revert "ipv4: Should use consistent conditional judgement for ip fragment in __ip_app...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86
87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 tcp_skb_pcount(skb));
89 }
90
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 icsk->icsk_ack.pingpong = 1;
177 }
178
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
181 {
182 tcp_dec_quickack_mode(sk, pkts);
183 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
184 }
185
186
187 u32 tcp_default_init_rwnd(u32 mss)
188 {
189 /* Initial receive window should be twice of TCP_INIT_CWND to
190 * enable proper sending of new unsent data during fast recovery
191 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
192 * limit when mss is larger than 1460.
193 */
194 u32 init_rwnd = TCP_INIT_CWND * 2;
195
196 if (mss > 1460)
197 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
198 return init_rwnd;
199 }
200
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
207 */
208 void tcp_select_initial_window(int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
211 __u32 init_rcv_wnd)
212 {
213 unsigned int space = (__space < 0 ? 0 : __space);
214
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (65535 << 14);
218 space = min(*window_clamp, space);
219
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = (space / mss) * mss;
223
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
231 */
232 if (sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = space;
236
237 (*rcv_wscale) = 0;
238 if (wscale_ok) {
239 /* Set window scaling on max possible window
240 * See RFC1323 for an explanation of the limit to 14
241 */
242 space = max_t(u32, space, sysctl_tcp_rmem[2]);
243 space = max_t(u32, space, sysctl_rmem_max);
244 space = min_t(u32, space, *window_clamp);
245 while (space > 65535 && (*rcv_wscale) < 14) {
246 space >>= 1;
247 (*rcv_wscale)++;
248 }
249 }
250
251 if (mss > (1 << *rcv_wscale)) {
252 if (!init_rcv_wnd) /* Use default unless specified otherwise */
253 init_rcv_wnd = tcp_default_init_rwnd(mss);
254 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
255 }
256
257 /* Set the clamp no higher than max representable value */
258 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
259 }
260 EXPORT_SYMBOL(tcp_select_initial_window);
261
262 /* Chose a new window to advertise, update state in tcp_sock for the
263 * socket, and return result with RFC1323 scaling applied. The return
264 * value can be stuffed directly into th->window for an outgoing
265 * frame.
266 */
267 static u16 tcp_select_window(struct sock *sk)
268 {
269 struct tcp_sock *tp = tcp_sk(sk);
270 u32 old_win = tp->rcv_wnd;
271 u32 cur_win = tcp_receive_window(tp);
272 u32 new_win = __tcp_select_window(sk);
273
274 /* Never shrink the offered window */
275 if (new_win < cur_win) {
276 /* Danger Will Robinson!
277 * Don't update rcv_wup/rcv_wnd here or else
278 * we will not be able to advertise a zero
279 * window in time. --DaveM
280 *
281 * Relax Will Robinson.
282 */
283 if (new_win == 0)
284 NET_INC_STATS(sock_net(sk),
285 LINUX_MIB_TCPWANTZEROWINDOWADV);
286 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
287 }
288 tp->rcv_wnd = new_win;
289 tp->rcv_wup = tp->rcv_nxt;
290
291 /* Make sure we do not exceed the maximum possible
292 * scaled window.
293 */
294 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
295 new_win = min(new_win, MAX_TCP_WINDOW);
296 else
297 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
298
299 /* RFC1323 scaling applied */
300 new_win >>= tp->rx_opt.rcv_wscale;
301
302 /* If we advertise zero window, disable fast path. */
303 if (new_win == 0) {
304 tp->pred_flags = 0;
305 if (old_win)
306 NET_INC_STATS(sock_net(sk),
307 LINUX_MIB_TCPTOZEROWINDOWADV);
308 } else if (old_win == 0) {
309 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
310 }
311
312 return new_win;
313 }
314
315 /* Packet ECN state for a SYN-ACK */
316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317 {
318 const struct tcp_sock *tp = tcp_sk(sk);
319
320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 if (!(tp->ecn_flags & TCP_ECN_OK))
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 else if (tcp_ca_needs_ecn(sk))
324 INET_ECN_xmit(sk);
325 }
326
327 /* Packet ECN state for a SYN. */
328 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
329 {
330 struct tcp_sock *tp = tcp_sk(sk);
331 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
332 tcp_ca_needs_ecn(sk);
333
334 if (!use_ecn) {
335 const struct dst_entry *dst = __sk_dst_get(sk);
336
337 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
338 use_ecn = true;
339 }
340
341 tp->ecn_flags = 0;
342
343 if (use_ecn) {
344 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
345 tp->ecn_flags = TCP_ECN_OK;
346 if (tcp_ca_needs_ecn(sk))
347 INET_ECN_xmit(sk);
348 }
349 }
350
351 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
352 {
353 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
354 /* tp->ecn_flags are cleared at a later point in time when
355 * SYN ACK is ultimatively being received.
356 */
357 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
358 }
359
360 static void
361 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
362 {
363 if (inet_rsk(req)->ecn_ok)
364 th->ece = 1;
365 }
366
367 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
368 * be sent.
369 */
370 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
371 int tcp_header_len)
372 {
373 struct tcp_sock *tp = tcp_sk(sk);
374
375 if (tp->ecn_flags & TCP_ECN_OK) {
376 /* Not-retransmitted data segment: set ECT and inject CWR. */
377 if (skb->len != tcp_header_len &&
378 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
379 INET_ECN_xmit(sk);
380 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
381 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
382 tcp_hdr(skb)->cwr = 1;
383 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
384 }
385 } else if (!tcp_ca_needs_ecn(sk)) {
386 /* ACK or retransmitted segment: clear ECT|CE */
387 INET_ECN_dontxmit(sk);
388 }
389 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
390 tcp_hdr(skb)->ece = 1;
391 }
392 }
393
394 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
395 * auto increment end seqno.
396 */
397 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
398 {
399 skb->ip_summed = CHECKSUM_PARTIAL;
400 skb->csum = 0;
401
402 TCP_SKB_CB(skb)->tcp_flags = flags;
403 TCP_SKB_CB(skb)->sacked = 0;
404
405 tcp_skb_pcount_set(skb, 1);
406
407 TCP_SKB_CB(skb)->seq = seq;
408 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409 seq++;
410 TCP_SKB_CB(skb)->end_seq = seq;
411 }
412
413 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414 {
415 return tp->snd_una != tp->snd_up;
416 }
417
418 #define OPTION_SACK_ADVERTISE (1 << 0)
419 #define OPTION_TS (1 << 1)
420 #define OPTION_MD5 (1 << 2)
421 #define OPTION_WSCALE (1 << 3)
422 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
423
424 struct tcp_out_options {
425 u16 options; /* bit field of OPTION_* */
426 u16 mss; /* 0 to disable */
427 u8 ws; /* window scale, 0 to disable */
428 u8 num_sack_blocks; /* number of SACK blocks to include */
429 u8 hash_size; /* bytes in hash_location */
430 __u8 *hash_location; /* temporary pointer, overloaded */
431 __u32 tsval, tsecr; /* need to include OPTION_TS */
432 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
433 };
434
435 /* Write previously computed TCP options to the packet.
436 *
437 * Beware: Something in the Internet is very sensitive to the ordering of
438 * TCP options, we learned this through the hard way, so be careful here.
439 * Luckily we can at least blame others for their non-compliance but from
440 * inter-operability perspective it seems that we're somewhat stuck with
441 * the ordering which we have been using if we want to keep working with
442 * those broken things (not that it currently hurts anybody as there isn't
443 * particular reason why the ordering would need to be changed).
444 *
445 * At least SACK_PERM as the first option is known to lead to a disaster
446 * (but it may well be that other scenarios fail similarly).
447 */
448 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
449 struct tcp_out_options *opts)
450 {
451 u16 options = opts->options; /* mungable copy */
452
453 if (unlikely(OPTION_MD5 & options)) {
454 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
455 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
456 /* overload cookie hash location */
457 opts->hash_location = (__u8 *)ptr;
458 ptr += 4;
459 }
460
461 if (unlikely(opts->mss)) {
462 *ptr++ = htonl((TCPOPT_MSS << 24) |
463 (TCPOLEN_MSS << 16) |
464 opts->mss);
465 }
466
467 if (likely(OPTION_TS & options)) {
468 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
470 (TCPOLEN_SACK_PERM << 16) |
471 (TCPOPT_TIMESTAMP << 8) |
472 TCPOLEN_TIMESTAMP);
473 options &= ~OPTION_SACK_ADVERTISE;
474 } else {
475 *ptr++ = htonl((TCPOPT_NOP << 24) |
476 (TCPOPT_NOP << 16) |
477 (TCPOPT_TIMESTAMP << 8) |
478 TCPOLEN_TIMESTAMP);
479 }
480 *ptr++ = htonl(opts->tsval);
481 *ptr++ = htonl(opts->tsecr);
482 }
483
484 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
485 *ptr++ = htonl((TCPOPT_NOP << 24) |
486 (TCPOPT_NOP << 16) |
487 (TCPOPT_SACK_PERM << 8) |
488 TCPOLEN_SACK_PERM);
489 }
490
491 if (unlikely(OPTION_WSCALE & options)) {
492 *ptr++ = htonl((TCPOPT_NOP << 24) |
493 (TCPOPT_WINDOW << 16) |
494 (TCPOLEN_WINDOW << 8) |
495 opts->ws);
496 }
497
498 if (unlikely(opts->num_sack_blocks)) {
499 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
500 tp->duplicate_sack : tp->selective_acks;
501 int this_sack;
502
503 *ptr++ = htonl((TCPOPT_NOP << 24) |
504 (TCPOPT_NOP << 16) |
505 (TCPOPT_SACK << 8) |
506 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
507 TCPOLEN_SACK_PERBLOCK)));
508
509 for (this_sack = 0; this_sack < opts->num_sack_blocks;
510 ++this_sack) {
511 *ptr++ = htonl(sp[this_sack].start_seq);
512 *ptr++ = htonl(sp[this_sack].end_seq);
513 }
514
515 tp->rx_opt.dsack = 0;
516 }
517
518 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
519 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
520 u8 *p = (u8 *)ptr;
521 u32 len; /* Fast Open option length */
522
523 if (foc->exp) {
524 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
525 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
526 TCPOPT_FASTOPEN_MAGIC);
527 p += TCPOLEN_EXP_FASTOPEN_BASE;
528 } else {
529 len = TCPOLEN_FASTOPEN_BASE + foc->len;
530 *p++ = TCPOPT_FASTOPEN;
531 *p++ = len;
532 }
533
534 memcpy(p, foc->val, foc->len);
535 if ((len & 3) == 2) {
536 p[foc->len] = TCPOPT_NOP;
537 p[foc->len + 1] = TCPOPT_NOP;
538 }
539 ptr += (len + 3) >> 2;
540 }
541 }
542
543 /* Compute TCP options for SYN packets. This is not the final
544 * network wire format yet.
545 */
546 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
547 struct tcp_out_options *opts,
548 struct tcp_md5sig_key **md5)
549 {
550 struct tcp_sock *tp = tcp_sk(sk);
551 unsigned int remaining = MAX_TCP_OPTION_SPACE;
552 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
553
554 #ifdef CONFIG_TCP_MD5SIG
555 *md5 = tp->af_specific->md5_lookup(sk, sk);
556 if (*md5) {
557 opts->options |= OPTION_MD5;
558 remaining -= TCPOLEN_MD5SIG_ALIGNED;
559 }
560 #else
561 *md5 = NULL;
562 #endif
563
564 /* We always get an MSS option. The option bytes which will be seen in
565 * normal data packets should timestamps be used, must be in the MSS
566 * advertised. But we subtract them from tp->mss_cache so that
567 * calculations in tcp_sendmsg are simpler etc. So account for this
568 * fact here if necessary. If we don't do this correctly, as a
569 * receiver we won't recognize data packets as being full sized when we
570 * should, and thus we won't abide by the delayed ACK rules correctly.
571 * SACKs don't matter, we never delay an ACK when we have any of those
572 * going out. */
573 opts->mss = tcp_advertise_mss(sk);
574 remaining -= TCPOLEN_MSS_ALIGNED;
575
576 if (likely(sysctl_tcp_timestamps && !*md5)) {
577 opts->options |= OPTION_TS;
578 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
579 opts->tsecr = tp->rx_opt.ts_recent;
580 remaining -= TCPOLEN_TSTAMP_ALIGNED;
581 }
582 if (likely(sysctl_tcp_window_scaling)) {
583 opts->ws = tp->rx_opt.rcv_wscale;
584 opts->options |= OPTION_WSCALE;
585 remaining -= TCPOLEN_WSCALE_ALIGNED;
586 }
587 if (likely(sysctl_tcp_sack)) {
588 opts->options |= OPTION_SACK_ADVERTISE;
589 if (unlikely(!(OPTION_TS & opts->options)))
590 remaining -= TCPOLEN_SACKPERM_ALIGNED;
591 }
592
593 if (fastopen && fastopen->cookie.len >= 0) {
594 u32 need = fastopen->cookie.len;
595
596 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
597 TCPOLEN_FASTOPEN_BASE;
598 need = (need + 3) & ~3U; /* Align to 32 bits */
599 if (remaining >= need) {
600 opts->options |= OPTION_FAST_OPEN_COOKIE;
601 opts->fastopen_cookie = &fastopen->cookie;
602 remaining -= need;
603 tp->syn_fastopen = 1;
604 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
605 }
606 }
607
608 return MAX_TCP_OPTION_SPACE - remaining;
609 }
610
611 /* Set up TCP options for SYN-ACKs. */
612 static unsigned int tcp_synack_options(struct request_sock *req,
613 unsigned int mss, struct sk_buff *skb,
614 struct tcp_out_options *opts,
615 const struct tcp_md5sig_key *md5,
616 struct tcp_fastopen_cookie *foc)
617 {
618 struct inet_request_sock *ireq = inet_rsk(req);
619 unsigned int remaining = MAX_TCP_OPTION_SPACE;
620
621 #ifdef CONFIG_TCP_MD5SIG
622 if (md5) {
623 opts->options |= OPTION_MD5;
624 remaining -= TCPOLEN_MD5SIG_ALIGNED;
625
626 /* We can't fit any SACK blocks in a packet with MD5 + TS
627 * options. There was discussion about disabling SACK
628 * rather than TS in order to fit in better with old,
629 * buggy kernels, but that was deemed to be unnecessary.
630 */
631 ireq->tstamp_ok &= !ireq->sack_ok;
632 }
633 #endif
634
635 /* We always send an MSS option. */
636 opts->mss = mss;
637 remaining -= TCPOLEN_MSS_ALIGNED;
638
639 if (likely(ireq->wscale_ok)) {
640 opts->ws = ireq->rcv_wscale;
641 opts->options |= OPTION_WSCALE;
642 remaining -= TCPOLEN_WSCALE_ALIGNED;
643 }
644 if (likely(ireq->tstamp_ok)) {
645 opts->options |= OPTION_TS;
646 opts->tsval = tcp_skb_timestamp(skb);
647 opts->tsecr = req->ts_recent;
648 remaining -= TCPOLEN_TSTAMP_ALIGNED;
649 }
650 if (likely(ireq->sack_ok)) {
651 opts->options |= OPTION_SACK_ADVERTISE;
652 if (unlikely(!ireq->tstamp_ok))
653 remaining -= TCPOLEN_SACKPERM_ALIGNED;
654 }
655 if (foc != NULL && foc->len >= 0) {
656 u32 need = foc->len;
657
658 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
659 TCPOLEN_FASTOPEN_BASE;
660 need = (need + 3) & ~3U; /* Align to 32 bits */
661 if (remaining >= need) {
662 opts->options |= OPTION_FAST_OPEN_COOKIE;
663 opts->fastopen_cookie = foc;
664 remaining -= need;
665 }
666 }
667
668 return MAX_TCP_OPTION_SPACE - remaining;
669 }
670
671 /* Compute TCP options for ESTABLISHED sockets. This is not the
672 * final wire format yet.
673 */
674 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
675 struct tcp_out_options *opts,
676 struct tcp_md5sig_key **md5)
677 {
678 struct tcp_sock *tp = tcp_sk(sk);
679 unsigned int size = 0;
680 unsigned int eff_sacks;
681
682 opts->options = 0;
683
684 #ifdef CONFIG_TCP_MD5SIG
685 *md5 = tp->af_specific->md5_lookup(sk, sk);
686 if (unlikely(*md5)) {
687 opts->options |= OPTION_MD5;
688 size += TCPOLEN_MD5SIG_ALIGNED;
689 }
690 #else
691 *md5 = NULL;
692 #endif
693
694 if (likely(tp->rx_opt.tstamp_ok)) {
695 opts->options |= OPTION_TS;
696 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
697 opts->tsecr = tp->rx_opt.ts_recent;
698 size += TCPOLEN_TSTAMP_ALIGNED;
699 }
700
701 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
702 if (unlikely(eff_sacks)) {
703 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
704 opts->num_sack_blocks =
705 min_t(unsigned int, eff_sacks,
706 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
707 TCPOLEN_SACK_PERBLOCK);
708 size += TCPOLEN_SACK_BASE_ALIGNED +
709 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
710 }
711
712 return size;
713 }
714
715
716 /* TCP SMALL QUEUES (TSQ)
717 *
718 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
719 * to reduce RTT and bufferbloat.
720 * We do this using a special skb destructor (tcp_wfree).
721 *
722 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
723 * needs to be reallocated in a driver.
724 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
725 *
726 * Since transmit from skb destructor is forbidden, we use a tasklet
727 * to process all sockets that eventually need to send more skbs.
728 * We use one tasklet per cpu, with its own queue of sockets.
729 */
730 struct tsq_tasklet {
731 struct tasklet_struct tasklet;
732 struct list_head head; /* queue of tcp sockets */
733 };
734 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
735
736 static void tcp_tsq_handler(struct sock *sk)
737 {
738 if ((1 << sk->sk_state) &
739 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
740 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
741 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
742 0, GFP_ATOMIC);
743 }
744 /*
745 * One tasklet per cpu tries to send more skbs.
746 * We run in tasklet context but need to disable irqs when
747 * transferring tsq->head because tcp_wfree() might
748 * interrupt us (non NAPI drivers)
749 */
750 static void tcp_tasklet_func(unsigned long data)
751 {
752 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
753 LIST_HEAD(list);
754 unsigned long flags;
755 struct list_head *q, *n;
756 struct tcp_sock *tp;
757 struct sock *sk;
758
759 local_irq_save(flags);
760 list_splice_init(&tsq->head, &list);
761 local_irq_restore(flags);
762
763 list_for_each_safe(q, n, &list) {
764 tp = list_entry(q, struct tcp_sock, tsq_node);
765 list_del(&tp->tsq_node);
766
767 sk = (struct sock *)tp;
768 bh_lock_sock(sk);
769
770 if (!sock_owned_by_user(sk)) {
771 tcp_tsq_handler(sk);
772 } else {
773 /* defer the work to tcp_release_cb() */
774 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
775 }
776 bh_unlock_sock(sk);
777
778 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
779 sk_free(sk);
780 }
781 }
782
783 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
784 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
785 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
786 (1UL << TCP_MTU_REDUCED_DEFERRED))
787 /**
788 * tcp_release_cb - tcp release_sock() callback
789 * @sk: socket
790 *
791 * called from release_sock() to perform protocol dependent
792 * actions before socket release.
793 */
794 void tcp_release_cb(struct sock *sk)
795 {
796 struct tcp_sock *tp = tcp_sk(sk);
797 unsigned long flags, nflags;
798
799 /* perform an atomic operation only if at least one flag is set */
800 do {
801 flags = tp->tsq_flags;
802 if (!(flags & TCP_DEFERRED_ALL))
803 return;
804 nflags = flags & ~TCP_DEFERRED_ALL;
805 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
806
807 if (flags & (1UL << TCP_TSQ_DEFERRED))
808 tcp_tsq_handler(sk);
809
810 /* Here begins the tricky part :
811 * We are called from release_sock() with :
812 * 1) BH disabled
813 * 2) sk_lock.slock spinlock held
814 * 3) socket owned by us (sk->sk_lock.owned == 1)
815 *
816 * But following code is meant to be called from BH handlers,
817 * so we should keep BH disabled, but early release socket ownership
818 */
819 sock_release_ownership(sk);
820
821 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
822 tcp_write_timer_handler(sk);
823 __sock_put(sk);
824 }
825 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
826 tcp_delack_timer_handler(sk);
827 __sock_put(sk);
828 }
829 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
830 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
831 __sock_put(sk);
832 }
833 }
834 EXPORT_SYMBOL(tcp_release_cb);
835
836 void __init tcp_tasklet_init(void)
837 {
838 int i;
839
840 for_each_possible_cpu(i) {
841 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
842
843 INIT_LIST_HEAD(&tsq->head);
844 tasklet_init(&tsq->tasklet,
845 tcp_tasklet_func,
846 (unsigned long)tsq);
847 }
848 }
849
850 /*
851 * Write buffer destructor automatically called from kfree_skb.
852 * We can't xmit new skbs from this context, as we might already
853 * hold qdisc lock.
854 */
855 void tcp_wfree(struct sk_buff *skb)
856 {
857 struct sock *sk = skb->sk;
858 struct tcp_sock *tp = tcp_sk(sk);
859 int wmem;
860
861 /* Keep one reference on sk_wmem_alloc.
862 * Will be released by sk_free() from here or tcp_tasklet_func()
863 */
864 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
865
866 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
867 * Wait until our queues (qdisc + devices) are drained.
868 * This gives :
869 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
870 * - chance for incoming ACK (processed by another cpu maybe)
871 * to migrate this flow (skb->ooo_okay will be eventually set)
872 */
873 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
874 goto out;
875
876 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
877 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
878 unsigned long flags;
879 struct tsq_tasklet *tsq;
880
881 /* queue this socket to tasklet queue */
882 local_irq_save(flags);
883 tsq = this_cpu_ptr(&tsq_tasklet);
884 list_add(&tp->tsq_node, &tsq->head);
885 tasklet_schedule(&tsq->tasklet);
886 local_irq_restore(flags);
887 return;
888 }
889 out:
890 sk_free(sk);
891 }
892
893 /* This routine actually transmits TCP packets queued in by
894 * tcp_do_sendmsg(). This is used by both the initial
895 * transmission and possible later retransmissions.
896 * All SKB's seen here are completely headerless. It is our
897 * job to build the TCP header, and pass the packet down to
898 * IP so it can do the same plus pass the packet off to the
899 * device.
900 *
901 * We are working here with either a clone of the original
902 * SKB, or a fresh unique copy made by the retransmit engine.
903 */
904 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
905 gfp_t gfp_mask)
906 {
907 const struct inet_connection_sock *icsk = inet_csk(sk);
908 struct inet_sock *inet;
909 struct tcp_sock *tp;
910 struct tcp_skb_cb *tcb;
911 struct tcp_out_options opts;
912 unsigned int tcp_options_size, tcp_header_size;
913 struct tcp_md5sig_key *md5;
914 struct tcphdr *th;
915 int err;
916
917 BUG_ON(!skb || !tcp_skb_pcount(skb));
918
919 if (clone_it) {
920 skb_mstamp_get(&skb->skb_mstamp);
921
922 if (unlikely(skb_cloned(skb)))
923 skb = pskb_copy(skb, gfp_mask);
924 else
925 skb = skb_clone(skb, gfp_mask);
926 if (unlikely(!skb))
927 return -ENOBUFS;
928 }
929
930 inet = inet_sk(sk);
931 tp = tcp_sk(sk);
932 tcb = TCP_SKB_CB(skb);
933 memset(&opts, 0, sizeof(opts));
934
935 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
936 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
937 else
938 tcp_options_size = tcp_established_options(sk, skb, &opts,
939 &md5);
940 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
941
942 /* if no packet is in qdisc/device queue, then allow XPS to select
943 * another queue. We can be called from tcp_tsq_handler()
944 * which holds one reference to sk_wmem_alloc.
945 *
946 * TODO: Ideally, in-flight pure ACK packets should not matter here.
947 * One way to get this would be to set skb->truesize = 2 on them.
948 */
949 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
950
951 skb_push(skb, tcp_header_size);
952 skb_reset_transport_header(skb);
953
954 skb_orphan(skb);
955 skb->sk = sk;
956 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
957 skb_set_hash_from_sk(skb, sk);
958 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
959
960 /* Build TCP header and checksum it. */
961 th = tcp_hdr(skb);
962 th->source = inet->inet_sport;
963 th->dest = inet->inet_dport;
964 th->seq = htonl(tcb->seq);
965 th->ack_seq = htonl(tp->rcv_nxt);
966 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
967 tcb->tcp_flags);
968
969 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
970 /* RFC1323: The window in SYN & SYN/ACK segments
971 * is never scaled.
972 */
973 th->window = htons(min(tp->rcv_wnd, 65535U));
974 } else {
975 th->window = htons(tcp_select_window(sk));
976 }
977 th->check = 0;
978 th->urg_ptr = 0;
979
980 /* The urg_mode check is necessary during a below snd_una win probe */
981 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
982 if (before(tp->snd_up, tcb->seq + 0x10000)) {
983 th->urg_ptr = htons(tp->snd_up - tcb->seq);
984 th->urg = 1;
985 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
986 th->urg_ptr = htons(0xFFFF);
987 th->urg = 1;
988 }
989 }
990
991 tcp_options_write((__be32 *)(th + 1), tp, &opts);
992 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
993 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
994 tcp_ecn_send(sk, skb, tcp_header_size);
995
996 #ifdef CONFIG_TCP_MD5SIG
997 /* Calculate the MD5 hash, as we have all we need now */
998 if (md5) {
999 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1000 tp->af_specific->calc_md5_hash(opts.hash_location,
1001 md5, sk, skb);
1002 }
1003 #endif
1004
1005 icsk->icsk_af_ops->send_check(sk, skb);
1006
1007 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1008 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1009
1010 if (skb->len != tcp_header_size)
1011 tcp_event_data_sent(tp, sk);
1012
1013 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1014 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1015 tcp_skb_pcount(skb));
1016
1017 tp->segs_out += tcp_skb_pcount(skb);
1018 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1019 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1020 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1021
1022 /* Our usage of tstamp should remain private */
1023 skb->tstamp.tv64 = 0;
1024
1025 /* Cleanup our debris for IP stacks */
1026 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1027 sizeof(struct inet6_skb_parm)));
1028
1029 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1030
1031 if (likely(err <= 0))
1032 return err;
1033
1034 tcp_enter_cwr(sk);
1035
1036 return net_xmit_eval(err);
1037 }
1038
1039 /* This routine just queues the buffer for sending.
1040 *
1041 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1042 * otherwise socket can stall.
1043 */
1044 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1045 {
1046 struct tcp_sock *tp = tcp_sk(sk);
1047
1048 /* Advance write_seq and place onto the write_queue. */
1049 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1050 __skb_header_release(skb);
1051 tcp_add_write_queue_tail(sk, skb);
1052 sk->sk_wmem_queued += skb->truesize;
1053 sk_mem_charge(sk, skb->truesize);
1054 }
1055
1056 /* Initialize TSO segments for a packet. */
1057 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1058 {
1059 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1060 /* Avoid the costly divide in the normal
1061 * non-TSO case.
1062 */
1063 tcp_skb_pcount_set(skb, 1);
1064 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1065 } else {
1066 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1067 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1068 }
1069 }
1070
1071 /* When a modification to fackets out becomes necessary, we need to check
1072 * skb is counted to fackets_out or not.
1073 */
1074 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1075 int decr)
1076 {
1077 struct tcp_sock *tp = tcp_sk(sk);
1078
1079 if (!tp->sacked_out || tcp_is_reno(tp))
1080 return;
1081
1082 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1083 tp->fackets_out -= decr;
1084 }
1085
1086 /* Pcount in the middle of the write queue got changed, we need to do various
1087 * tweaks to fix counters
1088 */
1089 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1090 {
1091 struct tcp_sock *tp = tcp_sk(sk);
1092
1093 tp->packets_out -= decr;
1094
1095 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1096 tp->sacked_out -= decr;
1097 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1098 tp->retrans_out -= decr;
1099 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1100 tp->lost_out -= decr;
1101
1102 /* Reno case is special. Sigh... */
1103 if (tcp_is_reno(tp) && decr > 0)
1104 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1105
1106 tcp_adjust_fackets_out(sk, skb, decr);
1107
1108 if (tp->lost_skb_hint &&
1109 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1110 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1111 tp->lost_cnt_hint -= decr;
1112
1113 tcp_verify_left_out(tp);
1114 }
1115
1116 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1117 {
1118 struct skb_shared_info *shinfo = skb_shinfo(skb);
1119
1120 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1121 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1122 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1123 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1124
1125 shinfo->tx_flags &= ~tsflags;
1126 shinfo2->tx_flags |= tsflags;
1127 swap(shinfo->tskey, shinfo2->tskey);
1128 }
1129 }
1130
1131 /* Function to create two new TCP segments. Shrinks the given segment
1132 * to the specified size and appends a new segment with the rest of the
1133 * packet to the list. This won't be called frequently, I hope.
1134 * Remember, these are still headerless SKBs at this point.
1135 */
1136 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1137 unsigned int mss_now, gfp_t gfp)
1138 {
1139 struct tcp_sock *tp = tcp_sk(sk);
1140 struct sk_buff *buff;
1141 int nsize, old_factor;
1142 int nlen;
1143 u8 flags;
1144
1145 if (WARN_ON(len > skb->len))
1146 return -EINVAL;
1147
1148 nsize = skb_headlen(skb) - len;
1149 if (nsize < 0)
1150 nsize = 0;
1151
1152 if (skb_unclone(skb, gfp))
1153 return -ENOMEM;
1154
1155 /* Get a new skb... force flag on. */
1156 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1157 if (!buff)
1158 return -ENOMEM; /* We'll just try again later. */
1159
1160 sk->sk_wmem_queued += buff->truesize;
1161 sk_mem_charge(sk, buff->truesize);
1162 nlen = skb->len - len - nsize;
1163 buff->truesize += nlen;
1164 skb->truesize -= nlen;
1165
1166 /* Correct the sequence numbers. */
1167 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1168 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1169 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1170
1171 /* PSH and FIN should only be set in the second packet. */
1172 flags = TCP_SKB_CB(skb)->tcp_flags;
1173 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1174 TCP_SKB_CB(buff)->tcp_flags = flags;
1175 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1176
1177 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1178 /* Copy and checksum data tail into the new buffer. */
1179 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1180 skb_put(buff, nsize),
1181 nsize, 0);
1182
1183 skb_trim(skb, len);
1184
1185 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1186 } else {
1187 skb->ip_summed = CHECKSUM_PARTIAL;
1188 skb_split(skb, buff, len);
1189 }
1190
1191 buff->ip_summed = skb->ip_summed;
1192
1193 buff->tstamp = skb->tstamp;
1194 tcp_fragment_tstamp(skb, buff);
1195
1196 old_factor = tcp_skb_pcount(skb);
1197
1198 /* Fix up tso_factor for both original and new SKB. */
1199 tcp_set_skb_tso_segs(skb, mss_now);
1200 tcp_set_skb_tso_segs(buff, mss_now);
1201
1202 /* If this packet has been sent out already, we must
1203 * adjust the various packet counters.
1204 */
1205 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1206 int diff = old_factor - tcp_skb_pcount(skb) -
1207 tcp_skb_pcount(buff);
1208
1209 if (diff)
1210 tcp_adjust_pcount(sk, skb, diff);
1211 }
1212
1213 /* Link BUFF into the send queue. */
1214 __skb_header_release(buff);
1215 tcp_insert_write_queue_after(skb, buff, sk);
1216
1217 return 0;
1218 }
1219
1220 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1221 * eventually). The difference is that pulled data not copied, but
1222 * immediately discarded.
1223 */
1224 static int __pskb_trim_head(struct sk_buff *skb, int len)
1225 {
1226 struct skb_shared_info *shinfo;
1227 int i, k, eat;
1228
1229 eat = min_t(int, len, skb_headlen(skb));
1230 if (eat) {
1231 __skb_pull(skb, eat);
1232 len -= eat;
1233 if (!len)
1234 return 0;
1235 }
1236 eat = len;
1237 k = 0;
1238 shinfo = skb_shinfo(skb);
1239 for (i = 0; i < shinfo->nr_frags; i++) {
1240 int size = skb_frag_size(&shinfo->frags[i]);
1241
1242 if (size <= eat) {
1243 skb_frag_unref(skb, i);
1244 eat -= size;
1245 } else {
1246 shinfo->frags[k] = shinfo->frags[i];
1247 if (eat) {
1248 shinfo->frags[k].page_offset += eat;
1249 skb_frag_size_sub(&shinfo->frags[k], eat);
1250 eat = 0;
1251 }
1252 k++;
1253 }
1254 }
1255 shinfo->nr_frags = k;
1256
1257 skb_reset_tail_pointer(skb);
1258 skb->data_len -= len;
1259 skb->len = skb->data_len;
1260 return len;
1261 }
1262
1263 /* Remove acked data from a packet in the transmit queue. */
1264 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1265 {
1266 u32 delta_truesize;
1267
1268 if (skb_unclone(skb, GFP_ATOMIC))
1269 return -ENOMEM;
1270
1271 delta_truesize = __pskb_trim_head(skb, len);
1272
1273 TCP_SKB_CB(skb)->seq += len;
1274 skb->ip_summed = CHECKSUM_PARTIAL;
1275
1276 if (delta_truesize) {
1277 skb->truesize -= delta_truesize;
1278 sk->sk_wmem_queued -= delta_truesize;
1279 sk_mem_uncharge(sk, delta_truesize);
1280 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1281 }
1282
1283 /* Any change of skb->len requires recalculation of tso factor. */
1284 if (tcp_skb_pcount(skb) > 1)
1285 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1286
1287 return 0;
1288 }
1289
1290 /* Calculate MSS not accounting any TCP options. */
1291 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1292 {
1293 const struct tcp_sock *tp = tcp_sk(sk);
1294 const struct inet_connection_sock *icsk = inet_csk(sk);
1295 int mss_now;
1296
1297 /* Calculate base mss without TCP options:
1298 It is MMS_S - sizeof(tcphdr) of rfc1122
1299 */
1300 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1301
1302 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1303 if (icsk->icsk_af_ops->net_frag_header_len) {
1304 const struct dst_entry *dst = __sk_dst_get(sk);
1305
1306 if (dst && dst_allfrag(dst))
1307 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1308 }
1309
1310 /* Clamp it (mss_clamp does not include tcp options) */
1311 if (mss_now > tp->rx_opt.mss_clamp)
1312 mss_now = tp->rx_opt.mss_clamp;
1313
1314 /* Now subtract optional transport overhead */
1315 mss_now -= icsk->icsk_ext_hdr_len;
1316
1317 /* Then reserve room for full set of TCP options and 8 bytes of data */
1318 if (mss_now < 48)
1319 mss_now = 48;
1320 return mss_now;
1321 }
1322
1323 /* Calculate MSS. Not accounting for SACKs here. */
1324 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1325 {
1326 /* Subtract TCP options size, not including SACKs */
1327 return __tcp_mtu_to_mss(sk, pmtu) -
1328 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1329 }
1330
1331 /* Inverse of above */
1332 int tcp_mss_to_mtu(struct sock *sk, int mss)
1333 {
1334 const struct tcp_sock *tp = tcp_sk(sk);
1335 const struct inet_connection_sock *icsk = inet_csk(sk);
1336 int mtu;
1337
1338 mtu = mss +
1339 tp->tcp_header_len +
1340 icsk->icsk_ext_hdr_len +
1341 icsk->icsk_af_ops->net_header_len;
1342
1343 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1344 if (icsk->icsk_af_ops->net_frag_header_len) {
1345 const struct dst_entry *dst = __sk_dst_get(sk);
1346
1347 if (dst && dst_allfrag(dst))
1348 mtu += icsk->icsk_af_ops->net_frag_header_len;
1349 }
1350 return mtu;
1351 }
1352
1353 /* MTU probing init per socket */
1354 void tcp_mtup_init(struct sock *sk)
1355 {
1356 struct tcp_sock *tp = tcp_sk(sk);
1357 struct inet_connection_sock *icsk = inet_csk(sk);
1358 struct net *net = sock_net(sk);
1359
1360 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1361 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1362 icsk->icsk_af_ops->net_header_len;
1363 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1364 icsk->icsk_mtup.probe_size = 0;
1365 if (icsk->icsk_mtup.enabled)
1366 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1367 }
1368 EXPORT_SYMBOL(tcp_mtup_init);
1369
1370 /* This function synchronize snd mss to current pmtu/exthdr set.
1371
1372 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1373 for TCP options, but includes only bare TCP header.
1374
1375 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1376 It is minimum of user_mss and mss received with SYN.
1377 It also does not include TCP options.
1378
1379 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1380
1381 tp->mss_cache is current effective sending mss, including
1382 all tcp options except for SACKs. It is evaluated,
1383 taking into account current pmtu, but never exceeds
1384 tp->rx_opt.mss_clamp.
1385
1386 NOTE1. rfc1122 clearly states that advertised MSS
1387 DOES NOT include either tcp or ip options.
1388
1389 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1390 are READ ONLY outside this function. --ANK (980731)
1391 */
1392 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1393 {
1394 struct tcp_sock *tp = tcp_sk(sk);
1395 struct inet_connection_sock *icsk = inet_csk(sk);
1396 int mss_now;
1397
1398 if (icsk->icsk_mtup.search_high > pmtu)
1399 icsk->icsk_mtup.search_high = pmtu;
1400
1401 mss_now = tcp_mtu_to_mss(sk, pmtu);
1402 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1403
1404 /* And store cached results */
1405 icsk->icsk_pmtu_cookie = pmtu;
1406 if (icsk->icsk_mtup.enabled)
1407 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1408 tp->mss_cache = mss_now;
1409
1410 return mss_now;
1411 }
1412 EXPORT_SYMBOL(tcp_sync_mss);
1413
1414 /* Compute the current effective MSS, taking SACKs and IP options,
1415 * and even PMTU discovery events into account.
1416 */
1417 unsigned int tcp_current_mss(struct sock *sk)
1418 {
1419 const struct tcp_sock *tp = tcp_sk(sk);
1420 const struct dst_entry *dst = __sk_dst_get(sk);
1421 u32 mss_now;
1422 unsigned int header_len;
1423 struct tcp_out_options opts;
1424 struct tcp_md5sig_key *md5;
1425
1426 mss_now = tp->mss_cache;
1427
1428 if (dst) {
1429 u32 mtu = dst_mtu(dst);
1430 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1431 mss_now = tcp_sync_mss(sk, mtu);
1432 }
1433
1434 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1435 sizeof(struct tcphdr);
1436 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1437 * some common options. If this is an odd packet (because we have SACK
1438 * blocks etc) then our calculated header_len will be different, and
1439 * we have to adjust mss_now correspondingly */
1440 if (header_len != tp->tcp_header_len) {
1441 int delta = (int) header_len - tp->tcp_header_len;
1442 mss_now -= delta;
1443 }
1444
1445 return mss_now;
1446 }
1447
1448 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1449 * As additional protections, we do not touch cwnd in retransmission phases,
1450 * and if application hit its sndbuf limit recently.
1451 */
1452 static void tcp_cwnd_application_limited(struct sock *sk)
1453 {
1454 struct tcp_sock *tp = tcp_sk(sk);
1455
1456 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1457 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1458 /* Limited by application or receiver window. */
1459 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1460 u32 win_used = max(tp->snd_cwnd_used, init_win);
1461 if (win_used < tp->snd_cwnd) {
1462 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1463 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1464 }
1465 tp->snd_cwnd_used = 0;
1466 }
1467 tp->snd_cwnd_stamp = tcp_time_stamp;
1468 }
1469
1470 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1471 {
1472 struct tcp_sock *tp = tcp_sk(sk);
1473
1474 /* Track the maximum number of outstanding packets in each
1475 * window, and remember whether we were cwnd-limited then.
1476 */
1477 if (!before(tp->snd_una, tp->max_packets_seq) ||
1478 tp->packets_out > tp->max_packets_out) {
1479 tp->max_packets_out = tp->packets_out;
1480 tp->max_packets_seq = tp->snd_nxt;
1481 tp->is_cwnd_limited = is_cwnd_limited;
1482 }
1483
1484 if (tcp_is_cwnd_limited(sk)) {
1485 /* Network is feed fully. */
1486 tp->snd_cwnd_used = 0;
1487 tp->snd_cwnd_stamp = tcp_time_stamp;
1488 } else {
1489 /* Network starves. */
1490 if (tp->packets_out > tp->snd_cwnd_used)
1491 tp->snd_cwnd_used = tp->packets_out;
1492
1493 if (sysctl_tcp_slow_start_after_idle &&
1494 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1495 tcp_cwnd_application_limited(sk);
1496 }
1497 }
1498
1499 /* Minshall's variant of the Nagle send check. */
1500 static bool tcp_minshall_check(const struct tcp_sock *tp)
1501 {
1502 return after(tp->snd_sml, tp->snd_una) &&
1503 !after(tp->snd_sml, tp->snd_nxt);
1504 }
1505
1506 /* Update snd_sml if this skb is under mss
1507 * Note that a TSO packet might end with a sub-mss segment
1508 * The test is really :
1509 * if ((skb->len % mss) != 0)
1510 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1511 * But we can avoid doing the divide again given we already have
1512 * skb_pcount = skb->len / mss_now
1513 */
1514 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1515 const struct sk_buff *skb)
1516 {
1517 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1518 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1519 }
1520
1521 /* Return false, if packet can be sent now without violation Nagle's rules:
1522 * 1. It is full sized. (provided by caller in %partial bool)
1523 * 2. Or it contains FIN. (already checked by caller)
1524 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1525 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1526 * With Minshall's modification: all sent small packets are ACKed.
1527 */
1528 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1529 int nonagle)
1530 {
1531 return partial &&
1532 ((nonagle & TCP_NAGLE_CORK) ||
1533 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1534 }
1535
1536 /* Return how many segs we'd like on a TSO packet,
1537 * to send one TSO packet per ms
1538 */
1539 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1540 {
1541 u32 bytes, segs;
1542
1543 bytes = min(sk->sk_pacing_rate >> 10,
1544 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1545
1546 /* Goal is to send at least one packet per ms,
1547 * not one big TSO packet every 100 ms.
1548 * This preserves ACK clocking and is consistent
1549 * with tcp_tso_should_defer() heuristic.
1550 */
1551 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1552
1553 return min_t(u32, segs, sk->sk_gso_max_segs);
1554 }
1555
1556 /* Returns the portion of skb which can be sent right away */
1557 static unsigned int tcp_mss_split_point(const struct sock *sk,
1558 const struct sk_buff *skb,
1559 unsigned int mss_now,
1560 unsigned int max_segs,
1561 int nonagle)
1562 {
1563 const struct tcp_sock *tp = tcp_sk(sk);
1564 u32 partial, needed, window, max_len;
1565
1566 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1567 max_len = mss_now * max_segs;
1568
1569 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1570 return max_len;
1571
1572 needed = min(skb->len, window);
1573
1574 if (max_len <= needed)
1575 return max_len;
1576
1577 partial = needed % mss_now;
1578 /* If last segment is not a full MSS, check if Nagle rules allow us
1579 * to include this last segment in this skb.
1580 * Otherwise, we'll split the skb at last MSS boundary
1581 */
1582 if (tcp_nagle_check(partial != 0, tp, nonagle))
1583 return needed - partial;
1584
1585 return needed;
1586 }
1587
1588 /* Can at least one segment of SKB be sent right now, according to the
1589 * congestion window rules? If so, return how many segments are allowed.
1590 */
1591 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1592 const struct sk_buff *skb)
1593 {
1594 u32 in_flight, cwnd, halfcwnd;
1595
1596 /* Don't be strict about the congestion window for the final FIN. */
1597 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1598 tcp_skb_pcount(skb) == 1)
1599 return 1;
1600
1601 in_flight = tcp_packets_in_flight(tp);
1602 cwnd = tp->snd_cwnd;
1603 if (in_flight >= cwnd)
1604 return 0;
1605
1606 /* For better scheduling, ensure we have at least
1607 * 2 GSO packets in flight.
1608 */
1609 halfcwnd = max(cwnd >> 1, 1U);
1610 return min(halfcwnd, cwnd - in_flight);
1611 }
1612
1613 /* Initialize TSO state of a skb.
1614 * This must be invoked the first time we consider transmitting
1615 * SKB onto the wire.
1616 */
1617 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1618 {
1619 int tso_segs = tcp_skb_pcount(skb);
1620
1621 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1622 tcp_set_skb_tso_segs(skb, mss_now);
1623 tso_segs = tcp_skb_pcount(skb);
1624 }
1625 return tso_segs;
1626 }
1627
1628
1629 /* Return true if the Nagle test allows this packet to be
1630 * sent now.
1631 */
1632 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1633 unsigned int cur_mss, int nonagle)
1634 {
1635 /* Nagle rule does not apply to frames, which sit in the middle of the
1636 * write_queue (they have no chances to get new data).
1637 *
1638 * This is implemented in the callers, where they modify the 'nonagle'
1639 * argument based upon the location of SKB in the send queue.
1640 */
1641 if (nonagle & TCP_NAGLE_PUSH)
1642 return true;
1643
1644 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1645 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1646 return true;
1647
1648 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1649 return true;
1650
1651 return false;
1652 }
1653
1654 /* Does at least the first segment of SKB fit into the send window? */
1655 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1656 const struct sk_buff *skb,
1657 unsigned int cur_mss)
1658 {
1659 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1660
1661 if (skb->len > cur_mss)
1662 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1663
1664 return !after(end_seq, tcp_wnd_end(tp));
1665 }
1666
1667 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1668 * should be put on the wire right now. If so, it returns the number of
1669 * packets allowed by the congestion window.
1670 */
1671 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1672 unsigned int cur_mss, int nonagle)
1673 {
1674 const struct tcp_sock *tp = tcp_sk(sk);
1675 unsigned int cwnd_quota;
1676
1677 tcp_init_tso_segs(skb, cur_mss);
1678
1679 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1680 return 0;
1681
1682 cwnd_quota = tcp_cwnd_test(tp, skb);
1683 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1684 cwnd_quota = 0;
1685
1686 return cwnd_quota;
1687 }
1688
1689 /* Test if sending is allowed right now. */
1690 bool tcp_may_send_now(struct sock *sk)
1691 {
1692 const struct tcp_sock *tp = tcp_sk(sk);
1693 struct sk_buff *skb = tcp_send_head(sk);
1694
1695 return skb &&
1696 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1697 (tcp_skb_is_last(sk, skb) ?
1698 tp->nonagle : TCP_NAGLE_PUSH));
1699 }
1700
1701 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1702 * which is put after SKB on the list. It is very much like
1703 * tcp_fragment() except that it may make several kinds of assumptions
1704 * in order to speed up the splitting operation. In particular, we
1705 * know that all the data is in scatter-gather pages, and that the
1706 * packet has never been sent out before (and thus is not cloned).
1707 */
1708 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1709 unsigned int mss_now, gfp_t gfp)
1710 {
1711 struct sk_buff *buff;
1712 int nlen = skb->len - len;
1713 u8 flags;
1714
1715 /* All of a TSO frame must be composed of paged data. */
1716 if (skb->len != skb->data_len)
1717 return tcp_fragment(sk, skb, len, mss_now, gfp);
1718
1719 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1720 if (unlikely(!buff))
1721 return -ENOMEM;
1722
1723 sk->sk_wmem_queued += buff->truesize;
1724 sk_mem_charge(sk, buff->truesize);
1725 buff->truesize += nlen;
1726 skb->truesize -= nlen;
1727
1728 /* Correct the sequence numbers. */
1729 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1730 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1731 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1732
1733 /* PSH and FIN should only be set in the second packet. */
1734 flags = TCP_SKB_CB(skb)->tcp_flags;
1735 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1736 TCP_SKB_CB(buff)->tcp_flags = flags;
1737
1738 /* This packet was never sent out yet, so no SACK bits. */
1739 TCP_SKB_CB(buff)->sacked = 0;
1740
1741 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1742 skb_split(skb, buff, len);
1743 tcp_fragment_tstamp(skb, buff);
1744
1745 /* Fix up tso_factor for both original and new SKB. */
1746 tcp_set_skb_tso_segs(skb, mss_now);
1747 tcp_set_skb_tso_segs(buff, mss_now);
1748
1749 /* Link BUFF into the send queue. */
1750 __skb_header_release(buff);
1751 tcp_insert_write_queue_after(skb, buff, sk);
1752
1753 return 0;
1754 }
1755
1756 /* Try to defer sending, if possible, in order to minimize the amount
1757 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1758 *
1759 * This algorithm is from John Heffner.
1760 */
1761 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1762 bool *is_cwnd_limited, u32 max_segs)
1763 {
1764 const struct inet_connection_sock *icsk = inet_csk(sk);
1765 u32 age, send_win, cong_win, limit, in_flight;
1766 struct tcp_sock *tp = tcp_sk(sk);
1767 struct skb_mstamp now;
1768 struct sk_buff *head;
1769 int win_divisor;
1770
1771 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1772 goto send_now;
1773
1774 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1775 goto send_now;
1776
1777 /* Avoid bursty behavior by allowing defer
1778 * only if the last write was recent.
1779 */
1780 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1781 goto send_now;
1782
1783 in_flight = tcp_packets_in_flight(tp);
1784
1785 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1786
1787 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1788
1789 /* From in_flight test above, we know that cwnd > in_flight. */
1790 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1791
1792 limit = min(send_win, cong_win);
1793
1794 /* If a full-sized TSO skb can be sent, do it. */
1795 if (limit >= max_segs * tp->mss_cache)
1796 goto send_now;
1797
1798 /* Middle in queue won't get any more data, full sendable already? */
1799 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1800 goto send_now;
1801
1802 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1803 if (win_divisor) {
1804 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1805
1806 /* If at least some fraction of a window is available,
1807 * just use it.
1808 */
1809 chunk /= win_divisor;
1810 if (limit >= chunk)
1811 goto send_now;
1812 } else {
1813 /* Different approach, try not to defer past a single
1814 * ACK. Receiver should ACK every other full sized
1815 * frame, so if we have space for more than 3 frames
1816 * then send now.
1817 */
1818 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1819 goto send_now;
1820 }
1821
1822 head = tcp_write_queue_head(sk);
1823 skb_mstamp_get(&now);
1824 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1825 /* If next ACK is likely to come too late (half srtt), do not defer */
1826 if (age < (tp->srtt_us >> 4))
1827 goto send_now;
1828
1829 /* Ok, it looks like it is advisable to defer. */
1830
1831 if (cong_win < send_win && cong_win <= skb->len)
1832 *is_cwnd_limited = true;
1833
1834 return true;
1835
1836 send_now:
1837 return false;
1838 }
1839
1840 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1841 {
1842 struct inet_connection_sock *icsk = inet_csk(sk);
1843 struct tcp_sock *tp = tcp_sk(sk);
1844 struct net *net = sock_net(sk);
1845 u32 interval;
1846 s32 delta;
1847
1848 interval = net->ipv4.sysctl_tcp_probe_interval;
1849 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1850 if (unlikely(delta >= interval * HZ)) {
1851 int mss = tcp_current_mss(sk);
1852
1853 /* Update current search range */
1854 icsk->icsk_mtup.probe_size = 0;
1855 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1856 sizeof(struct tcphdr) +
1857 icsk->icsk_af_ops->net_header_len;
1858 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1859
1860 /* Update probe time stamp */
1861 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1862 }
1863 }
1864
1865 /* Create a new MTU probe if we are ready.
1866 * MTU probe is regularly attempting to increase the path MTU by
1867 * deliberately sending larger packets. This discovers routing
1868 * changes resulting in larger path MTUs.
1869 *
1870 * Returns 0 if we should wait to probe (no cwnd available),
1871 * 1 if a probe was sent,
1872 * -1 otherwise
1873 */
1874 static int tcp_mtu_probe(struct sock *sk)
1875 {
1876 struct tcp_sock *tp = tcp_sk(sk);
1877 struct inet_connection_sock *icsk = inet_csk(sk);
1878 struct sk_buff *skb, *nskb, *next;
1879 struct net *net = sock_net(sk);
1880 int len;
1881 int probe_size;
1882 int size_needed;
1883 int copy;
1884 int mss_now;
1885 int interval;
1886
1887 /* Not currently probing/verifying,
1888 * not in recovery,
1889 * have enough cwnd, and
1890 * not SACKing (the variable headers throw things off) */
1891 if (!icsk->icsk_mtup.enabled ||
1892 icsk->icsk_mtup.probe_size ||
1893 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1894 tp->snd_cwnd < 11 ||
1895 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1896 return -1;
1897
1898 /* Use binary search for probe_size between tcp_mss_base,
1899 * and current mss_clamp. if (search_high - search_low)
1900 * smaller than a threshold, backoff from probing.
1901 */
1902 mss_now = tcp_current_mss(sk);
1903 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1904 icsk->icsk_mtup.search_low) >> 1);
1905 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1906 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1907 /* When misfortune happens, we are reprobing actively,
1908 * and then reprobe timer has expired. We stick with current
1909 * probing process by not resetting search range to its orignal.
1910 */
1911 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1912 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1913 /* Check whether enough time has elaplased for
1914 * another round of probing.
1915 */
1916 tcp_mtu_check_reprobe(sk);
1917 return -1;
1918 }
1919
1920 /* Have enough data in the send queue to probe? */
1921 if (tp->write_seq - tp->snd_nxt < size_needed)
1922 return -1;
1923
1924 if (tp->snd_wnd < size_needed)
1925 return -1;
1926 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1927 return 0;
1928
1929 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1930 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1931 if (!tcp_packets_in_flight(tp))
1932 return -1;
1933 else
1934 return 0;
1935 }
1936
1937 /* We're allowed to probe. Build it now. */
1938 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1939 if (!nskb)
1940 return -1;
1941 sk->sk_wmem_queued += nskb->truesize;
1942 sk_mem_charge(sk, nskb->truesize);
1943
1944 skb = tcp_send_head(sk);
1945
1946 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1947 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1948 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1949 TCP_SKB_CB(nskb)->sacked = 0;
1950 nskb->csum = 0;
1951 nskb->ip_summed = skb->ip_summed;
1952
1953 tcp_insert_write_queue_before(nskb, skb, sk);
1954
1955 len = 0;
1956 tcp_for_write_queue_from_safe(skb, next, sk) {
1957 copy = min_t(int, skb->len, probe_size - len);
1958 if (nskb->ip_summed) {
1959 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1960 } else {
1961 __wsum csum = skb_copy_and_csum_bits(skb, 0,
1962 skb_put(nskb, copy),
1963 copy, 0);
1964 nskb->csum = csum_block_add(nskb->csum, csum, len);
1965 }
1966
1967 if (skb->len <= copy) {
1968 /* We've eaten all the data from this skb.
1969 * Throw it away. */
1970 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1971 tcp_unlink_write_queue(skb, sk);
1972 sk_wmem_free_skb(sk, skb);
1973 } else {
1974 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1975 ~(TCPHDR_FIN|TCPHDR_PSH);
1976 if (!skb_shinfo(skb)->nr_frags) {
1977 skb_pull(skb, copy);
1978 if (skb->ip_summed != CHECKSUM_PARTIAL)
1979 skb->csum = csum_partial(skb->data,
1980 skb->len, 0);
1981 } else {
1982 __pskb_trim_head(skb, copy);
1983 tcp_set_skb_tso_segs(skb, mss_now);
1984 }
1985 TCP_SKB_CB(skb)->seq += copy;
1986 }
1987
1988 len += copy;
1989
1990 if (len >= probe_size)
1991 break;
1992 }
1993 tcp_init_tso_segs(nskb, nskb->len);
1994
1995 /* We're ready to send. If this fails, the probe will
1996 * be resegmented into mss-sized pieces by tcp_write_xmit().
1997 */
1998 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1999 /* Decrement cwnd here because we are sending
2000 * effectively two packets. */
2001 tp->snd_cwnd--;
2002 tcp_event_new_data_sent(sk, nskb);
2003
2004 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2005 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2006 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2007
2008 return 1;
2009 }
2010
2011 return -1;
2012 }
2013
2014 /* This routine writes packets to the network. It advances the
2015 * send_head. This happens as incoming acks open up the remote
2016 * window for us.
2017 *
2018 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2019 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2020 * account rare use of URG, this is not a big flaw.
2021 *
2022 * Send at most one packet when push_one > 0. Temporarily ignore
2023 * cwnd limit to force at most one packet out when push_one == 2.
2024
2025 * Returns true, if no segments are in flight and we have queued segments,
2026 * but cannot send anything now because of SWS or another problem.
2027 */
2028 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2029 int push_one, gfp_t gfp)
2030 {
2031 struct tcp_sock *tp = tcp_sk(sk);
2032 struct sk_buff *skb;
2033 unsigned int tso_segs, sent_pkts;
2034 int cwnd_quota;
2035 int result;
2036 bool is_cwnd_limited = false;
2037 u32 max_segs;
2038
2039 sent_pkts = 0;
2040
2041 if (!push_one) {
2042 /* Do MTU probing. */
2043 result = tcp_mtu_probe(sk);
2044 if (!result) {
2045 return false;
2046 } else if (result > 0) {
2047 sent_pkts = 1;
2048 }
2049 }
2050
2051 max_segs = tcp_tso_autosize(sk, mss_now);
2052 while ((skb = tcp_send_head(sk))) {
2053 unsigned int limit;
2054
2055 tso_segs = tcp_init_tso_segs(skb, mss_now);
2056 BUG_ON(!tso_segs);
2057
2058 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2059 /* "skb_mstamp" is used as a start point for the retransmit timer */
2060 skb_mstamp_get(&skb->skb_mstamp);
2061 goto repair; /* Skip network transmission */
2062 }
2063
2064 cwnd_quota = tcp_cwnd_test(tp, skb);
2065 if (!cwnd_quota) {
2066 if (push_one == 2)
2067 /* Force out a loss probe pkt. */
2068 cwnd_quota = 1;
2069 else
2070 break;
2071 }
2072
2073 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2074 break;
2075
2076 if (tso_segs == 1) {
2077 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2078 (tcp_skb_is_last(sk, skb) ?
2079 nonagle : TCP_NAGLE_PUSH))))
2080 break;
2081 } else {
2082 if (!push_one &&
2083 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2084 max_segs))
2085 break;
2086 }
2087
2088 limit = mss_now;
2089 if (tso_segs > 1 && !tcp_urg_mode(tp))
2090 limit = tcp_mss_split_point(sk, skb, mss_now,
2091 min_t(unsigned int,
2092 cwnd_quota,
2093 max_segs),
2094 nonagle);
2095
2096 if (skb->len > limit &&
2097 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2098 break;
2099
2100 /* TCP Small Queues :
2101 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2102 * This allows for :
2103 * - better RTT estimation and ACK scheduling
2104 * - faster recovery
2105 * - high rates
2106 * Alas, some drivers / subsystems require a fair amount
2107 * of queued bytes to ensure line rate.
2108 * One example is wifi aggregation (802.11 AMPDU)
2109 */
2110 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2111 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2112
2113 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2114 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2115 /* It is possible TX completion already happened
2116 * before we set TSQ_THROTTLED, so we must
2117 * test again the condition.
2118 */
2119 smp_mb__after_atomic();
2120 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2121 break;
2122 }
2123
2124 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2125 break;
2126
2127 repair:
2128 /* Advance the send_head. This one is sent out.
2129 * This call will increment packets_out.
2130 */
2131 tcp_event_new_data_sent(sk, skb);
2132
2133 tcp_minshall_update(tp, mss_now, skb);
2134 sent_pkts += tcp_skb_pcount(skb);
2135
2136 if (push_one)
2137 break;
2138 }
2139
2140 if (likely(sent_pkts)) {
2141 if (tcp_in_cwnd_reduction(sk))
2142 tp->prr_out += sent_pkts;
2143
2144 /* Send one loss probe per tail loss episode. */
2145 if (push_one != 2)
2146 tcp_schedule_loss_probe(sk);
2147 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2148 tcp_cwnd_validate(sk, is_cwnd_limited);
2149 return false;
2150 }
2151 return !tp->packets_out && tcp_send_head(sk);
2152 }
2153
2154 bool tcp_schedule_loss_probe(struct sock *sk)
2155 {
2156 struct inet_connection_sock *icsk = inet_csk(sk);
2157 struct tcp_sock *tp = tcp_sk(sk);
2158 u32 timeout, tlp_time_stamp, rto_time_stamp;
2159 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2160
2161 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2162 return false;
2163 /* No consecutive loss probes. */
2164 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2165 tcp_rearm_rto(sk);
2166 return false;
2167 }
2168 /* Don't do any loss probe on a Fast Open connection before 3WHS
2169 * finishes.
2170 */
2171 if (tp->fastopen_rsk)
2172 return false;
2173
2174 /* TLP is only scheduled when next timer event is RTO. */
2175 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2176 return false;
2177
2178 /* Schedule a loss probe in 2*RTT for SACK capable connections
2179 * in Open state, that are either limited by cwnd or application.
2180 */
2181 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2182 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2183 return false;
2184
2185 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2186 tcp_send_head(sk))
2187 return false;
2188
2189 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2190 * for delayed ack when there's one outstanding packet. If no RTT
2191 * sample is available then probe after TCP_TIMEOUT_INIT.
2192 */
2193 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2194 if (tp->packets_out == 1)
2195 timeout = max_t(u32, timeout,
2196 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2197 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2198
2199 /* If RTO is shorter, just schedule TLP in its place. */
2200 tlp_time_stamp = tcp_time_stamp + timeout;
2201 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2202 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2203 s32 delta = rto_time_stamp - tcp_time_stamp;
2204 if (delta > 0)
2205 timeout = delta;
2206 }
2207
2208 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2209 TCP_RTO_MAX);
2210 return true;
2211 }
2212
2213 /* Thanks to skb fast clones, we can detect if a prior transmit of
2214 * a packet is still in a qdisc or driver queue.
2215 * In this case, there is very little point doing a retransmit !
2216 * Note: This is called from BH context only.
2217 */
2218 static bool skb_still_in_host_queue(const struct sock *sk,
2219 const struct sk_buff *skb)
2220 {
2221 if (unlikely(skb_fclone_busy(sk, skb))) {
2222 NET_INC_STATS_BH(sock_net(sk),
2223 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2224 return true;
2225 }
2226 return false;
2227 }
2228
2229 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2230 * retransmit the last segment.
2231 */
2232 void tcp_send_loss_probe(struct sock *sk)
2233 {
2234 struct tcp_sock *tp = tcp_sk(sk);
2235 struct sk_buff *skb;
2236 int pcount;
2237 int mss = tcp_current_mss(sk);
2238
2239 skb = tcp_send_head(sk);
2240 if (skb) {
2241 if (tcp_snd_wnd_test(tp, skb, mss)) {
2242 pcount = tp->packets_out;
2243 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2244 if (tp->packets_out > pcount)
2245 goto probe_sent;
2246 goto rearm_timer;
2247 }
2248 skb = tcp_write_queue_prev(sk, skb);
2249 } else {
2250 skb = tcp_write_queue_tail(sk);
2251 }
2252
2253 /* At most one outstanding TLP retransmission. */
2254 if (tp->tlp_high_seq)
2255 goto rearm_timer;
2256
2257 /* Retransmit last segment. */
2258 if (WARN_ON(!skb))
2259 goto rearm_timer;
2260
2261 if (skb_still_in_host_queue(sk, skb))
2262 goto rearm_timer;
2263
2264 pcount = tcp_skb_pcount(skb);
2265 if (WARN_ON(!pcount))
2266 goto rearm_timer;
2267
2268 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2269 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2270 GFP_ATOMIC)))
2271 goto rearm_timer;
2272 skb = tcp_write_queue_next(sk, skb);
2273 }
2274
2275 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2276 goto rearm_timer;
2277
2278 if (__tcp_retransmit_skb(sk, skb))
2279 goto rearm_timer;
2280
2281 /* Record snd_nxt for loss detection. */
2282 tp->tlp_high_seq = tp->snd_nxt;
2283
2284 probe_sent:
2285 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2286 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2287 inet_csk(sk)->icsk_pending = 0;
2288 rearm_timer:
2289 tcp_rearm_rto(sk);
2290 }
2291
2292 /* Push out any pending frames which were held back due to
2293 * TCP_CORK or attempt at coalescing tiny packets.
2294 * The socket must be locked by the caller.
2295 */
2296 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2297 int nonagle)
2298 {
2299 /* If we are closed, the bytes will have to remain here.
2300 * In time closedown will finish, we empty the write queue and
2301 * all will be happy.
2302 */
2303 if (unlikely(sk->sk_state == TCP_CLOSE))
2304 return;
2305
2306 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2307 sk_gfp_atomic(sk, GFP_ATOMIC)))
2308 tcp_check_probe_timer(sk);
2309 }
2310
2311 /* Send _single_ skb sitting at the send head. This function requires
2312 * true push pending frames to setup probe timer etc.
2313 */
2314 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2315 {
2316 struct sk_buff *skb = tcp_send_head(sk);
2317
2318 BUG_ON(!skb || skb->len < mss_now);
2319
2320 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2321 }
2322
2323 /* This function returns the amount that we can raise the
2324 * usable window based on the following constraints
2325 *
2326 * 1. The window can never be shrunk once it is offered (RFC 793)
2327 * 2. We limit memory per socket
2328 *
2329 * RFC 1122:
2330 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2331 * RECV.NEXT + RCV.WIN fixed until:
2332 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2333 *
2334 * i.e. don't raise the right edge of the window until you can raise
2335 * it at least MSS bytes.
2336 *
2337 * Unfortunately, the recommended algorithm breaks header prediction,
2338 * since header prediction assumes th->window stays fixed.
2339 *
2340 * Strictly speaking, keeping th->window fixed violates the receiver
2341 * side SWS prevention criteria. The problem is that under this rule
2342 * a stream of single byte packets will cause the right side of the
2343 * window to always advance by a single byte.
2344 *
2345 * Of course, if the sender implements sender side SWS prevention
2346 * then this will not be a problem.
2347 *
2348 * BSD seems to make the following compromise:
2349 *
2350 * If the free space is less than the 1/4 of the maximum
2351 * space available and the free space is less than 1/2 mss,
2352 * then set the window to 0.
2353 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2354 * Otherwise, just prevent the window from shrinking
2355 * and from being larger than the largest representable value.
2356 *
2357 * This prevents incremental opening of the window in the regime
2358 * where TCP is limited by the speed of the reader side taking
2359 * data out of the TCP receive queue. It does nothing about
2360 * those cases where the window is constrained on the sender side
2361 * because the pipeline is full.
2362 *
2363 * BSD also seems to "accidentally" limit itself to windows that are a
2364 * multiple of MSS, at least until the free space gets quite small.
2365 * This would appear to be a side effect of the mbuf implementation.
2366 * Combining these two algorithms results in the observed behavior
2367 * of having a fixed window size at almost all times.
2368 *
2369 * Below we obtain similar behavior by forcing the offered window to
2370 * a multiple of the mss when it is feasible to do so.
2371 *
2372 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2373 * Regular options like TIMESTAMP are taken into account.
2374 */
2375 u32 __tcp_select_window(struct sock *sk)
2376 {
2377 struct inet_connection_sock *icsk = inet_csk(sk);
2378 struct tcp_sock *tp = tcp_sk(sk);
2379 /* MSS for the peer's data. Previous versions used mss_clamp
2380 * here. I don't know if the value based on our guesses
2381 * of peer's MSS is better for the performance. It's more correct
2382 * but may be worse for the performance because of rcv_mss
2383 * fluctuations. --SAW 1998/11/1
2384 */
2385 int mss = icsk->icsk_ack.rcv_mss;
2386 int free_space = tcp_space(sk);
2387 int allowed_space = tcp_full_space(sk);
2388 int full_space = min_t(int, tp->window_clamp, allowed_space);
2389 int window;
2390
2391 if (unlikely(mss > full_space)) {
2392 mss = full_space;
2393 if (mss <= 0)
2394 return 0;
2395 }
2396 if (free_space < (full_space >> 1)) {
2397 icsk->icsk_ack.quick = 0;
2398
2399 if (tcp_under_memory_pressure(sk))
2400 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2401 4U * tp->advmss);
2402
2403 /* free_space might become our new window, make sure we don't
2404 * increase it due to wscale.
2405 */
2406 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2407
2408 /* if free space is less than mss estimate, or is below 1/16th
2409 * of the maximum allowed, try to move to zero-window, else
2410 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2411 * new incoming data is dropped due to memory limits.
2412 * With large window, mss test triggers way too late in order
2413 * to announce zero window in time before rmem limit kicks in.
2414 */
2415 if (free_space < (allowed_space >> 4) || free_space < mss)
2416 return 0;
2417 }
2418
2419 if (free_space > tp->rcv_ssthresh)
2420 free_space = tp->rcv_ssthresh;
2421
2422 /* Don't do rounding if we are using window scaling, since the
2423 * scaled window will not line up with the MSS boundary anyway.
2424 */
2425 window = tp->rcv_wnd;
2426 if (tp->rx_opt.rcv_wscale) {
2427 window = free_space;
2428
2429 /* Advertise enough space so that it won't get scaled away.
2430 * Import case: prevent zero window announcement if
2431 * 1<<rcv_wscale > mss.
2432 */
2433 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2434 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2435 << tp->rx_opt.rcv_wscale);
2436 } else {
2437 /* Get the largest window that is a nice multiple of mss.
2438 * Window clamp already applied above.
2439 * If our current window offering is within 1 mss of the
2440 * free space we just keep it. This prevents the divide
2441 * and multiply from happening most of the time.
2442 * We also don't do any window rounding when the free space
2443 * is too small.
2444 */
2445 if (window <= free_space - mss || window > free_space)
2446 window = (free_space / mss) * mss;
2447 else if (mss == full_space &&
2448 free_space > window + (full_space >> 1))
2449 window = free_space;
2450 }
2451
2452 return window;
2453 }
2454
2455 /* Collapses two adjacent SKB's during retransmission. */
2456 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2457 {
2458 struct tcp_sock *tp = tcp_sk(sk);
2459 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2460 int skb_size, next_skb_size;
2461
2462 skb_size = skb->len;
2463 next_skb_size = next_skb->len;
2464
2465 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2466
2467 tcp_highest_sack_combine(sk, next_skb, skb);
2468
2469 tcp_unlink_write_queue(next_skb, sk);
2470
2471 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2472 next_skb_size);
2473
2474 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2475 skb->ip_summed = CHECKSUM_PARTIAL;
2476
2477 if (skb->ip_summed != CHECKSUM_PARTIAL)
2478 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2479
2480 /* Update sequence range on original skb. */
2481 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2482
2483 /* Merge over control information. This moves PSH/FIN etc. over */
2484 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2485
2486 /* All done, get rid of second SKB and account for it so
2487 * packet counting does not break.
2488 */
2489 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2490
2491 /* changed transmit queue under us so clear hints */
2492 tcp_clear_retrans_hints_partial(tp);
2493 if (next_skb == tp->retransmit_skb_hint)
2494 tp->retransmit_skb_hint = skb;
2495
2496 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2497
2498 sk_wmem_free_skb(sk, next_skb);
2499 }
2500
2501 /* Check if coalescing SKBs is legal. */
2502 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2503 {
2504 if (tcp_skb_pcount(skb) > 1)
2505 return false;
2506 /* TODO: SACK collapsing could be used to remove this condition */
2507 if (skb_shinfo(skb)->nr_frags != 0)
2508 return false;
2509 if (skb_cloned(skb))
2510 return false;
2511 if (skb == tcp_send_head(sk))
2512 return false;
2513 /* Some heurestics for collapsing over SACK'd could be invented */
2514 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2515 return false;
2516
2517 return true;
2518 }
2519
2520 /* Collapse packets in the retransmit queue to make to create
2521 * less packets on the wire. This is only done on retransmission.
2522 */
2523 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2524 int space)
2525 {
2526 struct tcp_sock *tp = tcp_sk(sk);
2527 struct sk_buff *skb = to, *tmp;
2528 bool first = true;
2529
2530 if (!sysctl_tcp_retrans_collapse)
2531 return;
2532 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2533 return;
2534
2535 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2536 if (!tcp_can_collapse(sk, skb))
2537 break;
2538
2539 space -= skb->len;
2540
2541 if (first) {
2542 first = false;
2543 continue;
2544 }
2545
2546 if (space < 0)
2547 break;
2548 /* Punt if not enough space exists in the first SKB for
2549 * the data in the second
2550 */
2551 if (skb->len > skb_availroom(to))
2552 break;
2553
2554 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2555 break;
2556
2557 tcp_collapse_retrans(sk, to);
2558 }
2559 }
2560
2561 /* This retransmits one SKB. Policy decisions and retransmit queue
2562 * state updates are done by the caller. Returns non-zero if an
2563 * error occurred which prevented the send.
2564 */
2565 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2566 {
2567 struct tcp_sock *tp = tcp_sk(sk);
2568 struct inet_connection_sock *icsk = inet_csk(sk);
2569 unsigned int cur_mss;
2570 int err;
2571
2572 /* Inconslusive MTU probe */
2573 if (icsk->icsk_mtup.probe_size) {
2574 icsk->icsk_mtup.probe_size = 0;
2575 }
2576
2577 /* Do not sent more than we queued. 1/4 is reserved for possible
2578 * copying overhead: fragmentation, tunneling, mangling etc.
2579 */
2580 if (atomic_read(&sk->sk_wmem_alloc) >
2581 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2582 sk->sk_sndbuf))
2583 return -EAGAIN;
2584
2585 if (skb_still_in_host_queue(sk, skb))
2586 return -EBUSY;
2587
2588 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2589 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2590 BUG();
2591 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2592 return -ENOMEM;
2593 }
2594
2595 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2596 return -EHOSTUNREACH; /* Routing failure or similar. */
2597
2598 cur_mss = tcp_current_mss(sk);
2599
2600 /* If receiver has shrunk his window, and skb is out of
2601 * new window, do not retransmit it. The exception is the
2602 * case, when window is shrunk to zero. In this case
2603 * our retransmit serves as a zero window probe.
2604 */
2605 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2606 TCP_SKB_CB(skb)->seq != tp->snd_una)
2607 return -EAGAIN;
2608
2609 if (skb->len > cur_mss) {
2610 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2611 return -ENOMEM; /* We'll try again later. */
2612 } else {
2613 int oldpcount = tcp_skb_pcount(skb);
2614
2615 if (unlikely(oldpcount > 1)) {
2616 if (skb_unclone(skb, GFP_ATOMIC))
2617 return -ENOMEM;
2618 tcp_init_tso_segs(skb, cur_mss);
2619 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2620 }
2621 }
2622
2623 /* RFC3168, section 6.1.1.1. ECN fallback */
2624 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2625 tcp_ecn_clear_syn(sk, skb);
2626
2627 tcp_retrans_try_collapse(sk, skb, cur_mss);
2628
2629 /* Make a copy, if the first transmission SKB clone we made
2630 * is still in somebody's hands, else make a clone.
2631 */
2632
2633 /* make sure skb->data is aligned on arches that require it
2634 * and check if ack-trimming & collapsing extended the headroom
2635 * beyond what csum_start can cover.
2636 */
2637 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2638 skb_headroom(skb) >= 0xFFFF)) {
2639 struct sk_buff *nskb;
2640
2641 skb_mstamp_get(&skb->skb_mstamp);
2642 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2643 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2644 -ENOBUFS;
2645 } else {
2646 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2647 }
2648
2649 if (likely(!err)) {
2650 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2651 /* Update global TCP statistics. */
2652 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2653 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2654 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2655 tp->total_retrans++;
2656 }
2657 return err;
2658 }
2659
2660 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2661 {
2662 struct tcp_sock *tp = tcp_sk(sk);
2663 int err = __tcp_retransmit_skb(sk, skb);
2664
2665 if (err == 0) {
2666 #if FASTRETRANS_DEBUG > 0
2667 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2668 net_dbg_ratelimited("retrans_out leaked\n");
2669 }
2670 #endif
2671 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2672 tp->retrans_out += tcp_skb_pcount(skb);
2673
2674 /* Save stamp of the first retransmit. */
2675 if (!tp->retrans_stamp)
2676 tp->retrans_stamp = tcp_skb_timestamp(skb);
2677
2678 } else if (err != -EBUSY) {
2679 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2680 }
2681
2682 if (tp->undo_retrans < 0)
2683 tp->undo_retrans = 0;
2684 tp->undo_retrans += tcp_skb_pcount(skb);
2685 return err;
2686 }
2687
2688 /* Check if we forward retransmits are possible in the current
2689 * window/congestion state.
2690 */
2691 static bool tcp_can_forward_retransmit(struct sock *sk)
2692 {
2693 const struct inet_connection_sock *icsk = inet_csk(sk);
2694 const struct tcp_sock *tp = tcp_sk(sk);
2695
2696 /* Forward retransmissions are possible only during Recovery. */
2697 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2698 return false;
2699
2700 /* No forward retransmissions in Reno are possible. */
2701 if (tcp_is_reno(tp))
2702 return false;
2703
2704 /* Yeah, we have to make difficult choice between forward transmission
2705 * and retransmission... Both ways have their merits...
2706 *
2707 * For now we do not retransmit anything, while we have some new
2708 * segments to send. In the other cases, follow rule 3 for
2709 * NextSeg() specified in RFC3517.
2710 */
2711
2712 if (tcp_may_send_now(sk))
2713 return false;
2714
2715 return true;
2716 }
2717
2718 /* This gets called after a retransmit timeout, and the initially
2719 * retransmitted data is acknowledged. It tries to continue
2720 * resending the rest of the retransmit queue, until either
2721 * we've sent it all or the congestion window limit is reached.
2722 * If doing SACK, the first ACK which comes back for a timeout
2723 * based retransmit packet might feed us FACK information again.
2724 * If so, we use it to avoid unnecessarily retransmissions.
2725 */
2726 void tcp_xmit_retransmit_queue(struct sock *sk)
2727 {
2728 const struct inet_connection_sock *icsk = inet_csk(sk);
2729 struct tcp_sock *tp = tcp_sk(sk);
2730 struct sk_buff *skb;
2731 struct sk_buff *hole = NULL;
2732 u32 last_lost;
2733 int mib_idx;
2734 int fwd_rexmitting = 0;
2735
2736 if (!tp->packets_out)
2737 return;
2738
2739 if (!tp->lost_out)
2740 tp->retransmit_high = tp->snd_una;
2741
2742 if (tp->retransmit_skb_hint) {
2743 skb = tp->retransmit_skb_hint;
2744 last_lost = TCP_SKB_CB(skb)->end_seq;
2745 if (after(last_lost, tp->retransmit_high))
2746 last_lost = tp->retransmit_high;
2747 } else {
2748 skb = tcp_write_queue_head(sk);
2749 last_lost = tp->snd_una;
2750 }
2751
2752 tcp_for_write_queue_from(skb, sk) {
2753 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2754
2755 if (skb == tcp_send_head(sk))
2756 break;
2757 /* we could do better than to assign each time */
2758 if (!hole)
2759 tp->retransmit_skb_hint = skb;
2760
2761 /* Assume this retransmit will generate
2762 * only one packet for congestion window
2763 * calculation purposes. This works because
2764 * tcp_retransmit_skb() will chop up the
2765 * packet to be MSS sized and all the
2766 * packet counting works out.
2767 */
2768 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2769 return;
2770
2771 if (fwd_rexmitting) {
2772 begin_fwd:
2773 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2774 break;
2775 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2776
2777 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2778 tp->retransmit_high = last_lost;
2779 if (!tcp_can_forward_retransmit(sk))
2780 break;
2781 /* Backtrack if necessary to non-L'ed skb */
2782 if (hole) {
2783 skb = hole;
2784 hole = NULL;
2785 }
2786 fwd_rexmitting = 1;
2787 goto begin_fwd;
2788
2789 } else if (!(sacked & TCPCB_LOST)) {
2790 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2791 hole = skb;
2792 continue;
2793
2794 } else {
2795 last_lost = TCP_SKB_CB(skb)->end_seq;
2796 if (icsk->icsk_ca_state != TCP_CA_Loss)
2797 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2798 else
2799 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2800 }
2801
2802 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2803 continue;
2804
2805 if (tcp_retransmit_skb(sk, skb))
2806 return;
2807
2808 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2809
2810 if (tcp_in_cwnd_reduction(sk))
2811 tp->prr_out += tcp_skb_pcount(skb);
2812
2813 if (skb == tcp_write_queue_head(sk))
2814 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2815 inet_csk(sk)->icsk_rto,
2816 TCP_RTO_MAX);
2817 }
2818 }
2819
2820 /* We allow to exceed memory limits for FIN packets to expedite
2821 * connection tear down and (memory) recovery.
2822 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2823 * or even be forced to close flow without any FIN.
2824 * In general, we want to allow one skb per socket to avoid hangs
2825 * with edge trigger epoll()
2826 */
2827 void sk_forced_mem_schedule(struct sock *sk, int size)
2828 {
2829 int amt, status;
2830
2831 if (size <= sk->sk_forward_alloc)
2832 return;
2833 amt = sk_mem_pages(size);
2834 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2835 sk_memory_allocated_add(sk, amt, &status);
2836 }
2837
2838 /* Send a FIN. The caller locks the socket for us.
2839 * We should try to send a FIN packet really hard, but eventually give up.
2840 */
2841 void tcp_send_fin(struct sock *sk)
2842 {
2843 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2844 struct tcp_sock *tp = tcp_sk(sk);
2845
2846 /* Optimization, tack on the FIN if we have one skb in write queue and
2847 * this skb was not yet sent, or we are under memory pressure.
2848 * Note: in the latter case, FIN packet will be sent after a timeout,
2849 * as TCP stack thinks it has already been transmitted.
2850 */
2851 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2852 coalesce:
2853 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2854 TCP_SKB_CB(tskb)->end_seq++;
2855 tp->write_seq++;
2856 if (!tcp_send_head(sk)) {
2857 /* This means tskb was already sent.
2858 * Pretend we included the FIN on previous transmit.
2859 * We need to set tp->snd_nxt to the value it would have
2860 * if FIN had been sent. This is because retransmit path
2861 * does not change tp->snd_nxt.
2862 */
2863 tp->snd_nxt++;
2864 return;
2865 }
2866 } else {
2867 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2868 if (unlikely(!skb)) {
2869 if (tskb)
2870 goto coalesce;
2871 return;
2872 }
2873 skb_reserve(skb, MAX_TCP_HEADER);
2874 sk_forced_mem_schedule(sk, skb->truesize);
2875 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2876 tcp_init_nondata_skb(skb, tp->write_seq,
2877 TCPHDR_ACK | TCPHDR_FIN);
2878 tcp_queue_skb(sk, skb);
2879 }
2880 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2881 }
2882
2883 /* We get here when a process closes a file descriptor (either due to
2884 * an explicit close() or as a byproduct of exit()'ing) and there
2885 * was unread data in the receive queue. This behavior is recommended
2886 * by RFC 2525, section 2.17. -DaveM
2887 */
2888 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2889 {
2890 struct sk_buff *skb;
2891
2892 /* NOTE: No TCP options attached and we never retransmit this. */
2893 skb = alloc_skb(MAX_TCP_HEADER, priority);
2894 if (!skb) {
2895 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2896 return;
2897 }
2898
2899 /* Reserve space for headers and prepare control bits. */
2900 skb_reserve(skb, MAX_TCP_HEADER);
2901 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2902 TCPHDR_ACK | TCPHDR_RST);
2903 skb_mstamp_get(&skb->skb_mstamp);
2904 /* Send it off. */
2905 if (tcp_transmit_skb(sk, skb, 0, priority))
2906 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2907
2908 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2909 }
2910
2911 /* Send a crossed SYN-ACK during socket establishment.
2912 * WARNING: This routine must only be called when we have already sent
2913 * a SYN packet that crossed the incoming SYN that caused this routine
2914 * to get called. If this assumption fails then the initial rcv_wnd
2915 * and rcv_wscale values will not be correct.
2916 */
2917 int tcp_send_synack(struct sock *sk)
2918 {
2919 struct sk_buff *skb;
2920
2921 skb = tcp_write_queue_head(sk);
2922 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2923 pr_debug("%s: wrong queue state\n", __func__);
2924 return -EFAULT;
2925 }
2926 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2927 if (skb_cloned(skb)) {
2928 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2929 if (!nskb)
2930 return -ENOMEM;
2931 tcp_unlink_write_queue(skb, sk);
2932 __skb_header_release(nskb);
2933 __tcp_add_write_queue_head(sk, nskb);
2934 sk_wmem_free_skb(sk, skb);
2935 sk->sk_wmem_queued += nskb->truesize;
2936 sk_mem_charge(sk, nskb->truesize);
2937 skb = nskb;
2938 }
2939
2940 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2941 tcp_ecn_send_synack(sk, skb);
2942 }
2943 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2944 }
2945
2946 /**
2947 * tcp_make_synack - Prepare a SYN-ACK.
2948 * sk: listener socket
2949 * dst: dst entry attached to the SYNACK
2950 * req: request_sock pointer
2951 *
2952 * Allocate one skb and build a SYNACK packet.
2953 * @dst is consumed : Caller should not use it again.
2954 */
2955 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2956 struct request_sock *req,
2957 struct tcp_fastopen_cookie *foc,
2958 bool attach_req)
2959 {
2960 struct inet_request_sock *ireq = inet_rsk(req);
2961 const struct tcp_sock *tp = tcp_sk(sk);
2962 struct tcp_md5sig_key *md5 = NULL;
2963 struct tcp_out_options opts;
2964 struct sk_buff *skb;
2965 int tcp_header_size;
2966 struct tcphdr *th;
2967 u16 user_mss;
2968 int mss;
2969
2970 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2971 if (unlikely(!skb)) {
2972 dst_release(dst);
2973 return NULL;
2974 }
2975 /* Reserve space for headers. */
2976 skb_reserve(skb, MAX_TCP_HEADER);
2977
2978 if (attach_req) {
2979 skb_set_owner_w(skb, req_to_sk(req));
2980 } else {
2981 /* sk is a const pointer, because we want to express multiple
2982 * cpu might call us concurrently.
2983 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2984 */
2985 skb_set_owner_w(skb, (struct sock *)sk);
2986 }
2987 skb_dst_set(skb, dst);
2988
2989 mss = dst_metric_advmss(dst);
2990 user_mss = READ_ONCE(tp->rx_opt.user_mss);
2991 if (user_mss && user_mss < mss)
2992 mss = user_mss;
2993
2994 memset(&opts, 0, sizeof(opts));
2995 #ifdef CONFIG_SYN_COOKIES
2996 if (unlikely(req->cookie_ts))
2997 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2998 else
2999 #endif
3000 skb_mstamp_get(&skb->skb_mstamp);
3001
3002 #ifdef CONFIG_TCP_MD5SIG
3003 rcu_read_lock();
3004 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3005 #endif
3006 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3007 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3008 sizeof(*th);
3009
3010 skb_push(skb, tcp_header_size);
3011 skb_reset_transport_header(skb);
3012
3013 th = tcp_hdr(skb);
3014 memset(th, 0, sizeof(struct tcphdr));
3015 th->syn = 1;
3016 th->ack = 1;
3017 tcp_ecn_make_synack(req, th);
3018 th->source = htons(ireq->ir_num);
3019 th->dest = ireq->ir_rmt_port;
3020 /* Setting of flags are superfluous here for callers (and ECE is
3021 * not even correctly set)
3022 */
3023 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3024 TCPHDR_SYN | TCPHDR_ACK);
3025
3026 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3027 /* XXX data is queued and acked as is. No buffer/window check */
3028 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3029
3030 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3031 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3032 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3033 th->doff = (tcp_header_size >> 2);
3034 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3035
3036 #ifdef CONFIG_TCP_MD5SIG
3037 /* Okay, we have all we need - do the md5 hash if needed */
3038 if (md5)
3039 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3040 md5, req_to_sk(req), skb);
3041 rcu_read_unlock();
3042 #endif
3043
3044 /* Do not fool tcpdump (if any), clean our debris */
3045 skb->tstamp.tv64 = 0;
3046 return skb;
3047 }
3048 EXPORT_SYMBOL(tcp_make_synack);
3049
3050 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3051 {
3052 struct inet_connection_sock *icsk = inet_csk(sk);
3053 const struct tcp_congestion_ops *ca;
3054 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3055
3056 if (ca_key == TCP_CA_UNSPEC)
3057 return;
3058
3059 rcu_read_lock();
3060 ca = tcp_ca_find_key(ca_key);
3061 if (likely(ca && try_module_get(ca->owner))) {
3062 module_put(icsk->icsk_ca_ops->owner);
3063 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3064 icsk->icsk_ca_ops = ca;
3065 }
3066 rcu_read_unlock();
3067 }
3068
3069 /* Do all connect socket setups that can be done AF independent. */
3070 static void tcp_connect_init(struct sock *sk)
3071 {
3072 const struct dst_entry *dst = __sk_dst_get(sk);
3073 struct tcp_sock *tp = tcp_sk(sk);
3074 __u8 rcv_wscale;
3075
3076 /* We'll fix this up when we get a response from the other end.
3077 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3078 */
3079 tp->tcp_header_len = sizeof(struct tcphdr) +
3080 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3081
3082 #ifdef CONFIG_TCP_MD5SIG
3083 if (tp->af_specific->md5_lookup(sk, sk))
3084 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3085 #endif
3086
3087 /* If user gave his TCP_MAXSEG, record it to clamp */
3088 if (tp->rx_opt.user_mss)
3089 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3090 tp->max_window = 0;
3091 tcp_mtup_init(sk);
3092 tcp_sync_mss(sk, dst_mtu(dst));
3093
3094 tcp_ca_dst_init(sk, dst);
3095
3096 if (!tp->window_clamp)
3097 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3098 tp->advmss = dst_metric_advmss(dst);
3099 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3100 tp->advmss = tp->rx_opt.user_mss;
3101
3102 tcp_initialize_rcv_mss(sk);
3103
3104 /* limit the window selection if the user enforce a smaller rx buffer */
3105 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3106 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3107 tp->window_clamp = tcp_full_space(sk);
3108
3109 tcp_select_initial_window(tcp_full_space(sk),
3110 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3111 &tp->rcv_wnd,
3112 &tp->window_clamp,
3113 sysctl_tcp_window_scaling,
3114 &rcv_wscale,
3115 dst_metric(dst, RTAX_INITRWND));
3116
3117 tp->rx_opt.rcv_wscale = rcv_wscale;
3118 tp->rcv_ssthresh = tp->rcv_wnd;
3119
3120 sk->sk_err = 0;
3121 sock_reset_flag(sk, SOCK_DONE);
3122 tp->snd_wnd = 0;
3123 tcp_init_wl(tp, 0);
3124 tp->snd_una = tp->write_seq;
3125 tp->snd_sml = tp->write_seq;
3126 tp->snd_up = tp->write_seq;
3127 tp->snd_nxt = tp->write_seq;
3128
3129 if (likely(!tp->repair))
3130 tp->rcv_nxt = 0;
3131 else
3132 tp->rcv_tstamp = tcp_time_stamp;
3133 tp->rcv_wup = tp->rcv_nxt;
3134 tp->copied_seq = tp->rcv_nxt;
3135
3136 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3137 inet_csk(sk)->icsk_retransmits = 0;
3138 tcp_clear_retrans(tp);
3139 }
3140
3141 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3142 {
3143 struct tcp_sock *tp = tcp_sk(sk);
3144 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3145
3146 tcb->end_seq += skb->len;
3147 __skb_header_release(skb);
3148 __tcp_add_write_queue_tail(sk, skb);
3149 sk->sk_wmem_queued += skb->truesize;
3150 sk_mem_charge(sk, skb->truesize);
3151 tp->write_seq = tcb->end_seq;
3152 tp->packets_out += tcp_skb_pcount(skb);
3153 }
3154
3155 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3156 * queue a data-only packet after the regular SYN, such that regular SYNs
3157 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3158 * only the SYN sequence, the data are retransmitted in the first ACK.
3159 * If cookie is not cached or other error occurs, falls back to send a
3160 * regular SYN with Fast Open cookie request option.
3161 */
3162 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3163 {
3164 struct tcp_sock *tp = tcp_sk(sk);
3165 struct tcp_fastopen_request *fo = tp->fastopen_req;
3166 int syn_loss = 0, space, err = 0;
3167 unsigned long last_syn_loss = 0;
3168 struct sk_buff *syn_data;
3169
3170 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3171 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3172 &syn_loss, &last_syn_loss);
3173 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3174 if (syn_loss > 1 &&
3175 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3176 fo->cookie.len = -1;
3177 goto fallback;
3178 }
3179
3180 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3181 fo->cookie.len = -1;
3182 else if (fo->cookie.len <= 0)
3183 goto fallback;
3184
3185 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3186 * user-MSS. Reserve maximum option space for middleboxes that add
3187 * private TCP options. The cost is reduced data space in SYN :(
3188 */
3189 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3190 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3191 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3192 MAX_TCP_OPTION_SPACE;
3193
3194 space = min_t(size_t, space, fo->size);
3195
3196 /* limit to order-0 allocations */
3197 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3198
3199 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3200 if (!syn_data)
3201 goto fallback;
3202 syn_data->ip_summed = CHECKSUM_PARTIAL;
3203 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3204 if (space) {
3205 int copied = copy_from_iter(skb_put(syn_data, space), space,
3206 &fo->data->msg_iter);
3207 if (unlikely(!copied)) {
3208 kfree_skb(syn_data);
3209 goto fallback;
3210 }
3211 if (copied != space) {
3212 skb_trim(syn_data, copied);
3213 space = copied;
3214 }
3215 }
3216 /* No more data pending in inet_wait_for_connect() */
3217 if (space == fo->size)
3218 fo->data = NULL;
3219 fo->copied = space;
3220
3221 tcp_connect_queue_skb(sk, syn_data);
3222
3223 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3224
3225 syn->skb_mstamp = syn_data->skb_mstamp;
3226
3227 /* Now full SYN+DATA was cloned and sent (or not),
3228 * remove the SYN from the original skb (syn_data)
3229 * we keep in write queue in case of a retransmit, as we
3230 * also have the SYN packet (with no data) in the same queue.
3231 */
3232 TCP_SKB_CB(syn_data)->seq++;
3233 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3234 if (!err) {
3235 tp->syn_data = (fo->copied > 0);
3236 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3237 goto done;
3238 }
3239
3240 fallback:
3241 /* Send a regular SYN with Fast Open cookie request option */
3242 if (fo->cookie.len > 0)
3243 fo->cookie.len = 0;
3244 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3245 if (err)
3246 tp->syn_fastopen = 0;
3247 done:
3248 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3249 return err;
3250 }
3251
3252 /* Build a SYN and send it off. */
3253 int tcp_connect(struct sock *sk)
3254 {
3255 struct tcp_sock *tp = tcp_sk(sk);
3256 struct sk_buff *buff;
3257 int err;
3258
3259 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3260 return -EHOSTUNREACH; /* Routing failure or similar. */
3261
3262 tcp_connect_init(sk);
3263
3264 if (unlikely(tp->repair)) {
3265 tcp_finish_connect(sk, NULL);
3266 return 0;
3267 }
3268
3269 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3270 if (unlikely(!buff))
3271 return -ENOBUFS;
3272
3273 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3274 tp->retrans_stamp = tcp_time_stamp;
3275 tcp_connect_queue_skb(sk, buff);
3276 tcp_ecn_send_syn(sk, buff);
3277
3278 /* Send off SYN; include data in Fast Open. */
3279 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3280 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3281 if (err == -ECONNREFUSED)
3282 return err;
3283
3284 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3285 * in order to make this packet get counted in tcpOutSegs.
3286 */
3287 tp->snd_nxt = tp->write_seq;
3288 tp->pushed_seq = tp->write_seq;
3289 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3290
3291 /* Timer for repeating the SYN until an answer. */
3292 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3293 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3294 return 0;
3295 }
3296 EXPORT_SYMBOL(tcp_connect);
3297
3298 /* Send out a delayed ack, the caller does the policy checking
3299 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3300 * for details.
3301 */
3302 void tcp_send_delayed_ack(struct sock *sk)
3303 {
3304 struct inet_connection_sock *icsk = inet_csk(sk);
3305 int ato = icsk->icsk_ack.ato;
3306 unsigned long timeout;
3307
3308 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3309
3310 if (ato > TCP_DELACK_MIN) {
3311 const struct tcp_sock *tp = tcp_sk(sk);
3312 int max_ato = HZ / 2;
3313
3314 if (icsk->icsk_ack.pingpong ||
3315 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3316 max_ato = TCP_DELACK_MAX;
3317
3318 /* Slow path, intersegment interval is "high". */
3319
3320 /* If some rtt estimate is known, use it to bound delayed ack.
3321 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3322 * directly.
3323 */
3324 if (tp->srtt_us) {
3325 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3326 TCP_DELACK_MIN);
3327
3328 if (rtt < max_ato)
3329 max_ato = rtt;
3330 }
3331
3332 ato = min(ato, max_ato);
3333 }
3334
3335 /* Stay within the limit we were given */
3336 timeout = jiffies + ato;
3337
3338 /* Use new timeout only if there wasn't a older one earlier. */
3339 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3340 /* If delack timer was blocked or is about to expire,
3341 * send ACK now.
3342 */
3343 if (icsk->icsk_ack.blocked ||
3344 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3345 tcp_send_ack(sk);
3346 return;
3347 }
3348
3349 if (!time_before(timeout, icsk->icsk_ack.timeout))
3350 timeout = icsk->icsk_ack.timeout;
3351 }
3352 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3353 icsk->icsk_ack.timeout = timeout;
3354 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3355 }
3356
3357 /* This routine sends an ack and also updates the window. */
3358 void tcp_send_ack(struct sock *sk)
3359 {
3360 struct sk_buff *buff;
3361
3362 /* If we have been reset, we may not send again. */
3363 if (sk->sk_state == TCP_CLOSE)
3364 return;
3365
3366 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3367
3368 /* We are not putting this on the write queue, so
3369 * tcp_transmit_skb() will set the ownership to this
3370 * sock.
3371 */
3372 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3373 if (!buff) {
3374 inet_csk_schedule_ack(sk);
3375 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3376 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3377 TCP_DELACK_MAX, TCP_RTO_MAX);
3378 return;
3379 }
3380
3381 /* Reserve space for headers and prepare control bits. */
3382 skb_reserve(buff, MAX_TCP_HEADER);
3383 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3384
3385 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3386 * too much.
3387 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3388 * We also avoid tcp_wfree() overhead (cache line miss accessing
3389 * tp->tsq_flags) by using regular sock_wfree()
3390 */
3391 skb_set_tcp_pure_ack(buff);
3392
3393 /* Send it off, this clears delayed acks for us. */
3394 skb_mstamp_get(&buff->skb_mstamp);
3395 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3396 }
3397 EXPORT_SYMBOL_GPL(tcp_send_ack);
3398
3399 /* This routine sends a packet with an out of date sequence
3400 * number. It assumes the other end will try to ack it.
3401 *
3402 * Question: what should we make while urgent mode?
3403 * 4.4BSD forces sending single byte of data. We cannot send
3404 * out of window data, because we have SND.NXT==SND.MAX...
3405 *
3406 * Current solution: to send TWO zero-length segments in urgent mode:
3407 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3408 * out-of-date with SND.UNA-1 to probe window.
3409 */
3410 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3411 {
3412 struct tcp_sock *tp = tcp_sk(sk);
3413 struct sk_buff *skb;
3414
3415 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3416 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3417 if (!skb)
3418 return -1;
3419
3420 /* Reserve space for headers and set control bits. */
3421 skb_reserve(skb, MAX_TCP_HEADER);
3422 /* Use a previous sequence. This should cause the other
3423 * end to send an ack. Don't queue or clone SKB, just
3424 * send it.
3425 */
3426 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3427 skb_mstamp_get(&skb->skb_mstamp);
3428 NET_INC_STATS(sock_net(sk), mib);
3429 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3430 }
3431
3432 void tcp_send_window_probe(struct sock *sk)
3433 {
3434 if (sk->sk_state == TCP_ESTABLISHED) {
3435 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3436 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3437 }
3438 }
3439
3440 /* Initiate keepalive or window probe from timer. */
3441 int tcp_write_wakeup(struct sock *sk, int mib)
3442 {
3443 struct tcp_sock *tp = tcp_sk(sk);
3444 struct sk_buff *skb;
3445
3446 if (sk->sk_state == TCP_CLOSE)
3447 return -1;
3448
3449 skb = tcp_send_head(sk);
3450 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3451 int err;
3452 unsigned int mss = tcp_current_mss(sk);
3453 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3454
3455 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3456 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3457
3458 /* We are probing the opening of a window
3459 * but the window size is != 0
3460 * must have been a result SWS avoidance ( sender )
3461 */
3462 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3463 skb->len > mss) {
3464 seg_size = min(seg_size, mss);
3465 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3466 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3467 return -1;
3468 } else if (!tcp_skb_pcount(skb))
3469 tcp_set_skb_tso_segs(skb, mss);
3470
3471 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3472 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3473 if (!err)
3474 tcp_event_new_data_sent(sk, skb);
3475 return err;
3476 } else {
3477 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3478 tcp_xmit_probe_skb(sk, 1, mib);
3479 return tcp_xmit_probe_skb(sk, 0, mib);
3480 }
3481 }
3482
3483 /* A window probe timeout has occurred. If window is not closed send
3484 * a partial packet else a zero probe.
3485 */
3486 void tcp_send_probe0(struct sock *sk)
3487 {
3488 struct inet_connection_sock *icsk = inet_csk(sk);
3489 struct tcp_sock *tp = tcp_sk(sk);
3490 unsigned long probe_max;
3491 int err;
3492
3493 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3494
3495 if (tp->packets_out || !tcp_send_head(sk)) {
3496 /* Cancel probe timer, if it is not required. */
3497 icsk->icsk_probes_out = 0;
3498 icsk->icsk_backoff = 0;
3499 return;
3500 }
3501
3502 if (err <= 0) {
3503 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3504 icsk->icsk_backoff++;
3505 icsk->icsk_probes_out++;
3506 probe_max = TCP_RTO_MAX;
3507 } else {
3508 /* If packet was not sent due to local congestion,
3509 * do not backoff and do not remember icsk_probes_out.
3510 * Let local senders to fight for local resources.
3511 *
3512 * Use accumulated backoff yet.
3513 */
3514 if (!icsk->icsk_probes_out)
3515 icsk->icsk_probes_out = 1;
3516 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3517 }
3518 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3519 tcp_probe0_when(sk, probe_max),
3520 TCP_RTO_MAX);
3521 }
3522
3523 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3524 {
3525 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3526 struct flowi fl;
3527 int res;
3528
3529 tcp_rsk(req)->txhash = net_tx_rndhash();
3530 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
3531 if (!res) {
3532 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3533 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3534 }
3535 return res;
3536 }
3537 EXPORT_SYMBOL(tcp_rtx_synack);