ipsec: ipcomp - Merge IPComp implementations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #include <net/tcp.h>
38
39 #include <linux/compiler.h>
40 #include <linux/module.h>
41
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly = 1;
44
45 /* People can turn this on to work with those rare, broken TCPs that
46 * interpret the window field as a signed quantity.
47 */
48 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
49
50 /* This limits the percentage of the congestion window which we
51 * will allow a single TSO frame to consume. Building TSO frames
52 * which are too large can cause TCP streams to be bursty.
53 */
54 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
55
56 int sysctl_tcp_mtu_probing __read_mostly = 0;
57 int sysctl_tcp_base_mss __read_mostly = 512;
58
59 /* By default, RFC2861 behavior. */
60 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
61
62 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
63 {
64 struct tcp_sock *tp = tcp_sk(sk);
65 unsigned int prior_packets = tp->packets_out;
66
67 tcp_advance_send_head(sk, skb);
68 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
69
70 /* Don't override Nagle indefinately with F-RTO */
71 if (tp->frto_counter == 2)
72 tp->frto_counter = 3;
73
74 tp->packets_out += tcp_skb_pcount(skb);
75 if (!prior_packets)
76 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
77 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
78 }
79
80 /* SND.NXT, if window was not shrunk.
81 * If window has been shrunk, what should we make? It is not clear at all.
82 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
83 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
84 * invalid. OK, let's make this for now:
85 */
86 static inline __u32 tcp_acceptable_seq(struct sock *sk)
87 {
88 struct tcp_sock *tp = tcp_sk(sk);
89
90 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
91 return tp->snd_nxt;
92 else
93 return tcp_wnd_end(tp);
94 }
95
96 /* Calculate mss to advertise in SYN segment.
97 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
98 *
99 * 1. It is independent of path mtu.
100 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
101 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
102 * attached devices, because some buggy hosts are confused by
103 * large MSS.
104 * 4. We do not make 3, we advertise MSS, calculated from first
105 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
106 * This may be overridden via information stored in routing table.
107 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
108 * probably even Jumbo".
109 */
110 static __u16 tcp_advertise_mss(struct sock *sk)
111 {
112 struct tcp_sock *tp = tcp_sk(sk);
113 struct dst_entry *dst = __sk_dst_get(sk);
114 int mss = tp->advmss;
115
116 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
117 mss = dst_metric(dst, RTAX_ADVMSS);
118 tp->advmss = mss;
119 }
120
121 return (__u16)mss;
122 }
123
124 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
125 * This is the first part of cwnd validation mechanism. */
126 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
127 {
128 struct tcp_sock *tp = tcp_sk(sk);
129 s32 delta = tcp_time_stamp - tp->lsndtime;
130 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
131 u32 cwnd = tp->snd_cwnd;
132
133 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
134
135 tp->snd_ssthresh = tcp_current_ssthresh(sk);
136 restart_cwnd = min(restart_cwnd, cwnd);
137
138 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
139 cwnd >>= 1;
140 tp->snd_cwnd = max(cwnd, restart_cwnd);
141 tp->snd_cwnd_stamp = tcp_time_stamp;
142 tp->snd_cwnd_used = 0;
143 }
144
145 static void tcp_event_data_sent(struct tcp_sock *tp,
146 struct sk_buff *skb, struct sock *sk)
147 {
148 struct inet_connection_sock *icsk = inet_csk(sk);
149 const u32 now = tcp_time_stamp;
150
151 if (sysctl_tcp_slow_start_after_idle &&
152 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
153 tcp_cwnd_restart(sk, __sk_dst_get(sk));
154
155 tp->lsndtime = now;
156
157 /* If it is a reply for ato after last received
158 * packet, enter pingpong mode.
159 */
160 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
161 icsk->icsk_ack.pingpong = 1;
162 }
163
164 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
165 {
166 tcp_dec_quickack_mode(sk, pkts);
167 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
168 }
169
170 /* Determine a window scaling and initial window to offer.
171 * Based on the assumption that the given amount of space
172 * will be offered. Store the results in the tp structure.
173 * NOTE: for smooth operation initial space offering should
174 * be a multiple of mss if possible. We assume here that mss >= 1.
175 * This MUST be enforced by all callers.
176 */
177 void tcp_select_initial_window(int __space, __u32 mss,
178 __u32 *rcv_wnd, __u32 *window_clamp,
179 int wscale_ok, __u8 *rcv_wscale)
180 {
181 unsigned int space = (__space < 0 ? 0 : __space);
182
183 /* If no clamp set the clamp to the max possible scaled window */
184 if (*window_clamp == 0)
185 (*window_clamp) = (65535 << 14);
186 space = min(*window_clamp, space);
187
188 /* Quantize space offering to a multiple of mss if possible. */
189 if (space > mss)
190 space = (space / mss) * mss;
191
192 /* NOTE: offering an initial window larger than 32767
193 * will break some buggy TCP stacks. If the admin tells us
194 * it is likely we could be speaking with such a buggy stack
195 * we will truncate our initial window offering to 32K-1
196 * unless the remote has sent us a window scaling option,
197 * which we interpret as a sign the remote TCP is not
198 * misinterpreting the window field as a signed quantity.
199 */
200 if (sysctl_tcp_workaround_signed_windows)
201 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
202 else
203 (*rcv_wnd) = space;
204
205 (*rcv_wscale) = 0;
206 if (wscale_ok) {
207 /* Set window scaling on max possible window
208 * See RFC1323 for an explanation of the limit to 14
209 */
210 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
211 space = min_t(u32, space, *window_clamp);
212 while (space > 65535 && (*rcv_wscale) < 14) {
213 space >>= 1;
214 (*rcv_wscale)++;
215 }
216 }
217
218 /* Set initial window to value enough for senders,
219 * following RFC2414. Senders, not following this RFC,
220 * will be satisfied with 2.
221 */
222 if (mss > (1 << *rcv_wscale)) {
223 int init_cwnd = 4;
224 if (mss > 1460 * 3)
225 init_cwnd = 2;
226 else if (mss > 1460)
227 init_cwnd = 3;
228 if (*rcv_wnd > init_cwnd * mss)
229 *rcv_wnd = init_cwnd * mss;
230 }
231
232 /* Set the clamp no higher than max representable value */
233 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
234 }
235
236 /* Chose a new window to advertise, update state in tcp_sock for the
237 * socket, and return result with RFC1323 scaling applied. The return
238 * value can be stuffed directly into th->window for an outgoing
239 * frame.
240 */
241 static u16 tcp_select_window(struct sock *sk)
242 {
243 struct tcp_sock *tp = tcp_sk(sk);
244 u32 cur_win = tcp_receive_window(tp);
245 u32 new_win = __tcp_select_window(sk);
246
247 /* Never shrink the offered window */
248 if (new_win < cur_win) {
249 /* Danger Will Robinson!
250 * Don't update rcv_wup/rcv_wnd here or else
251 * we will not be able to advertise a zero
252 * window in time. --DaveM
253 *
254 * Relax Will Robinson.
255 */
256 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
257 }
258 tp->rcv_wnd = new_win;
259 tp->rcv_wup = tp->rcv_nxt;
260
261 /* Make sure we do not exceed the maximum possible
262 * scaled window.
263 */
264 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
265 new_win = min(new_win, MAX_TCP_WINDOW);
266 else
267 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
268
269 /* RFC1323 scaling applied */
270 new_win >>= tp->rx_opt.rcv_wscale;
271
272 /* If we advertise zero window, disable fast path. */
273 if (new_win == 0)
274 tp->pred_flags = 0;
275
276 return new_win;
277 }
278
279 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb)
280 {
281 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR;
282 if (!(tp->ecn_flags & TCP_ECN_OK))
283 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE;
284 }
285
286 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
287 {
288 struct tcp_sock *tp = tcp_sk(sk);
289
290 tp->ecn_flags = 0;
291 if (sysctl_tcp_ecn) {
292 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR;
293 tp->ecn_flags = TCP_ECN_OK;
294 }
295 }
296
297 static __inline__ void
298 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th)
299 {
300 if (inet_rsk(req)->ecn_ok)
301 th->ece = 1;
302 }
303
304 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
305 int tcp_header_len)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308
309 if (tp->ecn_flags & TCP_ECN_OK) {
310 /* Not-retransmitted data segment: set ECT and inject CWR. */
311 if (skb->len != tcp_header_len &&
312 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
313 INET_ECN_xmit(sk);
314 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
315 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
316 tcp_hdr(skb)->cwr = 1;
317 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
318 }
319 } else {
320 /* ACK or retransmitted segment: clear ECT|CE */
321 INET_ECN_dontxmit(sk);
322 }
323 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
324 tcp_hdr(skb)->ece = 1;
325 }
326 }
327
328 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
329 * auto increment end seqno.
330 */
331 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
332 {
333 skb->csum = 0;
334
335 TCP_SKB_CB(skb)->flags = flags;
336 TCP_SKB_CB(skb)->sacked = 0;
337
338 skb_shinfo(skb)->gso_segs = 1;
339 skb_shinfo(skb)->gso_size = 0;
340 skb_shinfo(skb)->gso_type = 0;
341
342 TCP_SKB_CB(skb)->seq = seq;
343 if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN))
344 seq++;
345 TCP_SKB_CB(skb)->end_seq = seq;
346 }
347
348 #define OPTION_SACK_ADVERTISE (1 << 0)
349 #define OPTION_TS (1 << 1)
350 #define OPTION_MD5 (1 << 2)
351
352 struct tcp_out_options {
353 u8 options; /* bit field of OPTION_* */
354 u8 ws; /* window scale, 0 to disable */
355 u8 num_sack_blocks; /* number of SACK blocks to include */
356 u16 mss; /* 0 to disable */
357 __u32 tsval, tsecr; /* need to include OPTION_TS */
358 };
359
360 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
361 const struct tcp_out_options *opts,
362 __u8 **md5_hash) {
363 if (unlikely(OPTION_MD5 & opts->options)) {
364 *ptr++ = htonl((TCPOPT_NOP << 24) |
365 (TCPOPT_NOP << 16) |
366 (TCPOPT_MD5SIG << 8) |
367 TCPOLEN_MD5SIG);
368 *md5_hash = (__u8 *)ptr;
369 ptr += 4;
370 } else {
371 *md5_hash = NULL;
372 }
373
374 if (likely(OPTION_TS & opts->options)) {
375 if (unlikely(OPTION_SACK_ADVERTISE & opts->options)) {
376 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
377 (TCPOLEN_SACK_PERM << 16) |
378 (TCPOPT_TIMESTAMP << 8) |
379 TCPOLEN_TIMESTAMP);
380 } else {
381 *ptr++ = htonl((TCPOPT_NOP << 24) |
382 (TCPOPT_NOP << 16) |
383 (TCPOPT_TIMESTAMP << 8) |
384 TCPOLEN_TIMESTAMP);
385 }
386 *ptr++ = htonl(opts->tsval);
387 *ptr++ = htonl(opts->tsecr);
388 }
389
390 if (unlikely(opts->mss)) {
391 *ptr++ = htonl((TCPOPT_MSS << 24) |
392 (TCPOLEN_MSS << 16) |
393 opts->mss);
394 }
395
396 if (unlikely(OPTION_SACK_ADVERTISE & opts->options &&
397 !(OPTION_TS & opts->options))) {
398 *ptr++ = htonl((TCPOPT_NOP << 24) |
399 (TCPOPT_NOP << 16) |
400 (TCPOPT_SACK_PERM << 8) |
401 TCPOLEN_SACK_PERM);
402 }
403
404 if (unlikely(opts->ws)) {
405 *ptr++ = htonl((TCPOPT_NOP << 24) |
406 (TCPOPT_WINDOW << 16) |
407 (TCPOLEN_WINDOW << 8) |
408 opts->ws);
409 }
410
411 if (unlikely(opts->num_sack_blocks)) {
412 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
413 tp->duplicate_sack : tp->selective_acks;
414 int this_sack;
415
416 *ptr++ = htonl((TCPOPT_NOP << 24) |
417 (TCPOPT_NOP << 16) |
418 (TCPOPT_SACK << 8) |
419 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
420 TCPOLEN_SACK_PERBLOCK)));
421
422 for (this_sack = 0; this_sack < opts->num_sack_blocks;
423 ++this_sack) {
424 *ptr++ = htonl(sp[this_sack].start_seq);
425 *ptr++ = htonl(sp[this_sack].end_seq);
426 }
427
428 if (tp->rx_opt.dsack) {
429 tp->rx_opt.dsack = 0;
430 tp->rx_opt.eff_sacks--;
431 }
432 }
433 }
434
435 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb,
436 struct tcp_out_options *opts,
437 struct tcp_md5sig_key **md5) {
438 struct tcp_sock *tp = tcp_sk(sk);
439 unsigned size = 0;
440
441 #ifdef CONFIG_TCP_MD5SIG
442 *md5 = tp->af_specific->md5_lookup(sk, sk);
443 if (*md5) {
444 opts->options |= OPTION_MD5;
445 size += TCPOLEN_MD5SIG_ALIGNED;
446 }
447 #else
448 *md5 = NULL;
449 #endif
450
451 /* We always get an MSS option. The option bytes which will be seen in
452 * normal data packets should timestamps be used, must be in the MSS
453 * advertised. But we subtract them from tp->mss_cache so that
454 * calculations in tcp_sendmsg are simpler etc. So account for this
455 * fact here if necessary. If we don't do this correctly, as a
456 * receiver we won't recognize data packets as being full sized when we
457 * should, and thus we won't abide by the delayed ACK rules correctly.
458 * SACKs don't matter, we never delay an ACK when we have any of those
459 * going out. */
460 opts->mss = tcp_advertise_mss(sk);
461 size += TCPOLEN_MSS_ALIGNED;
462
463 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
464 opts->options |= OPTION_TS;
465 opts->tsval = TCP_SKB_CB(skb)->when;
466 opts->tsecr = tp->rx_opt.ts_recent;
467 size += TCPOLEN_TSTAMP_ALIGNED;
468 }
469 if (likely(sysctl_tcp_window_scaling)) {
470 opts->ws = tp->rx_opt.rcv_wscale;
471 size += TCPOLEN_WSCALE_ALIGNED;
472 }
473 if (likely(sysctl_tcp_sack)) {
474 opts->options |= OPTION_SACK_ADVERTISE;
475 if (unlikely(!(OPTION_TS & opts->options)))
476 size += TCPOLEN_SACKPERM_ALIGNED;
477 }
478
479 return size;
480 }
481
482 static unsigned tcp_synack_options(struct sock *sk,
483 struct request_sock *req,
484 unsigned mss, struct sk_buff *skb,
485 struct tcp_out_options *opts,
486 struct tcp_md5sig_key **md5) {
487 unsigned size = 0;
488 struct inet_request_sock *ireq = inet_rsk(req);
489 char doing_ts;
490
491 #ifdef CONFIG_TCP_MD5SIG
492 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
493 if (*md5) {
494 opts->options |= OPTION_MD5;
495 size += TCPOLEN_MD5SIG_ALIGNED;
496 }
497 #else
498 *md5 = NULL;
499 #endif
500
501 /* we can't fit any SACK blocks in a packet with MD5 + TS
502 options. There was discussion about disabling SACK rather than TS in
503 order to fit in better with old, buggy kernels, but that was deemed
504 to be unnecessary. */
505 doing_ts = ireq->tstamp_ok && !(*md5 && ireq->sack_ok);
506
507 opts->mss = mss;
508 size += TCPOLEN_MSS_ALIGNED;
509
510 if (likely(ireq->wscale_ok)) {
511 opts->ws = ireq->rcv_wscale;
512 size += TCPOLEN_WSCALE_ALIGNED;
513 }
514 if (likely(doing_ts)) {
515 opts->options |= OPTION_TS;
516 opts->tsval = TCP_SKB_CB(skb)->when;
517 opts->tsecr = req->ts_recent;
518 size += TCPOLEN_TSTAMP_ALIGNED;
519 }
520 if (likely(ireq->sack_ok)) {
521 opts->options |= OPTION_SACK_ADVERTISE;
522 if (unlikely(!doing_ts))
523 size += TCPOLEN_SACKPERM_ALIGNED;
524 }
525
526 return size;
527 }
528
529 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb,
530 struct tcp_out_options *opts,
531 struct tcp_md5sig_key **md5) {
532 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
533 struct tcp_sock *tp = tcp_sk(sk);
534 unsigned size = 0;
535
536 #ifdef CONFIG_TCP_MD5SIG
537 *md5 = tp->af_specific->md5_lookup(sk, sk);
538 if (unlikely(*md5)) {
539 opts->options |= OPTION_MD5;
540 size += TCPOLEN_MD5SIG_ALIGNED;
541 }
542 #else
543 *md5 = NULL;
544 #endif
545
546 if (likely(tp->rx_opt.tstamp_ok)) {
547 opts->options |= OPTION_TS;
548 opts->tsval = tcb ? tcb->when : 0;
549 opts->tsecr = tp->rx_opt.ts_recent;
550 size += TCPOLEN_TSTAMP_ALIGNED;
551 }
552
553 if (unlikely(tp->rx_opt.eff_sacks)) {
554 const unsigned remaining = MAX_TCP_OPTION_SPACE - size;
555 opts->num_sack_blocks =
556 min_t(unsigned, tp->rx_opt.eff_sacks,
557 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
558 TCPOLEN_SACK_PERBLOCK);
559 size += TCPOLEN_SACK_BASE_ALIGNED +
560 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
561 }
562
563 return size;
564 }
565
566 /* This routine actually transmits TCP packets queued in by
567 * tcp_do_sendmsg(). This is used by both the initial
568 * transmission and possible later retransmissions.
569 * All SKB's seen here are completely headerless. It is our
570 * job to build the TCP header, and pass the packet down to
571 * IP so it can do the same plus pass the packet off to the
572 * device.
573 *
574 * We are working here with either a clone of the original
575 * SKB, or a fresh unique copy made by the retransmit engine.
576 */
577 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
578 gfp_t gfp_mask)
579 {
580 const struct inet_connection_sock *icsk = inet_csk(sk);
581 struct inet_sock *inet;
582 struct tcp_sock *tp;
583 struct tcp_skb_cb *tcb;
584 struct tcp_out_options opts;
585 unsigned tcp_options_size, tcp_header_size;
586 struct tcp_md5sig_key *md5;
587 __u8 *md5_hash_location;
588 struct tcphdr *th;
589 int err;
590
591 BUG_ON(!skb || !tcp_skb_pcount(skb));
592
593 /* If congestion control is doing timestamping, we must
594 * take such a timestamp before we potentially clone/copy.
595 */
596 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
597 __net_timestamp(skb);
598
599 if (likely(clone_it)) {
600 if (unlikely(skb_cloned(skb)))
601 skb = pskb_copy(skb, gfp_mask);
602 else
603 skb = skb_clone(skb, gfp_mask);
604 if (unlikely(!skb))
605 return -ENOBUFS;
606 }
607
608 inet = inet_sk(sk);
609 tp = tcp_sk(sk);
610 tcb = TCP_SKB_CB(skb);
611 memset(&opts, 0, sizeof(opts));
612
613 if (unlikely(tcb->flags & TCPCB_FLAG_SYN))
614 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
615 else
616 tcp_options_size = tcp_established_options(sk, skb, &opts,
617 &md5);
618 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
619
620 if (tcp_packets_in_flight(tp) == 0)
621 tcp_ca_event(sk, CA_EVENT_TX_START);
622
623 skb_push(skb, tcp_header_size);
624 skb_reset_transport_header(skb);
625 skb_set_owner_w(skb, sk);
626
627 /* Build TCP header and checksum it. */
628 th = tcp_hdr(skb);
629 th->source = inet->sport;
630 th->dest = inet->dport;
631 th->seq = htonl(tcb->seq);
632 th->ack_seq = htonl(tp->rcv_nxt);
633 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
634 tcb->flags);
635
636 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
637 /* RFC1323: The window in SYN & SYN/ACK segments
638 * is never scaled.
639 */
640 th->window = htons(min(tp->rcv_wnd, 65535U));
641 } else {
642 th->window = htons(tcp_select_window(sk));
643 }
644 th->check = 0;
645 th->urg_ptr = 0;
646
647 if (unlikely(tp->urg_mode &&
648 between(tp->snd_up, tcb->seq + 1, tcb->seq + 0xFFFF))) {
649 th->urg_ptr = htons(tp->snd_up - tcb->seq);
650 th->urg = 1;
651 }
652
653 tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location);
654 if (likely((tcb->flags & TCPCB_FLAG_SYN) == 0))
655 TCP_ECN_send(sk, skb, tcp_header_size);
656
657 #ifdef CONFIG_TCP_MD5SIG
658 /* Calculate the MD5 hash, as we have all we need now */
659 if (md5) {
660 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
661 tp->af_specific->calc_md5_hash(md5_hash_location,
662 md5, sk, NULL, skb);
663 }
664 #endif
665
666 icsk->icsk_af_ops->send_check(sk, skb->len, skb);
667
668 if (likely(tcb->flags & TCPCB_FLAG_ACK))
669 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
670
671 if (skb->len != tcp_header_size)
672 tcp_event_data_sent(tp, skb, sk);
673
674 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
675 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
676
677 err = icsk->icsk_af_ops->queue_xmit(skb, 0);
678 if (likely(err <= 0))
679 return err;
680
681 tcp_enter_cwr(sk, 1);
682
683 return net_xmit_eval(err);
684 }
685
686 /* This routine just queue's the buffer
687 *
688 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
689 * otherwise socket can stall.
690 */
691 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
692 {
693 struct tcp_sock *tp = tcp_sk(sk);
694
695 /* Advance write_seq and place onto the write_queue. */
696 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
697 skb_header_release(skb);
698 tcp_add_write_queue_tail(sk, skb);
699 sk->sk_wmem_queued += skb->truesize;
700 sk_mem_charge(sk, skb->truesize);
701 }
702
703 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb,
704 unsigned int mss_now)
705 {
706 if (skb->len <= mss_now || !sk_can_gso(sk)) {
707 /* Avoid the costly divide in the normal
708 * non-TSO case.
709 */
710 skb_shinfo(skb)->gso_segs = 1;
711 skb_shinfo(skb)->gso_size = 0;
712 skb_shinfo(skb)->gso_type = 0;
713 } else {
714 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
715 skb_shinfo(skb)->gso_size = mss_now;
716 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
717 }
718 }
719
720 /* When a modification to fackets out becomes necessary, we need to check
721 * skb is counted to fackets_out or not.
722 */
723 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb,
724 int decr)
725 {
726 struct tcp_sock *tp = tcp_sk(sk);
727
728 if (!tp->sacked_out || tcp_is_reno(tp))
729 return;
730
731 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
732 tp->fackets_out -= decr;
733 }
734
735 /* Function to create two new TCP segments. Shrinks the given segment
736 * to the specified size and appends a new segment with the rest of the
737 * packet to the list. This won't be called frequently, I hope.
738 * Remember, these are still headerless SKBs at this point.
739 */
740 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
741 unsigned int mss_now)
742 {
743 struct tcp_sock *tp = tcp_sk(sk);
744 struct sk_buff *buff;
745 int nsize, old_factor;
746 int nlen;
747 u16 flags;
748
749 BUG_ON(len > skb->len);
750
751 tcp_clear_retrans_hints_partial(tp);
752 nsize = skb_headlen(skb) - len;
753 if (nsize < 0)
754 nsize = 0;
755
756 if (skb_cloned(skb) &&
757 skb_is_nonlinear(skb) &&
758 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
759 return -ENOMEM;
760
761 /* Get a new skb... force flag on. */
762 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
763 if (buff == NULL)
764 return -ENOMEM; /* We'll just try again later. */
765
766 sk->sk_wmem_queued += buff->truesize;
767 sk_mem_charge(sk, buff->truesize);
768 nlen = skb->len - len - nsize;
769 buff->truesize += nlen;
770 skb->truesize -= nlen;
771
772 /* Correct the sequence numbers. */
773 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
774 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
775 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
776
777 /* PSH and FIN should only be set in the second packet. */
778 flags = TCP_SKB_CB(skb)->flags;
779 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
780 TCP_SKB_CB(buff)->flags = flags;
781 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
782
783 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
784 /* Copy and checksum data tail into the new buffer. */
785 buff->csum = csum_partial_copy_nocheck(skb->data + len,
786 skb_put(buff, nsize),
787 nsize, 0);
788
789 skb_trim(skb, len);
790
791 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
792 } else {
793 skb->ip_summed = CHECKSUM_PARTIAL;
794 skb_split(skb, buff, len);
795 }
796
797 buff->ip_summed = skb->ip_summed;
798
799 /* Looks stupid, but our code really uses when of
800 * skbs, which it never sent before. --ANK
801 */
802 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
803 buff->tstamp = skb->tstamp;
804
805 old_factor = tcp_skb_pcount(skb);
806
807 /* Fix up tso_factor for both original and new SKB. */
808 tcp_set_skb_tso_segs(sk, skb, mss_now);
809 tcp_set_skb_tso_segs(sk, buff, mss_now);
810
811 /* If this packet has been sent out already, we must
812 * adjust the various packet counters.
813 */
814 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
815 int diff = old_factor - tcp_skb_pcount(skb) -
816 tcp_skb_pcount(buff);
817
818 tp->packets_out -= diff;
819
820 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
821 tp->sacked_out -= diff;
822 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
823 tp->retrans_out -= diff;
824
825 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
826 tp->lost_out -= diff;
827
828 /* Adjust Reno SACK estimate. */
829 if (tcp_is_reno(tp) && diff > 0) {
830 tcp_dec_pcount_approx_int(&tp->sacked_out, diff);
831 tcp_verify_left_out(tp);
832 }
833 tcp_adjust_fackets_out(sk, skb, diff);
834 }
835
836 /* Link BUFF into the send queue. */
837 skb_header_release(buff);
838 tcp_insert_write_queue_after(skb, buff, sk);
839
840 return 0;
841 }
842
843 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
844 * eventually). The difference is that pulled data not copied, but
845 * immediately discarded.
846 */
847 static void __pskb_trim_head(struct sk_buff *skb, int len)
848 {
849 int i, k, eat;
850
851 eat = len;
852 k = 0;
853 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
854 if (skb_shinfo(skb)->frags[i].size <= eat) {
855 put_page(skb_shinfo(skb)->frags[i].page);
856 eat -= skb_shinfo(skb)->frags[i].size;
857 } else {
858 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
859 if (eat) {
860 skb_shinfo(skb)->frags[k].page_offset += eat;
861 skb_shinfo(skb)->frags[k].size -= eat;
862 eat = 0;
863 }
864 k++;
865 }
866 }
867 skb_shinfo(skb)->nr_frags = k;
868
869 skb_reset_tail_pointer(skb);
870 skb->data_len -= len;
871 skb->len = skb->data_len;
872 }
873
874 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
875 {
876 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
877 return -ENOMEM;
878
879 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
880 if (unlikely(len < skb_headlen(skb)))
881 __skb_pull(skb, len);
882 else
883 __pskb_trim_head(skb, len - skb_headlen(skb));
884
885 TCP_SKB_CB(skb)->seq += len;
886 skb->ip_summed = CHECKSUM_PARTIAL;
887
888 skb->truesize -= len;
889 sk->sk_wmem_queued -= len;
890 sk_mem_uncharge(sk, len);
891 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
892
893 /* Any change of skb->len requires recalculation of tso
894 * factor and mss.
895 */
896 if (tcp_skb_pcount(skb) > 1)
897 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
898
899 return 0;
900 }
901
902 /* Not accounting for SACKs here. */
903 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
904 {
905 struct tcp_sock *tp = tcp_sk(sk);
906 struct inet_connection_sock *icsk = inet_csk(sk);
907 int mss_now;
908
909 /* Calculate base mss without TCP options:
910 It is MMS_S - sizeof(tcphdr) of rfc1122
911 */
912 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
913
914 /* Clamp it (mss_clamp does not include tcp options) */
915 if (mss_now > tp->rx_opt.mss_clamp)
916 mss_now = tp->rx_opt.mss_clamp;
917
918 /* Now subtract optional transport overhead */
919 mss_now -= icsk->icsk_ext_hdr_len;
920
921 /* Then reserve room for full set of TCP options and 8 bytes of data */
922 if (mss_now < 48)
923 mss_now = 48;
924
925 /* Now subtract TCP options size, not including SACKs */
926 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
927
928 return mss_now;
929 }
930
931 /* Inverse of above */
932 int tcp_mss_to_mtu(struct sock *sk, int mss)
933 {
934 struct tcp_sock *tp = tcp_sk(sk);
935 struct inet_connection_sock *icsk = inet_csk(sk);
936 int mtu;
937
938 mtu = mss +
939 tp->tcp_header_len +
940 icsk->icsk_ext_hdr_len +
941 icsk->icsk_af_ops->net_header_len;
942
943 return mtu;
944 }
945
946 void tcp_mtup_init(struct sock *sk)
947 {
948 struct tcp_sock *tp = tcp_sk(sk);
949 struct inet_connection_sock *icsk = inet_csk(sk);
950
951 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
952 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
953 icsk->icsk_af_ops->net_header_len;
954 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
955 icsk->icsk_mtup.probe_size = 0;
956 }
957
958 /* Bound MSS / TSO packet size with the half of the window */
959 static int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
960 {
961 if (tp->max_window && pktsize > (tp->max_window >> 1))
962 return max(tp->max_window >> 1, 68U - tp->tcp_header_len);
963 else
964 return pktsize;
965 }
966
967 /* This function synchronize snd mss to current pmtu/exthdr set.
968
969 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
970 for TCP options, but includes only bare TCP header.
971
972 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
973 It is minimum of user_mss and mss received with SYN.
974 It also does not include TCP options.
975
976 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
977
978 tp->mss_cache is current effective sending mss, including
979 all tcp options except for SACKs. It is evaluated,
980 taking into account current pmtu, but never exceeds
981 tp->rx_opt.mss_clamp.
982
983 NOTE1. rfc1122 clearly states that advertised MSS
984 DOES NOT include either tcp or ip options.
985
986 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
987 are READ ONLY outside this function. --ANK (980731)
988 */
989 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
990 {
991 struct tcp_sock *tp = tcp_sk(sk);
992 struct inet_connection_sock *icsk = inet_csk(sk);
993 int mss_now;
994
995 if (icsk->icsk_mtup.search_high > pmtu)
996 icsk->icsk_mtup.search_high = pmtu;
997
998 mss_now = tcp_mtu_to_mss(sk, pmtu);
999 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1000
1001 /* And store cached results */
1002 icsk->icsk_pmtu_cookie = pmtu;
1003 if (icsk->icsk_mtup.enabled)
1004 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1005 tp->mss_cache = mss_now;
1006
1007 return mss_now;
1008 }
1009
1010 /* Compute the current effective MSS, taking SACKs and IP options,
1011 * and even PMTU discovery events into account.
1012 *
1013 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
1014 * cannot be large. However, taking into account rare use of URG, this
1015 * is not a big flaw.
1016 */
1017 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
1018 {
1019 struct tcp_sock *tp = tcp_sk(sk);
1020 struct dst_entry *dst = __sk_dst_get(sk);
1021 u32 mss_now;
1022 u16 xmit_size_goal;
1023 int doing_tso = 0;
1024 unsigned header_len;
1025 struct tcp_out_options opts;
1026 struct tcp_md5sig_key *md5;
1027
1028 mss_now = tp->mss_cache;
1029
1030 if (large_allowed && sk_can_gso(sk) && !tp->urg_mode)
1031 doing_tso = 1;
1032
1033 if (dst) {
1034 u32 mtu = dst_mtu(dst);
1035 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1036 mss_now = tcp_sync_mss(sk, mtu);
1037 }
1038
1039 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1040 sizeof(struct tcphdr);
1041 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1042 * some common options. If this is an odd packet (because we have SACK
1043 * blocks etc) then our calculated header_len will be different, and
1044 * we have to adjust mss_now correspondingly */
1045 if (header_len != tp->tcp_header_len) {
1046 int delta = (int) header_len - tp->tcp_header_len;
1047 mss_now -= delta;
1048 }
1049
1050 xmit_size_goal = mss_now;
1051
1052 if (doing_tso) {
1053 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
1054 inet_csk(sk)->icsk_af_ops->net_header_len -
1055 inet_csk(sk)->icsk_ext_hdr_len -
1056 tp->tcp_header_len);
1057
1058 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
1059 xmit_size_goal -= (xmit_size_goal % mss_now);
1060 }
1061 tp->xmit_size_goal = xmit_size_goal;
1062
1063 return mss_now;
1064 }
1065
1066 /* Congestion window validation. (RFC2861) */
1067 static void tcp_cwnd_validate(struct sock *sk)
1068 {
1069 struct tcp_sock *tp = tcp_sk(sk);
1070
1071 if (tp->packets_out >= tp->snd_cwnd) {
1072 /* Network is feed fully. */
1073 tp->snd_cwnd_used = 0;
1074 tp->snd_cwnd_stamp = tcp_time_stamp;
1075 } else {
1076 /* Network starves. */
1077 if (tp->packets_out > tp->snd_cwnd_used)
1078 tp->snd_cwnd_used = tp->packets_out;
1079
1080 if (sysctl_tcp_slow_start_after_idle &&
1081 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1082 tcp_cwnd_application_limited(sk);
1083 }
1084 }
1085
1086 /* Returns the portion of skb which can be sent right away without
1087 * introducing MSS oddities to segment boundaries. In rare cases where
1088 * mss_now != mss_cache, we will request caller to create a small skb
1089 * per input skb which could be mostly avoided here (if desired).
1090 *
1091 * We explicitly want to create a request for splitting write queue tail
1092 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1093 * thus all the complexity (cwnd_len is always MSS multiple which we
1094 * return whenever allowed by the other factors). Basically we need the
1095 * modulo only when the receiver window alone is the limiting factor or
1096 * when we would be allowed to send the split-due-to-Nagle skb fully.
1097 */
1098 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb,
1099 unsigned int mss_now, unsigned int cwnd)
1100 {
1101 struct tcp_sock *tp = tcp_sk(sk);
1102 u32 needed, window, cwnd_len;
1103
1104 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1105 cwnd_len = mss_now * cwnd;
1106
1107 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
1108 return cwnd_len;
1109
1110 needed = min(skb->len, window);
1111
1112 if (cwnd_len <= needed)
1113 return cwnd_len;
1114
1115 return needed - needed % mss_now;
1116 }
1117
1118 /* Can at least one segment of SKB be sent right now, according to the
1119 * congestion window rules? If so, return how many segments are allowed.
1120 */
1121 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp,
1122 struct sk_buff *skb)
1123 {
1124 u32 in_flight, cwnd;
1125
1126 /* Don't be strict about the congestion window for the final FIN. */
1127 if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1128 tcp_skb_pcount(skb) == 1)
1129 return 1;
1130
1131 in_flight = tcp_packets_in_flight(tp);
1132 cwnd = tp->snd_cwnd;
1133 if (in_flight < cwnd)
1134 return (cwnd - in_flight);
1135
1136 return 0;
1137 }
1138
1139 /* This must be invoked the first time we consider transmitting
1140 * SKB onto the wire.
1141 */
1142 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,
1143 unsigned int mss_now)
1144 {
1145 int tso_segs = tcp_skb_pcount(skb);
1146
1147 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1148 tcp_set_skb_tso_segs(sk, skb, mss_now);
1149 tso_segs = tcp_skb_pcount(skb);
1150 }
1151 return tso_segs;
1152 }
1153
1154 static inline int tcp_minshall_check(const struct tcp_sock *tp)
1155 {
1156 return after(tp->snd_sml,tp->snd_una) &&
1157 !after(tp->snd_sml, tp->snd_nxt);
1158 }
1159
1160 /* Return 0, if packet can be sent now without violation Nagle's rules:
1161 * 1. It is full sized.
1162 * 2. Or it contains FIN. (already checked by caller)
1163 * 3. Or TCP_NODELAY was set.
1164 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1165 * With Minshall's modification: all sent small packets are ACKed.
1166 */
1167 static inline int tcp_nagle_check(const struct tcp_sock *tp,
1168 const struct sk_buff *skb,
1169 unsigned mss_now, int nonagle)
1170 {
1171 return (skb->len < mss_now &&
1172 ((nonagle & TCP_NAGLE_CORK) ||
1173 (!nonagle && tp->packets_out && tcp_minshall_check(tp))));
1174 }
1175
1176 /* Return non-zero if the Nagle test allows this packet to be
1177 * sent now.
1178 */
1179 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
1180 unsigned int cur_mss, int nonagle)
1181 {
1182 /* Nagle rule does not apply to frames, which sit in the middle of the
1183 * write_queue (they have no chances to get new data).
1184 *
1185 * This is implemented in the callers, where they modify the 'nonagle'
1186 * argument based upon the location of SKB in the send queue.
1187 */
1188 if (nonagle & TCP_NAGLE_PUSH)
1189 return 1;
1190
1191 /* Don't use the nagle rule for urgent data (or for the final FIN).
1192 * Nagle can be ignored during F-RTO too (see RFC4138).
1193 */
1194 if (tp->urg_mode || (tp->frto_counter == 2) ||
1195 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
1196 return 1;
1197
1198 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1199 return 1;
1200
1201 return 0;
1202 }
1203
1204 /* Does at least the first segment of SKB fit into the send window? */
1205 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb,
1206 unsigned int cur_mss)
1207 {
1208 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1209
1210 if (skb->len > cur_mss)
1211 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1212
1213 return !after(end_seq, tcp_wnd_end(tp));
1214 }
1215
1216 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1217 * should be put on the wire right now. If so, it returns the number of
1218 * packets allowed by the congestion window.
1219 */
1220 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
1221 unsigned int cur_mss, int nonagle)
1222 {
1223 struct tcp_sock *tp = tcp_sk(sk);
1224 unsigned int cwnd_quota;
1225
1226 tcp_init_tso_segs(sk, skb, cur_mss);
1227
1228 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1229 return 0;
1230
1231 cwnd_quota = tcp_cwnd_test(tp, skb);
1232 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1233 cwnd_quota = 0;
1234
1235 return cwnd_quota;
1236 }
1237
1238 int tcp_may_send_now(struct sock *sk)
1239 {
1240 struct tcp_sock *tp = tcp_sk(sk);
1241 struct sk_buff *skb = tcp_send_head(sk);
1242
1243 return (skb &&
1244 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
1245 (tcp_skb_is_last(sk, skb) ?
1246 tp->nonagle : TCP_NAGLE_PUSH)));
1247 }
1248
1249 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1250 * which is put after SKB on the list. It is very much like
1251 * tcp_fragment() except that it may make several kinds of assumptions
1252 * in order to speed up the splitting operation. In particular, we
1253 * know that all the data is in scatter-gather pages, and that the
1254 * packet has never been sent out before (and thus is not cloned).
1255 */
1256 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1257 unsigned int mss_now)
1258 {
1259 struct sk_buff *buff;
1260 int nlen = skb->len - len;
1261 u16 flags;
1262
1263 /* All of a TSO frame must be composed of paged data. */
1264 if (skb->len != skb->data_len)
1265 return tcp_fragment(sk, skb, len, mss_now);
1266
1267 buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC);
1268 if (unlikely(buff == NULL))
1269 return -ENOMEM;
1270
1271 sk->sk_wmem_queued += buff->truesize;
1272 sk_mem_charge(sk, buff->truesize);
1273 buff->truesize += nlen;
1274 skb->truesize -= nlen;
1275
1276 /* Correct the sequence numbers. */
1277 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1278 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1279 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1280
1281 /* PSH and FIN should only be set in the second packet. */
1282 flags = TCP_SKB_CB(skb)->flags;
1283 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
1284 TCP_SKB_CB(buff)->flags = flags;
1285
1286 /* This packet was never sent out yet, so no SACK bits. */
1287 TCP_SKB_CB(buff)->sacked = 0;
1288
1289 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1290 skb_split(skb, buff, len);
1291
1292 /* Fix up tso_factor for both original and new SKB. */
1293 tcp_set_skb_tso_segs(sk, skb, mss_now);
1294 tcp_set_skb_tso_segs(sk, buff, mss_now);
1295
1296 /* Link BUFF into the send queue. */
1297 skb_header_release(buff);
1298 tcp_insert_write_queue_after(skb, buff, sk);
1299
1300 return 0;
1301 }
1302
1303 /* Try to defer sending, if possible, in order to minimize the amount
1304 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1305 *
1306 * This algorithm is from John Heffner.
1307 */
1308 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1309 {
1310 struct tcp_sock *tp = tcp_sk(sk);
1311 const struct inet_connection_sock *icsk = inet_csk(sk);
1312 u32 send_win, cong_win, limit, in_flight;
1313
1314 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1315 goto send_now;
1316
1317 if (icsk->icsk_ca_state != TCP_CA_Open)
1318 goto send_now;
1319
1320 /* Defer for less than two clock ticks. */
1321 if (tp->tso_deferred &&
1322 ((jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1323 goto send_now;
1324
1325 in_flight = tcp_packets_in_flight(tp);
1326
1327 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1328
1329 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1330
1331 /* From in_flight test above, we know that cwnd > in_flight. */
1332 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1333
1334 limit = min(send_win, cong_win);
1335
1336 /* If a full-sized TSO skb can be sent, do it. */
1337 if (limit >= sk->sk_gso_max_size)
1338 goto send_now;
1339
1340 if (sysctl_tcp_tso_win_divisor) {
1341 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1342
1343 /* If at least some fraction of a window is available,
1344 * just use it.
1345 */
1346 chunk /= sysctl_tcp_tso_win_divisor;
1347 if (limit >= chunk)
1348 goto send_now;
1349 } else {
1350 /* Different approach, try not to defer past a single
1351 * ACK. Receiver should ACK every other full sized
1352 * frame, so if we have space for more than 3 frames
1353 * then send now.
1354 */
1355 if (limit > tcp_max_burst(tp) * tp->mss_cache)
1356 goto send_now;
1357 }
1358
1359 /* Ok, it looks like it is advisable to defer. */
1360 tp->tso_deferred = 1 | (jiffies << 1);
1361
1362 return 1;
1363
1364 send_now:
1365 tp->tso_deferred = 0;
1366 return 0;
1367 }
1368
1369 /* Create a new MTU probe if we are ready.
1370 * Returns 0 if we should wait to probe (no cwnd available),
1371 * 1 if a probe was sent,
1372 * -1 otherwise
1373 */
1374 static int tcp_mtu_probe(struct sock *sk)
1375 {
1376 struct tcp_sock *tp = tcp_sk(sk);
1377 struct inet_connection_sock *icsk = inet_csk(sk);
1378 struct sk_buff *skb, *nskb, *next;
1379 int len;
1380 int probe_size;
1381 int size_needed;
1382 int copy;
1383 int mss_now;
1384
1385 /* Not currently probing/verifying,
1386 * not in recovery,
1387 * have enough cwnd, and
1388 * not SACKing (the variable headers throw things off) */
1389 if (!icsk->icsk_mtup.enabled ||
1390 icsk->icsk_mtup.probe_size ||
1391 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1392 tp->snd_cwnd < 11 ||
1393 tp->rx_opt.eff_sacks)
1394 return -1;
1395
1396 /* Very simple search strategy: just double the MSS. */
1397 mss_now = tcp_current_mss(sk, 0);
1398 probe_size = 2 * tp->mss_cache;
1399 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1400 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1401 /* TODO: set timer for probe_converge_event */
1402 return -1;
1403 }
1404
1405 /* Have enough data in the send queue to probe? */
1406 if (tp->write_seq - tp->snd_nxt < size_needed)
1407 return -1;
1408
1409 if (tp->snd_wnd < size_needed)
1410 return -1;
1411 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1412 return 0;
1413
1414 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1415 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1416 if (!tcp_packets_in_flight(tp))
1417 return -1;
1418 else
1419 return 0;
1420 }
1421
1422 /* We're allowed to probe. Build it now. */
1423 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1424 return -1;
1425 sk->sk_wmem_queued += nskb->truesize;
1426 sk_mem_charge(sk, nskb->truesize);
1427
1428 skb = tcp_send_head(sk);
1429
1430 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1431 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1432 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
1433 TCP_SKB_CB(nskb)->sacked = 0;
1434 nskb->csum = 0;
1435 nskb->ip_summed = skb->ip_summed;
1436
1437 tcp_insert_write_queue_before(nskb, skb, sk);
1438
1439 len = 0;
1440 tcp_for_write_queue_from_safe(skb, next, sk) {
1441 copy = min_t(int, skb->len, probe_size - len);
1442 if (nskb->ip_summed)
1443 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1444 else
1445 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1446 skb_put(nskb, copy),
1447 copy, nskb->csum);
1448
1449 if (skb->len <= copy) {
1450 /* We've eaten all the data from this skb.
1451 * Throw it away. */
1452 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
1453 tcp_unlink_write_queue(skb, sk);
1454 sk_wmem_free_skb(sk, skb);
1455 } else {
1456 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
1457 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
1458 if (!skb_shinfo(skb)->nr_frags) {
1459 skb_pull(skb, copy);
1460 if (skb->ip_summed != CHECKSUM_PARTIAL)
1461 skb->csum = csum_partial(skb->data,
1462 skb->len, 0);
1463 } else {
1464 __pskb_trim_head(skb, copy);
1465 tcp_set_skb_tso_segs(sk, skb, mss_now);
1466 }
1467 TCP_SKB_CB(skb)->seq += copy;
1468 }
1469
1470 len += copy;
1471
1472 if (len >= probe_size)
1473 break;
1474 }
1475 tcp_init_tso_segs(sk, nskb, nskb->len);
1476
1477 /* We're ready to send. If this fails, the probe will
1478 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1479 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1480 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1481 /* Decrement cwnd here because we are sending
1482 * effectively two packets. */
1483 tp->snd_cwnd--;
1484 tcp_event_new_data_sent(sk, nskb);
1485
1486 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1487 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1488 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1489
1490 return 1;
1491 }
1492
1493 return -1;
1494 }
1495
1496 /* This routine writes packets to the network. It advances the
1497 * send_head. This happens as incoming acks open up the remote
1498 * window for us.
1499 *
1500 * Returns 1, if no segments are in flight and we have queued segments, but
1501 * cannot send anything now because of SWS or another problem.
1502 */
1503 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1504 {
1505 struct tcp_sock *tp = tcp_sk(sk);
1506 struct sk_buff *skb;
1507 unsigned int tso_segs, sent_pkts;
1508 int cwnd_quota;
1509 int result;
1510
1511 /* If we are closed, the bytes will have to remain here.
1512 * In time closedown will finish, we empty the write queue and all
1513 * will be happy.
1514 */
1515 if (unlikely(sk->sk_state == TCP_CLOSE))
1516 return 0;
1517
1518 sent_pkts = 0;
1519
1520 /* Do MTU probing. */
1521 if ((result = tcp_mtu_probe(sk)) == 0) {
1522 return 0;
1523 } else if (result > 0) {
1524 sent_pkts = 1;
1525 }
1526
1527 while ((skb = tcp_send_head(sk))) {
1528 unsigned int limit;
1529
1530 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1531 BUG_ON(!tso_segs);
1532
1533 cwnd_quota = tcp_cwnd_test(tp, skb);
1534 if (!cwnd_quota)
1535 break;
1536
1537 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1538 break;
1539
1540 if (tso_segs == 1) {
1541 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1542 (tcp_skb_is_last(sk, skb) ?
1543 nonagle : TCP_NAGLE_PUSH))))
1544 break;
1545 } else {
1546 if (tcp_tso_should_defer(sk, skb))
1547 break;
1548 }
1549
1550 limit = mss_now;
1551 if (tso_segs > 1)
1552 limit = tcp_mss_split_point(sk, skb, mss_now,
1553 cwnd_quota);
1554
1555 if (skb->len > limit &&
1556 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1557 break;
1558
1559 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1560
1561 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC)))
1562 break;
1563
1564 /* Advance the send_head. This one is sent out.
1565 * This call will increment packets_out.
1566 */
1567 tcp_event_new_data_sent(sk, skb);
1568
1569 tcp_minshall_update(tp, mss_now, skb);
1570 sent_pkts++;
1571 }
1572
1573 if (likely(sent_pkts)) {
1574 tcp_cwnd_validate(sk);
1575 return 0;
1576 }
1577 return !tp->packets_out && tcp_send_head(sk);
1578 }
1579
1580 /* Push out any pending frames which were held back due to
1581 * TCP_CORK or attempt at coalescing tiny packets.
1582 * The socket must be locked by the caller.
1583 */
1584 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
1585 int nonagle)
1586 {
1587 struct sk_buff *skb = tcp_send_head(sk);
1588
1589 if (skb) {
1590 if (tcp_write_xmit(sk, cur_mss, nonagle))
1591 tcp_check_probe_timer(sk);
1592 }
1593 }
1594
1595 /* Send _single_ skb sitting at the send head. This function requires
1596 * true push pending frames to setup probe timer etc.
1597 */
1598 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1599 {
1600 struct sk_buff *skb = tcp_send_head(sk);
1601 unsigned int tso_segs, cwnd_quota;
1602
1603 BUG_ON(!skb || skb->len < mss_now);
1604
1605 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1606 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1607
1608 if (likely(cwnd_quota)) {
1609 unsigned int limit;
1610
1611 BUG_ON(!tso_segs);
1612
1613 limit = mss_now;
1614 if (tso_segs > 1)
1615 limit = tcp_mss_split_point(sk, skb, mss_now,
1616 cwnd_quota);
1617
1618 if (skb->len > limit &&
1619 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1620 return;
1621
1622 /* Send it out now. */
1623 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1624
1625 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) {
1626 tcp_event_new_data_sent(sk, skb);
1627 tcp_cwnd_validate(sk);
1628 return;
1629 }
1630 }
1631 }
1632
1633 /* This function returns the amount that we can raise the
1634 * usable window based on the following constraints
1635 *
1636 * 1. The window can never be shrunk once it is offered (RFC 793)
1637 * 2. We limit memory per socket
1638 *
1639 * RFC 1122:
1640 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1641 * RECV.NEXT + RCV.WIN fixed until:
1642 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1643 *
1644 * i.e. don't raise the right edge of the window until you can raise
1645 * it at least MSS bytes.
1646 *
1647 * Unfortunately, the recommended algorithm breaks header prediction,
1648 * since header prediction assumes th->window stays fixed.
1649 *
1650 * Strictly speaking, keeping th->window fixed violates the receiver
1651 * side SWS prevention criteria. The problem is that under this rule
1652 * a stream of single byte packets will cause the right side of the
1653 * window to always advance by a single byte.
1654 *
1655 * Of course, if the sender implements sender side SWS prevention
1656 * then this will not be a problem.
1657 *
1658 * BSD seems to make the following compromise:
1659 *
1660 * If the free space is less than the 1/4 of the maximum
1661 * space available and the free space is less than 1/2 mss,
1662 * then set the window to 0.
1663 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1664 * Otherwise, just prevent the window from shrinking
1665 * and from being larger than the largest representable value.
1666 *
1667 * This prevents incremental opening of the window in the regime
1668 * where TCP is limited by the speed of the reader side taking
1669 * data out of the TCP receive queue. It does nothing about
1670 * those cases where the window is constrained on the sender side
1671 * because the pipeline is full.
1672 *
1673 * BSD also seems to "accidentally" limit itself to windows that are a
1674 * multiple of MSS, at least until the free space gets quite small.
1675 * This would appear to be a side effect of the mbuf implementation.
1676 * Combining these two algorithms results in the observed behavior
1677 * of having a fixed window size at almost all times.
1678 *
1679 * Below we obtain similar behavior by forcing the offered window to
1680 * a multiple of the mss when it is feasible to do so.
1681 *
1682 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1683 * Regular options like TIMESTAMP are taken into account.
1684 */
1685 u32 __tcp_select_window(struct sock *sk)
1686 {
1687 struct inet_connection_sock *icsk = inet_csk(sk);
1688 struct tcp_sock *tp = tcp_sk(sk);
1689 /* MSS for the peer's data. Previous versions used mss_clamp
1690 * here. I don't know if the value based on our guesses
1691 * of peer's MSS is better for the performance. It's more correct
1692 * but may be worse for the performance because of rcv_mss
1693 * fluctuations. --SAW 1998/11/1
1694 */
1695 int mss = icsk->icsk_ack.rcv_mss;
1696 int free_space = tcp_space(sk);
1697 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1698 int window;
1699
1700 if (mss > full_space)
1701 mss = full_space;
1702
1703 if (free_space < (full_space >> 1)) {
1704 icsk->icsk_ack.quick = 0;
1705
1706 if (tcp_memory_pressure)
1707 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
1708 4U * tp->advmss);
1709
1710 if (free_space < mss)
1711 return 0;
1712 }
1713
1714 if (free_space > tp->rcv_ssthresh)
1715 free_space = tp->rcv_ssthresh;
1716
1717 /* Don't do rounding if we are using window scaling, since the
1718 * scaled window will not line up with the MSS boundary anyway.
1719 */
1720 window = tp->rcv_wnd;
1721 if (tp->rx_opt.rcv_wscale) {
1722 window = free_space;
1723
1724 /* Advertise enough space so that it won't get scaled away.
1725 * Import case: prevent zero window announcement if
1726 * 1<<rcv_wscale > mss.
1727 */
1728 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1729 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1730 << tp->rx_opt.rcv_wscale);
1731 } else {
1732 /* Get the largest window that is a nice multiple of mss.
1733 * Window clamp already applied above.
1734 * If our current window offering is within 1 mss of the
1735 * free space we just keep it. This prevents the divide
1736 * and multiply from happening most of the time.
1737 * We also don't do any window rounding when the free space
1738 * is too small.
1739 */
1740 if (window <= free_space - mss || window > free_space)
1741 window = (free_space / mss) * mss;
1742 else if (mss == full_space &&
1743 free_space > window + (full_space >> 1))
1744 window = free_space;
1745 }
1746
1747 return window;
1748 }
1749
1750 /* Attempt to collapse two adjacent SKB's during retransmission. */
1751 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb,
1752 int mss_now)
1753 {
1754 struct tcp_sock *tp = tcp_sk(sk);
1755 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
1756 int skb_size, next_skb_size;
1757 u16 flags;
1758
1759 /* The first test we must make is that neither of these two
1760 * SKB's are still referenced by someone else.
1761 */
1762 if (skb_cloned(skb) || skb_cloned(next_skb))
1763 return;
1764
1765 skb_size = skb->len;
1766 next_skb_size = next_skb->len;
1767 flags = TCP_SKB_CB(skb)->flags;
1768
1769 /* Also punt if next skb has been SACK'd. */
1770 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1771 return;
1772
1773 /* Next skb is out of window. */
1774 if (after(TCP_SKB_CB(next_skb)->end_seq, tcp_wnd_end(tp)))
1775 return;
1776
1777 /* Punt if not enough space exists in the first SKB for
1778 * the data in the second, or the total combined payload
1779 * would exceed the MSS.
1780 */
1781 if ((next_skb_size > skb_tailroom(skb)) ||
1782 ((skb_size + next_skb_size) > mss_now))
1783 return;
1784
1785 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
1786
1787 tcp_highest_sack_combine(sk, next_skb, skb);
1788
1789 /* Ok. We will be able to collapse the packet. */
1790 tcp_unlink_write_queue(next_skb, sk);
1791
1792 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
1793 next_skb_size);
1794
1795 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
1796 skb->ip_summed = CHECKSUM_PARTIAL;
1797
1798 if (skb->ip_summed != CHECKSUM_PARTIAL)
1799 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1800
1801 /* Update sequence range on original skb. */
1802 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1803
1804 /* Merge over control information. */
1805 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1806 TCP_SKB_CB(skb)->flags = flags;
1807
1808 /* All done, get rid of second SKB and account for it so
1809 * packet counting does not break.
1810 */
1811 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
1812 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_RETRANS)
1813 tp->retrans_out -= tcp_skb_pcount(next_skb);
1814 if (TCP_SKB_CB(next_skb)->sacked & TCPCB_LOST)
1815 tp->lost_out -= tcp_skb_pcount(next_skb);
1816 /* Reno case is special. Sigh... */
1817 if (tcp_is_reno(tp) && tp->sacked_out)
1818 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1819
1820 tcp_adjust_fackets_out(sk, next_skb, tcp_skb_pcount(next_skb));
1821 tp->packets_out -= tcp_skb_pcount(next_skb);
1822
1823 /* changed transmit queue under us so clear hints */
1824 tcp_clear_retrans_hints_partial(tp);
1825
1826 sk_wmem_free_skb(sk, next_skb);
1827 }
1828
1829 /* Do a simple retransmit without using the backoff mechanisms in
1830 * tcp_timer. This is used for path mtu discovery.
1831 * The socket is already locked here.
1832 */
1833 void tcp_simple_retransmit(struct sock *sk)
1834 {
1835 const struct inet_connection_sock *icsk = inet_csk(sk);
1836 struct tcp_sock *tp = tcp_sk(sk);
1837 struct sk_buff *skb;
1838 unsigned int mss = tcp_current_mss(sk, 0);
1839 int lost = 0;
1840
1841 tcp_for_write_queue(skb, sk) {
1842 if (skb == tcp_send_head(sk))
1843 break;
1844 if (skb->len > mss &&
1845 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1846 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1847 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1848 tp->retrans_out -= tcp_skb_pcount(skb);
1849 }
1850 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) {
1851 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1852 tp->lost_out += tcp_skb_pcount(skb);
1853 lost = 1;
1854 }
1855 }
1856 }
1857
1858 tcp_clear_all_retrans_hints(tp);
1859
1860 if (!lost)
1861 return;
1862
1863 if (tcp_is_reno(tp))
1864 tcp_limit_reno_sacked(tp);
1865
1866 tcp_verify_left_out(tp);
1867
1868 /* Don't muck with the congestion window here.
1869 * Reason is that we do not increase amount of _data_
1870 * in network, but units changed and effective
1871 * cwnd/ssthresh really reduced now.
1872 */
1873 if (icsk->icsk_ca_state != TCP_CA_Loss) {
1874 tp->high_seq = tp->snd_nxt;
1875 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1876 tp->prior_ssthresh = 0;
1877 tp->undo_marker = 0;
1878 tcp_set_ca_state(sk, TCP_CA_Loss);
1879 }
1880 tcp_xmit_retransmit_queue(sk);
1881 }
1882
1883 /* This retransmits one SKB. Policy decisions and retransmit queue
1884 * state updates are done by the caller. Returns non-zero if an
1885 * error occurred which prevented the send.
1886 */
1887 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1888 {
1889 struct tcp_sock *tp = tcp_sk(sk);
1890 struct inet_connection_sock *icsk = inet_csk(sk);
1891 unsigned int cur_mss;
1892 int err;
1893
1894 /* Inconslusive MTU probe */
1895 if (icsk->icsk_mtup.probe_size) {
1896 icsk->icsk_mtup.probe_size = 0;
1897 }
1898
1899 /* Do not sent more than we queued. 1/4 is reserved for possible
1900 * copying overhead: fragmentation, tunneling, mangling etc.
1901 */
1902 if (atomic_read(&sk->sk_wmem_alloc) >
1903 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1904 return -EAGAIN;
1905
1906 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1907 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1908 BUG();
1909 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1910 return -ENOMEM;
1911 }
1912
1913 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
1914 return -EHOSTUNREACH; /* Routing failure or similar. */
1915
1916 cur_mss = tcp_current_mss(sk, 0);
1917
1918 /* If receiver has shrunk his window, and skb is out of
1919 * new window, do not retransmit it. The exception is the
1920 * case, when window is shrunk to zero. In this case
1921 * our retransmit serves as a zero window probe.
1922 */
1923 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))
1924 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1925 return -EAGAIN;
1926
1927 if (skb->len > cur_mss) {
1928 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1929 return -ENOMEM; /* We'll try again later. */
1930 }
1931
1932 /* Collapse two adjacent packets if worthwhile and we can. */
1933 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1934 (skb->len < (cur_mss >> 1)) &&
1935 (tcp_write_queue_next(sk, skb) != tcp_send_head(sk)) &&
1936 (!tcp_skb_is_last(sk, skb)) &&
1937 (skb_shinfo(skb)->nr_frags == 0 &&
1938 skb_shinfo(tcp_write_queue_next(sk, skb))->nr_frags == 0) &&
1939 (tcp_skb_pcount(skb) == 1 &&
1940 tcp_skb_pcount(tcp_write_queue_next(sk, skb)) == 1) &&
1941 (sysctl_tcp_retrans_collapse != 0))
1942 tcp_retrans_try_collapse(sk, skb, cur_mss);
1943
1944 /* Some Solaris stacks overoptimize and ignore the FIN on a
1945 * retransmit when old data is attached. So strip it off
1946 * since it is cheap to do so and saves bytes on the network.
1947 */
1948 if (skb->len > 0 &&
1949 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1950 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1951 if (!pskb_trim(skb, 0)) {
1952 /* Reuse, even though it does some unnecessary work */
1953 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
1954 TCP_SKB_CB(skb)->flags);
1955 skb->ip_summed = CHECKSUM_NONE;
1956 }
1957 }
1958
1959 /* Make a copy, if the first transmission SKB clone we made
1960 * is still in somebody's hands, else make a clone.
1961 */
1962 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1963
1964 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1965
1966 if (err == 0) {
1967 /* Update global TCP statistics. */
1968 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
1969
1970 tp->total_retrans++;
1971
1972 #if FASTRETRANS_DEBUG > 0
1973 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1974 if (net_ratelimit())
1975 printk(KERN_DEBUG "retrans_out leaked.\n");
1976 }
1977 #endif
1978 if (!tp->retrans_out)
1979 tp->lost_retrans_low = tp->snd_nxt;
1980 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1981 tp->retrans_out += tcp_skb_pcount(skb);
1982
1983 /* Save stamp of the first retransmit. */
1984 if (!tp->retrans_stamp)
1985 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1986
1987 tp->undo_retrans++;
1988
1989 /* snd_nxt is stored to detect loss of retransmitted segment,
1990 * see tcp_input.c tcp_sacktag_write_queue().
1991 */
1992 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1993 }
1994 return err;
1995 }
1996
1997 /* This gets called after a retransmit timeout, and the initially
1998 * retransmitted data is acknowledged. It tries to continue
1999 * resending the rest of the retransmit queue, until either
2000 * we've sent it all or the congestion window limit is reached.
2001 * If doing SACK, the first ACK which comes back for a timeout
2002 * based retransmit packet might feed us FACK information again.
2003 * If so, we use it to avoid unnecessarily retransmissions.
2004 */
2005 void tcp_xmit_retransmit_queue(struct sock *sk)
2006 {
2007 const struct inet_connection_sock *icsk = inet_csk(sk);
2008 struct tcp_sock *tp = tcp_sk(sk);
2009 struct sk_buff *skb;
2010 int packet_cnt;
2011
2012 if (tp->retransmit_skb_hint) {
2013 skb = tp->retransmit_skb_hint;
2014 packet_cnt = tp->retransmit_cnt_hint;
2015 } else {
2016 skb = tcp_write_queue_head(sk);
2017 packet_cnt = 0;
2018 }
2019
2020 /* First pass: retransmit lost packets. */
2021 if (tp->lost_out) {
2022 tcp_for_write_queue_from(skb, sk) {
2023 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2024
2025 if (skb == tcp_send_head(sk))
2026 break;
2027 /* we could do better than to assign each time */
2028 tp->retransmit_skb_hint = skb;
2029 tp->retransmit_cnt_hint = packet_cnt;
2030
2031 /* Assume this retransmit will generate
2032 * only one packet for congestion window
2033 * calculation purposes. This works because
2034 * tcp_retransmit_skb() will chop up the
2035 * packet to be MSS sized and all the
2036 * packet counting works out.
2037 */
2038 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2039 return;
2040
2041 if (sacked & TCPCB_LOST) {
2042 if (!(sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
2043 int mib_idx;
2044
2045 if (tcp_retransmit_skb(sk, skb)) {
2046 tp->retransmit_skb_hint = NULL;
2047 return;
2048 }
2049 if (icsk->icsk_ca_state != TCP_CA_Loss)
2050 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2051 else
2052 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2053 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2054
2055 if (skb == tcp_write_queue_head(sk))
2056 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2057 inet_csk(sk)->icsk_rto,
2058 TCP_RTO_MAX);
2059 }
2060
2061 packet_cnt += tcp_skb_pcount(skb);
2062 if (packet_cnt >= tp->lost_out)
2063 break;
2064 }
2065 }
2066 }
2067
2068 /* OK, demanded retransmission is finished. */
2069
2070 /* Forward retransmissions are possible only during Recovery. */
2071 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2072 return;
2073
2074 /* No forward retransmissions in Reno are possible. */
2075 if (tcp_is_reno(tp))
2076 return;
2077
2078 /* Yeah, we have to make difficult choice between forward transmission
2079 * and retransmission... Both ways have their merits...
2080 *
2081 * For now we do not retransmit anything, while we have some new
2082 * segments to send. In the other cases, follow rule 3 for
2083 * NextSeg() specified in RFC3517.
2084 */
2085
2086 if (tcp_may_send_now(sk))
2087 return;
2088
2089 /* If nothing is SACKed, highest_sack in the loop won't be valid */
2090 if (!tp->sacked_out)
2091 return;
2092
2093 if (tp->forward_skb_hint)
2094 skb = tp->forward_skb_hint;
2095 else
2096 skb = tcp_write_queue_head(sk);
2097
2098 tcp_for_write_queue_from(skb, sk) {
2099 if (skb == tcp_send_head(sk))
2100 break;
2101 tp->forward_skb_hint = skb;
2102
2103 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2104 break;
2105
2106 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2107 break;
2108
2109 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
2110 continue;
2111
2112 /* Ok, retransmit it. */
2113 if (tcp_retransmit_skb(sk, skb)) {
2114 tp->forward_skb_hint = NULL;
2115 break;
2116 }
2117
2118 if (skb == tcp_write_queue_head(sk))
2119 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2120 inet_csk(sk)->icsk_rto,
2121 TCP_RTO_MAX);
2122
2123 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFORWARDRETRANS);
2124 }
2125 }
2126
2127 /* Send a fin. The caller locks the socket for us. This cannot be
2128 * allowed to fail queueing a FIN frame under any circumstances.
2129 */
2130 void tcp_send_fin(struct sock *sk)
2131 {
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 struct sk_buff *skb = tcp_write_queue_tail(sk);
2134 int mss_now;
2135
2136 /* Optimization, tack on the FIN if we have a queue of
2137 * unsent frames. But be careful about outgoing SACKS
2138 * and IP options.
2139 */
2140 mss_now = tcp_current_mss(sk, 1);
2141
2142 if (tcp_send_head(sk) != NULL) {
2143 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
2144 TCP_SKB_CB(skb)->end_seq++;
2145 tp->write_seq++;
2146 } else {
2147 /* Socket is locked, keep trying until memory is available. */
2148 for (;;) {
2149 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
2150 if (skb)
2151 break;
2152 yield();
2153 }
2154
2155 /* Reserve space for headers and prepare control bits. */
2156 skb_reserve(skb, MAX_TCP_HEADER);
2157 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2158 tcp_init_nondata_skb(skb, tp->write_seq,
2159 TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
2160 tcp_queue_skb(sk, skb);
2161 }
2162 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2163 }
2164
2165 /* We get here when a process closes a file descriptor (either due to
2166 * an explicit close() or as a byproduct of exit()'ing) and there
2167 * was unread data in the receive queue. This behavior is recommended
2168 * by RFC 2525, section 2.17. -DaveM
2169 */
2170 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2171 {
2172 struct sk_buff *skb;
2173
2174 /* NOTE: No TCP options attached and we never retransmit this. */
2175 skb = alloc_skb(MAX_TCP_HEADER, priority);
2176 if (!skb) {
2177 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2178 return;
2179 }
2180
2181 /* Reserve space for headers and prepare control bits. */
2182 skb_reserve(skb, MAX_TCP_HEADER);
2183 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2184 TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
2185 /* Send it off. */
2186 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2187 if (tcp_transmit_skb(sk, skb, 0, priority))
2188 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2189
2190 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2191 }
2192
2193 /* WARNING: This routine must only be called when we have already sent
2194 * a SYN packet that crossed the incoming SYN that caused this routine
2195 * to get called. If this assumption fails then the initial rcv_wnd
2196 * and rcv_wscale values will not be correct.
2197 */
2198 int tcp_send_synack(struct sock *sk)
2199 {
2200 struct sk_buff *skb;
2201
2202 skb = tcp_write_queue_head(sk);
2203 if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) {
2204 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
2205 return -EFAULT;
2206 }
2207 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) {
2208 if (skb_cloned(skb)) {
2209 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2210 if (nskb == NULL)
2211 return -ENOMEM;
2212 tcp_unlink_write_queue(skb, sk);
2213 skb_header_release(nskb);
2214 __tcp_add_write_queue_head(sk, nskb);
2215 sk_wmem_free_skb(sk, skb);
2216 sk->sk_wmem_queued += nskb->truesize;
2217 sk_mem_charge(sk, nskb->truesize);
2218 skb = nskb;
2219 }
2220
2221 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
2222 TCP_ECN_send_synack(tcp_sk(sk), skb);
2223 }
2224 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2225 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2226 }
2227
2228 /*
2229 * Prepare a SYN-ACK.
2230 */
2231 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2232 struct request_sock *req)
2233 {
2234 struct inet_request_sock *ireq = inet_rsk(req);
2235 struct tcp_sock *tp = tcp_sk(sk);
2236 struct tcphdr *th;
2237 int tcp_header_size;
2238 struct tcp_out_options opts;
2239 struct sk_buff *skb;
2240 struct tcp_md5sig_key *md5;
2241 __u8 *md5_hash_location;
2242
2243 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2244 if (skb == NULL)
2245 return NULL;
2246
2247 /* Reserve space for headers. */
2248 skb_reserve(skb, MAX_TCP_HEADER);
2249
2250 skb->dst = dst_clone(dst);
2251
2252 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2253 __u8 rcv_wscale;
2254 /* Set this up on the first call only */
2255 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2256 /* tcp_full_space because it is guaranteed to be the first packet */
2257 tcp_select_initial_window(tcp_full_space(sk),
2258 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2259 &req->rcv_wnd,
2260 &req->window_clamp,
2261 ireq->wscale_ok,
2262 &rcv_wscale);
2263 ireq->rcv_wscale = rcv_wscale;
2264 }
2265
2266 memset(&opts, 0, sizeof(opts));
2267 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2268 tcp_header_size = tcp_synack_options(sk, req,
2269 dst_metric(dst, RTAX_ADVMSS),
2270 skb, &opts, &md5) +
2271 sizeof(struct tcphdr);
2272
2273 skb_push(skb, tcp_header_size);
2274 skb_reset_transport_header(skb);
2275
2276 th = tcp_hdr(skb);
2277 memset(th, 0, sizeof(struct tcphdr));
2278 th->syn = 1;
2279 th->ack = 1;
2280 TCP_ECN_make_synack(req, th);
2281 th->source = inet_sk(sk)->sport;
2282 th->dest = ireq->rmt_port;
2283 /* Setting of flags are superfluous here for callers (and ECE is
2284 * not even correctly set)
2285 */
2286 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2287 TCPCB_FLAG_SYN | TCPCB_FLAG_ACK);
2288 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2289 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2290
2291 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2292 th->window = htons(min(req->rcv_wnd, 65535U));
2293 #ifdef CONFIG_SYN_COOKIES
2294 if (unlikely(req->cookie_ts))
2295 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2296 else
2297 #endif
2298 tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location);
2299 th->doff = (tcp_header_size >> 2);
2300 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
2301
2302 #ifdef CONFIG_TCP_MD5SIG
2303 /* Okay, we have all we need - do the md5 hash if needed */
2304 if (md5) {
2305 tp->af_specific->calc_md5_hash(md5_hash_location,
2306 md5, NULL, req, skb);
2307 }
2308 #endif
2309
2310 return skb;
2311 }
2312
2313 /*
2314 * Do all connect socket setups that can be done AF independent.
2315 */
2316 static void tcp_connect_init(struct sock *sk)
2317 {
2318 struct dst_entry *dst = __sk_dst_get(sk);
2319 struct tcp_sock *tp = tcp_sk(sk);
2320 __u8 rcv_wscale;
2321
2322 /* We'll fix this up when we get a response from the other end.
2323 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2324 */
2325 tp->tcp_header_len = sizeof(struct tcphdr) +
2326 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2327
2328 #ifdef CONFIG_TCP_MD5SIG
2329 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2330 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2331 #endif
2332
2333 /* If user gave his TCP_MAXSEG, record it to clamp */
2334 if (tp->rx_opt.user_mss)
2335 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2336 tp->max_window = 0;
2337 tcp_mtup_init(sk);
2338 tcp_sync_mss(sk, dst_mtu(dst));
2339
2340 if (!tp->window_clamp)
2341 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2342 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
2343 tcp_initialize_rcv_mss(sk);
2344
2345 tcp_select_initial_window(tcp_full_space(sk),
2346 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2347 &tp->rcv_wnd,
2348 &tp->window_clamp,
2349 sysctl_tcp_window_scaling,
2350 &rcv_wscale);
2351
2352 tp->rx_opt.rcv_wscale = rcv_wscale;
2353 tp->rcv_ssthresh = tp->rcv_wnd;
2354
2355 sk->sk_err = 0;
2356 sock_reset_flag(sk, SOCK_DONE);
2357 tp->snd_wnd = 0;
2358 tcp_init_wl(tp, tp->write_seq, 0);
2359 tp->snd_una = tp->write_seq;
2360 tp->snd_sml = tp->write_seq;
2361 tp->rcv_nxt = 0;
2362 tp->rcv_wup = 0;
2363 tp->copied_seq = 0;
2364
2365 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2366 inet_csk(sk)->icsk_retransmits = 0;
2367 tcp_clear_retrans(tp);
2368 }
2369
2370 /*
2371 * Build a SYN and send it off.
2372 */
2373 int tcp_connect(struct sock *sk)
2374 {
2375 struct tcp_sock *tp = tcp_sk(sk);
2376 struct sk_buff *buff;
2377
2378 tcp_connect_init(sk);
2379
2380 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2381 if (unlikely(buff == NULL))
2382 return -ENOBUFS;
2383
2384 /* Reserve space for headers. */
2385 skb_reserve(buff, MAX_TCP_HEADER);
2386
2387 tp->snd_nxt = tp->write_seq;
2388 tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN);
2389 TCP_ECN_send_syn(sk, buff);
2390
2391 /* Send it off. */
2392 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2393 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
2394 skb_header_release(buff);
2395 __tcp_add_write_queue_tail(sk, buff);
2396 sk->sk_wmem_queued += buff->truesize;
2397 sk_mem_charge(sk, buff->truesize);
2398 tp->packets_out += tcp_skb_pcount(buff);
2399 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);
2400
2401 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2402 * in order to make this packet get counted in tcpOutSegs.
2403 */
2404 tp->snd_nxt = tp->write_seq;
2405 tp->pushed_seq = tp->write_seq;
2406 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2407
2408 /* Timer for repeating the SYN until an answer. */
2409 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2410 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2411 return 0;
2412 }
2413
2414 /* Send out a delayed ack, the caller does the policy checking
2415 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2416 * for details.
2417 */
2418 void tcp_send_delayed_ack(struct sock *sk)
2419 {
2420 struct inet_connection_sock *icsk = inet_csk(sk);
2421 int ato = icsk->icsk_ack.ato;
2422 unsigned long timeout;
2423
2424 if (ato > TCP_DELACK_MIN) {
2425 const struct tcp_sock *tp = tcp_sk(sk);
2426 int max_ato = HZ / 2;
2427
2428 if (icsk->icsk_ack.pingpong ||
2429 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2430 max_ato = TCP_DELACK_MAX;
2431
2432 /* Slow path, intersegment interval is "high". */
2433
2434 /* If some rtt estimate is known, use it to bound delayed ack.
2435 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2436 * directly.
2437 */
2438 if (tp->srtt) {
2439 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2440
2441 if (rtt < max_ato)
2442 max_ato = rtt;
2443 }
2444
2445 ato = min(ato, max_ato);
2446 }
2447
2448 /* Stay within the limit we were given */
2449 timeout = jiffies + ato;
2450
2451 /* Use new timeout only if there wasn't a older one earlier. */
2452 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
2453 /* If delack timer was blocked or is about to expire,
2454 * send ACK now.
2455 */
2456 if (icsk->icsk_ack.blocked ||
2457 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2458 tcp_send_ack(sk);
2459 return;
2460 }
2461
2462 if (!time_before(timeout, icsk->icsk_ack.timeout))
2463 timeout = icsk->icsk_ack.timeout;
2464 }
2465 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2466 icsk->icsk_ack.timeout = timeout;
2467 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2468 }
2469
2470 /* This routine sends an ack and also updates the window. */
2471 void tcp_send_ack(struct sock *sk)
2472 {
2473 struct sk_buff *buff;
2474
2475 /* If we have been reset, we may not send again. */
2476 if (sk->sk_state == TCP_CLOSE)
2477 return;
2478
2479 /* We are not putting this on the write queue, so
2480 * tcp_transmit_skb() will set the ownership to this
2481 * sock.
2482 */
2483 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2484 if (buff == NULL) {
2485 inet_csk_schedule_ack(sk);
2486 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2487 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2488 TCP_DELACK_MAX, TCP_RTO_MAX);
2489 return;
2490 }
2491
2492 /* Reserve space for headers and prepare control bits. */
2493 skb_reserve(buff, MAX_TCP_HEADER);
2494 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK);
2495
2496 /* Send it off, this clears delayed acks for us. */
2497 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2498 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2499 }
2500
2501 /* This routine sends a packet with an out of date sequence
2502 * number. It assumes the other end will try to ack it.
2503 *
2504 * Question: what should we make while urgent mode?
2505 * 4.4BSD forces sending single byte of data. We cannot send
2506 * out of window data, because we have SND.NXT==SND.MAX...
2507 *
2508 * Current solution: to send TWO zero-length segments in urgent mode:
2509 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2510 * out-of-date with SND.UNA-1 to probe window.
2511 */
2512 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2513 {
2514 struct tcp_sock *tp = tcp_sk(sk);
2515 struct sk_buff *skb;
2516
2517 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2518 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2519 if (skb == NULL)
2520 return -1;
2521
2522 /* Reserve space for headers and set control bits. */
2523 skb_reserve(skb, MAX_TCP_HEADER);
2524 /* Use a previous sequence. This should cause the other
2525 * end to send an ack. Don't queue or clone SKB, just
2526 * send it.
2527 */
2528 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK);
2529 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2530 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2531 }
2532
2533 int tcp_write_wakeup(struct sock *sk)
2534 {
2535 struct tcp_sock *tp = tcp_sk(sk);
2536 struct sk_buff *skb;
2537
2538 if (sk->sk_state == TCP_CLOSE)
2539 return -1;
2540
2541 if ((skb = tcp_send_head(sk)) != NULL &&
2542 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
2543 int err;
2544 unsigned int mss = tcp_current_mss(sk, 0);
2545 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2546
2547 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2548 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2549
2550 /* We are probing the opening of a window
2551 * but the window size is != 0
2552 * must have been a result SWS avoidance ( sender )
2553 */
2554 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2555 skb->len > mss) {
2556 seg_size = min(seg_size, mss);
2557 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2558 if (tcp_fragment(sk, skb, seg_size, mss))
2559 return -1;
2560 } else if (!tcp_skb_pcount(skb))
2561 tcp_set_skb_tso_segs(sk, skb, mss);
2562
2563 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2564 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2565 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2566 if (!err)
2567 tcp_event_new_data_sent(sk, skb);
2568 return err;
2569 } else {
2570 if (tp->urg_mode &&
2571 between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
2572 tcp_xmit_probe_skb(sk, 1);
2573 return tcp_xmit_probe_skb(sk, 0);
2574 }
2575 }
2576
2577 /* A window probe timeout has occurred. If window is not closed send
2578 * a partial packet else a zero probe.
2579 */
2580 void tcp_send_probe0(struct sock *sk)
2581 {
2582 struct inet_connection_sock *icsk = inet_csk(sk);
2583 struct tcp_sock *tp = tcp_sk(sk);
2584 int err;
2585
2586 err = tcp_write_wakeup(sk);
2587
2588 if (tp->packets_out || !tcp_send_head(sk)) {
2589 /* Cancel probe timer, if it is not required. */
2590 icsk->icsk_probes_out = 0;
2591 icsk->icsk_backoff = 0;
2592 return;
2593 }
2594
2595 if (err <= 0) {
2596 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2597 icsk->icsk_backoff++;
2598 icsk->icsk_probes_out++;
2599 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2600 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2601 TCP_RTO_MAX);
2602 } else {
2603 /* If packet was not sent due to local congestion,
2604 * do not backoff and do not remember icsk_probes_out.
2605 * Let local senders to fight for local resources.
2606 *
2607 * Use accumulated backoff yet.
2608 */
2609 if (!icsk->icsk_probes_out)
2610 icsk->icsk_probes_out = 1;
2611 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2612 min(icsk->icsk_rto << icsk->icsk_backoff,
2613 TCP_RESOURCE_PROBE_INTERVAL),
2614 TCP_RTO_MAX);
2615 }
2616 }
2617
2618 EXPORT_SYMBOL(tcp_select_initial_window);
2619 EXPORT_SYMBOL(tcp_connect);
2620 EXPORT_SYMBOL(tcp_make_synack);
2621 EXPORT_SYMBOL(tcp_simple_retransmit);
2622 EXPORT_SYMBOL(tcp_sync_mss);
2623 EXPORT_SYMBOL(tcp_mtup_init);