950aebfd99673b68ecd8fff31de2233373df3ae3
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
69 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
70
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
73
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 struct tcp_sock *tp = tcp_sk(sk);
78 unsigned int prior_packets = tp->packets_out;
79
80 tcp_advance_send_head(sk, skb);
81 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
82
83 /* Don't override Nagle indefinitely with F-RTO */
84 if (tp->frto_counter == 2)
85 tp->frto_counter = 3;
86
87 tp->packets_out += tcp_skb_pcount(skb);
88 if (!prior_packets || tp->early_retrans_delayed)
89 tcp_rearm_rto(sk);
90 }
91
92 /* SND.NXT, if window was not shrunk.
93 * If window has been shrunk, what should we make? It is not clear at all.
94 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96 * invalid. OK, let's make this for now:
97 */
98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 {
100 const struct tcp_sock *tp = tcp_sk(sk);
101
102 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
103 return tp->snd_nxt;
104 else
105 return tcp_wnd_end(tp);
106 }
107
108 /* Calculate mss to advertise in SYN segment.
109 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 *
111 * 1. It is independent of path mtu.
112 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
113 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
114 * attached devices, because some buggy hosts are confused by
115 * large MSS.
116 * 4. We do not make 3, we advertise MSS, calculated from first
117 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
118 * This may be overridden via information stored in routing table.
119 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
120 * probably even Jumbo".
121 */
122 static __u16 tcp_advertise_mss(struct sock *sk)
123 {
124 struct tcp_sock *tp = tcp_sk(sk);
125 const struct dst_entry *dst = __sk_dst_get(sk);
126 int mss = tp->advmss;
127
128 if (dst) {
129 unsigned int metric = dst_metric_advmss(dst);
130
131 if (metric < mss) {
132 mss = metric;
133 tp->advmss = mss;
134 }
135 }
136
137 return (__u16)mss;
138 }
139
140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
141 * This is the first part of cwnd validation mechanism. */
142 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 s32 delta = tcp_time_stamp - tp->lsndtime;
146 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
147 u32 cwnd = tp->snd_cwnd;
148
149 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150
151 tp->snd_ssthresh = tcp_current_ssthresh(sk);
152 restart_cwnd = min(restart_cwnd, cwnd);
153
154 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 cwnd >>= 1;
156 tp->snd_cwnd = max(cwnd, restart_cwnd);
157 tp->snd_cwnd_stamp = tcp_time_stamp;
158 tp->snd_cwnd_used = 0;
159 }
160
161 /* Congestion state accounting after a packet has been sent. */
162 static void tcp_event_data_sent(struct tcp_sock *tp,
163 struct sock *sk)
164 {
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 const u32 now = tcp_time_stamp;
167
168 if (sysctl_tcp_slow_start_after_idle &&
169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 tcp_cwnd_restart(sk, __sk_dst_get(sk));
171
172 tp->lsndtime = now;
173
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
176 */
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178 icsk->icsk_ack.pingpong = 1;
179 }
180
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
183 {
184 tcp_dec_quickack_mode(sk, pkts);
185 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
186 }
187
188 /* Determine a window scaling and initial window to offer.
189 * Based on the assumption that the given amount of space
190 * will be offered. Store the results in the tp structure.
191 * NOTE: for smooth operation initial space offering should
192 * be a multiple of mss if possible. We assume here that mss >= 1.
193 * This MUST be enforced by all callers.
194 */
195 void tcp_select_initial_window(int __space, __u32 mss,
196 __u32 *rcv_wnd, __u32 *window_clamp,
197 int wscale_ok, __u8 *rcv_wscale,
198 __u32 init_rcv_wnd)
199 {
200 unsigned int space = (__space < 0 ? 0 : __space);
201
202 /* If no clamp set the clamp to the max possible scaled window */
203 if (*window_clamp == 0)
204 (*window_clamp) = (65535 << 14);
205 space = min(*window_clamp, space);
206
207 /* Quantize space offering to a multiple of mss if possible. */
208 if (space > mss)
209 space = (space / mss) * mss;
210
211 /* NOTE: offering an initial window larger than 32767
212 * will break some buggy TCP stacks. If the admin tells us
213 * it is likely we could be speaking with such a buggy stack
214 * we will truncate our initial window offering to 32K-1
215 * unless the remote has sent us a window scaling option,
216 * which we interpret as a sign the remote TCP is not
217 * misinterpreting the window field as a signed quantity.
218 */
219 if (sysctl_tcp_workaround_signed_windows)
220 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
221 else
222 (*rcv_wnd) = space;
223
224 (*rcv_wscale) = 0;
225 if (wscale_ok) {
226 /* Set window scaling on max possible window
227 * See RFC1323 for an explanation of the limit to 14
228 */
229 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
230 space = min_t(u32, space, *window_clamp);
231 while (space > 65535 && (*rcv_wscale) < 14) {
232 space >>= 1;
233 (*rcv_wscale)++;
234 }
235 }
236
237 /* Set initial window to a value enough for senders starting with
238 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
239 * a limit on the initial window when mss is larger than 1460.
240 */
241 if (mss > (1 << *rcv_wscale)) {
242 int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
243 if (mss > 1460)
244 init_cwnd =
245 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
246 /* when initializing use the value from init_rcv_wnd
247 * rather than the default from above
248 */
249 if (init_rcv_wnd)
250 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
251 else
252 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
253 }
254
255 /* Set the clamp no higher than max representable value */
256 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
257 }
258 EXPORT_SYMBOL(tcp_select_initial_window);
259
260 /* Chose a new window to advertise, update state in tcp_sock for the
261 * socket, and return result with RFC1323 scaling applied. The return
262 * value can be stuffed directly into th->window for an outgoing
263 * frame.
264 */
265 static u16 tcp_select_window(struct sock *sk)
266 {
267 struct tcp_sock *tp = tcp_sk(sk);
268 u32 cur_win = tcp_receive_window(tp);
269 u32 new_win = __tcp_select_window(sk);
270
271 /* Never shrink the offered window */
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
277 *
278 * Relax Will Robinson.
279 */
280 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
281 }
282 tp->rcv_wnd = new_win;
283 tp->rcv_wup = tp->rcv_nxt;
284
285 /* Make sure we do not exceed the maximum possible
286 * scaled window.
287 */
288 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
289 new_win = min(new_win, MAX_TCP_WINDOW);
290 else
291 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292
293 /* RFC1323 scaling applied */
294 new_win >>= tp->rx_opt.rcv_wscale;
295
296 /* If we advertise zero window, disable fast path. */
297 if (new_win == 0)
298 tp->pred_flags = 0;
299
300 return new_win;
301 }
302
303 /* Packet ECN state for a SYN-ACK */
304 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
305 {
306 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
307 if (!(tp->ecn_flags & TCP_ECN_OK))
308 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
309 }
310
311 /* Packet ECN state for a SYN. */
312 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
313 {
314 struct tcp_sock *tp = tcp_sk(sk);
315
316 tp->ecn_flags = 0;
317 if (sysctl_tcp_ecn == 1) {
318 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
319 tp->ecn_flags = TCP_ECN_OK;
320 }
321 }
322
323 static __inline__ void
324 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
325 {
326 if (inet_rsk(req)->ecn_ok)
327 th->ece = 1;
328 }
329
330 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
331 * be sent.
332 */
333 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
334 int tcp_header_len)
335 {
336 struct tcp_sock *tp = tcp_sk(sk);
337
338 if (tp->ecn_flags & TCP_ECN_OK) {
339 /* Not-retransmitted data segment: set ECT and inject CWR. */
340 if (skb->len != tcp_header_len &&
341 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
342 INET_ECN_xmit(sk);
343 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
344 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
345 tcp_hdr(skb)->cwr = 1;
346 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
347 }
348 } else {
349 /* ACK or retransmitted segment: clear ECT|CE */
350 INET_ECN_dontxmit(sk);
351 }
352 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
353 tcp_hdr(skb)->ece = 1;
354 }
355 }
356
357 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
358 * auto increment end seqno.
359 */
360 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
361 {
362 skb->ip_summed = CHECKSUM_PARTIAL;
363 skb->csum = 0;
364
365 TCP_SKB_CB(skb)->tcp_flags = flags;
366 TCP_SKB_CB(skb)->sacked = 0;
367
368 skb_shinfo(skb)->gso_segs = 1;
369 skb_shinfo(skb)->gso_size = 0;
370 skb_shinfo(skb)->gso_type = 0;
371
372 TCP_SKB_CB(skb)->seq = seq;
373 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
374 seq++;
375 TCP_SKB_CB(skb)->end_seq = seq;
376 }
377
378 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
379 {
380 return tp->snd_una != tp->snd_up;
381 }
382
383 #define OPTION_SACK_ADVERTISE (1 << 0)
384 #define OPTION_TS (1 << 1)
385 #define OPTION_MD5 (1 << 2)
386 #define OPTION_WSCALE (1 << 3)
387 #define OPTION_COOKIE_EXTENSION (1 << 4)
388 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
389
390 struct tcp_out_options {
391 u16 options; /* bit field of OPTION_* */
392 u16 mss; /* 0 to disable */
393 u8 ws; /* window scale, 0 to disable */
394 u8 num_sack_blocks; /* number of SACK blocks to include */
395 u8 hash_size; /* bytes in hash_location */
396 __u8 *hash_location; /* temporary pointer, overloaded */
397 __u32 tsval, tsecr; /* need to include OPTION_TS */
398 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
399 };
400
401 /* The sysctl int routines are generic, so check consistency here.
402 */
403 static u8 tcp_cookie_size_check(u8 desired)
404 {
405 int cookie_size;
406
407 if (desired > 0)
408 /* previously specified */
409 return desired;
410
411 cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size);
412 if (cookie_size <= 0)
413 /* no default specified */
414 return 0;
415
416 if (cookie_size <= TCP_COOKIE_MIN)
417 /* value too small, specify minimum */
418 return TCP_COOKIE_MIN;
419
420 if (cookie_size >= TCP_COOKIE_MAX)
421 /* value too large, specify maximum */
422 return TCP_COOKIE_MAX;
423
424 if (cookie_size & 1)
425 /* 8-bit multiple, illegal, fix it */
426 cookie_size++;
427
428 return (u8)cookie_size;
429 }
430
431 /* Write previously computed TCP options to the packet.
432 *
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operatibility perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
440 *
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
443 */
444 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
446 {
447 u16 options = opts->options; /* mungable copy */
448
449 /* Having both authentication and cookies for security is redundant,
450 * and there's certainly not enough room. Instead, the cookie-less
451 * extension variant is proposed.
452 *
453 * Consider the pessimal case with authentication. The options
454 * could look like:
455 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
456 */
457 if (unlikely(OPTION_MD5 & options)) {
458 if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
459 *ptr++ = htonl((TCPOPT_COOKIE << 24) |
460 (TCPOLEN_COOKIE_BASE << 16) |
461 (TCPOPT_MD5SIG << 8) |
462 TCPOLEN_MD5SIG);
463 } else {
464 *ptr++ = htonl((TCPOPT_NOP << 24) |
465 (TCPOPT_NOP << 16) |
466 (TCPOPT_MD5SIG << 8) |
467 TCPOLEN_MD5SIG);
468 }
469 options &= ~OPTION_COOKIE_EXTENSION;
470 /* overload cookie hash location */
471 opts->hash_location = (__u8 *)ptr;
472 ptr += 4;
473 }
474
475 if (unlikely(opts->mss)) {
476 *ptr++ = htonl((TCPOPT_MSS << 24) |
477 (TCPOLEN_MSS << 16) |
478 opts->mss);
479 }
480
481 if (likely(OPTION_TS & options)) {
482 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
483 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
484 (TCPOLEN_SACK_PERM << 16) |
485 (TCPOPT_TIMESTAMP << 8) |
486 TCPOLEN_TIMESTAMP);
487 options &= ~OPTION_SACK_ADVERTISE;
488 } else {
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_NOP << 16) |
491 (TCPOPT_TIMESTAMP << 8) |
492 TCPOLEN_TIMESTAMP);
493 }
494 *ptr++ = htonl(opts->tsval);
495 *ptr++ = htonl(opts->tsecr);
496 }
497
498 /* Specification requires after timestamp, so do it now.
499 *
500 * Consider the pessimal case without authentication. The options
501 * could look like:
502 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
503 */
504 if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
505 __u8 *cookie_copy = opts->hash_location;
506 u8 cookie_size = opts->hash_size;
507
508 /* 8-bit multiple handled in tcp_cookie_size_check() above,
509 * and elsewhere.
510 */
511 if (0x2 & cookie_size) {
512 __u8 *p = (__u8 *)ptr;
513
514 /* 16-bit multiple */
515 *p++ = TCPOPT_COOKIE;
516 *p++ = TCPOLEN_COOKIE_BASE + cookie_size;
517 *p++ = *cookie_copy++;
518 *p++ = *cookie_copy++;
519 ptr++;
520 cookie_size -= 2;
521 } else {
522 /* 32-bit multiple */
523 *ptr++ = htonl(((TCPOPT_NOP << 24) |
524 (TCPOPT_NOP << 16) |
525 (TCPOPT_COOKIE << 8) |
526 TCPOLEN_COOKIE_BASE) +
527 cookie_size);
528 }
529
530 if (cookie_size > 0) {
531 memcpy(ptr, cookie_copy, cookie_size);
532 ptr += (cookie_size / 4);
533 }
534 }
535
536 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
537 *ptr++ = htonl((TCPOPT_NOP << 24) |
538 (TCPOPT_NOP << 16) |
539 (TCPOPT_SACK_PERM << 8) |
540 TCPOLEN_SACK_PERM);
541 }
542
543 if (unlikely(OPTION_WSCALE & options)) {
544 *ptr++ = htonl((TCPOPT_NOP << 24) |
545 (TCPOPT_WINDOW << 16) |
546 (TCPOLEN_WINDOW << 8) |
547 opts->ws);
548 }
549
550 if (unlikely(opts->num_sack_blocks)) {
551 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
552 tp->duplicate_sack : tp->selective_acks;
553 int this_sack;
554
555 *ptr++ = htonl((TCPOPT_NOP << 24) |
556 (TCPOPT_NOP << 16) |
557 (TCPOPT_SACK << 8) |
558 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
559 TCPOLEN_SACK_PERBLOCK)));
560
561 for (this_sack = 0; this_sack < opts->num_sack_blocks;
562 ++this_sack) {
563 *ptr++ = htonl(sp[this_sack].start_seq);
564 *ptr++ = htonl(sp[this_sack].end_seq);
565 }
566
567 tp->rx_opt.dsack = 0;
568 }
569
570 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
571 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
572
573 *ptr++ = htonl((TCPOPT_EXP << 24) |
574 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
575 TCPOPT_FASTOPEN_MAGIC);
576
577 memcpy(ptr, foc->val, foc->len);
578 if ((foc->len & 3) == 2) {
579 u8 *align = ((u8 *)ptr) + foc->len;
580 align[0] = align[1] = TCPOPT_NOP;
581 }
582 ptr += (foc->len + 3) >> 2;
583 }
584 }
585
586 /* Compute TCP options for SYN packets. This is not the final
587 * network wire format yet.
588 */
589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
590 struct tcp_out_options *opts,
591 struct tcp_md5sig_key **md5)
592 {
593 struct tcp_sock *tp = tcp_sk(sk);
594 struct tcp_cookie_values *cvp = tp->cookie_values;
595 unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
597 tcp_cookie_size_check(cvp->cookie_desired) :
598 0;
599 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
600
601 #ifdef CONFIG_TCP_MD5SIG
602 *md5 = tp->af_specific->md5_lookup(sk, sk);
603 if (*md5) {
604 opts->options |= OPTION_MD5;
605 remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 }
607 #else
608 *md5 = NULL;
609 #endif
610
611 /* We always get an MSS option. The option bytes which will be seen in
612 * normal data packets should timestamps be used, must be in the MSS
613 * advertised. But we subtract them from tp->mss_cache so that
614 * calculations in tcp_sendmsg are simpler etc. So account for this
615 * fact here if necessary. If we don't do this correctly, as a
616 * receiver we won't recognize data packets as being full sized when we
617 * should, and thus we won't abide by the delayed ACK rules correctly.
618 * SACKs don't matter, we never delay an ACK when we have any of those
619 * going out. */
620 opts->mss = tcp_advertise_mss(sk);
621 remaining -= TCPOLEN_MSS_ALIGNED;
622
623 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
624 opts->options |= OPTION_TS;
625 opts->tsval = TCP_SKB_CB(skb)->when;
626 opts->tsecr = tp->rx_opt.ts_recent;
627 remaining -= TCPOLEN_TSTAMP_ALIGNED;
628 }
629 if (likely(sysctl_tcp_window_scaling)) {
630 opts->ws = tp->rx_opt.rcv_wscale;
631 opts->options |= OPTION_WSCALE;
632 remaining -= TCPOLEN_WSCALE_ALIGNED;
633 }
634 if (likely(sysctl_tcp_sack)) {
635 opts->options |= OPTION_SACK_ADVERTISE;
636 if (unlikely(!(OPTION_TS & opts->options)))
637 remaining -= TCPOLEN_SACKPERM_ALIGNED;
638 }
639
640 if (fastopen && fastopen->cookie.len >= 0) {
641 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
642 need = (need + 3) & ~3U; /* Align to 32 bits */
643 if (remaining >= need) {
644 opts->options |= OPTION_FAST_OPEN_COOKIE;
645 opts->fastopen_cookie = &fastopen->cookie;
646 remaining -= need;
647 tp->syn_fastopen = 1;
648 }
649 }
650 /* Note that timestamps are required by the specification.
651 *
652 * Odd numbers of bytes are prohibited by the specification, ensuring
653 * that the cookie is 16-bit aligned, and the resulting cookie pair is
654 * 32-bit aligned.
655 */
656 if (*md5 == NULL &&
657 (OPTION_TS & opts->options) &&
658 cookie_size > 0) {
659 int need = TCPOLEN_COOKIE_BASE + cookie_size;
660
661 if (0x2 & need) {
662 /* 32-bit multiple */
663 need += 2; /* NOPs */
664
665 if (need > remaining) {
666 /* try shrinking cookie to fit */
667 cookie_size -= 2;
668 need -= 4;
669 }
670 }
671 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
672 cookie_size -= 4;
673 need -= 4;
674 }
675 if (TCP_COOKIE_MIN <= cookie_size) {
676 opts->options |= OPTION_COOKIE_EXTENSION;
677 opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
678 opts->hash_size = cookie_size;
679
680 /* Remember for future incarnations. */
681 cvp->cookie_desired = cookie_size;
682
683 if (cvp->cookie_desired != cvp->cookie_pair_size) {
684 /* Currently use random bytes as a nonce,
685 * assuming these are completely unpredictable
686 * by hostile users of the same system.
687 */
688 get_random_bytes(&cvp->cookie_pair[0],
689 cookie_size);
690 cvp->cookie_pair_size = cookie_size;
691 }
692
693 remaining -= need;
694 }
695 }
696 return MAX_TCP_OPTION_SPACE - remaining;
697 }
698
699 /* Set up TCP options for SYN-ACKs. */
700 static unsigned int tcp_synack_options(struct sock *sk,
701 struct request_sock *req,
702 unsigned int mss, struct sk_buff *skb,
703 struct tcp_out_options *opts,
704 struct tcp_md5sig_key **md5,
705 struct tcp_extend_values *xvp)
706 {
707 struct inet_request_sock *ireq = inet_rsk(req);
708 unsigned int remaining = MAX_TCP_OPTION_SPACE;
709 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
710 xvp->cookie_plus :
711 0;
712
713 #ifdef CONFIG_TCP_MD5SIG
714 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
715 if (*md5) {
716 opts->options |= OPTION_MD5;
717 remaining -= TCPOLEN_MD5SIG_ALIGNED;
718
719 /* We can't fit any SACK blocks in a packet with MD5 + TS
720 * options. There was discussion about disabling SACK
721 * rather than TS in order to fit in better with old,
722 * buggy kernels, but that was deemed to be unnecessary.
723 */
724 ireq->tstamp_ok &= !ireq->sack_ok;
725 }
726 #else
727 *md5 = NULL;
728 #endif
729
730 /* We always send an MSS option. */
731 opts->mss = mss;
732 remaining -= TCPOLEN_MSS_ALIGNED;
733
734 if (likely(ireq->wscale_ok)) {
735 opts->ws = ireq->rcv_wscale;
736 opts->options |= OPTION_WSCALE;
737 remaining -= TCPOLEN_WSCALE_ALIGNED;
738 }
739 if (likely(ireq->tstamp_ok)) {
740 opts->options |= OPTION_TS;
741 opts->tsval = TCP_SKB_CB(skb)->when;
742 opts->tsecr = req->ts_recent;
743 remaining -= TCPOLEN_TSTAMP_ALIGNED;
744 }
745 if (likely(ireq->sack_ok)) {
746 opts->options |= OPTION_SACK_ADVERTISE;
747 if (unlikely(!ireq->tstamp_ok))
748 remaining -= TCPOLEN_SACKPERM_ALIGNED;
749 }
750
751 /* Similar rationale to tcp_syn_options() applies here, too.
752 * If the <SYN> options fit, the same options should fit now!
753 */
754 if (*md5 == NULL &&
755 ireq->tstamp_ok &&
756 cookie_plus > TCPOLEN_COOKIE_BASE) {
757 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
758
759 if (0x2 & need) {
760 /* 32-bit multiple */
761 need += 2; /* NOPs */
762 }
763 if (need <= remaining) {
764 opts->options |= OPTION_COOKIE_EXTENSION;
765 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
766 remaining -= need;
767 } else {
768 /* There's no error return, so flag it. */
769 xvp->cookie_out_never = 1; /* true */
770 opts->hash_size = 0;
771 }
772 }
773 return MAX_TCP_OPTION_SPACE - remaining;
774 }
775
776 /* Compute TCP options for ESTABLISHED sockets. This is not the
777 * final wire format yet.
778 */
779 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
780 struct tcp_out_options *opts,
781 struct tcp_md5sig_key **md5)
782 {
783 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
784 struct tcp_sock *tp = tcp_sk(sk);
785 unsigned int size = 0;
786 unsigned int eff_sacks;
787
788 #ifdef CONFIG_TCP_MD5SIG
789 *md5 = tp->af_specific->md5_lookup(sk, sk);
790 if (unlikely(*md5)) {
791 opts->options |= OPTION_MD5;
792 size += TCPOLEN_MD5SIG_ALIGNED;
793 }
794 #else
795 *md5 = NULL;
796 #endif
797
798 if (likely(tp->rx_opt.tstamp_ok)) {
799 opts->options |= OPTION_TS;
800 opts->tsval = tcb ? tcb->when : 0;
801 opts->tsecr = tp->rx_opt.ts_recent;
802 size += TCPOLEN_TSTAMP_ALIGNED;
803 }
804
805 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
806 if (unlikely(eff_sacks)) {
807 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
808 opts->num_sack_blocks =
809 min_t(unsigned int, eff_sacks,
810 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
811 TCPOLEN_SACK_PERBLOCK);
812 size += TCPOLEN_SACK_BASE_ALIGNED +
813 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
814 }
815
816 return size;
817 }
818
819
820 /* TCP SMALL QUEUES (TSQ)
821 *
822 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
823 * to reduce RTT and bufferbloat.
824 * We do this using a special skb destructor (tcp_wfree).
825 *
826 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
827 * needs to be reallocated in a driver.
828 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
829 *
830 * Since transmit from skb destructor is forbidden, we use a tasklet
831 * to process all sockets that eventually need to send more skbs.
832 * We use one tasklet per cpu, with its own queue of sockets.
833 */
834 struct tsq_tasklet {
835 struct tasklet_struct tasklet;
836 struct list_head head; /* queue of tcp sockets */
837 };
838 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
839
840 static void tcp_tsq_handler(struct sock *sk)
841 {
842 if ((1 << sk->sk_state) &
843 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
844 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
845 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
846 }
847 /*
848 * One tasklest per cpu tries to send more skbs.
849 * We run in tasklet context but need to disable irqs when
850 * transfering tsq->head because tcp_wfree() might
851 * interrupt us (non NAPI drivers)
852 */
853 static void tcp_tasklet_func(unsigned long data)
854 {
855 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
856 LIST_HEAD(list);
857 unsigned long flags;
858 struct list_head *q, *n;
859 struct tcp_sock *tp;
860 struct sock *sk;
861
862 local_irq_save(flags);
863 list_splice_init(&tsq->head, &list);
864 local_irq_restore(flags);
865
866 list_for_each_safe(q, n, &list) {
867 tp = list_entry(q, struct tcp_sock, tsq_node);
868 list_del(&tp->tsq_node);
869
870 sk = (struct sock *)tp;
871 bh_lock_sock(sk);
872
873 if (!sock_owned_by_user(sk)) {
874 tcp_tsq_handler(sk);
875 } else {
876 /* defer the work to tcp_release_cb() */
877 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
878 }
879 bh_unlock_sock(sk);
880
881 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
882 sk_free(sk);
883 }
884 }
885
886 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
887 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
888 (1UL << TCP_DELACK_TIMER_DEFERRED))
889 /**
890 * tcp_release_cb - tcp release_sock() callback
891 * @sk: socket
892 *
893 * called from release_sock() to perform protocol dependent
894 * actions before socket release.
895 */
896 void tcp_release_cb(struct sock *sk)
897 {
898 struct tcp_sock *tp = tcp_sk(sk);
899 unsigned long flags, nflags;
900
901 /* perform an atomic operation only if at least one flag is set */
902 do {
903 flags = tp->tsq_flags;
904 if (!(flags & TCP_DEFERRED_ALL))
905 return;
906 nflags = flags & ~TCP_DEFERRED_ALL;
907 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
908
909 if (flags & (1UL << TCP_TSQ_DEFERRED))
910 tcp_tsq_handler(sk);
911
912 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED))
913 tcp_write_timer_handler(sk);
914
915 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED))
916 tcp_delack_timer_handler(sk);
917 }
918 EXPORT_SYMBOL(tcp_release_cb);
919
920 void __init tcp_tasklet_init(void)
921 {
922 int i;
923
924 for_each_possible_cpu(i) {
925 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
926
927 INIT_LIST_HEAD(&tsq->head);
928 tasklet_init(&tsq->tasklet,
929 tcp_tasklet_func,
930 (unsigned long)tsq);
931 }
932 }
933
934 /*
935 * Write buffer destructor automatically called from kfree_skb.
936 * We cant xmit new skbs from this context, as we might already
937 * hold qdisc lock.
938 */
939 void tcp_wfree(struct sk_buff *skb)
940 {
941 struct sock *sk = skb->sk;
942 struct tcp_sock *tp = tcp_sk(sk);
943
944 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
945 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
946 unsigned long flags;
947 struct tsq_tasklet *tsq;
948
949 /* Keep a ref on socket.
950 * This last ref will be released in tcp_tasklet_func()
951 */
952 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
953
954 /* queue this socket to tasklet queue */
955 local_irq_save(flags);
956 tsq = &__get_cpu_var(tsq_tasklet);
957 list_add(&tp->tsq_node, &tsq->head);
958 tasklet_schedule(&tsq->tasklet);
959 local_irq_restore(flags);
960 } else {
961 sock_wfree(skb);
962 }
963 }
964
965 /* This routine actually transmits TCP packets queued in by
966 * tcp_do_sendmsg(). This is used by both the initial
967 * transmission and possible later retransmissions.
968 * All SKB's seen here are completely headerless. It is our
969 * job to build the TCP header, and pass the packet down to
970 * IP so it can do the same plus pass the packet off to the
971 * device.
972 *
973 * We are working here with either a clone of the original
974 * SKB, or a fresh unique copy made by the retransmit engine.
975 */
976 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
977 gfp_t gfp_mask)
978 {
979 const struct inet_connection_sock *icsk = inet_csk(sk);
980 struct inet_sock *inet;
981 struct tcp_sock *tp;
982 struct tcp_skb_cb *tcb;
983 struct tcp_out_options opts;
984 unsigned int tcp_options_size, tcp_header_size;
985 struct tcp_md5sig_key *md5;
986 struct tcphdr *th;
987 int err;
988
989 BUG_ON(!skb || !tcp_skb_pcount(skb));
990
991 /* If congestion control is doing timestamping, we must
992 * take such a timestamp before we potentially clone/copy.
993 */
994 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
995 __net_timestamp(skb);
996
997 if (likely(clone_it)) {
998 if (unlikely(skb_cloned(skb)))
999 skb = pskb_copy(skb, gfp_mask);
1000 else
1001 skb = skb_clone(skb, gfp_mask);
1002 if (unlikely(!skb))
1003 return -ENOBUFS;
1004 }
1005
1006 inet = inet_sk(sk);
1007 tp = tcp_sk(sk);
1008 tcb = TCP_SKB_CB(skb);
1009 memset(&opts, 0, sizeof(opts));
1010
1011 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1012 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1013 else
1014 tcp_options_size = tcp_established_options(sk, skb, &opts,
1015 &md5);
1016 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1017
1018 if (tcp_packets_in_flight(tp) == 0) {
1019 tcp_ca_event(sk, CA_EVENT_TX_START);
1020 skb->ooo_okay = 1;
1021 } else
1022 skb->ooo_okay = 0;
1023
1024 skb_push(skb, tcp_header_size);
1025 skb_reset_transport_header(skb);
1026
1027 skb_orphan(skb);
1028 skb->sk = sk;
1029 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
1030 tcp_wfree : sock_wfree;
1031 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1032
1033 /* Build TCP header and checksum it. */
1034 th = tcp_hdr(skb);
1035 th->source = inet->inet_sport;
1036 th->dest = inet->inet_dport;
1037 th->seq = htonl(tcb->seq);
1038 th->ack_seq = htonl(tp->rcv_nxt);
1039 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1040 tcb->tcp_flags);
1041
1042 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1043 /* RFC1323: The window in SYN & SYN/ACK segments
1044 * is never scaled.
1045 */
1046 th->window = htons(min(tp->rcv_wnd, 65535U));
1047 } else {
1048 th->window = htons(tcp_select_window(sk));
1049 }
1050 th->check = 0;
1051 th->urg_ptr = 0;
1052
1053 /* The urg_mode check is necessary during a below snd_una win probe */
1054 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1055 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1056 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1057 th->urg = 1;
1058 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1059 th->urg_ptr = htons(0xFFFF);
1060 th->urg = 1;
1061 }
1062 }
1063
1064 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1065 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
1066 TCP_ECN_send(sk, skb, tcp_header_size);
1067
1068 #ifdef CONFIG_TCP_MD5SIG
1069 /* Calculate the MD5 hash, as we have all we need now */
1070 if (md5) {
1071 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1072 tp->af_specific->calc_md5_hash(opts.hash_location,
1073 md5, sk, NULL, skb);
1074 }
1075 #endif
1076
1077 icsk->icsk_af_ops->send_check(sk, skb);
1078
1079 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1080 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1081
1082 if (skb->len != tcp_header_size)
1083 tcp_event_data_sent(tp, sk);
1084
1085 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1086 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1087 tcp_skb_pcount(skb));
1088
1089 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
1090 if (likely(err <= 0))
1091 return err;
1092
1093 tcp_enter_cwr(sk, 1);
1094
1095 return net_xmit_eval(err);
1096 }
1097
1098 /* This routine just queues the buffer for sending.
1099 *
1100 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1101 * otherwise socket can stall.
1102 */
1103 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1104 {
1105 struct tcp_sock *tp = tcp_sk(sk);
1106
1107 /* Advance write_seq and place onto the write_queue. */
1108 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1109 skb_header_release(skb);
1110 tcp_add_write_queue_tail(sk, skb);
1111 sk->sk_wmem_queued += skb->truesize;
1112 sk_mem_charge(sk, skb->truesize);
1113 }
1114
1115 /* Initialize TSO segments for a packet. */
1116 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1117 unsigned int mss_now)
1118 {
1119 if (skb->len <= mss_now || !sk_can_gso(sk) ||
1120 skb->ip_summed == CHECKSUM_NONE) {
1121 /* Avoid the costly divide in the normal
1122 * non-TSO case.
1123 */
1124 skb_shinfo(skb)->gso_segs = 1;
1125 skb_shinfo(skb)->gso_size = 0;
1126 skb_shinfo(skb)->gso_type = 0;
1127 } else {
1128 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1129 skb_shinfo(skb)->gso_size = mss_now;
1130 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1131 }
1132 }
1133
1134 /* When a modification to fackets out becomes necessary, we need to check
1135 * skb is counted to fackets_out or not.
1136 */
1137 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1138 int decr)
1139 {
1140 struct tcp_sock *tp = tcp_sk(sk);
1141
1142 if (!tp->sacked_out || tcp_is_reno(tp))
1143 return;
1144
1145 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1146 tp->fackets_out -= decr;
1147 }
1148
1149 /* Pcount in the middle of the write queue got changed, we need to do various
1150 * tweaks to fix counters
1151 */
1152 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1153 {
1154 struct tcp_sock *tp = tcp_sk(sk);
1155
1156 tp->packets_out -= decr;
1157
1158 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1159 tp->sacked_out -= decr;
1160 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1161 tp->retrans_out -= decr;
1162 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1163 tp->lost_out -= decr;
1164
1165 /* Reno case is special. Sigh... */
1166 if (tcp_is_reno(tp) && decr > 0)
1167 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1168
1169 tcp_adjust_fackets_out(sk, skb, decr);
1170
1171 if (tp->lost_skb_hint &&
1172 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1173 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1174 tp->lost_cnt_hint -= decr;
1175
1176 tcp_verify_left_out(tp);
1177 }
1178
1179 /* Function to create two new TCP segments. Shrinks the given segment
1180 * to the specified size and appends a new segment with the rest of the
1181 * packet to the list. This won't be called frequently, I hope.
1182 * Remember, these are still headerless SKBs at this point.
1183 */
1184 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1185 unsigned int mss_now)
1186 {
1187 struct tcp_sock *tp = tcp_sk(sk);
1188 struct sk_buff *buff;
1189 int nsize, old_factor;
1190 int nlen;
1191 u8 flags;
1192
1193 if (WARN_ON(len > skb->len))
1194 return -EINVAL;
1195
1196 nsize = skb_headlen(skb) - len;
1197 if (nsize < 0)
1198 nsize = 0;
1199
1200 if (skb_cloned(skb) &&
1201 skb_is_nonlinear(skb) &&
1202 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1203 return -ENOMEM;
1204
1205 /* Get a new skb... force flag on. */
1206 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1207 if (buff == NULL)
1208 return -ENOMEM; /* We'll just try again later. */
1209
1210 sk->sk_wmem_queued += buff->truesize;
1211 sk_mem_charge(sk, buff->truesize);
1212 nlen = skb->len - len - nsize;
1213 buff->truesize += nlen;
1214 skb->truesize -= nlen;
1215
1216 /* Correct the sequence numbers. */
1217 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1218 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1219 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1220
1221 /* PSH and FIN should only be set in the second packet. */
1222 flags = TCP_SKB_CB(skb)->tcp_flags;
1223 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1224 TCP_SKB_CB(buff)->tcp_flags = flags;
1225 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1226
1227 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1228 /* Copy and checksum data tail into the new buffer. */
1229 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1230 skb_put(buff, nsize),
1231 nsize, 0);
1232
1233 skb_trim(skb, len);
1234
1235 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1236 } else {
1237 skb->ip_summed = CHECKSUM_PARTIAL;
1238 skb_split(skb, buff, len);
1239 }
1240
1241 buff->ip_summed = skb->ip_summed;
1242
1243 /* Looks stupid, but our code really uses when of
1244 * skbs, which it never sent before. --ANK
1245 */
1246 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1247 buff->tstamp = skb->tstamp;
1248
1249 old_factor = tcp_skb_pcount(skb);
1250
1251 /* Fix up tso_factor for both original and new SKB. */
1252 tcp_set_skb_tso_segs(sk, skb, mss_now);
1253 tcp_set_skb_tso_segs(sk, buff, mss_now);
1254
1255 /* If this packet has been sent out already, we must
1256 * adjust the various packet counters.
1257 */
1258 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1259 int diff = old_factor - tcp_skb_pcount(skb) -
1260 tcp_skb_pcount(buff);
1261
1262 if (diff)
1263 tcp_adjust_pcount(sk, skb, diff);
1264 }
1265
1266 /* Link BUFF into the send queue. */
1267 skb_header_release(buff);
1268 tcp_insert_write_queue_after(skb, buff, sk);
1269
1270 return 0;
1271 }
1272
1273 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1274 * eventually). The difference is that pulled data not copied, but
1275 * immediately discarded.
1276 */
1277 static void __pskb_trim_head(struct sk_buff *skb, int len)
1278 {
1279 int i, k, eat;
1280
1281 eat = min_t(int, len, skb_headlen(skb));
1282 if (eat) {
1283 __skb_pull(skb, eat);
1284 skb->avail_size -= eat;
1285 len -= eat;
1286 if (!len)
1287 return;
1288 }
1289 eat = len;
1290 k = 0;
1291 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1292 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1293
1294 if (size <= eat) {
1295 skb_frag_unref(skb, i);
1296 eat -= size;
1297 } else {
1298 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1299 if (eat) {
1300 skb_shinfo(skb)->frags[k].page_offset += eat;
1301 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1302 eat = 0;
1303 }
1304 k++;
1305 }
1306 }
1307 skb_shinfo(skb)->nr_frags = k;
1308
1309 skb_reset_tail_pointer(skb);
1310 skb->data_len -= len;
1311 skb->len = skb->data_len;
1312 }
1313
1314 /* Remove acked data from a packet in the transmit queue. */
1315 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1316 {
1317 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1318 return -ENOMEM;
1319
1320 __pskb_trim_head(skb, len);
1321
1322 TCP_SKB_CB(skb)->seq += len;
1323 skb->ip_summed = CHECKSUM_PARTIAL;
1324
1325 skb->truesize -= len;
1326 sk->sk_wmem_queued -= len;
1327 sk_mem_uncharge(sk, len);
1328 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1329
1330 /* Any change of skb->len requires recalculation of tso factor. */
1331 if (tcp_skb_pcount(skb) > 1)
1332 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1333
1334 return 0;
1335 }
1336
1337 /* Calculate MSS. Not accounting for SACKs here. */
1338 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1339 {
1340 const struct tcp_sock *tp = tcp_sk(sk);
1341 const struct inet_connection_sock *icsk = inet_csk(sk);
1342 int mss_now;
1343
1344 /* Calculate base mss without TCP options:
1345 It is MMS_S - sizeof(tcphdr) of rfc1122
1346 */
1347 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1348
1349 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1350 if (icsk->icsk_af_ops->net_frag_header_len) {
1351 const struct dst_entry *dst = __sk_dst_get(sk);
1352
1353 if (dst && dst_allfrag(dst))
1354 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1355 }
1356
1357 /* Clamp it (mss_clamp does not include tcp options) */
1358 if (mss_now > tp->rx_opt.mss_clamp)
1359 mss_now = tp->rx_opt.mss_clamp;
1360
1361 /* Now subtract optional transport overhead */
1362 mss_now -= icsk->icsk_ext_hdr_len;
1363
1364 /* Then reserve room for full set of TCP options and 8 bytes of data */
1365 if (mss_now < 48)
1366 mss_now = 48;
1367
1368 /* Now subtract TCP options size, not including SACKs */
1369 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
1370
1371 return mss_now;
1372 }
1373
1374 /* Inverse of above */
1375 int tcp_mss_to_mtu(struct sock *sk, int mss)
1376 {
1377 const struct tcp_sock *tp = tcp_sk(sk);
1378 const struct inet_connection_sock *icsk = inet_csk(sk);
1379 int mtu;
1380
1381 mtu = mss +
1382 tp->tcp_header_len +
1383 icsk->icsk_ext_hdr_len +
1384 icsk->icsk_af_ops->net_header_len;
1385
1386 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1387 if (icsk->icsk_af_ops->net_frag_header_len) {
1388 const struct dst_entry *dst = __sk_dst_get(sk);
1389
1390 if (dst && dst_allfrag(dst))
1391 mtu += icsk->icsk_af_ops->net_frag_header_len;
1392 }
1393 return mtu;
1394 }
1395
1396 /* MTU probing init per socket */
1397 void tcp_mtup_init(struct sock *sk)
1398 {
1399 struct tcp_sock *tp = tcp_sk(sk);
1400 struct inet_connection_sock *icsk = inet_csk(sk);
1401
1402 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1403 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1404 icsk->icsk_af_ops->net_header_len;
1405 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1406 icsk->icsk_mtup.probe_size = 0;
1407 }
1408 EXPORT_SYMBOL(tcp_mtup_init);
1409
1410 /* This function synchronize snd mss to current pmtu/exthdr set.
1411
1412 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1413 for TCP options, but includes only bare TCP header.
1414
1415 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1416 It is minimum of user_mss and mss received with SYN.
1417 It also does not include TCP options.
1418
1419 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1420
1421 tp->mss_cache is current effective sending mss, including
1422 all tcp options except for SACKs. It is evaluated,
1423 taking into account current pmtu, but never exceeds
1424 tp->rx_opt.mss_clamp.
1425
1426 NOTE1. rfc1122 clearly states that advertised MSS
1427 DOES NOT include either tcp or ip options.
1428
1429 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1430 are READ ONLY outside this function. --ANK (980731)
1431 */
1432 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1433 {
1434 struct tcp_sock *tp = tcp_sk(sk);
1435 struct inet_connection_sock *icsk = inet_csk(sk);
1436 int mss_now;
1437
1438 if (icsk->icsk_mtup.search_high > pmtu)
1439 icsk->icsk_mtup.search_high = pmtu;
1440
1441 mss_now = tcp_mtu_to_mss(sk, pmtu);
1442 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1443
1444 /* And store cached results */
1445 icsk->icsk_pmtu_cookie = pmtu;
1446 if (icsk->icsk_mtup.enabled)
1447 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1448 tp->mss_cache = mss_now;
1449
1450 return mss_now;
1451 }
1452 EXPORT_SYMBOL(tcp_sync_mss);
1453
1454 /* Compute the current effective MSS, taking SACKs and IP options,
1455 * and even PMTU discovery events into account.
1456 */
1457 unsigned int tcp_current_mss(struct sock *sk)
1458 {
1459 const struct tcp_sock *tp = tcp_sk(sk);
1460 const struct dst_entry *dst = __sk_dst_get(sk);
1461 u32 mss_now;
1462 unsigned int header_len;
1463 struct tcp_out_options opts;
1464 struct tcp_md5sig_key *md5;
1465
1466 mss_now = tp->mss_cache;
1467
1468 if (dst) {
1469 u32 mtu = dst_mtu(dst);
1470 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1471 mss_now = tcp_sync_mss(sk, mtu);
1472 }
1473
1474 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1475 sizeof(struct tcphdr);
1476 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1477 * some common options. If this is an odd packet (because we have SACK
1478 * blocks etc) then our calculated header_len will be different, and
1479 * we have to adjust mss_now correspondingly */
1480 if (header_len != tp->tcp_header_len) {
1481 int delta = (int) header_len - tp->tcp_header_len;
1482 mss_now -= delta;
1483 }
1484
1485 return mss_now;
1486 }
1487
1488 /* Congestion window validation. (RFC2861) */
1489 static void tcp_cwnd_validate(struct sock *sk)
1490 {
1491 struct tcp_sock *tp = tcp_sk(sk);
1492
1493 if (tp->packets_out >= tp->snd_cwnd) {
1494 /* Network is feed fully. */
1495 tp->snd_cwnd_used = 0;
1496 tp->snd_cwnd_stamp = tcp_time_stamp;
1497 } else {
1498 /* Network starves. */
1499 if (tp->packets_out > tp->snd_cwnd_used)
1500 tp->snd_cwnd_used = tp->packets_out;
1501
1502 if (sysctl_tcp_slow_start_after_idle &&
1503 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1504 tcp_cwnd_application_limited(sk);
1505 }
1506 }
1507
1508 /* Returns the portion of skb which can be sent right away without
1509 * introducing MSS oddities to segment boundaries. In rare cases where
1510 * mss_now != mss_cache, we will request caller to create a small skb
1511 * per input skb which could be mostly avoided here (if desired).
1512 *
1513 * We explicitly want to create a request for splitting write queue tail
1514 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1515 * thus all the complexity (cwnd_len is always MSS multiple which we
1516 * return whenever allowed by the other factors). Basically we need the
1517 * modulo only when the receiver window alone is the limiting factor or
1518 * when we would be allowed to send the split-due-to-Nagle skb fully.
1519 */
1520 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1521 unsigned int mss_now, unsigned int cwnd)
1522 {
1523 const struct tcp_sock *tp = tcp_sk(sk);
1524 u32 needed, window, cwnd_len;
1525
1526 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1527 cwnd_len = mss_now * cwnd;
1528
1529 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
1530 return cwnd_len;
1531
1532 needed = min(skb->len, window);
1533
1534 if (cwnd_len <= needed)
1535 return cwnd_len;
1536
1537 return needed - needed % mss_now;
1538 }
1539
1540 /* Can at least one segment of SKB be sent right now, according to the
1541 * congestion window rules? If so, return how many segments are allowed.
1542 */
1543 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1544 const struct sk_buff *skb)
1545 {
1546 u32 in_flight, cwnd;
1547
1548 /* Don't be strict about the congestion window for the final FIN. */
1549 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1550 tcp_skb_pcount(skb) == 1)
1551 return 1;
1552
1553 in_flight = tcp_packets_in_flight(tp);
1554 cwnd = tp->snd_cwnd;
1555 if (in_flight < cwnd)
1556 return (cwnd - in_flight);
1557
1558 return 0;
1559 }
1560
1561 /* Initialize TSO state of a skb.
1562 * This must be invoked the first time we consider transmitting
1563 * SKB onto the wire.
1564 */
1565 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1566 unsigned int mss_now)
1567 {
1568 int tso_segs = tcp_skb_pcount(skb);
1569
1570 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1571 tcp_set_skb_tso_segs(sk, skb, mss_now);
1572 tso_segs = tcp_skb_pcount(skb);
1573 }
1574 return tso_segs;
1575 }
1576
1577 /* Minshall's variant of the Nagle send check. */
1578 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1579 {
1580 return after(tp->snd_sml, tp->snd_una) &&
1581 !after(tp->snd_sml, tp->snd_nxt);
1582 }
1583
1584 /* Return false, if packet can be sent now without violation Nagle's rules:
1585 * 1. It is full sized.
1586 * 2. Or it contains FIN. (already checked by caller)
1587 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1588 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1589 * With Minshall's modification: all sent small packets are ACKed.
1590 */
1591 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1592 const struct sk_buff *skb,
1593 unsigned int mss_now, int nonagle)
1594 {
1595 return skb->len < mss_now &&
1596 ((nonagle & TCP_NAGLE_CORK) ||
1597 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1598 }
1599
1600 /* Return true if the Nagle test allows this packet to be
1601 * sent now.
1602 */
1603 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1604 unsigned int cur_mss, int nonagle)
1605 {
1606 /* Nagle rule does not apply to frames, which sit in the middle of the
1607 * write_queue (they have no chances to get new data).
1608 *
1609 * This is implemented in the callers, where they modify the 'nonagle'
1610 * argument based upon the location of SKB in the send queue.
1611 */
1612 if (nonagle & TCP_NAGLE_PUSH)
1613 return true;
1614
1615 /* Don't use the nagle rule for urgent data (or for the final FIN).
1616 * Nagle can be ignored during F-RTO too (see RFC4138).
1617 */
1618 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
1619 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1620 return true;
1621
1622 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1623 return true;
1624
1625 return false;
1626 }
1627
1628 /* Does at least the first segment of SKB fit into the send window? */
1629 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1630 const struct sk_buff *skb,
1631 unsigned int cur_mss)
1632 {
1633 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1634
1635 if (skb->len > cur_mss)
1636 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1637
1638 return !after(end_seq, tcp_wnd_end(tp));
1639 }
1640
1641 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1642 * should be put on the wire right now. If so, it returns the number of
1643 * packets allowed by the congestion window.
1644 */
1645 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1646 unsigned int cur_mss, int nonagle)
1647 {
1648 const struct tcp_sock *tp = tcp_sk(sk);
1649 unsigned int cwnd_quota;
1650
1651 tcp_init_tso_segs(sk, skb, cur_mss);
1652
1653 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1654 return 0;
1655
1656 cwnd_quota = tcp_cwnd_test(tp, skb);
1657 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1658 cwnd_quota = 0;
1659
1660 return cwnd_quota;
1661 }
1662
1663 /* Test if sending is allowed right now. */
1664 bool tcp_may_send_now(struct sock *sk)
1665 {
1666 const struct tcp_sock *tp = tcp_sk(sk);
1667 struct sk_buff *skb = tcp_send_head(sk);
1668
1669 return skb &&
1670 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1671 (tcp_skb_is_last(sk, skb) ?
1672 tp->nonagle : TCP_NAGLE_PUSH));
1673 }
1674
1675 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1676 * which is put after SKB on the list. It is very much like
1677 * tcp_fragment() except that it may make several kinds of assumptions
1678 * in order to speed up the splitting operation. In particular, we
1679 * know that all the data is in scatter-gather pages, and that the
1680 * packet has never been sent out before (and thus is not cloned).
1681 */
1682 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1683 unsigned int mss_now, gfp_t gfp)
1684 {
1685 struct sk_buff *buff;
1686 int nlen = skb->len - len;
1687 u8 flags;
1688
1689 /* All of a TSO frame must be composed of paged data. */
1690 if (skb->len != skb->data_len)
1691 return tcp_fragment(sk, skb, len, mss_now);
1692
1693 buff = sk_stream_alloc_skb(sk, 0, gfp);
1694 if (unlikely(buff == NULL))
1695 return -ENOMEM;
1696
1697 sk->sk_wmem_queued += buff->truesize;
1698 sk_mem_charge(sk, buff->truesize);
1699 buff->truesize += nlen;
1700 skb->truesize -= nlen;
1701
1702 /* Correct the sequence numbers. */
1703 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1704 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1705 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1706
1707 /* PSH and FIN should only be set in the second packet. */
1708 flags = TCP_SKB_CB(skb)->tcp_flags;
1709 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1710 TCP_SKB_CB(buff)->tcp_flags = flags;
1711
1712 /* This packet was never sent out yet, so no SACK bits. */
1713 TCP_SKB_CB(buff)->sacked = 0;
1714
1715 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1716 skb_split(skb, buff, len);
1717
1718 /* Fix up tso_factor for both original and new SKB. */
1719 tcp_set_skb_tso_segs(sk, skb, mss_now);
1720 tcp_set_skb_tso_segs(sk, buff, mss_now);
1721
1722 /* Link BUFF into the send queue. */
1723 skb_header_release(buff);
1724 tcp_insert_write_queue_after(skb, buff, sk);
1725
1726 return 0;
1727 }
1728
1729 /* Try to defer sending, if possible, in order to minimize the amount
1730 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1731 *
1732 * This algorithm is from John Heffner.
1733 */
1734 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1735 {
1736 struct tcp_sock *tp = tcp_sk(sk);
1737 const struct inet_connection_sock *icsk = inet_csk(sk);
1738 u32 send_win, cong_win, limit, in_flight;
1739 int win_divisor;
1740
1741 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1742 goto send_now;
1743
1744 if (icsk->icsk_ca_state != TCP_CA_Open)
1745 goto send_now;
1746
1747 /* Defer for less than two clock ticks. */
1748 if (tp->tso_deferred &&
1749 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1750 goto send_now;
1751
1752 in_flight = tcp_packets_in_flight(tp);
1753
1754 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1755
1756 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1757
1758 /* From in_flight test above, we know that cwnd > in_flight. */
1759 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1760
1761 limit = min(send_win, cong_win);
1762
1763 /* If a full-sized TSO skb can be sent, do it. */
1764 if (limit >= sk->sk_gso_max_size)
1765 goto send_now;
1766
1767 /* Middle in queue won't get any more data, full sendable already? */
1768 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1769 goto send_now;
1770
1771 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1772 if (win_divisor) {
1773 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1774
1775 /* If at least some fraction of a window is available,
1776 * just use it.
1777 */
1778 chunk /= win_divisor;
1779 if (limit >= chunk)
1780 goto send_now;
1781 } else {
1782 /* Different approach, try not to defer past a single
1783 * ACK. Receiver should ACK every other full sized
1784 * frame, so if we have space for more than 3 frames
1785 * then send now.
1786 */
1787 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1788 goto send_now;
1789 }
1790
1791 /* Ok, it looks like it is advisable to defer. */
1792 tp->tso_deferred = 1 | (jiffies << 1);
1793
1794 return true;
1795
1796 send_now:
1797 tp->tso_deferred = 0;
1798 return false;
1799 }
1800
1801 /* Create a new MTU probe if we are ready.
1802 * MTU probe is regularly attempting to increase the path MTU by
1803 * deliberately sending larger packets. This discovers routing
1804 * changes resulting in larger path MTUs.
1805 *
1806 * Returns 0 if we should wait to probe (no cwnd available),
1807 * 1 if a probe was sent,
1808 * -1 otherwise
1809 */
1810 static int tcp_mtu_probe(struct sock *sk)
1811 {
1812 struct tcp_sock *tp = tcp_sk(sk);
1813 struct inet_connection_sock *icsk = inet_csk(sk);
1814 struct sk_buff *skb, *nskb, *next;
1815 int len;
1816 int probe_size;
1817 int size_needed;
1818 int copy;
1819 int mss_now;
1820
1821 /* Not currently probing/verifying,
1822 * not in recovery,
1823 * have enough cwnd, and
1824 * not SACKing (the variable headers throw things off) */
1825 if (!icsk->icsk_mtup.enabled ||
1826 icsk->icsk_mtup.probe_size ||
1827 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1828 tp->snd_cwnd < 11 ||
1829 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1830 return -1;
1831
1832 /* Very simple search strategy: just double the MSS. */
1833 mss_now = tcp_current_mss(sk);
1834 probe_size = 2 * tp->mss_cache;
1835 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1836 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1837 /* TODO: set timer for probe_converge_event */
1838 return -1;
1839 }
1840
1841 /* Have enough data in the send queue to probe? */
1842 if (tp->write_seq - tp->snd_nxt < size_needed)
1843 return -1;
1844
1845 if (tp->snd_wnd < size_needed)
1846 return -1;
1847 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1848 return 0;
1849
1850 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1851 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1852 if (!tcp_packets_in_flight(tp))
1853 return -1;
1854 else
1855 return 0;
1856 }
1857
1858 /* We're allowed to probe. Build it now. */
1859 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1860 return -1;
1861 sk->sk_wmem_queued += nskb->truesize;
1862 sk_mem_charge(sk, nskb->truesize);
1863
1864 skb = tcp_send_head(sk);
1865
1866 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1867 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1868 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1869 TCP_SKB_CB(nskb)->sacked = 0;
1870 nskb->csum = 0;
1871 nskb->ip_summed = skb->ip_summed;
1872
1873 tcp_insert_write_queue_before(nskb, skb, sk);
1874
1875 len = 0;
1876 tcp_for_write_queue_from_safe(skb, next, sk) {
1877 copy = min_t(int, skb->len, probe_size - len);
1878 if (nskb->ip_summed)
1879 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1880 else
1881 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1882 skb_put(nskb, copy),
1883 copy, nskb->csum);
1884
1885 if (skb->len <= copy) {
1886 /* We've eaten all the data from this skb.
1887 * Throw it away. */
1888 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1889 tcp_unlink_write_queue(skb, sk);
1890 sk_wmem_free_skb(sk, skb);
1891 } else {
1892 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1893 ~(TCPHDR_FIN|TCPHDR_PSH);
1894 if (!skb_shinfo(skb)->nr_frags) {
1895 skb_pull(skb, copy);
1896 if (skb->ip_summed != CHECKSUM_PARTIAL)
1897 skb->csum = csum_partial(skb->data,
1898 skb->len, 0);
1899 } else {
1900 __pskb_trim_head(skb, copy);
1901 tcp_set_skb_tso_segs(sk, skb, mss_now);
1902 }
1903 TCP_SKB_CB(skb)->seq += copy;
1904 }
1905
1906 len += copy;
1907
1908 if (len >= probe_size)
1909 break;
1910 }
1911 tcp_init_tso_segs(sk, nskb, nskb->len);
1912
1913 /* We're ready to send. If this fails, the probe will
1914 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1915 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1916 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1917 /* Decrement cwnd here because we are sending
1918 * effectively two packets. */
1919 tp->snd_cwnd--;
1920 tcp_event_new_data_sent(sk, nskb);
1921
1922 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1923 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1924 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1925
1926 return 1;
1927 }
1928
1929 return -1;
1930 }
1931
1932 /* This routine writes packets to the network. It advances the
1933 * send_head. This happens as incoming acks open up the remote
1934 * window for us.
1935 *
1936 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1937 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1938 * account rare use of URG, this is not a big flaw.
1939 *
1940 * Returns true, if no segments are in flight and we have queued segments,
1941 * but cannot send anything now because of SWS or another problem.
1942 */
1943 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1944 int push_one, gfp_t gfp)
1945 {
1946 struct tcp_sock *tp = tcp_sk(sk);
1947 struct sk_buff *skb;
1948 unsigned int tso_segs, sent_pkts;
1949 int cwnd_quota;
1950 int result;
1951
1952 sent_pkts = 0;
1953
1954 if (!push_one) {
1955 /* Do MTU probing. */
1956 result = tcp_mtu_probe(sk);
1957 if (!result) {
1958 return false;
1959 } else if (result > 0) {
1960 sent_pkts = 1;
1961 }
1962 }
1963
1964 while ((skb = tcp_send_head(sk))) {
1965 unsigned int limit;
1966
1967
1968 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1969 BUG_ON(!tso_segs);
1970
1971 cwnd_quota = tcp_cwnd_test(tp, skb);
1972 if (!cwnd_quota)
1973 break;
1974
1975 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1976 break;
1977
1978 if (tso_segs == 1) {
1979 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1980 (tcp_skb_is_last(sk, skb) ?
1981 nonagle : TCP_NAGLE_PUSH))))
1982 break;
1983 } else {
1984 if (!push_one && tcp_tso_should_defer(sk, skb))
1985 break;
1986 }
1987
1988 /* TSQ : sk_wmem_alloc accounts skb truesize,
1989 * including skb overhead. But thats OK.
1990 */
1991 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
1992 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1993 break;
1994 }
1995 limit = mss_now;
1996 if (tso_segs > 1 && !tcp_urg_mode(tp))
1997 limit = tcp_mss_split_point(sk, skb, mss_now,
1998 cwnd_quota);
1999
2000 if (skb->len > limit &&
2001 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2002 break;
2003
2004 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2005
2006 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2007 break;
2008
2009 /* Advance the send_head. This one is sent out.
2010 * This call will increment packets_out.
2011 */
2012 tcp_event_new_data_sent(sk, skb);
2013
2014 tcp_minshall_update(tp, mss_now, skb);
2015 sent_pkts += tcp_skb_pcount(skb);
2016
2017 if (push_one)
2018 break;
2019 }
2020 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery)
2021 tp->prr_out += sent_pkts;
2022
2023 if (likely(sent_pkts)) {
2024 tcp_cwnd_validate(sk);
2025 return false;
2026 }
2027 return !tp->packets_out && tcp_send_head(sk);
2028 }
2029
2030 /* Push out any pending frames which were held back due to
2031 * TCP_CORK or attempt at coalescing tiny packets.
2032 * The socket must be locked by the caller.
2033 */
2034 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2035 int nonagle)
2036 {
2037 /* If we are closed, the bytes will have to remain here.
2038 * In time closedown will finish, we empty the write queue and
2039 * all will be happy.
2040 */
2041 if (unlikely(sk->sk_state == TCP_CLOSE))
2042 return;
2043
2044 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC))
2045 tcp_check_probe_timer(sk);
2046 }
2047
2048 /* Send _single_ skb sitting at the send head. This function requires
2049 * true push pending frames to setup probe timer etc.
2050 */
2051 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2052 {
2053 struct sk_buff *skb = tcp_send_head(sk);
2054
2055 BUG_ON(!skb || skb->len < mss_now);
2056
2057 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2058 }
2059
2060 /* This function returns the amount that we can raise the
2061 * usable window based on the following constraints
2062 *
2063 * 1. The window can never be shrunk once it is offered (RFC 793)
2064 * 2. We limit memory per socket
2065 *
2066 * RFC 1122:
2067 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2068 * RECV.NEXT + RCV.WIN fixed until:
2069 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2070 *
2071 * i.e. don't raise the right edge of the window until you can raise
2072 * it at least MSS bytes.
2073 *
2074 * Unfortunately, the recommended algorithm breaks header prediction,
2075 * since header prediction assumes th->window stays fixed.
2076 *
2077 * Strictly speaking, keeping th->window fixed violates the receiver
2078 * side SWS prevention criteria. The problem is that under this rule
2079 * a stream of single byte packets will cause the right side of the
2080 * window to always advance by a single byte.
2081 *
2082 * Of course, if the sender implements sender side SWS prevention
2083 * then this will not be a problem.
2084 *
2085 * BSD seems to make the following compromise:
2086 *
2087 * If the free space is less than the 1/4 of the maximum
2088 * space available and the free space is less than 1/2 mss,
2089 * then set the window to 0.
2090 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2091 * Otherwise, just prevent the window from shrinking
2092 * and from being larger than the largest representable value.
2093 *
2094 * This prevents incremental opening of the window in the regime
2095 * where TCP is limited by the speed of the reader side taking
2096 * data out of the TCP receive queue. It does nothing about
2097 * those cases where the window is constrained on the sender side
2098 * because the pipeline is full.
2099 *
2100 * BSD also seems to "accidentally" limit itself to windows that are a
2101 * multiple of MSS, at least until the free space gets quite small.
2102 * This would appear to be a side effect of the mbuf implementation.
2103 * Combining these two algorithms results in the observed behavior
2104 * of having a fixed window size at almost all times.
2105 *
2106 * Below we obtain similar behavior by forcing the offered window to
2107 * a multiple of the mss when it is feasible to do so.
2108 *
2109 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2110 * Regular options like TIMESTAMP are taken into account.
2111 */
2112 u32 __tcp_select_window(struct sock *sk)
2113 {
2114 struct inet_connection_sock *icsk = inet_csk(sk);
2115 struct tcp_sock *tp = tcp_sk(sk);
2116 /* MSS for the peer's data. Previous versions used mss_clamp
2117 * here. I don't know if the value based on our guesses
2118 * of peer's MSS is better for the performance. It's more correct
2119 * but may be worse for the performance because of rcv_mss
2120 * fluctuations. --SAW 1998/11/1
2121 */
2122 int mss = icsk->icsk_ack.rcv_mss;
2123 int free_space = tcp_space(sk);
2124 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2125 int window;
2126
2127 if (mss > full_space)
2128 mss = full_space;
2129
2130 if (free_space < (full_space >> 1)) {
2131 icsk->icsk_ack.quick = 0;
2132
2133 if (sk_under_memory_pressure(sk))
2134 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2135 4U * tp->advmss);
2136
2137 if (free_space < mss)
2138 return 0;
2139 }
2140
2141 if (free_space > tp->rcv_ssthresh)
2142 free_space = tp->rcv_ssthresh;
2143
2144 /* Don't do rounding if we are using window scaling, since the
2145 * scaled window will not line up with the MSS boundary anyway.
2146 */
2147 window = tp->rcv_wnd;
2148 if (tp->rx_opt.rcv_wscale) {
2149 window = free_space;
2150
2151 /* Advertise enough space so that it won't get scaled away.
2152 * Import case: prevent zero window announcement if
2153 * 1<<rcv_wscale > mss.
2154 */
2155 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2156 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2157 << tp->rx_opt.rcv_wscale);
2158 } else {
2159 /* Get the largest window that is a nice multiple of mss.
2160 * Window clamp already applied above.
2161 * If our current window offering is within 1 mss of the
2162 * free space we just keep it. This prevents the divide
2163 * and multiply from happening most of the time.
2164 * We also don't do any window rounding when the free space
2165 * is too small.
2166 */
2167 if (window <= free_space - mss || window > free_space)
2168 window = (free_space / mss) * mss;
2169 else if (mss == full_space &&
2170 free_space > window + (full_space >> 1))
2171 window = free_space;
2172 }
2173
2174 return window;
2175 }
2176
2177 /* Collapses two adjacent SKB's during retransmission. */
2178 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2179 {
2180 struct tcp_sock *tp = tcp_sk(sk);
2181 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2182 int skb_size, next_skb_size;
2183
2184 skb_size = skb->len;
2185 next_skb_size = next_skb->len;
2186
2187 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2188
2189 tcp_highest_sack_combine(sk, next_skb, skb);
2190
2191 tcp_unlink_write_queue(next_skb, sk);
2192
2193 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2194 next_skb_size);
2195
2196 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2197 skb->ip_summed = CHECKSUM_PARTIAL;
2198
2199 if (skb->ip_summed != CHECKSUM_PARTIAL)
2200 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2201
2202 /* Update sequence range on original skb. */
2203 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2204
2205 /* Merge over control information. This moves PSH/FIN etc. over */
2206 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2207
2208 /* All done, get rid of second SKB and account for it so
2209 * packet counting does not break.
2210 */
2211 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2212
2213 /* changed transmit queue under us so clear hints */
2214 tcp_clear_retrans_hints_partial(tp);
2215 if (next_skb == tp->retransmit_skb_hint)
2216 tp->retransmit_skb_hint = skb;
2217
2218 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2219
2220 sk_wmem_free_skb(sk, next_skb);
2221 }
2222
2223 /* Check if coalescing SKBs is legal. */
2224 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2225 {
2226 if (tcp_skb_pcount(skb) > 1)
2227 return false;
2228 /* TODO: SACK collapsing could be used to remove this condition */
2229 if (skb_shinfo(skb)->nr_frags != 0)
2230 return false;
2231 if (skb_cloned(skb))
2232 return false;
2233 if (skb == tcp_send_head(sk))
2234 return false;
2235 /* Some heurestics for collapsing over SACK'd could be invented */
2236 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2237 return false;
2238
2239 return true;
2240 }
2241
2242 /* Collapse packets in the retransmit queue to make to create
2243 * less packets on the wire. This is only done on retransmission.
2244 */
2245 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2246 int space)
2247 {
2248 struct tcp_sock *tp = tcp_sk(sk);
2249 struct sk_buff *skb = to, *tmp;
2250 bool first = true;
2251
2252 if (!sysctl_tcp_retrans_collapse)
2253 return;
2254 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2255 return;
2256
2257 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2258 if (!tcp_can_collapse(sk, skb))
2259 break;
2260
2261 space -= skb->len;
2262
2263 if (first) {
2264 first = false;
2265 continue;
2266 }
2267
2268 if (space < 0)
2269 break;
2270 /* Punt if not enough space exists in the first SKB for
2271 * the data in the second
2272 */
2273 if (skb->len > skb_availroom(to))
2274 break;
2275
2276 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2277 break;
2278
2279 tcp_collapse_retrans(sk, to);
2280 }
2281 }
2282
2283 /* This retransmits one SKB. Policy decisions and retransmit queue
2284 * state updates are done by the caller. Returns non-zero if an
2285 * error occurred which prevented the send.
2286 */
2287 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2288 {
2289 struct tcp_sock *tp = tcp_sk(sk);
2290 struct inet_connection_sock *icsk = inet_csk(sk);
2291 unsigned int cur_mss;
2292 int err;
2293
2294 /* Inconslusive MTU probe */
2295 if (icsk->icsk_mtup.probe_size) {
2296 icsk->icsk_mtup.probe_size = 0;
2297 }
2298
2299 /* Do not sent more than we queued. 1/4 is reserved for possible
2300 * copying overhead: fragmentation, tunneling, mangling etc.
2301 */
2302 if (atomic_read(&sk->sk_wmem_alloc) >
2303 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2304 return -EAGAIN;
2305
2306 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2307 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2308 BUG();
2309 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2310 return -ENOMEM;
2311 }
2312
2313 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2314 return -EHOSTUNREACH; /* Routing failure or similar. */
2315
2316 cur_mss = tcp_current_mss(sk);
2317
2318 /* If receiver has shrunk his window, and skb is out of
2319 * new window, do not retransmit it. The exception is the
2320 * case, when window is shrunk to zero. In this case
2321 * our retransmit serves as a zero window probe.
2322 */
2323 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2324 TCP_SKB_CB(skb)->seq != tp->snd_una)
2325 return -EAGAIN;
2326
2327 if (skb->len > cur_mss) {
2328 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2329 return -ENOMEM; /* We'll try again later. */
2330 } else {
2331 int oldpcount = tcp_skb_pcount(skb);
2332
2333 if (unlikely(oldpcount > 1)) {
2334 tcp_init_tso_segs(sk, skb, cur_mss);
2335 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2336 }
2337 }
2338
2339 tcp_retrans_try_collapse(sk, skb, cur_mss);
2340
2341 /* Some Solaris stacks overoptimize and ignore the FIN on a
2342 * retransmit when old data is attached. So strip it off
2343 * since it is cheap to do so and saves bytes on the network.
2344 */
2345 if (skb->len > 0 &&
2346 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2347 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2348 if (!pskb_trim(skb, 0)) {
2349 /* Reuse, even though it does some unnecessary work */
2350 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2351 TCP_SKB_CB(skb)->tcp_flags);
2352 skb->ip_summed = CHECKSUM_NONE;
2353 }
2354 }
2355
2356 /* Make a copy, if the first transmission SKB clone we made
2357 * is still in somebody's hands, else make a clone.
2358 */
2359 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2360
2361 /* make sure skb->data is aligned on arches that require it */
2362 if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) {
2363 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2364 GFP_ATOMIC);
2365 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2366 -ENOBUFS;
2367 } else {
2368 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2369 }
2370
2371 if (err == 0) {
2372 /* Update global TCP statistics. */
2373 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2374
2375 tp->total_retrans++;
2376
2377 #if FASTRETRANS_DEBUG > 0
2378 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2379 net_dbg_ratelimited("retrans_out leaked\n");
2380 }
2381 #endif
2382 if (!tp->retrans_out)
2383 tp->lost_retrans_low = tp->snd_nxt;
2384 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2385 tp->retrans_out += tcp_skb_pcount(skb);
2386
2387 /* Save stamp of the first retransmit. */
2388 if (!tp->retrans_stamp)
2389 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2390
2391 tp->undo_retrans += tcp_skb_pcount(skb);
2392
2393 /* snd_nxt is stored to detect loss of retransmitted segment,
2394 * see tcp_input.c tcp_sacktag_write_queue().
2395 */
2396 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2397 }
2398 return err;
2399 }
2400
2401 /* Check if we forward retransmits are possible in the current
2402 * window/congestion state.
2403 */
2404 static bool tcp_can_forward_retransmit(struct sock *sk)
2405 {
2406 const struct inet_connection_sock *icsk = inet_csk(sk);
2407 const struct tcp_sock *tp = tcp_sk(sk);
2408
2409 /* Forward retransmissions are possible only during Recovery. */
2410 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2411 return false;
2412
2413 /* No forward retransmissions in Reno are possible. */
2414 if (tcp_is_reno(tp))
2415 return false;
2416
2417 /* Yeah, we have to make difficult choice between forward transmission
2418 * and retransmission... Both ways have their merits...
2419 *
2420 * For now we do not retransmit anything, while we have some new
2421 * segments to send. In the other cases, follow rule 3 for
2422 * NextSeg() specified in RFC3517.
2423 */
2424
2425 if (tcp_may_send_now(sk))
2426 return false;
2427
2428 return true;
2429 }
2430
2431 /* This gets called after a retransmit timeout, and the initially
2432 * retransmitted data is acknowledged. It tries to continue
2433 * resending the rest of the retransmit queue, until either
2434 * we've sent it all or the congestion window limit is reached.
2435 * If doing SACK, the first ACK which comes back for a timeout
2436 * based retransmit packet might feed us FACK information again.
2437 * If so, we use it to avoid unnecessarily retransmissions.
2438 */
2439 void tcp_xmit_retransmit_queue(struct sock *sk)
2440 {
2441 const struct inet_connection_sock *icsk = inet_csk(sk);
2442 struct tcp_sock *tp = tcp_sk(sk);
2443 struct sk_buff *skb;
2444 struct sk_buff *hole = NULL;
2445 u32 last_lost;
2446 int mib_idx;
2447 int fwd_rexmitting = 0;
2448
2449 if (!tp->packets_out)
2450 return;
2451
2452 if (!tp->lost_out)
2453 tp->retransmit_high = tp->snd_una;
2454
2455 if (tp->retransmit_skb_hint) {
2456 skb = tp->retransmit_skb_hint;
2457 last_lost = TCP_SKB_CB(skb)->end_seq;
2458 if (after(last_lost, tp->retransmit_high))
2459 last_lost = tp->retransmit_high;
2460 } else {
2461 skb = tcp_write_queue_head(sk);
2462 last_lost = tp->snd_una;
2463 }
2464
2465 tcp_for_write_queue_from(skb, sk) {
2466 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2467
2468 if (skb == tcp_send_head(sk))
2469 break;
2470 /* we could do better than to assign each time */
2471 if (hole == NULL)
2472 tp->retransmit_skb_hint = skb;
2473
2474 /* Assume this retransmit will generate
2475 * only one packet for congestion window
2476 * calculation purposes. This works because
2477 * tcp_retransmit_skb() will chop up the
2478 * packet to be MSS sized and all the
2479 * packet counting works out.
2480 */
2481 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2482 return;
2483
2484 if (fwd_rexmitting) {
2485 begin_fwd:
2486 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2487 break;
2488 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2489
2490 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2491 tp->retransmit_high = last_lost;
2492 if (!tcp_can_forward_retransmit(sk))
2493 break;
2494 /* Backtrack if necessary to non-L'ed skb */
2495 if (hole != NULL) {
2496 skb = hole;
2497 hole = NULL;
2498 }
2499 fwd_rexmitting = 1;
2500 goto begin_fwd;
2501
2502 } else if (!(sacked & TCPCB_LOST)) {
2503 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2504 hole = skb;
2505 continue;
2506
2507 } else {
2508 last_lost = TCP_SKB_CB(skb)->end_seq;
2509 if (icsk->icsk_ca_state != TCP_CA_Loss)
2510 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2511 else
2512 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2513 }
2514
2515 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2516 continue;
2517
2518 if (tcp_retransmit_skb(sk, skb)) {
2519 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2520 return;
2521 }
2522 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2523
2524 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery)
2525 tp->prr_out += tcp_skb_pcount(skb);
2526
2527 if (skb == tcp_write_queue_head(sk))
2528 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2529 inet_csk(sk)->icsk_rto,
2530 TCP_RTO_MAX);
2531 }
2532 }
2533
2534 /* Send a fin. The caller locks the socket for us. This cannot be
2535 * allowed to fail queueing a FIN frame under any circumstances.
2536 */
2537 void tcp_send_fin(struct sock *sk)
2538 {
2539 struct tcp_sock *tp = tcp_sk(sk);
2540 struct sk_buff *skb = tcp_write_queue_tail(sk);
2541 int mss_now;
2542
2543 /* Optimization, tack on the FIN if we have a queue of
2544 * unsent frames. But be careful about outgoing SACKS
2545 * and IP options.
2546 */
2547 mss_now = tcp_current_mss(sk);
2548
2549 if (tcp_send_head(sk) != NULL) {
2550 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2551 TCP_SKB_CB(skb)->end_seq++;
2552 tp->write_seq++;
2553 } else {
2554 /* Socket is locked, keep trying until memory is available. */
2555 for (;;) {
2556 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2557 sk->sk_allocation);
2558 if (skb)
2559 break;
2560 yield();
2561 }
2562
2563 /* Reserve space for headers and prepare control bits. */
2564 skb_reserve(skb, MAX_TCP_HEADER);
2565 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2566 tcp_init_nondata_skb(skb, tp->write_seq,
2567 TCPHDR_ACK | TCPHDR_FIN);
2568 tcp_queue_skb(sk, skb);
2569 }
2570 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2571 }
2572
2573 /* We get here when a process closes a file descriptor (either due to
2574 * an explicit close() or as a byproduct of exit()'ing) and there
2575 * was unread data in the receive queue. This behavior is recommended
2576 * by RFC 2525, section 2.17. -DaveM
2577 */
2578 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2579 {
2580 struct sk_buff *skb;
2581
2582 /* NOTE: No TCP options attached and we never retransmit this. */
2583 skb = alloc_skb(MAX_TCP_HEADER, priority);
2584 if (!skb) {
2585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2586 return;
2587 }
2588
2589 /* Reserve space for headers and prepare control bits. */
2590 skb_reserve(skb, MAX_TCP_HEADER);
2591 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2592 TCPHDR_ACK | TCPHDR_RST);
2593 /* Send it off. */
2594 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2595 if (tcp_transmit_skb(sk, skb, 0, priority))
2596 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2597
2598 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2599 }
2600
2601 /* Send a crossed SYN-ACK during socket establishment.
2602 * WARNING: This routine must only be called when we have already sent
2603 * a SYN packet that crossed the incoming SYN that caused this routine
2604 * to get called. If this assumption fails then the initial rcv_wnd
2605 * and rcv_wscale values will not be correct.
2606 */
2607 int tcp_send_synack(struct sock *sk)
2608 {
2609 struct sk_buff *skb;
2610
2611 skb = tcp_write_queue_head(sk);
2612 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2613 pr_debug("%s: wrong queue state\n", __func__);
2614 return -EFAULT;
2615 }
2616 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2617 if (skb_cloned(skb)) {
2618 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2619 if (nskb == NULL)
2620 return -ENOMEM;
2621 tcp_unlink_write_queue(skb, sk);
2622 skb_header_release(nskb);
2623 __tcp_add_write_queue_head(sk, nskb);
2624 sk_wmem_free_skb(sk, skb);
2625 sk->sk_wmem_queued += nskb->truesize;
2626 sk_mem_charge(sk, nskb->truesize);
2627 skb = nskb;
2628 }
2629
2630 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2631 TCP_ECN_send_synack(tcp_sk(sk), skb);
2632 }
2633 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2634 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2635 }
2636
2637 /**
2638 * tcp_make_synack - Prepare a SYN-ACK.
2639 * sk: listener socket
2640 * dst: dst entry attached to the SYNACK
2641 * req: request_sock pointer
2642 * rvp: request_values pointer
2643 *
2644 * Allocate one skb and build a SYNACK packet.
2645 * @dst is consumed : Caller should not use it again.
2646 */
2647 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2648 struct request_sock *req,
2649 struct request_values *rvp)
2650 {
2651 struct tcp_out_options opts;
2652 struct tcp_extend_values *xvp = tcp_xv(rvp);
2653 struct inet_request_sock *ireq = inet_rsk(req);
2654 struct tcp_sock *tp = tcp_sk(sk);
2655 const struct tcp_cookie_values *cvp = tp->cookie_values;
2656 struct tcphdr *th;
2657 struct sk_buff *skb;
2658 struct tcp_md5sig_key *md5;
2659 int tcp_header_size;
2660 int mss;
2661 int s_data_desired = 0;
2662
2663 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
2664 s_data_desired = cvp->s_data_desired;
2665 skb = alloc_skb(MAX_TCP_HEADER + 15 + s_data_desired, GFP_ATOMIC);
2666 if (unlikely(!skb)) {
2667 dst_release(dst);
2668 return NULL;
2669 }
2670 /* Reserve space for headers. */
2671 skb_reserve(skb, MAX_TCP_HEADER);
2672
2673 skb_dst_set(skb, dst);
2674
2675 mss = dst_metric_advmss(dst);
2676 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2677 mss = tp->rx_opt.user_mss;
2678
2679 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2680 __u8 rcv_wscale;
2681 /* Set this up on the first call only */
2682 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2683
2684 /* limit the window selection if the user enforce a smaller rx buffer */
2685 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2686 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2687 req->window_clamp = tcp_full_space(sk);
2688
2689 /* tcp_full_space because it is guaranteed to be the first packet */
2690 tcp_select_initial_window(tcp_full_space(sk),
2691 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2692 &req->rcv_wnd,
2693 &req->window_clamp,
2694 ireq->wscale_ok,
2695 &rcv_wscale,
2696 dst_metric(dst, RTAX_INITRWND));
2697 ireq->rcv_wscale = rcv_wscale;
2698 }
2699
2700 memset(&opts, 0, sizeof(opts));
2701 #ifdef CONFIG_SYN_COOKIES
2702 if (unlikely(req->cookie_ts))
2703 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2704 else
2705 #endif
2706 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2707 tcp_header_size = tcp_synack_options(sk, req, mss,
2708 skb, &opts, &md5, xvp)
2709 + sizeof(*th);
2710
2711 skb_push(skb, tcp_header_size);
2712 skb_reset_transport_header(skb);
2713
2714 th = tcp_hdr(skb);
2715 memset(th, 0, sizeof(struct tcphdr));
2716 th->syn = 1;
2717 th->ack = 1;
2718 TCP_ECN_make_synack(req, th);
2719 th->source = ireq->loc_port;
2720 th->dest = ireq->rmt_port;
2721 /* Setting of flags are superfluous here for callers (and ECE is
2722 * not even correctly set)
2723 */
2724 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2725 TCPHDR_SYN | TCPHDR_ACK);
2726
2727 if (OPTION_COOKIE_EXTENSION & opts.options) {
2728 if (s_data_desired) {
2729 u8 *buf = skb_put(skb, s_data_desired);
2730
2731 /* copy data directly from the listening socket. */
2732 memcpy(buf, cvp->s_data_payload, s_data_desired);
2733 TCP_SKB_CB(skb)->end_seq += s_data_desired;
2734 }
2735
2736 if (opts.hash_size > 0) {
2737 __u32 workspace[SHA_WORKSPACE_WORDS];
2738 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
2739 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
2740
2741 /* Secret recipe depends on the Timestamp, (future)
2742 * Sequence and Acknowledgment Numbers, Initiator
2743 * Cookie, and others handled by IP variant caller.
2744 */
2745 *tail-- ^= opts.tsval;
2746 *tail-- ^= tcp_rsk(req)->rcv_isn + 1;
2747 *tail-- ^= TCP_SKB_CB(skb)->seq + 1;
2748
2749 /* recommended */
2750 *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source);
2751 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
2752
2753 sha_transform((__u32 *)&xvp->cookie_bakery[0],
2754 (char *)mess,
2755 &workspace[0]);
2756 opts.hash_location =
2757 (__u8 *)&xvp->cookie_bakery[0];
2758 }
2759 }
2760
2761 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2762 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
2763
2764 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2765 th->window = htons(min(req->rcv_wnd, 65535U));
2766 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2767 th->doff = (tcp_header_size >> 2);
2768 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2769
2770 #ifdef CONFIG_TCP_MD5SIG
2771 /* Okay, we have all we need - do the md5 hash if needed */
2772 if (md5) {
2773 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2774 md5, NULL, req, skb);
2775 }
2776 #endif
2777
2778 return skb;
2779 }
2780 EXPORT_SYMBOL(tcp_make_synack);
2781
2782 /* Do all connect socket setups that can be done AF independent. */
2783 void tcp_connect_init(struct sock *sk)
2784 {
2785 const struct dst_entry *dst = __sk_dst_get(sk);
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 __u8 rcv_wscale;
2788
2789 /* We'll fix this up when we get a response from the other end.
2790 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2791 */
2792 tp->tcp_header_len = sizeof(struct tcphdr) +
2793 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2794
2795 #ifdef CONFIG_TCP_MD5SIG
2796 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2797 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2798 #endif
2799
2800 /* If user gave his TCP_MAXSEG, record it to clamp */
2801 if (tp->rx_opt.user_mss)
2802 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2803 tp->max_window = 0;
2804 tcp_mtup_init(sk);
2805 tcp_sync_mss(sk, dst_mtu(dst));
2806
2807 if (!tp->window_clamp)
2808 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2809 tp->advmss = dst_metric_advmss(dst);
2810 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2811 tp->advmss = tp->rx_opt.user_mss;
2812
2813 tcp_initialize_rcv_mss(sk);
2814
2815 /* limit the window selection if the user enforce a smaller rx buffer */
2816 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2817 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2818 tp->window_clamp = tcp_full_space(sk);
2819
2820 tcp_select_initial_window(tcp_full_space(sk),
2821 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2822 &tp->rcv_wnd,
2823 &tp->window_clamp,
2824 sysctl_tcp_window_scaling,
2825 &rcv_wscale,
2826 dst_metric(dst, RTAX_INITRWND));
2827
2828 tp->rx_opt.rcv_wscale = rcv_wscale;
2829 tp->rcv_ssthresh = tp->rcv_wnd;
2830
2831 sk->sk_err = 0;
2832 sock_reset_flag(sk, SOCK_DONE);
2833 tp->snd_wnd = 0;
2834 tcp_init_wl(tp, 0);
2835 tp->snd_una = tp->write_seq;
2836 tp->snd_sml = tp->write_seq;
2837 tp->snd_up = tp->write_seq;
2838 tp->snd_nxt = tp->write_seq;
2839
2840 if (likely(!tp->repair))
2841 tp->rcv_nxt = 0;
2842 tp->rcv_wup = tp->rcv_nxt;
2843 tp->copied_seq = tp->rcv_nxt;
2844
2845 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2846 inet_csk(sk)->icsk_retransmits = 0;
2847 tcp_clear_retrans(tp);
2848 }
2849
2850 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2851 {
2852 struct tcp_sock *tp = tcp_sk(sk);
2853 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2854
2855 tcb->end_seq += skb->len;
2856 skb_header_release(skb);
2857 __tcp_add_write_queue_tail(sk, skb);
2858 sk->sk_wmem_queued += skb->truesize;
2859 sk_mem_charge(sk, skb->truesize);
2860 tp->write_seq = tcb->end_seq;
2861 tp->packets_out += tcp_skb_pcount(skb);
2862 }
2863
2864 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2865 * queue a data-only packet after the regular SYN, such that regular SYNs
2866 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2867 * only the SYN sequence, the data are retransmitted in the first ACK.
2868 * If cookie is not cached or other error occurs, falls back to send a
2869 * regular SYN with Fast Open cookie request option.
2870 */
2871 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2872 {
2873 struct tcp_sock *tp = tcp_sk(sk);
2874 struct tcp_fastopen_request *fo = tp->fastopen_req;
2875 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2876 struct sk_buff *syn_data = NULL, *data;
2877 unsigned long last_syn_loss = 0;
2878
2879 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2880 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2881 &syn_loss, &last_syn_loss);
2882 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2883 if (syn_loss > 1 &&
2884 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2885 fo->cookie.len = -1;
2886 goto fallback;
2887 }
2888
2889 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2890 fo->cookie.len = -1;
2891 else if (fo->cookie.len <= 0)
2892 goto fallback;
2893
2894 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2895 * user-MSS. Reserve maximum option space for middleboxes that add
2896 * private TCP options. The cost is reduced data space in SYN :(
2897 */
2898 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2899 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2900 space = tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2901 MAX_TCP_OPTION_SPACE;
2902
2903 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2904 sk->sk_allocation);
2905 if (syn_data == NULL)
2906 goto fallback;
2907
2908 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2909 struct iovec *iov = &fo->data->msg_iov[i];
2910 unsigned char __user *from = iov->iov_base;
2911 int len = iov->iov_len;
2912
2913 if (syn_data->len + len > space)
2914 len = space - syn_data->len;
2915 else if (i + 1 == iovlen)
2916 /* No more data pending in inet_wait_for_connect() */
2917 fo->data = NULL;
2918
2919 if (skb_add_data(syn_data, from, len))
2920 goto fallback;
2921 }
2922
2923 /* Queue a data-only packet after the regular SYN for retransmission */
2924 data = pskb_copy(syn_data, sk->sk_allocation);
2925 if (data == NULL)
2926 goto fallback;
2927 TCP_SKB_CB(data)->seq++;
2928 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2929 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2930 tcp_connect_queue_skb(sk, data);
2931 fo->copied = data->len;
2932
2933 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2934 tp->syn_data = (fo->copied > 0);
2935 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2936 goto done;
2937 }
2938 syn_data = NULL;
2939
2940 fallback:
2941 /* Send a regular SYN with Fast Open cookie request option */
2942 if (fo->cookie.len > 0)
2943 fo->cookie.len = 0;
2944 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2945 if (err)
2946 tp->syn_fastopen = 0;
2947 kfree_skb(syn_data);
2948 done:
2949 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2950 return err;
2951 }
2952
2953 /* Build a SYN and send it off. */
2954 int tcp_connect(struct sock *sk)
2955 {
2956 struct tcp_sock *tp = tcp_sk(sk);
2957 struct sk_buff *buff;
2958 int err;
2959
2960 tcp_connect_init(sk);
2961
2962 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2963 if (unlikely(buff == NULL))
2964 return -ENOBUFS;
2965
2966 /* Reserve space for headers. */
2967 skb_reserve(buff, MAX_TCP_HEADER);
2968
2969 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2970 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2971 tcp_connect_queue_skb(sk, buff);
2972 TCP_ECN_send_syn(sk, buff);
2973
2974 /* Send off SYN; include data in Fast Open. */
2975 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2976 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2977 if (err == -ECONNREFUSED)
2978 return err;
2979
2980 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2981 * in order to make this packet get counted in tcpOutSegs.
2982 */
2983 tp->snd_nxt = tp->write_seq;
2984 tp->pushed_seq = tp->write_seq;
2985 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2986
2987 /* Timer for repeating the SYN until an answer. */
2988 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2989 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2990 return 0;
2991 }
2992 EXPORT_SYMBOL(tcp_connect);
2993
2994 /* Send out a delayed ack, the caller does the policy checking
2995 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2996 * for details.
2997 */
2998 void tcp_send_delayed_ack(struct sock *sk)
2999 {
3000 struct inet_connection_sock *icsk = inet_csk(sk);
3001 int ato = icsk->icsk_ack.ato;
3002 unsigned long timeout;
3003
3004 if (ato > TCP_DELACK_MIN) {
3005 const struct tcp_sock *tp = tcp_sk(sk);
3006 int max_ato = HZ / 2;
3007
3008 if (icsk->icsk_ack.pingpong ||
3009 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3010 max_ato = TCP_DELACK_MAX;
3011
3012 /* Slow path, intersegment interval is "high". */
3013
3014 /* If some rtt estimate is known, use it to bound delayed ack.
3015 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3016 * directly.
3017 */
3018 if (tp->srtt) {
3019 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3020
3021 if (rtt < max_ato)
3022 max_ato = rtt;
3023 }
3024
3025 ato = min(ato, max_ato);
3026 }
3027
3028 /* Stay within the limit we were given */
3029 timeout = jiffies + ato;
3030
3031 /* Use new timeout only if there wasn't a older one earlier. */
3032 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3033 /* If delack timer was blocked or is about to expire,
3034 * send ACK now.
3035 */
3036 if (icsk->icsk_ack.blocked ||
3037 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3038 tcp_send_ack(sk);
3039 return;
3040 }
3041
3042 if (!time_before(timeout, icsk->icsk_ack.timeout))
3043 timeout = icsk->icsk_ack.timeout;
3044 }
3045 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3046 icsk->icsk_ack.timeout = timeout;
3047 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3048 }
3049
3050 /* This routine sends an ack and also updates the window. */
3051 void tcp_send_ack(struct sock *sk)
3052 {
3053 struct sk_buff *buff;
3054
3055 /* If we have been reset, we may not send again. */
3056 if (sk->sk_state == TCP_CLOSE)
3057 return;
3058
3059 /* We are not putting this on the write queue, so
3060 * tcp_transmit_skb() will set the ownership to this
3061 * sock.
3062 */
3063 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3064 if (buff == NULL) {
3065 inet_csk_schedule_ack(sk);
3066 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3067 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3068 TCP_DELACK_MAX, TCP_RTO_MAX);
3069 return;
3070 }
3071
3072 /* Reserve space for headers and prepare control bits. */
3073 skb_reserve(buff, MAX_TCP_HEADER);
3074 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3075
3076 /* Send it off, this clears delayed acks for us. */
3077 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3078 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
3079 }
3080
3081 /* This routine sends a packet with an out of date sequence
3082 * number. It assumes the other end will try to ack it.
3083 *
3084 * Question: what should we make while urgent mode?
3085 * 4.4BSD forces sending single byte of data. We cannot send
3086 * out of window data, because we have SND.NXT==SND.MAX...
3087 *
3088 * Current solution: to send TWO zero-length segments in urgent mode:
3089 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3090 * out-of-date with SND.UNA-1 to probe window.
3091 */
3092 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3093 {
3094 struct tcp_sock *tp = tcp_sk(sk);
3095 struct sk_buff *skb;
3096
3097 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3098 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3099 if (skb == NULL)
3100 return -1;
3101
3102 /* Reserve space for headers and set control bits. */
3103 skb_reserve(skb, MAX_TCP_HEADER);
3104 /* Use a previous sequence. This should cause the other
3105 * end to send an ack. Don't queue or clone SKB, just
3106 * send it.
3107 */
3108 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3109 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3110 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3111 }
3112
3113 void tcp_send_window_probe(struct sock *sk)
3114 {
3115 if (sk->sk_state == TCP_ESTABLISHED) {
3116 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3117 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3118 tcp_xmit_probe_skb(sk, 0);
3119 }
3120 }
3121
3122 /* Initiate keepalive or window probe from timer. */
3123 int tcp_write_wakeup(struct sock *sk)
3124 {
3125 struct tcp_sock *tp = tcp_sk(sk);
3126 struct sk_buff *skb;
3127
3128 if (sk->sk_state == TCP_CLOSE)
3129 return -1;
3130
3131 if ((skb = tcp_send_head(sk)) != NULL &&
3132 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3133 int err;
3134 unsigned int mss = tcp_current_mss(sk);
3135 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3136
3137 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3138 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3139
3140 /* We are probing the opening of a window
3141 * but the window size is != 0
3142 * must have been a result SWS avoidance ( sender )
3143 */
3144 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3145 skb->len > mss) {
3146 seg_size = min(seg_size, mss);
3147 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3148 if (tcp_fragment(sk, skb, seg_size, mss))
3149 return -1;
3150 } else if (!tcp_skb_pcount(skb))
3151 tcp_set_skb_tso_segs(sk, skb, mss);
3152
3153 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3154 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3155 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3156 if (!err)
3157 tcp_event_new_data_sent(sk, skb);
3158 return err;
3159 } else {
3160 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3161 tcp_xmit_probe_skb(sk, 1);
3162 return tcp_xmit_probe_skb(sk, 0);
3163 }
3164 }
3165
3166 /* A window probe timeout has occurred. If window is not closed send
3167 * a partial packet else a zero probe.
3168 */
3169 void tcp_send_probe0(struct sock *sk)
3170 {
3171 struct inet_connection_sock *icsk = inet_csk(sk);
3172 struct tcp_sock *tp = tcp_sk(sk);
3173 int err;
3174
3175 err = tcp_write_wakeup(sk);
3176
3177 if (tp->packets_out || !tcp_send_head(sk)) {
3178 /* Cancel probe timer, if it is not required. */
3179 icsk->icsk_probes_out = 0;
3180 icsk->icsk_backoff = 0;
3181 return;
3182 }
3183
3184 if (err <= 0) {
3185 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3186 icsk->icsk_backoff++;
3187 icsk->icsk_probes_out++;
3188 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3189 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3190 TCP_RTO_MAX);
3191 } else {
3192 /* If packet was not sent due to local congestion,
3193 * do not backoff and do not remember icsk_probes_out.
3194 * Let local senders to fight for local resources.
3195 *
3196 * Use accumulated backoff yet.
3197 */
3198 if (!icsk->icsk_probes_out)
3199 icsk->icsk_probes_out = 1;
3200 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3201 min(icsk->icsk_rto << icsk->icsk_backoff,
3202 TCP_RESOURCE_PROBE_INTERVAL),
3203 TCP_RTO_MAX);
3204 }
3205 }