sock *tp = tcp_sk(sk);
1583
1584 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1585 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1586 /* Limited by application or receiver window. */
1587 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1588 u32 win_used = max(tp->snd_cwnd_used, init_win);
1589 if (win_used < tp->snd_cwnd) {
1590 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1591 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1592 }
1593 tp->snd_cwnd_used = 0;
1594 }
1595 tp->snd_cwnd_stamp = tcp_jiffies32;
1596 }
1597
1598 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1599 {
1600 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1601 struct tcp_sock *tp = tcp_sk(sk);
1602
1603 /* Track the maximum number of outstanding packets in each
1604 * window, and remember whether we were cwnd-limited then.
1605 */
1606 if (!before(tp->snd_una, tp->max_packets_seq) ||
1607 tp->packets_out > tp->max_packets_out) {
1608 tp->max_packets_out = tp->packets_out;
1609 tp->max_packets_seq = tp->snd_nxt;
1610 tp->is_cwnd_limited = is_cwnd_limited;
1611 }
1612
1613 if (tcp_is_cwnd_limited(sk)) {
1614 /* Network is feed fully. */
1615 tp->snd_cwnd_used = 0;
1616 tp->snd_cwnd_stamp = tcp_jiffies32;
1617 } else {
1618 /* Network starves. */
1619 if (tp->packets_out > tp->snd_cwnd_used)
1620 tp->snd_cwnd_used = tp->packets_out;
1621
1622 if (sysctl_tcp_slow_start_after_idle &&
1623 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1624 !ca_ops->cong_control)
1625 tcp_cwnd_application_limited(sk);
1626
1627 /* The following conditions together indicate the starvation
1628 * is caused by insufficient sender buffer:
1629 * 1) just sent some data (see tcp_write_xmit)
1630 * 2) not cwnd limited (this else condition)
1631 * 3) no more data to send (null tcp_send_head )
1632 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1633 */
1634 if (!tcp_send_head(sk) && sk->sk_socket &&
1635 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1636 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1637 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1638 }
1639 }
1640
1641 /* Minshall's variant of the Nagle send check. */
1642 static bool tcp_minshall_check(const struct tcp_sock *tp)
1643 {
1644 return after(tp->snd_sml, tp->snd_una) &&
1645 !after(tp->snd_sml, tp->snd_nxt);
1646 }
1647
1648 /* Update snd_sml if this skb is under mss
1649 * Note that a TSO packet might end with a sub-mss segment
1650 * The test is really :
1651 * if ((skb->len % mss) != 0)
1652 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1653 * But we can avoid doing the divide again given we already have
1654 * skb_pcount = skb->len / mss_now
1655 */
1656 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1657 const struct sk_buff *skb)
1658 {
1659 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1660 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1661 }
1662
1663 /* Return false, if packet can be sent now without violation Nagle's rules:
1664 * 1. It is full sized. (provided by caller in %partial bool)
1665 * 2. Or it contains FIN. (already checked by caller)
1666 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1667 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1668 * With Minshall's modification: all sent small packets are ACKed.
1669 */
1670 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1671 int nonagle)
1672 {
1673 return partial &&
1674 ((nonagle & TCP_NAGLE_CORK) ||
1675 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1676 }
1677
1678 /* Return how many segs we'd like on a TSO packet,
1679 * to send one TSO packet per ms
1680 */
1681 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1682 int min_tso_segs)
1683 {
1684 u32 bytes, segs;
1685
1686 bytes = min(sk->sk_pacing_rate >> 10,
1687 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1688
1689 /* Goal is to send at least one packet per ms,
1690 * not one big TSO packet every 100 ms.
1691 * This preserves ACK clocking and is consistent
1692 * with tcp_tso_should_defer() heuristic.
1693 */
1694 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1695
1696 return segs;
1697 }
1698 EXPORT_SYMBOL(tcp_tso_autosize);
1699
1700 /* Return the number of segments we want in the skb we are transmitting.
1701 * See if congestion control module wants to decide; otherwise, autosize.
1702 */
1703 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1704 {
1705 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1706 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1707
1708 if (!tso_segs)
1709 tso_segs = tcp_tso_autosize(sk, mss_now,
1710 sysctl_tcp_min_tso_segs);
1711 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1712 }
1713
1714 /* Returns the portion of skb which can be sent right away */
1715 static unsigned int tcp_mss_split_point(const struct sock *sk,
1716 const struct sk_buff *skb,
1717 unsigned int mss_now,
1718 unsigned int max_segs,
1719 int nonagle)
1720 {
1721 const struct tcp_sock *tp = tcp_sk(sk);
1722 u32 partial, needed, window, max_len;
1723
1724 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1725 max_len = mss_now * max_segs;
1726
1727 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1728 return max_len;
1729
1730 needed = min(skb->len, window);
1731
1732 if (max_len <= needed)
1733 return max_len;
1734
1735 partial = needed % mss_now;
1736 /* If last segment is not a full MSS, check if Nagle rules allow us
1737 * to include this last segment in this skb.
1738 * Otherwise, we'll split the skb at last MSS boundary
1739 */
1740 if (tcp_nagle_check(partial != 0, tp, nonagle))
1741 return needed - partial;
1742
1743 return needed;
1744 }
1745
1746 /* Can at least one segment of SKB be sent right now, according to the
1747 * congestion window rules? If so, return how many segments are allowed.
1748 */
1749 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1750 const struct sk_buff *skb)
1751 {
1752 u32 in_flight, cwnd, halfcwnd;
1753
1754 /* Don't be strict about the congestion window for the final FIN. */
1755 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1756 tcp_skb_pcount(skb) == 1)
1757 return 1;
1758
1759 in_flight = tcp_packets_in_flight(tp);
1760 cwnd = tp->snd_cwnd;
1761 if (in_flight >= cwnd)
1762 return 0;
1763
1764 /* For better scheduling, ensure we have at least
1765 * 2 GSO packets in flight.
1766 */
1767 halfcwnd = max(cwnd >> 1, 1U);
1768 return min(halfcwnd, cwnd - in_flight);
1769 }
1770
1771 /* Initialize TSO state of a skb.
1772 * This must be invoked the first time we consider transmitting
1773 * SKB onto the wire.
1774 */
1775 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1776 {
1777 int tso_segs = tcp_skb_pcount(skb);
1778
1779 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1780 tcp_set_skb_tso_segs(skb, mss_now);
1781 tso_segs = tcp_skb_pcount(skb);
1782 }
1783 return tso_segs;
1784 }
1785
1786
1787 /* Return true if the Nagle test allows this packet to be
1788 * sent now.
1789 */
1790 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1791 unsigned int cur_mss, int nonagle)
1792 {
1793 /* Nagle rule does not apply to frames, which sit in the middle of the
1794 * write_queue (they have no chances to get new data).
1795 *
1796 * This is implemented in the callers, where they modify the 'nonagle'
1797 * argument based upon the location of SKB in the send queue.
1798 */
1799 if (nonagle & TCP_NAGLE_PUSH)
1800 return true;
1801
1802 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1803 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1804 return true;
1805
1806 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1807 return true;
1808
1809 return false;
1810 }
1811
1812 /* Does at least the first segment of SKB fit into the send window? */
1813 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1814 const struct sk_buff *skb,
1815 unsigned int cur_mss)
1816 {
1817 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1818
1819 if (skb->len > cur_mss)
1820 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1821
1822 return !after(end_seq, tcp_wnd_end(tp));
1823 }
1824
1825 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1826 * which is put after SKB on the list. It is very much like
1827 * tcp_fragment() except that it may make several kinds of assumptions
1828 * in order to speed up the splitting operation. In particular, we
1829 * know that all the data is in scatter-gather pages, and that the
1830 * packet has never been sent out before (and thus is not cloned).
1831 */
1832 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1833 unsigned int mss_now, gfp_t gfp)
1834 {
1835 struct sk_buff *buff;
1836 int nlen = skb->len - len;
1837 u8 flags;
1838
1839 /* All of a TSO frame must be composed of paged data. */
1840 if (skb->len != skb->data_len)
1841 return tcp_fragment(sk, skb, len, mss_now, gfp);
1842
1843 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1844 if (unlikely(!buff))
1845 return -ENOMEM;
1846
1847 sk->sk_wmem_queued += buff->truesize;
1848 sk_mem_charge(sk, buff->truesize);
1849 buff->truesize += nlen;
1850 skb->truesize -= nlen;
1851
1852 /* Correct the sequence numbers. */
1853 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1854 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1855 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1856
1857 /* PSH and FIN should only be set in the second packet. */
1858 flags = TCP_SKB_CB(skb)->tcp_flags;
1859 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1860 TCP_SKB_CB(buff)->tcp_flags = flags;
1861
1862 /* This packet was never sent out yet, so no SACK bits. */
1863 TCP_SKB_CB(buff)->sacked = 0;
1864
1865 tcp_skb_fragment_eor(skb, buff);
1866
1867 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1868 skb_split(skb, buff, len);
1869 tcp_fragment_tstamp(skb, buff);
1870
1871 /* Fix up tso_factor for both original and new SKB. */
1872 tcp_set_skb_tso_segs(skb, mss_now);
1873 tcp_set_skb_tso_segs(buff, mss_now);
1874
1875 /* Link BUFF into the send queue. */
1876 __skb_header_release(buff);
1877 tcp_insert_write_queue_after(skb, buff, sk);
1878
1879 return 0;
1880 }
1881
1882 /* Try to defer sending, if possible, in order to minimize the amount
1883 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1884 *
1885 * This algorithm is from John Heffner.
1886 */
1887 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1888 bool *is_cwnd_limited, u32 max_segs)
1889 {
1890 const struct inet_connection_sock *icsk = inet_csk(sk);
1891 u32 age, send_win, cong_win, limit, in_flight;
1892 struct tcp_sock *tp = tcp_sk(sk);
1893 struct sk_buff *head;
1894 int win_divisor;
1895
1896 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1897 goto send_now;
1898
1899 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1900 goto send_now;
1901
1902 /* Avoid bursty behavior by allowing defer
1903 * only if the last write was recent.
1904 */
1905 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1906 goto send_now;
1907
1908 in_flight = tcp_packets_in_flight(tp);
1909
1910 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1911
1912 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1913
1914 /* From in_flight test above, we know that cwnd > in_flight. */
1915 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1916
1917 limit = min(send_win, cong_win);
1918
1919 /* If a full-sized TSO skb can be sent, do it. */
1920 if (limit >= max_segs * tp->mss_cache)
1921 goto send_now;
1922
1923 /* Middle in queue won't get any more data, full sendable already? */
1924 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1925 goto send_now;
1926
1927 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1928 if (win_divisor) {
1929 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1930
1931 /* If at least some fraction of a window is available,
1932 * just use it.
1933 */
1934 chunk /= win_divisor;
1935 if (limit >= chunk)
1936 goto send_now;
1937 } else {
1938 /* Different approach, try not to defer past a single
1939 * ACK. Receiver should ACK every other full sized
1940 * frame, so if we have space for more than 3 frames
1941 * then send now.
1942 */
1943 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1944 goto send_now;
1945 }
1946
1947 head = tcp_write_queue_head(sk);
1948
1949 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1950 /* If next ACK is likely to come too late (half srtt), do not defer */
1951 if (age < (tp->srtt_us >> 4))
1952 goto send_now;
1953
1954 /* Ok, it looks like it is advisable to defer. */
1955
1956 if (cong_win < send_win && cong_win <= skb->len)
1957 *is_cwnd_limited = true;
1958
1959 return true;
1960
1961 send_now:
1962 return false;
1963 }
1964
1965 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1966 {
1967 struct inet_connection_sock *icsk = inet_csk(sk);
1968 struct tcp_sock *tp = tcp_sk(sk);
1969 struct net *net = sock_net(sk);
1970 u32 interval;
1971 s32 delta;
1972
1973 interval = net->ipv4.sysctl_tcp_probe_interval;
1974 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
1975 if (unlikely(delta >= interval * HZ)) {
1976 int mss = tcp_current_mss(sk);
1977
1978 /* Update current search range */
1979 icsk->icsk_mtup.probe_size = 0;
1980 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1981 sizeof(struct tcphdr) +
1982 icsk->icsk_af_ops->net_header_len;
1983 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1984
1985 /* Update probe time stamp */
1986 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1987 }
1988 }
1989
1990 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
1991 {
1992 struct sk_buff *skb, *next;
1993
1994 skb = tcp_send_head(sk);
1995 tcp_for_write_queue_from_safe(skb, next, sk) {
1996 if (len <= skb->len)
1997 break;
1998
1999 if (unlikely(TCP_SKB_CB(skb)->eor))
2000 return false;
2001
2002 len -= skb->len;
2003 }
2004
2005 return true;
2006 }
2007
2008 /* Create a new MTU probe if we are ready.
2009 * MTU probe is regularly attempting to increase the path MTU by
2010 * deliberately sending larger packets. This discovers routing
2011 * changes resulting in larger path MTUs.
2012 *
2013 * Returns 0 if we should wait to probe (no cwnd available),
2014 * 1 if a probe was sent,
2015 * -1 otherwise
2016 */
2017 static int tcp_mtu_probe(struct sock *sk)
2018 {
2019 struct inet_connection_sock *icsk = inet_csk(sk);
2020 struct tcp_sock *tp = tcp_sk(sk);
2021 struct sk_buff *skb, *nskb, *next;
2022 struct net *net = sock_net(sk);
2023 int probe_size;
2024 int size_needed;
2025 int copy, len;
2026 int mss_now;
2027 int interval;
2028
2029 /* Not currently probing/verifying,
2030 * not in recovery,
2031 * have enough cwnd, and
2032 * not SACKing (the variable headers throw things off)
2033 */
2034 if (likely(!icsk->icsk_mtup.enabled ||
2035 icsk->icsk_mtup.probe_size ||
2036 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2037 tp->snd_cwnd < 11 ||
2038 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2039 return -1;
2040
2041 /* Use binary search for probe_size between tcp_mss_base,
2042 * and current mss_clamp. if (search_high - search_low)
2043 * smaller than a threshold, backoff from probing.
2044 */
2045 mss_now = tcp_current_mss(sk);
2046 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2047 icsk->icsk_mtup.search_low) >> 1);
2048 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2049 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2050 /* When misfortune happens, we are reprobing actively,
2051 * and then reprobe timer has expired. We stick with current
2052 * probing process by not resetting search range to its orignal.
2053 */
2054 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2055 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2056 /* Check whether enough time has elaplased for
2057 * another round of probing.
2058 */
2059 tcp_mtu_check_reprobe(sk);
2060 return -1;
2061 }
2062
2063 /* Have enough data in the send queue to probe? */
2064 if (tp->write_seq - tp->snd_nxt < size_needed)
2065 return -1;
2066
2067 if (tp->snd_wnd < size_needed)
2068 return -1;
2069 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2070 return 0;
2071
2072 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2073 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2074 if (!tcp_packets_in_flight(tp))
2075 return -1;
2076 else
2077 return 0;
2078 }
2079
2080 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2081 return -1;
2082
2083 /* We're allowed to probe. Build it now. */
2084 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2085 if (!nskb)
2086 return -1;
2087 sk->sk_wmem_queued += nskb->truesize;
2088 sk_mem_charge(sk, nskb->truesize);
2089
2090 skb = tcp_send_head(sk);
2091
2092 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2093 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2094 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2095 TCP_SKB_CB(nskb)->sacked = 0;
2096 nskb->csum = 0;
2097 nskb->ip_summed = skb->ip_summed;
2098
2099 tcp_insert_write_queue_before(nskb, skb, sk);
2100 tcp_highest_sack_replace(sk, skb, nskb);
2101
2102 len = 0;
2103 tcp_for_write_queue_from_safe(skb, next, sk) {
2104 copy = min_t(int, skb->len, probe_size - len);
2105 if (nskb->ip_summed) {
2106 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2107 } else {
2108 __wsum csum = skb_copy_and_csum_bits(skb, 0,
2109 skb_put(nskb, copy),
2110 copy, 0);
2111 nskb->csum = csum_block_add(nskb->csum, csum, len);
2112 }
2113
2114 if (skb->len <= copy) {
2115 /* We've eaten all the data from this skb.
2116 * Throw it away. */
2117 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2118 /* If this is the last SKB we copy and eor is set
2119 * we need to propagate it to the new skb.
2120 */
2121 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2122 tcp_unlink_write_queue(skb, sk);
2123 sk_wmem_free_skb(sk, skb);
2124 } else {
2125 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2126 ~(TCPHDR_FIN|TCPHDR_PSH);
2127 if (!skb_shinfo(skb)->nr_frags) {
2128 skb_pull(skb, copy);
2129 if (skb->ip_summed != CHECKSUM_PARTIAL)
2130 skb->csum = csum_partial(skb->data,
2131 skb->len, 0);
2132 } else {
2133 __pskb_trim_head(skb, copy);
2134 tcp_set_skb_tso_segs(skb, mss_now);
2135 }
2136 TCP_SKB_CB(skb)->seq += copy;
2137 }
2138
2139 len += copy;
2140
2141 if (len >= probe_size)
2142 break;
2143 }
2144 tcp_init_tso_segs(nskb, nskb->len);
2145
2146 /* We're ready to send. If this fails, the probe will
2147 * be resegmented into mss-sized pieces by tcp_write_xmit().
2148 */
2149 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2150 /* Decrement cwnd here because we are sending
2151 * effectively two packets. */
2152 tp->snd_cwnd--;
2153 tcp_event_new_data_sent(sk, nskb);
2154
2155 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2156 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2157 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2158
2159 return 1;
2160 }
2161
2162 return -1;
2163 }
2164
2165 static bool tcp_pacing_check(const struct sock *sk)
2166 {
2167 return tcp_needs_internal_pacing(sk) &&
2168 hrtimer_active(&tcp_sk(sk)->pacing_timer);
2169 }
2170
2171 /* TCP Small Queues :
2172 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2173 * (These limits are doubled for retransmits)
2174 * This allows for :
2175 * - better RTT estimation and ACK scheduling
2176 * - faster recovery
2177 * - high rates
2178 * Alas, some drivers / subsystems require a fair amount
2179 * of queued bytes to ensure line rate.
2180 * One example is wifi aggregation (802.11 AMPDU)
2181 */
2182 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2183 unsigned int factor)
2184 {
2185 unsigned int limit;
2186
2187 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2188 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2189 limit <<= factor;
2190
2191 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2192 /* Always send the 1st or 2nd skb in write queue.
2193 * No need to wait for TX completion to call us back,
2194 * after softirq/tasklet schedule.
2195 * This helps when TX completions are delayed too much.
2196 */
2197 if (skb == sk->sk_write_queue.next ||
2198 skb->prev == sk->sk_write_queue.next)
2199 return false;
2200
2201 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2202 /* It is possible TX completion already happened
2203 * before we set TSQ_THROTTLED, so we must
2204 * test again the condition.
2205 */
2206 smp_mb__after_atomic();
2207 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2208 return true;
2209 }
2210 return false;
2211 }
2212
2213 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2214 {
2215 const u32 now = tcp_jiffies32;
2216 enum tcp_chrono old = tp->chrono_type;
2217
2218 if (old > TCP_CHRONO_UNSPEC)
2219 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2220 tp->chrono_start = now;
2221 tp->chrono_type = new;
2222 }
2223
2224 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2225 {
2226 struct tcp_sock *tp = tcp_sk(sk);
2227
2228 /* If there are multiple conditions worthy of tracking in a
2229 * chronograph then the highest priority enum takes precedence
2230 * over the other conditions. So that if something "more interesting"
2231 * starts happening, stop the previous chrono and start a new one.
2232 */
2233 if (type > tp->chrono_type)
2234 tcp_chrono_set(tp, type);
2235 }
2236
2237 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2238 {
2239 struct tcp_sock *tp = tcp_sk(sk);
2240
2241
2242 /* There are multiple conditions worthy of tracking in a
2243 * chronograph, so that the highest priority enum takes
2244 * precedence over the other conditions (see tcp_chrono_start).
2245 * If a condition stops, we only stop chrono tracking if
2246 * it's the "most interesting" or current chrono we are
2247 * tracking and starts busy chrono if we have pending data.
2248 */
2249 if (tcp_write_queue_empty(sk))
2250 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2251 else if (type == tp->chrono_type)
2252 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2253 }
2254
2255 /* This routine writes packets to the network. It advances the
2256 * send_head. This happens as incoming acks open up the remote
2257 * window for us.
2258 *
2259 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2260 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2261 * account rare use of URG, this is not a big flaw.
2262 *
2263 * Send at most one packet when push_one > 0. Temporarily ignore
2264 * cwnd limit to force at most one packet out when push_one == 2.
2265
2266 * Returns true, if no segments are in flight and we have queued segments,
2267 * but cannot send anything now because of SWS or another problem.
2268 */
2269 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2270 int push_one, gfp_t gfp)
2271 {
2272 struct tcp_sock *tp = tcp_sk(sk);
2273 struct sk_buff *skb;
2274 unsigned int tso_segs, sent_pkts;
2275 int cwnd_quota;
2276 int result;
2277 bool is_cwnd_limited = false, is_rwnd_limited = false;
2278 u32 max_segs;
2279
2280 sent_pkts = 0;
2281
2282 tcp_mstamp_refresh(tp);
2283 if (!push_one) {
2284 /* Do MTU probing. */
2285 result = tcp_mtu_probe(sk);
2286 if (!result) {
2287 return false;
2288 } else if (result > 0) {
2289 sent_pkts = 1;
2290 }
2291 }
2292
2293 max_segs = tcp_tso_segs(sk, mss_now);
2294 while ((skb = tcp_send_head(sk))) {
2295 unsigned int limit;
2296
2297 if (tcp_pacing_check(sk))
2298 break;
2299
2300 tso_segs = tcp_init_tso_segs(skb, mss_now);
2301 BUG_ON(!tso_segs);
2302
2303 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2304 /* "skb_mstamp" is used as a start point for the retransmit timer */
2305 skb->skb_mstamp = tp->tcp_mstamp;
2306 goto repair; /* Skip network transmission */
2307 }
2308
2309 cwnd_quota = tcp_cwnd_test(tp, skb);
2310 if (!cwnd_quota) {
2311 if (push_one == 2)
2312 /* Force out a loss probe pkt. */
2313 cwnd_quota = 1;
2314 else
2315 break;
2316 }
2317
2318 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2319 is_rwnd_limited = true;
2320 break;
2321 }
2322
2323 if (tso_segs == 1) {
2324 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2325 (tcp_skb_is_last(sk, skb) ?
2326 nonagle : TCP_NAGLE_PUSH))))
2327 break;
2328 } else {
2329 if (!push_one &&
2330 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2331 max_segs))
2332 break;
2333 }
2334
2335 limit = mss_now;
2336 if (tso_segs > 1 && !tcp_urg_mode(tp))
2337 limit = tcp_mss_split_point(sk, skb, mss_now,
2338 min_t(unsigned int,
2339 cwnd_quota,
2340 max_segs),
2341 nonagle);
2342
2343 if (skb->len > limit &&
2344 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2345 break;
2346
2347 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2348 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2349 if (tcp_small_queue_check(sk, skb, 0))
2350 break;
2351
2352 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2353 break;
2354
2355 repair:
2356 /* Advance the send_head. This one is sent out.
2357 * This call will increment packets_out.
2358 */
2359 tcp_event_new_data_sent(sk, skb);
2360
2361 tcp_minshall_update(tp, mss_now, skb);
2362 sent_pkts += tcp_skb_pcount(skb);
2363
2364 if (push_one)
2365 break;
2366 }
2367
2368 if (is_rwnd_limited)
2369 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2370 else
2371 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2372
2373 if (likely(sent_pkts)) {
2374 if (tcp_in_cwnd_reduction(sk))
2375 tp->prr_out += sent_pkts;
2376
2377 /* Send one loss probe per tail loss episode. */
2378 if (push_one != 2)
2379 tcp_schedule_loss_probe(sk, false);
2380 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2381 tcp_cwnd_validate(sk, is_cwnd_limited);
2382 return false;
2383 }
2384 return !tp->packets_out && tcp_send_head(sk);
2385 }
2386
2387 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2388 {
2389 struct inet_connection_sock *icsk = inet_csk(sk);
2390 struct tcp_sock *tp = tcp_sk(sk);
2391 u32 timeout, rto_delta_us;
2392
2393 /* Don't do any loss probe on a Fast Open connection before 3WHS
2394 * finishes.
2395 */
2396 if (tp->fastopen_rsk)
2397 return false;
2398
2399 /* Schedule a loss probe in 2*RTT for SACK capable connections
2400 * in Open state, that are either limited by cwnd or application.
2401 */
2402 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2403 !tp->packets_out || !tcp_is_sack(tp) ||
2404 icsk->icsk_ca_state != TCP_CA_Open)
2405 return false;
2406
2407 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2408 tcp_send_head(sk))
2409 return false;
2410
2411 /* Probe timeout is 2*rtt. Add minimum RTO to account
2412 * for delayed ack when there's one outstanding packet. If no RTT
2413 * sample is available then probe after TCP_TIMEOUT_INIT.
2414 */
2415 if (tp->srtt_us) {
2416 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2417 if (tp->packets_out == 1)
2418 timeout += TCP_RTO_MIN;
2419 else
2420 timeout += TCP_TIMEOUT_MIN;
2421 } else {
2422 timeout = TCP_TIMEOUT_INIT;
2423 }
2424
2425 /* If the RTO formula yields an earlier time, then use that time. */
2426 rto_delta_us = advancing_rto ?
2427 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2428 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2429 if (rto_delta_us > 0)
2430 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2431
2432 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2433 TCP_RTO_MAX);
2434 return true;
2435 }
2436
2437 /* Thanks to skb fast clones, we can detect if a prior transmit of
2438 * a packet is still in a qdisc or driver queue.
2439 * In this case, there is very little point doing a retransmit !
2440 */
2441 static bool skb_still_in_host_queue(const struct sock *sk,
2442 const struct sk_buff *skb)
2443 {
2444 if (unlikely(skb_fclone_busy(sk, skb))) {
2445 NET_INC_STATS(sock_net(sk),
2446 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2447 return true;
2448 }
2449 return false;
2450 }
2451
2452 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2453 * retransmit the last segment.
2454 */
2455 void tcp_send_loss_probe(struct sock *sk)
2456 {
2457 struct tcp_sock *tp = tcp_sk(sk);
2458 struct sk_buff *skb;
2459 int pcount;
2460 int mss = tcp_current_mss(sk);
2461
2462 skb = tcp_send_head(sk);
2463 if (skb) {
2464 if (tcp_snd_wnd_test(tp, skb, mss)) {
2465 pcount = tp->packets_out;
2466 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2467 if (tp->packets_out > pcount)
2468 goto probe_sent;
2469 goto rearm_timer;
2470 }
2471 skb = tcp_write_queue_prev(sk, skb);
2472 } else {
2473 skb = tcp_write_queue_tail(sk);
2474 }
2475
2476 /* At most one outstanding TLP retransmission. */
2477 if (tp->tlp_high_seq)
2478 goto rearm_timer;
2479
2480 /* Retransmit last segment. */
2481 if (WARN_ON(!skb))
2482 goto rearm_timer;
2483
2484 if (skb_still_in_host_queue(sk, skb))
2485 goto rearm_timer;
2486
2487 pcount = tcp_skb_pcount(skb);
2488 if (WARN_ON(!pcount))
2489 goto rearm_timer;
2490
2491 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2492 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2493 GFP_ATOMIC)))
2494 goto rearm_timer;
2495 skb = tcp_write_queue_next(sk, skb);
2496 }
2497
2498 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2499 goto rearm_timer;
2500
2501 if (__tcp_retransmit_skb(sk, skb, 1))
2502 goto rearm_timer;
2503
2504 /* Record snd_nxt for loss detection. */
2505 tp->tlp_high_seq = tp->snd_nxt;
2506
2507 probe_sent:
2508 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2509 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2510 inet_csk(sk)->icsk_pending = 0;
2511 rearm_timer:
2512 tcp_rearm_rto(sk);
2513 }
2514
2515 /* Push out any pending frames which were held back due to
2516 * TCP_CORK or attempt at coalescing tiny packets.
2517 * The socket must be locked by the caller.
2518 */
2519 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2520 int nonagle)
2521 {
2522 /* If we are closed, the bytes will have to remain here.
2523 * In time closedown will finish, we empty the write queue and
2524 * all will be happy.
2525 */
2526 if (unlikely(sk->sk_state == TCP_CLOSE))
2527 return;
2528
2529 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2530 sk_gfp_mask(sk, GFP_ATOMIC)))
2531 tcp_check_probe_timer(sk);
2532 }
2533
2534 /* Send _single_ skb sitting at the send head. This function requires
2535 * true push pending frames to setup probe timer etc.
2536 */
2537 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2538 {
2539 struct sk_buff *skb = tcp_send_head(sk);
2540
2541 BUG_ON(!skb || skb->len < mss_now);
2542
2543 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2544 }
2545
2546 /* This function returns the amount that we can raise the
2547 * usable window based on the following constraints
2548 *
2549 * 1. The window can never be shrunk once it is offered (RFC 793)
2550 * 2. We limit memory per socket
2551 *
2552 * RFC 1122:
2553 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2554 * RECV.NEXT + RCV.WIN fixed until:
2555 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2556 *
2557 * i.e. don't raise the right edge of the window until you can raise
2558 * it at least MSS bytes.
2559 *
2560 * Unfortunately, the recommended algorithm breaks header prediction,
2561 * since header prediction assumes th->window stays fixed.
2562 *
2563 * Strictly speaking, keeping th->window fixed violates the receiver
2564 * side SWS prevention criteria. The problem is that under this rule
2565 * a stream of single byte packets will cause the right side of the
2566 * window to always advance by a single byte.
2567 *
2568 * Of course, if the sender implements sender side SWS prevention
2569 * then this will not be a problem.
2570 *
2571 * BSD seems to make the following compromise:
2572 *
2573 * If the free space is less than the 1/4 of the maximum
2574 * space available and the free space is less than 1/2 mss,
2575 * then set the window to 0.
2576 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2577 * Otherwise, just prevent the window from shrinking
2578 * and from being larger than the largest representable value.
2579 *
2580 * This prevents incremental opening of the window in the regime
2581 * where TCP is limited by the speed of the reader side taking
2582 * data out of the TCP receive queue. It does nothing about
2583 * those cases where the window is constrained on the sender side
2584 * because the pipeline is full.
2585 *
2586 * BSD also seems to "accidentally" limit itself to windows that are a
2587 * multiple of MSS, at least until the free space gets quite small.
2588 * This would appear to be a side effect of the mbuf implementation.
2589 * Combining these two algorithms results in the observed behavior
2590 * of having a fixed window size at almost all times.
2591 *
2592 * Below we obtain similar behavior by forcing the offered window to
2593 * a multiple of the mss when it is feasible to do so.
2594 *
2595 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2596 * Regular options like TIMESTAMP are taken into account.
2597 */
2598 u32 __tcp_select_window(struct sock *sk)
2599 {
2600 struct inet_connection_sock *icsk = inet_csk(sk);
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 /* MSS for the peer's data. Previous versions used mss_clamp
2603 * here. I don't know if the value based on our guesses
2604 * of peer's MSS is better for the performance. It's more correct
2605 * but may be worse for the performance because of rcv_mss
2606 * fluctuations. --SAW 1998/11/1
2607 */
2608 int mss = icsk->icsk_ack.rcv_mss;
2609 int free_space = tcp_space(sk);
2610 int allowed_space = tcp_full_space(sk);
2611 int full_space = min_t(int, tp->window_clamp, allowed_space);
2612 int window;
2613
2614 if (unlikely(mss > full_space)) {
2615 mss = full_space;
2616 if (mss <= 0)
2617 return 0;
2618 }
2619 if (free_space < (full_space >> 1)) {
2620 icsk->icsk_ack.quick = 0;
2621
2622 if (tcp_under_memory_pressure(sk))
2623 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2624 4U * tp->advmss);
2625
2626 /* free_space might become our new window, make sure we don't
2627 * increase it due to wscale.
2628 */
2629 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2630
2631 /* if free space is less than mss estimate, or is below 1/16th
2632 * of the maximum allowed, try to move to zero-window, else
2633 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2634 * new incoming data is dropped due to memory limits.
2635 * With large window, mss test triggers way too late in order
2636 * to announce zero window in time before rmem limit kicks in.
2637 */
2638 if (free_space < (allowed_space >> 4) || free_space < mss)
2639 return 0;
2640 }
2641
2642 if (free_space > tp->rcv_ssthresh)
2643 free_space = tp->rcv_ssthresh;
2644
2645 /* Don't do rounding if we are using window scaling, since the
2646 * scaled window will not line up with the MSS boundary anyway.
2647 */
2648 if (tp->rx_opt.rcv_wscale) {
2649 window = free_space;
2650
2651 /* Advertise enough space so that it won't get scaled away.
2652 * Import case: prevent zero window announcement if
2653 * 1<<rcv_wscale > mss.
2654 */
2655 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2656 } else {
2657 window = tp->rcv_wnd;
2658 /* Get the largest window that is a nice multiple of mss.
2659 * Window clamp already applied above.
2660 * If our current window offering is within 1 mss of the
2661 * free space we just keep it. This prevents the divide
2662 * and multiply from happening most of the time.
2663 * We also don't do any window rounding when the free space
2664 * is too small.
2665 */
2666 if (window <= free_space - mss || window > free_space)
2667 window = rounddown(free_space, mss);
2668 else if (mss == full_space &&
2669 free_space > window + (full_space >> 1))
2670 window = free_space;
2671 }
2672
2673 return window;
2674 }
2675
2676 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2677 const struct sk_buff *next_skb)
2678 {
2679 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2680 const struct skb_shared_info *next_shinfo =
2681 skb_shinfo(next_skb);
2682 struct skb_shared_info *shinfo = skb_shinfo(skb);
2683
2684 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2685 shinfo->tskey = next_shinfo->tskey;
2686 TCP_SKB_CB(skb)->txstamp_ack |=
2687 TCP_SKB_CB(next_skb)->txstamp_ack;
2688 }
2689 }
2690
2691 /* Collapses two adjacent SKB's during retransmission. */
2692 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2693 {
2694 struct tcp_sock *tp = tcp_sk(sk);
2695 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2696 int skb_size, next_skb_size;
2697
2698 skb_size = skb->len;
2699 next_skb_size = next_skb->len;
2700
2701 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2702
2703 if (next_skb_size) {
2704 if (next_skb_size <= skb_availroom(skb))
2705 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2706 next_skb_size);
2707 else if (!skb_shift(skb, next_skb, next_skb_size))
2708 return false;
2709 }
2710 tcp_highest_sack_replace(sk, next_skb, skb);
2711
2712 tcp_unlink_write_queue(next_skb, sk);
2713
2714 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2715 skb->ip_summed = CHECKSUM_PARTIAL;
2716
2717 if (skb->ip_summed != CHECKSUM_PARTIAL)
2718 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2719
2720 /* Update sequence range on original skb. */
2721 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2722
2723 /* Merge over control information. This moves PSH/FIN etc. over */
2724 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2725
2726 /* All done, get rid of second SKB and account for it so
2727 * packet counting does not break.
2728 */
2729 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2730 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2731
2732 /* changed transmit queue under us so clear hints */
2733 tcp_clear_retrans_hints_partial(tp);
2734 if (next_skb == tp->retransmit_skb_hint)
2735 tp->retransmit_skb_hint = skb;
2736
2737 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2738
2739 tcp_skb_collapse_tstamp(skb, next_skb);
2740
2741 sk_wmem_free_skb(sk, next_skb);
2742 return true;
2743 }
2744
2745 /* Check if coalescing SKBs is legal. */
2746 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2747 {
2748 if (tcp_skb_pcount(skb) > 1)
2749 return false;
2750 if (skb_cloned(skb))
2751 return false;
2752 if (skb == tcp_send_head(sk))
2753 return false;
2754 /* Some heuristics for collapsing over SACK'd could be invented */
2755 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2756 return false;
2757
2758 return true;
2759 }
2760
2761 /* Collapse packets in the retransmit queue to make to create
2762 * less packets on the wire. This is only done on retransmission.
2763 */
2764 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2765 int space)
2766 {
2767 struct tcp_sock *tp = tcp_sk(sk);
2768 struct sk_buff *skb = to, *tmp;
2769 bool first = true;
2770
2771 if (!sysctl_tcp_retrans_collapse)
2772 return;
2773 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2774 return;
2775
2776 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2777 if (!tcp_can_collapse(sk, skb))
2778 break;
2779
2780 if (!tcp_skb_can_collapse_to(to))
2781 break;
2782
2783 space -= skb->len;
2784
2785 if (first) {
2786 first = false;
2787 continue;
2788 }
2789
2790 if (space < 0)
2791 break;
2792
2793 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2794 break;
2795
2796 if (!tcp_collapse_retrans(sk, to))
2797 break;
2798 }
2799 }
2800
2801 /* This retransmits one SKB. Policy decisions and retransmit queue
2802 * state updates are done by the caller. Returns non-zero if an
2803 * error occurred which prevented the send.
2804 */
2805 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2806 {
2807 struct inet_connection_sock *icsk = inet_csk(sk);
2808 struct tcp_sock *tp = tcp_sk(sk);
2809 unsigned int cur_mss;
2810 int diff, len, err;
2811
2812
2813 /* Inconclusive MTU probe */
2814 if (icsk->icsk_mtup.probe_size)
2815 icsk->icsk_mtup.probe_size = 0;
2816
2817 /* Do not sent more than we queued. 1/4 is reserved for possible
2818 * copying overhead: fragmentation, tunneling, mangling etc.
2819 */
2820 if (refcount_read(&sk->sk_wmem_alloc) >
2821 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2822 sk->sk_sndbuf))
2823 return -EAGAIN;
2824
2825 if (skb_still_in_host_queue(sk, skb))
2826 return -EBUSY;
2827
2828 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2829 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2830 WARN_ON_ONCE(1);
2831 return -EINVAL;
2832 }
2833 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2834 return -ENOMEM;
2835 }
2836
2837 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2838 return -EHOSTUNREACH; /* Routing failure or similar. */
2839
2840 cur_mss = tcp_current_mss(sk);
2841
2842 /* If receiver has shrunk his window, and skb is out of
2843 * new window, do not retransmit it. The exception is the
2844 * case, when window is shrunk to zero. In this case
2845 * our retransmit serves as a zero window probe.
2846 */
2847 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2848 TCP_SKB_CB(skb)->seq != tp->snd_una)
2849 return -EAGAIN;
2850
2851 len = cur_mss * segs;
2852 if (skb->len > len) {
2853 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2854 return -ENOMEM; /* We'll try again later. */
2855 } else {
2856 if (skb_unclone(skb, GFP_ATOMIC))
2857 return -ENOMEM;
2858
2859 diff = tcp_skb_pcount(skb);
2860 tcp_set_skb_tso_segs(skb, cur_mss);
2861 diff -= tcp_skb_pcount(skb);
2862 if (diff)
2863 tcp_adjust_pcount(sk, skb, diff);
2864 if (skb->len < cur_mss)
2865 tcp_retrans_try_collapse(sk, skb, cur_mss);
2866 }
2867
2868 /* RFC3168, section 6.1.1.1. ECN fallback */
2869 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2870 tcp_ecn_clear_syn(sk, skb);
2871
2872 /* Update global and local TCP statistics. */
2873 segs = tcp_skb_pcount(skb);
2874 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2875 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2876 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2877 tp->total_retrans += segs;
2878
2879 /* make sure skb->data is aligned on arches that require it
2880 * and check if ack-trimming & collapsing extended the headroom
2881 * beyond what csum_start can cover.
2882 */
2883 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2884 skb_headroom(skb) >= 0xFFFF)) {
2885 struct sk_buff *nskb;
2886
2887 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2888 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2889 -ENOBUFS;
2890 if (!err) {
2891 skb->skb_mstamp = tp->tcp_mstamp;
2892 tcp_rate_skb_sent(sk, skb);
2893 }
2894 } else {
2895 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2896 }
2897
2898 if (likely(!err)) {
2899 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2900 } else if (err != -EBUSY) {
2901 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2902 }
2903 return err;
2904 }
2905
2906 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2907 {
2908 struct tcp_sock *tp = tcp_sk(sk);
2909 int err = __tcp_retransmit_skb(sk, skb, segs);
2910
2911 if (err == 0) {
2912 #if FASTRETRANS_DEBUG > 0
2913 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2914 net_dbg_ratelimited("retrans_out leaked\n");
2915 }
2916 #endif
2917 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2918 tp->retrans_out += tcp_skb_pcount(skb);
2919
2920 /* Save stamp of the first retransmit. */
2921 if (!tp->retrans_stamp)
2922 tp->retrans_stamp = tcp_skb_timestamp(skb);
2923
2924 }
2925
2926 if (tp->undo_retrans < 0)
2927 tp->undo_retrans = 0;
2928 tp->undo_retrans += tcp_skb_pcount(skb);
2929 return err;
2930 }
2931
2932 /* This gets called after a retransmit timeout, and the initially
2933 * retransmitted data is acknowledged. It tries to continue
2934 * resending the rest of the retransmit queue, until either
2935 * we've sent it all or the congestion window limit is reached.
2936 * If doing SACK, the first ACK which comes back for a timeout
2937 * based retransmit packet might feed us FACK information again.
2938 * If so, we use it to avoid unnecessarily retransmissions.
2939 */
2940 void tcp_xmit_retransmit_queue(struct sock *sk)
2941 {
2942 const struct inet_connection_sock *icsk = inet_csk(sk);
2943 struct tcp_sock *tp = tcp_sk(sk);
2944 struct sk_buff *skb;
2945 struct sk_buff *hole = NULL;
2946 u32 max_segs;
2947 int mib_idx;
2948
2949 if (!tp->packets_out)
2950 return;
2951
2952 if (tp->retransmit_skb_hint) {
2953 skb = tp->retransmit_skb_hint;
2954 } else {
2955 skb = tcp_write_queue_head(sk);
2956 }
2957
2958 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2959 tcp_for_write_queue_from(skb, sk) {
2960 __u8 sacked;
2961 int segs;
2962
2963 if (skb == tcp_send_head(sk))
2964 break;
2965
2966 if (tcp_pacing_check(sk))
2967 break;
2968
2969 /* we could do better than to assign each time */
2970 if (!hole)
2971 tp->retransmit_skb_hint = skb;
2972
2973 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2974 if (segs <= 0)
2975 return;
2976 sacked = TCP_SKB_CB(skb)->sacked;
2977 /* In case tcp_shift_skb_data() have aggregated large skbs,
2978 * we need to make sure not sending too bigs TSO packets
2979 */
2980 segs = min_t(int, segs, max_segs);
2981
2982 if (tp->retrans_out >= tp->lost_out) {
2983 break;
2984 } else if (!(sacked & TCPCB_LOST)) {
2985 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2986 hole = skb;
2987 continue;
2988
2989 } else {
2990 if (icsk->icsk_ca_state != TCP_CA_Loss)
2991 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2992 else
2993 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2994 }
2995
2996 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2997 continue;
2998
2999 if (tcp_small_queue_check(sk, skb, 1))
3000 return;
3001
3002 if (tcp_retransmit_skb(sk, skb, segs))
3003 return;
3004
3005 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3006
3007 if (tcp_in_cwnd_reduction(sk))
3008 tp->prr_out += tcp_skb_pcount(skb);
3009
3010 if (skb == tcp_write_queue_head(sk) &&
3011 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3012 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3013 inet_csk(sk)->icsk_rto,
3014 TCP_RTO_MAX);
3015 }
3016 }
3017
3018 /* We allow to exceed memory limits for FIN packets to expedite
3019 * connection tear down and (memory) recovery.
3020 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3021 * or even be forced to close flow without any FIN.
3022 * In general, we want to allow one skb per socket to avoid hangs
3023 * with edge trigger epoll()
3024 */
3025 void sk_forced_mem_schedule(struct sock *sk, int size)
3026 {
3027 int amt;
3028
3029 if (size <= sk->sk_forward_alloc)
3030 return;
3031 amt = sk_mem_pages(size);
3032 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3033 sk_memory_allocated_add(sk, amt);
3034
3035 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3036 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3037 }
3038
3039 /* Send a FIN. The caller locks the socket for us.
3040 * We should try to send a FIN packet really hard, but eventually give up.
3041 */
3042 void tcp_send_fin(struct sock *sk)
3043 {
3044 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3045 struct tcp_sock *tp = tcp_sk(sk);
3046
3047 /* Optimization, tack on the FIN if we have one skb in write queue and
3048 * this skb was not yet sent, or we are under memory pressure.
3049 * Note: in the latter case, FIN packet will be sent after a timeout,
3050 * as TCP stack thinks it has already been transmitted.
3051 */
3052 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3053 coalesce:
3054 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3055 TCP_SKB_CB(tskb)->end_seq++;
3056 tp->write_seq++;
3057 if (!tcp_send_head(sk)) {
3058 /* This means tskb was already sent.
3059 * Pretend we included the FIN on previous transmit.
3060 * We need to set tp->snd_nxt to the value it would have
3061 * if FIN had been sent. This is because retransmit path
3062 * does not change tp->snd_nxt.
3063 */
3064 tp->snd_nxt++;
3065 return;
3066 }
3067 } else {
3068 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3069 if (unlikely(!skb)) {
3070 if (tskb)
3071 goto coalesce;
3072 return;
3073 }
3074 skb_reserve(skb, MAX_TCP_HEADER);
3075 sk_forced_mem_schedule(sk, skb->truesize);
3076 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3077 tcp_init_nondata_skb(skb, tp->write_seq,
3078 TCPHDR_ACK | TCPHDR_FIN);
3079 tcp_queue_skb(sk, skb);
3080 }
3081 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3082 }
3083
3084 /* We get here when a process closes a file descriptor (either due to
3085 * an explicit close() or as a byproduct of exit()'ing) and there
3086 * was unread data in the receive queue. This behavior is recommended
3087 * by RFC 2525, section 2.17. -DaveM
3088 */
3089 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3090 {
3091 struct sk_buff *skb;
3092
3093 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3094
3095 /* NOTE: No TCP options attached and we never retransmit this. */
3096 skb = alloc_skb(MAX_TCP_HEADER, priority);
3097 if (!skb) {
3098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3099 return;
3100 }
3101
3102 /* Reserve space for headers and prepare control bits. */
3103 skb_reserve(skb, MAX_TCP_HEADER);
3104 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3105 TCPHDR_ACK | TCPHDR_RST);
3106 tcp_mstamp_refresh(tcp_sk(sk));
3107 /* Send it off. */
3108 if (tcp_transmit_skb(sk, skb, 0, priority))
3109 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3110 }
3111
3112 /* Send a crossed SYN-ACK during socket establishment.
3113 * WARNING: This routine must only be called when we have already sent
3114 * a SYN packet that crossed the incoming SYN that caused this routine
3115 * to get called. If this assumption fails then the initial rcv_wnd
3116 * and rcv_wscale values will not be correct.
3117 */
3118 int tcp_send_synack(struct sock *sk)
3119 {
3120 struct sk_buff *skb;
3121
3122 skb = tcp_write_queue_head(sk);
3123 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3124 pr_debug("%s: wrong queue state\n", __func__);
3125 return -EFAULT;
3126 }
3127 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3128 if (skb_cloned(skb)) {
3129 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3130 if (!nskb)
3131 return -ENOMEM;
3132 tcp_unlink_write_queue(skb, sk);
3133 __skb_header_release(nskb);
3134 __tcp_add_write_queue_head(sk, nskb);
3135 sk_wmem_free_skb(sk, skb);
3136 sk->sk_wmem_queued += nskb->truesize;
3137 sk_mem_charge(sk, nskb->truesize);
3138 skb = nskb;
3139 }
3140
3141 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3142 tcp_ecn_send_synack(sk, skb);
3143 }
3144 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3145 }
3146
3147 /**
3148 * tcp_make_synack - Prepare a SYN-ACK.
3149 * sk: listener socket
3150 * dst: dst entry attached to the SYNACK
3151 * req: request_sock pointer
3152 *
3153 * Allocate one skb and build a SYNACK packet.
3154 * @dst is consumed : Caller should not use it again.
3155 */
3156 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3157 struct request_sock *req,
3158 struct tcp_fastopen_cookie *foc,
3159 enum tcp_synack_type synack_type)
3160 {
3161 struct inet_request_sock *ireq = inet_rsk(req);
3162 const struct tcp_sock *tp = tcp_sk(sk);
3163 struct tcp_md5sig_key *md5 = NULL;
3164 struct tcp_out_options opts;
3165 struct sk_buff *skb;
3166 int tcp_header_size;
3167 struct tcphdr *th;
3168 int mss;
3169
3170 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3171 if (unlikely(!skb)) {
3172 dst_release(dst);
3173 return NULL;
3174 }
3175 /* Reserve space for headers. */
3176 skb_reserve(skb, MAX_TCP_HEADER);
3177
3178 switch (synack_type) {
3179 case TCP_SYNACK_NORMAL:
3180 skb_set_owner_w(skb, req_to_sk(req));
3181 break;
3182 case TCP_SYNACK_COOKIE:
3183 /* Under synflood, we do not attach skb to a socket,
3184 * to avoid false sharing.
3185 */
3186 break;
3187 case TCP_SYNACK_FASTOPEN:
3188 /* sk is a const pointer, because we want to express multiple
3189 * cpu might call us concurrently.
3190 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3191 */
3192 skb_set_owner_w(skb, (struct sock *)sk);
3193 break;
3194 }
3195 skb_dst_set(skb, dst);
3196
3197 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3198
3199 memset(&opts, 0, sizeof(opts));
3200 #ifdef CONFIG_SYN_COOKIES
3201 if (unlikely(req->cookie_ts))
3202 skb->skb_mstamp = cookie_init_timestamp(req);
3203 else
3204 #endif
3205 skb->skb_mstamp = tcp_clock_us();
3206
3207 #ifdef CONFIG_TCP_MD5SIG
3208 rcu_read_lock();
3209 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3210 #endif
3211 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3212 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3213 sizeof(*th);
3214
3215 skb_push(skb, tcp_header_size);
3216 skb_reset_transport_header(skb);
3217
3218 th = (struct tcphdr *)skb->data;
3219 memset(th, 0, sizeof(struct tcphdr));
3220 th->syn = 1;
3221 th->ack = 1;
3222 tcp_ecn_make_synack(req, th);
3223 th->source = htons(ireq->ir_num);
3224 th->dest = ireq->ir_rmt_port;
3225 skb->mark = ireq->ir_mark;
3226 skb->ip_summed = CHECKSUM_PARTIAL;
3227 th->seq = htonl(tcp_rsk(req)->snt_isn);
3228 /* XXX data is queued and acked as is. No buffer/window check */
3229 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3230
3231 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3232 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3233 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3234 th->doff = (tcp_header_size >> 2);
3235 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3236
3237 #ifdef CONFIG_TCP_MD5SIG
3238 /* Okay, we have all we need - do the md5 hash if needed */
3239 if (md5)
3240 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3241 md5, req_to_sk(req), skb);
3242 rcu_read_unlock();
3243 #endif
3244
3245 /* Do not fool tcpdump (if any), clean our debris */
3246 skb->tstamp = 0;
3247 return skb;
3248 }
3249 EXPORT_SYMBOL(tcp_make_synack);
3250
3251 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3252 {
3253 struct inet_connection_sock *icsk = inet_csk(sk);
3254 const struct tcp_congestion_ops *ca;
3255 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3256
3257 if (ca_key == TCP_CA_UNSPEC)
3258 return;
3259
3260 rcu_read_lock();
3261 ca = tcp_ca_find_key(ca_key);
3262 if (likely(ca && try_module_get(ca->owner))) {
3263 module_put(icsk->icsk_ca_ops->owner);
3264 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3265 icsk->icsk_ca_ops = ca;
3266 }
3267 rcu_read_unlock();
3268 }
3269
3270 /* Do all connect socket setups that can be done AF independent. */
3271 static void tcp_connect_init(struct sock *sk)
3272 {
3273 const struct dst_entry *dst = __sk_dst_get(sk);
3274 struct tcp_sock *tp = tcp_sk(sk);
3275 __u8 rcv_wscale;
3276 u32 rcv_wnd;
3277
3278 /* We'll fix this up when we get a response from the other end.
3279 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3280 */
3281 tp->tcp_header_len = sizeof(struct tcphdr);
3282 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3283 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3284
3285 #ifdef CONFIG_TCP_MD5SIG
3286 if (tp->af_specific->md5_lookup(sk, sk))
3287 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3288 #endif
3289
3290 /* If user gave his TCP_MAXSEG, record it to clamp */
3291 if (tp->rx_opt.user_mss)
3292 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3293 tp->max_window = 0;
3294 tcp_mtup_init(sk);
3295 tcp_sync_mss(sk, dst_mtu(dst));
3296
3297 tcp_ca_dst_init(sk, dst);
3298
3299 if (!tp->window_clamp)
3300 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3301 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3302
3303 tcp_initialize_rcv_mss(sk);
3304
3305 /* limit the window selection if the user enforce a smaller rx buffer */
3306 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3307 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3308 tp->window_clamp = tcp_full_space(sk);
3309
3310 rcv_wnd = tcp_rwnd_init_bpf(sk);
3311 if (rcv_wnd == 0)
3312 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3313
3314 tcp_select_initial_window(tcp_full_space(sk),
3315 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3316 &tp->rcv_wnd,
3317 &tp->window_clamp,
3318 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3319 &rcv_wscale,
3320 rcv_wnd);
3321
3322 tp->rx_opt.rcv_wscale = rcv_wscale;
3323 tp->rcv_ssthresh = tp->rcv_wnd;
3324
3325 sk->sk_err = 0;
3326 sock_reset_flag(sk, SOCK_DONE);
3327 tp->snd_wnd = 0;
3328 tcp_init_wl(tp, 0);
3329 tcp_write_queue_purge(sk);
3330 tp->snd_una = tp->write_seq;
3331 tp->snd_sml = tp->write_seq;
3332 tp->snd_up = tp->write_seq;
3333 tp->snd_nxt = tp->write_seq;
3334
3335 if (likely(!tp->repair))
3336 tp->rcv_nxt = 0;
3337 else
3338 tp->rcv_tstamp = tcp_jiffies32;
3339 tp->rcv_wup = tp->rcv_nxt;
3340 tp->copied_seq = tp->rcv_nxt;
3341
3342 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3343 inet_csk(sk)->icsk_retransmits = 0;
3344 tcp_clear_retrans(tp);
3345 }
3346
3347 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3348 {
3349 struct tcp_sock *tp = tcp_sk(sk);
3350 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3351
3352 tcb->end_seq += skb->len;
3353 __skb_header_release(skb);
3354 __tcp_add_write_queue_tail(sk, skb);
3355 sk->sk_wmem_queued += skb->truesize;
3356 sk_mem_charge(sk, skb->truesize);
3357 tp->write_seq = tcb->end_seq;
3358 tp->packets_out += tcp_skb_pcount(skb);
3359 }
3360
3361 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3362 * queue a data-only packet after the regular SYN, such that regular SYNs
3363 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3364 * only the SYN sequence, the data are retransmitted in the first ACK.
3365 * If cookie is not cached or other error occurs, falls back to send a
3366 * regular SYN with Fast Open cookie request option.
3367 */
3368 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3369 {
3370 struct tcp_sock *tp = tcp_sk(sk);
3371 struct tcp_fastopen_request *fo = tp->fastopen_req;
3372 int space, err = 0;
3373 struct sk_buff *syn_data;
3374
3375 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3376 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3377 goto fallback;
3378
3379 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3380 * user-MSS. Reserve maximum option space for middleboxes that add
3381 * private TCP options. The cost is reduced data space in SYN :(
3382 */
3383 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3384
3385 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3386 MAX_TCP_OPTION_SPACE;
3387
3388 space = min_t(size_t, space, fo->size);
3389
3390 /* limit to order-0 allocations */
3391 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3392
3393 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3394 if (!syn_data)
3395 goto fallback;
3396 syn_data->ip_summed = CHECKSUM_PARTIAL;
3397 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3398 if (space) {
3399 int copied = copy_from_iter(skb_put(syn_data, space), space,
3400 &fo->data->msg_iter);
3401 if (unlikely(!copied)) {
3402 kfree_skb(syn_data);
3403 goto fallback;
3404 }
3405 if (copied != space) {
3406 skb_trim(syn_data, copied);
3407 space = copied;
3408 }
3409 }
3410 /* No more data pending in inet_wait_for_connect() */
3411 if (space == fo->size)
3412 fo->data = NULL;
3413 fo->copied = space;
3414
3415 tcp_connect_queue_skb(sk, syn_data);
3416 if (syn_data->len)
3417 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3418
3419 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3420
3421 syn->skb_mstamp = syn_data->skb_mstamp;
3422
3423 /* Now full SYN+DATA was cloned and sent (or not),
3424 * remove the SYN from the original skb (syn_data)
3425 * we keep in write queue in case of a retransmit, as we
3426 * also have the SYN packet (with no data) in the same queue.
3427 */
3428 TCP_SKB_CB(syn_data)->seq++;
3429 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3430 if (!err) {
3431 tp->syn_data = (fo->copied > 0);
3432 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3433 goto done;
3434 }
3435
3436 /* data was not sent, this is our new send_head */
3437 sk->sk_send_head = syn_data;
3438 tp->packets_out -= tcp_skb_pcount(syn_data);
3439
3440 fallback:
3441 /* Send a regular SYN with Fast Open cookie request option */
3442 if (fo->cookie.len > 0)
3443 fo->cookie.len = 0;
3444 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3445 if (err)
3446 tp->syn_fastopen = 0;
3447 done:
3448 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3449 return err;
3450 }
3451
3452 /* Build a SYN and send it off. */
3453 int tcp_connect(struct sock *sk)
3454 {
3455 struct tcp_sock *tp = tcp_sk(sk);
3456 struct sk_buff *buff;
3457 int err;
3458
3459 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB);
3460
3461 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3462 return -EHOSTUNREACH; /* Routing failure or similar. */
3463
3464 tcp_connect_init(sk);
3465
3466 if (unlikely(tp->repair)) {
3467 tcp_finish_connect(sk, NULL);
3468 return 0;
3469 }
3470
3471 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3472 if (unlikely(!buff))
3473 return -ENOBUFS;
3474
3475 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3476 tcp_mstamp_refresh(tp);
3477 tp->retrans_stamp = tcp_time_stamp(tp);
3478 tcp_connect_queue_skb(sk, buff);
3479 tcp_ecn_send_syn(sk, buff);
3480
3481 /* Send off SYN; include data in Fast Open. */
3482 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3483 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3484 if (err == -ECONNREFUSED)
3485 return err;
3486
3487 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3488 * in order to make this packet get counted in tcpOutSegs.
3489 */
3490 tp->snd_nxt = tp->write_seq;
3491 tp->pushed_seq = tp->write_seq;
3492 buff = tcp_send_head(sk);
3493 if (unlikely(buff)) {
3494 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3495 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3496 }
3497 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3498
3499 /* Timer for repeating the SYN until an answer. */
3500 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3501 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3502 return 0;
3503 }
3504 EXPORT_SYMBOL(tcp_connect);
3505
3506 /* Send out a delayed ack, the caller does the policy checking
3507 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3508 * for details.
3509 */
3510 void tcp_send_delayed_ack(struct sock *sk)
3511 {
3512 struct inet_connection_sock *icsk = inet_csk(sk);
3513 int ato = icsk->icsk_ack.ato;
3514 unsigned long timeout;
3515
3516 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3517
3518 if (ato > TCP_DELACK_MIN) {
3519 const struct tcp_sock *tp = tcp_sk(sk);
3520 int max_ato = HZ / 2;
3521
3522 if (icsk->icsk_ack.pingpong ||
3523 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3524 max_ato = TCP_DELACK_MAX;
3525
3526 /* Slow path, intersegment interval is "high". */
3527
3528 /* If some rtt estimate is known, use it to bound delayed ack.
3529 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3530 * directly.
3531 */
3532 if (tp->srtt_us) {
3533 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3534 TCP_DELACK_MIN);
3535
3536 if (rtt < max_ato)
3537 max_ato = rtt;
3538 }
3539
3540 ato = min(ato, max_ato);
3541 }
3542
3543 /* Stay within the limit we were given */
3544 timeout = jiffies + ato;
3545
3546 /* Use new timeout only if there wasn't a older one earlier. */
3547 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3548 /* If delack timer was blocked or is about to expire,
3549 * send ACK now.
3550 */
3551 if (icsk->icsk_ack.blocked ||
3552 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3553 tcp_send_ack(sk);
3554 return;
3555 }
3556
3557 if (!time_before(timeout, icsk->icsk_ack.timeout))
3558 timeout = icsk->icsk_ack.timeout;
3559 }
3560 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3561 icsk->icsk_ack.timeout = timeout;
3562 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3563 }
3564
3565 /* This routine sends an ack and also updates the window. */
3566 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3567 {
3568 struct sk_buff *buff;
3569
3570 /* If we have been reset, we may not send again. */
3571 if (sk->sk_state == TCP_CLOSE)
3572 return;
3573
3574 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3575
3576 /* We are not putting this on the write queue, so
3577 * tcp_transmit_skb() will set the ownership to this
3578 * sock.
3579 */
3580 buff = alloc_skb(MAX_TCP_HEADER,
3581 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3582 if (unlikely(!buff)) {
3583 inet_csk_schedule_ack(sk);
3584 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3585 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3586 TCP_DELACK_MAX, TCP_RTO_MAX);
3587 return;
3588 }
3589
3590 /* Reserve space for headers and prepare control bits. */
3591 skb_reserve(buff, MAX_TCP_HEADER);
3592 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3593
3594 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3595 * too much.
3596 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3597 */
3598 skb_set_tcp_pure_ack(buff);
3599
3600 /* Send it off, this clears delayed acks for us. */
3601 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3602 }
3603 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3604
3605 void tcp_send_ack(struct sock *sk)
3606 {
3607 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3608 }
3609
3610 /* This routine sends a packet with an out of date sequence
3611 * number. It assumes the other end will try to ack it.
3612 *
3613 * Question: what should we make while urgent mode?
3614 * 4.4BSD forces sending single byte of data. We cannot send
3615 * out of window data, because we have SND.NXT==SND.MAX...
3616 *
3617 * Current solution: to send TWO zero-length segments in urgent mode:
3618 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3619 * out-of-date with SND.UNA-1 to probe window.
3620 */
3621 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3622 {
3623 struct tcp_sock *tp = tcp_sk(sk);
3624 struct sk_buff *skb;
3625
3626 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3627 skb = alloc_skb(MAX_TCP_HEADER,
3628 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3629 if (!skb)
3630 return -1;
3631
3632 /* Reserve space for headers and set control bits. */
3633 skb_reserve(skb, MAX_TCP_HEADER);
3634 /* Use a previous sequence. This should cause the other
3635 * end to send an ack. Don't queue or clone SKB, just
3636 * send it.
3637 */
3638 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3639 NET_INC_STATS(sock_net(sk), mib);
3640 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3641 }
3642
3643 /* Called from setsockopt( ... TCP_REPAIR ) */
3644 void tcp_send_window_probe(struct sock *sk)
3645 {
3646 if (sk->sk_state == TCP_ESTABLISHED) {
3647 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3648 tcp_mstamp_refresh(tcp_sk(sk));
3649 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3650 }
3651 }
3652
3653 /* Initiate keepalive or window probe from timer. */
3654 int tcp_write_wakeup(struct sock *sk, int mib)
3655 {
3656 struct tcp_sock *tp = tcp_sk(sk);
3657 struct sk_buff *skb;
3658
3659 if (sk->sk_state == TCP_CLOSE)
3660 return -1;
3661
3662 skb = tcp_send_head(sk);
3663 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3664 int err;
3665 unsigned int mss = tcp_current_mss(sk);
3666 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3667
3668 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3669 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3670
3671 /* We are probing the opening of a window
3672 * but the window size is != 0
3673 * must have been a result SWS avoidance ( sender )
3674 */
3675 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3676 skb->len > mss) {
3677 seg_size = min(seg_size, mss);
3678 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3679 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3680 return -1;
3681 } else if (!tcp_skb_pcount(skb))
3682 tcp_set_skb_tso_segs(skb, mss);
3683
3684 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3685 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3686 if (!err)
3687 tcp_event_new_data_sent(sk, skb);
3688 return err;
3689 } else {
3690 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3691 tcp_xmit_probe_skb(sk, 1, mib);
3692 return tcp_xmit_probe_skb(sk, 0, mib);
3693 }
3694 }
3695
3696 /* A window probe timeout has occurred. If window is not closed send
3697 * a partial packet else a zero probe.
3698 */
3699 void tcp_send_probe0(struct sock *sk)
3700 {
3701 struct inet_connection_sock *icsk = inet_csk(sk);
3702 struct tcp_sock *tp = tcp_sk(sk);
3703 struct net *net = sock_net(sk);
3704 unsigned long probe_max;
3705 int err;
3706
3707 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3708
3709 if (tp->packets_out || !tcp_send_head(sk)) {
3710 /* Cancel probe timer, if it is not required. */
3711 icsk->icsk_probes_out = 0;
3712 icsk->icsk_backoff = 0;
3713 return;
3714 }
3715
3716 if (err <= 0) {
3717 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3718 icsk->icsk_backoff++;
3719 icsk->icsk_probes_out++;
3720 probe_max = TCP_RTO_MAX;
3721 } else {
3722 /* If packet was not sent due to local congestion,
3723 * do not backoff and do not remember icsk_probes_out.
3724 * Let local senders to fight for local resources.
3725 *
3726 * Use accumulated backoff yet.
3727 */
3728 if (!icsk->icsk_probes_out)
3729 icsk->icsk_probes_out = 1;
3730 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3731 }
3732 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3733 tcp_probe0_when(sk, probe_max),
3734 TCP_RTO_MAX);
3735 }
3736
3737 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3738 {
3739 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3740 struct flowi fl;
3741 int res;
3742
3743 tcp_rsk(req)->txhash = net_tx_rndhash();
3744 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3745 if (!res) {
3746 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3747 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3748 if (unlikely(tcp_passive_fastopen(sk)))
3749 tcp_sk(sk)->total_retrans++;
3750 }
3751 return res;
3752 }
3753 EXPORT_SYMBOL(tcp_rtx_synack);