f67fb34e16e51ecd887e854a5f8e5a190798c0b4
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
88
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92 __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
98 {
99 return NULL;
100 }
101 #endif
102
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109 ip_hdr(skb)->saddr,
110 tcp_hdr(skb)->dest,
111 tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
118
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
125 holder.
126
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
129 */
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
135 tp->write_seq = 1;
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138 sock_hold(sktw);
139 return 1;
140 }
141
142 return 0;
143 }
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 {
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 struct inet_sock *inet = inet_sk(sk);
151 struct tcp_sock *tp = tcp_sk(sk);
152 __be16 orig_sport, orig_dport;
153 __be32 daddr, nexthop;
154 struct flowi4 *fl4;
155 struct rtable *rt;
156 int err;
157 struct ip_options_rcu *inet_opt;
158
159 if (addr_len < sizeof(struct sockaddr_in))
160 return -EINVAL;
161
162 if (usin->sin_family != AF_INET)
163 return -EAFNOSUPPORT;
164
165 nexthop = daddr = usin->sin_addr.s_addr;
166 inet_opt = rcu_dereference_protected(inet->inet_opt,
167 sock_owned_by_user(sk));
168 if (inet_opt && inet_opt->opt.srr) {
169 if (!daddr)
170 return -EINVAL;
171 nexthop = inet_opt->opt.faddr;
172 }
173
174 orig_sport = inet->inet_sport;
175 orig_dport = usin->sin_port;
176 fl4 = &inet->cork.fl.u.ip4;
177 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
178 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
179 IPPROTO_TCP,
180 orig_sport, orig_dport, sk, true);
181 if (IS_ERR(rt)) {
182 err = PTR_ERR(rt);
183 if (err == -ENETUNREACH)
184 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
185 return err;
186 }
187
188 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
189 ip_rt_put(rt);
190 return -ENETUNREACH;
191 }
192
193 if (!inet_opt || !inet_opt->opt.srr)
194 daddr = fl4->daddr;
195
196 if (!inet->inet_saddr)
197 inet->inet_saddr = fl4->saddr;
198 inet->inet_rcv_saddr = inet->inet_saddr;
199
200 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
201 /* Reset inherited state */
202 tp->rx_opt.ts_recent = 0;
203 tp->rx_opt.ts_recent_stamp = 0;
204 tp->write_seq = 0;
205 }
206
207 if (tcp_death_row.sysctl_tw_recycle &&
208 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
209 struct inet_peer *peer = rt_get_peer(rt);
210 /*
211 * VJ's idea. We save last timestamp seen from
212 * the destination in peer table, when entering state
213 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
214 * when trying new connection.
215 */
216 if (peer) {
217 inet_peer_refcheck(peer);
218 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
219 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
220 tp->rx_opt.ts_recent = peer->tcp_ts;
221 }
222 }
223 }
224
225 inet->inet_dport = usin->sin_port;
226 inet->inet_daddr = daddr;
227
228 inet_csk(sk)->icsk_ext_hdr_len = 0;
229 if (inet_opt)
230 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
231
232 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
233
234 /* Socket identity is still unknown (sport may be zero).
235 * However we set state to SYN-SENT and not releasing socket
236 * lock select source port, enter ourselves into the hash tables and
237 * complete initialization after this.
238 */
239 tcp_set_state(sk, TCP_SYN_SENT);
240 err = inet_hash_connect(&tcp_death_row, sk);
241 if (err)
242 goto failure;
243
244 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
245 inet->inet_sport, inet->inet_dport, sk);
246 if (IS_ERR(rt)) {
247 err = PTR_ERR(rt);
248 rt = NULL;
249 goto failure;
250 }
251 /* OK, now commit destination to socket. */
252 sk->sk_gso_type = SKB_GSO_TCPV4;
253 sk_setup_caps(sk, &rt->dst);
254
255 if (!tp->write_seq)
256 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
257 inet->inet_daddr,
258 inet->inet_sport,
259 usin->sin_port);
260
261 inet->inet_id = tp->write_seq ^ jiffies;
262
263 err = tcp_connect(sk);
264 rt = NULL;
265 if (err)
266 goto failure;
267
268 return 0;
269
270 failure:
271 /*
272 * This unhashes the socket and releases the local port,
273 * if necessary.
274 */
275 tcp_set_state(sk, TCP_CLOSE);
276 ip_rt_put(rt);
277 sk->sk_route_caps = 0;
278 inet->inet_dport = 0;
279 return err;
280 }
281 EXPORT_SYMBOL(tcp_v4_connect);
282
283 /*
284 * This routine does path mtu discovery as defined in RFC1191.
285 */
286 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
287 {
288 struct dst_entry *dst;
289 struct inet_sock *inet = inet_sk(sk);
290
291 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
292 * send out by Linux are always <576bytes so they should go through
293 * unfragmented).
294 */
295 if (sk->sk_state == TCP_LISTEN)
296 return;
297
298 /* We don't check in the destentry if pmtu discovery is forbidden
299 * on this route. We just assume that no packet_to_big packets
300 * are send back when pmtu discovery is not active.
301 * There is a small race when the user changes this flag in the
302 * route, but I think that's acceptable.
303 */
304 if ((dst = __sk_dst_check(sk, 0)) == NULL)
305 return;
306
307 dst->ops->update_pmtu(dst, mtu);
308
309 /* Something is about to be wrong... Remember soft error
310 * for the case, if this connection will not able to recover.
311 */
312 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
313 sk->sk_err_soft = EMSGSIZE;
314
315 mtu = dst_mtu(dst);
316
317 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
318 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
319 tcp_sync_mss(sk, mtu);
320
321 /* Resend the TCP packet because it's
322 * clear that the old packet has been
323 * dropped. This is the new "fast" path mtu
324 * discovery.
325 */
326 tcp_simple_retransmit(sk);
327 } /* else let the usual retransmit timer handle it */
328 }
329
330 /*
331 * This routine is called by the ICMP module when it gets some
332 * sort of error condition. If err < 0 then the socket should
333 * be closed and the error returned to the user. If err > 0
334 * it's just the icmp type << 8 | icmp code. After adjustment
335 * header points to the first 8 bytes of the tcp header. We need
336 * to find the appropriate port.
337 *
338 * The locking strategy used here is very "optimistic". When
339 * someone else accesses the socket the ICMP is just dropped
340 * and for some paths there is no check at all.
341 * A more general error queue to queue errors for later handling
342 * is probably better.
343 *
344 */
345
346 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
347 {
348 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
349 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
350 struct inet_connection_sock *icsk;
351 struct tcp_sock *tp;
352 struct inet_sock *inet;
353 const int type = icmp_hdr(icmp_skb)->type;
354 const int code = icmp_hdr(icmp_skb)->code;
355 struct sock *sk;
356 struct sk_buff *skb;
357 __u32 seq;
358 __u32 remaining;
359 int err;
360 struct net *net = dev_net(icmp_skb->dev);
361
362 if (icmp_skb->len < (iph->ihl << 2) + 8) {
363 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
364 return;
365 }
366
367 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
368 iph->saddr, th->source, inet_iif(icmp_skb));
369 if (!sk) {
370 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
371 return;
372 }
373 if (sk->sk_state == TCP_TIME_WAIT) {
374 inet_twsk_put(inet_twsk(sk));
375 return;
376 }
377
378 bh_lock_sock(sk);
379 /* If too many ICMPs get dropped on busy
380 * servers this needs to be solved differently.
381 */
382 if (sock_owned_by_user(sk))
383 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
384
385 if (sk->sk_state == TCP_CLOSE)
386 goto out;
387
388 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
389 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
390 goto out;
391 }
392
393 icsk = inet_csk(sk);
394 tp = tcp_sk(sk);
395 seq = ntohl(th->seq);
396 if (sk->sk_state != TCP_LISTEN &&
397 !between(seq, tp->snd_una, tp->snd_nxt)) {
398 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
399 goto out;
400 }
401
402 switch (type) {
403 case ICMP_SOURCE_QUENCH:
404 /* Just silently ignore these. */
405 goto out;
406 case ICMP_PARAMETERPROB:
407 err = EPROTO;
408 break;
409 case ICMP_DEST_UNREACH:
410 if (code > NR_ICMP_UNREACH)
411 goto out;
412
413 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
414 if (!sock_owned_by_user(sk))
415 do_pmtu_discovery(sk, iph, info);
416 goto out;
417 }
418
419 err = icmp_err_convert[code].errno;
420 /* check if icmp_skb allows revert of backoff
421 * (see draft-zimmermann-tcp-lcd) */
422 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
423 break;
424 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
425 !icsk->icsk_backoff)
426 break;
427
428 if (sock_owned_by_user(sk))
429 break;
430
431 icsk->icsk_backoff--;
432 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
433 icsk->icsk_backoff;
434 tcp_bound_rto(sk);
435
436 skb = tcp_write_queue_head(sk);
437 BUG_ON(!skb);
438
439 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
440 tcp_time_stamp - TCP_SKB_CB(skb)->when);
441
442 if (remaining) {
443 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
444 remaining, TCP_RTO_MAX);
445 } else {
446 /* RTO revert clocked out retransmission.
447 * Will retransmit now */
448 tcp_retransmit_timer(sk);
449 }
450
451 break;
452 case ICMP_TIME_EXCEEDED:
453 err = EHOSTUNREACH;
454 break;
455 default:
456 goto out;
457 }
458
459 switch (sk->sk_state) {
460 struct request_sock *req, **prev;
461 case TCP_LISTEN:
462 if (sock_owned_by_user(sk))
463 goto out;
464
465 req = inet_csk_search_req(sk, &prev, th->dest,
466 iph->daddr, iph->saddr);
467 if (!req)
468 goto out;
469
470 /* ICMPs are not backlogged, hence we cannot get
471 an established socket here.
472 */
473 WARN_ON(req->sk);
474
475 if (seq != tcp_rsk(req)->snt_isn) {
476 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
477 goto out;
478 }
479
480 /*
481 * Still in SYN_RECV, just remove it silently.
482 * There is no good way to pass the error to the newly
483 * created socket, and POSIX does not want network
484 * errors returned from accept().
485 */
486 inet_csk_reqsk_queue_drop(sk, req, prev);
487 goto out;
488
489 case TCP_SYN_SENT:
490 case TCP_SYN_RECV: /* Cannot happen.
491 It can f.e. if SYNs crossed.
492 */
493 if (!sock_owned_by_user(sk)) {
494 sk->sk_err = err;
495
496 sk->sk_error_report(sk);
497
498 tcp_done(sk);
499 } else {
500 sk->sk_err_soft = err;
501 }
502 goto out;
503 }
504
505 /* If we've already connected we will keep trying
506 * until we time out, or the user gives up.
507 *
508 * rfc1122 4.2.3.9 allows to consider as hard errors
509 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
510 * but it is obsoleted by pmtu discovery).
511 *
512 * Note, that in modern internet, where routing is unreliable
513 * and in each dark corner broken firewalls sit, sending random
514 * errors ordered by their masters even this two messages finally lose
515 * their original sense (even Linux sends invalid PORT_UNREACHs)
516 *
517 * Now we are in compliance with RFCs.
518 * --ANK (980905)
519 */
520
521 inet = inet_sk(sk);
522 if (!sock_owned_by_user(sk) && inet->recverr) {
523 sk->sk_err = err;
524 sk->sk_error_report(sk);
525 } else { /* Only an error on timeout */
526 sk->sk_err_soft = err;
527 }
528
529 out:
530 bh_unlock_sock(sk);
531 sock_put(sk);
532 }
533
534 static void __tcp_v4_send_check(struct sk_buff *skb,
535 __be32 saddr, __be32 daddr)
536 {
537 struct tcphdr *th = tcp_hdr(skb);
538
539 if (skb->ip_summed == CHECKSUM_PARTIAL) {
540 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
541 skb->csum_start = skb_transport_header(skb) - skb->head;
542 skb->csum_offset = offsetof(struct tcphdr, check);
543 } else {
544 th->check = tcp_v4_check(skb->len, saddr, daddr,
545 csum_partial(th,
546 th->doff << 2,
547 skb->csum));
548 }
549 }
550
551 /* This routine computes an IPv4 TCP checksum. */
552 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
553 {
554 struct inet_sock *inet = inet_sk(sk);
555
556 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
557 }
558 EXPORT_SYMBOL(tcp_v4_send_check);
559
560 int tcp_v4_gso_send_check(struct sk_buff *skb)
561 {
562 const struct iphdr *iph;
563 struct tcphdr *th;
564
565 if (!pskb_may_pull(skb, sizeof(*th)))
566 return -EINVAL;
567
568 iph = ip_hdr(skb);
569 th = tcp_hdr(skb);
570
571 th->check = 0;
572 skb->ip_summed = CHECKSUM_PARTIAL;
573 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
574 return 0;
575 }
576
577 /*
578 * This routine will send an RST to the other tcp.
579 *
580 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
581 * for reset.
582 * Answer: if a packet caused RST, it is not for a socket
583 * existing in our system, if it is matched to a socket,
584 * it is just duplicate segment or bug in other side's TCP.
585 * So that we build reply only basing on parameters
586 * arrived with segment.
587 * Exception: precedence violation. We do not implement it in any case.
588 */
589
590 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
591 {
592 struct tcphdr *th = tcp_hdr(skb);
593 struct {
594 struct tcphdr th;
595 #ifdef CONFIG_TCP_MD5SIG
596 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
597 #endif
598 } rep;
599 struct ip_reply_arg arg;
600 #ifdef CONFIG_TCP_MD5SIG
601 struct tcp_md5sig_key *key;
602 #endif
603 struct net *net;
604
605 /* Never send a reset in response to a reset. */
606 if (th->rst)
607 return;
608
609 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
610 return;
611
612 /* Swap the send and the receive. */
613 memset(&rep, 0, sizeof(rep));
614 rep.th.dest = th->source;
615 rep.th.source = th->dest;
616 rep.th.doff = sizeof(struct tcphdr) / 4;
617 rep.th.rst = 1;
618
619 if (th->ack) {
620 rep.th.seq = th->ack_seq;
621 } else {
622 rep.th.ack = 1;
623 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
624 skb->len - (th->doff << 2));
625 }
626
627 memset(&arg, 0, sizeof(arg));
628 arg.iov[0].iov_base = (unsigned char *)&rep;
629 arg.iov[0].iov_len = sizeof(rep.th);
630
631 #ifdef CONFIG_TCP_MD5SIG
632 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
633 if (key) {
634 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
635 (TCPOPT_NOP << 16) |
636 (TCPOPT_MD5SIG << 8) |
637 TCPOLEN_MD5SIG);
638 /* Update length and the length the header thinks exists */
639 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
640 rep.th.doff = arg.iov[0].iov_len / 4;
641
642 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
643 key, ip_hdr(skb)->saddr,
644 ip_hdr(skb)->daddr, &rep.th);
645 }
646 #endif
647 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
648 ip_hdr(skb)->saddr, /* XXX */
649 arg.iov[0].iov_len, IPPROTO_TCP, 0);
650 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
651 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
652
653 net = dev_net(skb_dst(skb)->dev);
654 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
655 &arg, arg.iov[0].iov_len);
656
657 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
658 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
659 }
660
661 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
662 outside socket context is ugly, certainly. What can I do?
663 */
664
665 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
666 u32 win, u32 ts, int oif,
667 struct tcp_md5sig_key *key,
668 int reply_flags)
669 {
670 struct tcphdr *th = tcp_hdr(skb);
671 struct {
672 struct tcphdr th;
673 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
674 #ifdef CONFIG_TCP_MD5SIG
675 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
676 #endif
677 ];
678 } rep;
679 struct ip_reply_arg arg;
680 struct net *net = dev_net(skb_dst(skb)->dev);
681
682 memset(&rep.th, 0, sizeof(struct tcphdr));
683 memset(&arg, 0, sizeof(arg));
684
685 arg.iov[0].iov_base = (unsigned char *)&rep;
686 arg.iov[0].iov_len = sizeof(rep.th);
687 if (ts) {
688 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
689 (TCPOPT_TIMESTAMP << 8) |
690 TCPOLEN_TIMESTAMP);
691 rep.opt[1] = htonl(tcp_time_stamp);
692 rep.opt[2] = htonl(ts);
693 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
694 }
695
696 /* Swap the send and the receive. */
697 rep.th.dest = th->source;
698 rep.th.source = th->dest;
699 rep.th.doff = arg.iov[0].iov_len / 4;
700 rep.th.seq = htonl(seq);
701 rep.th.ack_seq = htonl(ack);
702 rep.th.ack = 1;
703 rep.th.window = htons(win);
704
705 #ifdef CONFIG_TCP_MD5SIG
706 if (key) {
707 int offset = (ts) ? 3 : 0;
708
709 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
710 (TCPOPT_NOP << 16) |
711 (TCPOPT_MD5SIG << 8) |
712 TCPOLEN_MD5SIG);
713 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
714 rep.th.doff = arg.iov[0].iov_len/4;
715
716 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
717 key, ip_hdr(skb)->saddr,
718 ip_hdr(skb)->daddr, &rep.th);
719 }
720 #endif
721 arg.flags = reply_flags;
722 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
723 ip_hdr(skb)->saddr, /* XXX */
724 arg.iov[0].iov_len, IPPROTO_TCP, 0);
725 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
726 if (oif)
727 arg.bound_dev_if = oif;
728
729 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
730 &arg, arg.iov[0].iov_len);
731
732 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
733 }
734
735 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
736 {
737 struct inet_timewait_sock *tw = inet_twsk(sk);
738 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
739
740 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
741 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
742 tcptw->tw_ts_recent,
743 tw->tw_bound_dev_if,
744 tcp_twsk_md5_key(tcptw),
745 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
746 );
747
748 inet_twsk_put(tw);
749 }
750
751 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
752 struct request_sock *req)
753 {
754 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
755 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
756 req->ts_recent,
757 0,
758 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
759 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
760 }
761
762 /*
763 * Send a SYN-ACK after having received a SYN.
764 * This still operates on a request_sock only, not on a big
765 * socket.
766 */
767 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
768 struct request_sock *req,
769 struct request_values *rvp)
770 {
771 const struct inet_request_sock *ireq = inet_rsk(req);
772 int err = -1;
773 struct sk_buff * skb;
774
775 /* First, grab a route. */
776 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
777 return -1;
778
779 skb = tcp_make_synack(sk, dst, req, rvp);
780
781 if (skb) {
782 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
783
784 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
785 ireq->rmt_addr,
786 ireq->opt);
787 err = net_xmit_eval(err);
788 }
789
790 dst_release(dst);
791 return err;
792 }
793
794 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
795 struct request_values *rvp)
796 {
797 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
798 return tcp_v4_send_synack(sk, NULL, req, rvp);
799 }
800
801 /*
802 * IPv4 request_sock destructor.
803 */
804 static void tcp_v4_reqsk_destructor(struct request_sock *req)
805 {
806 kfree(inet_rsk(req)->opt);
807 }
808
809 static void syn_flood_warning(const struct sk_buff *skb)
810 {
811 const char *msg;
812
813 #ifdef CONFIG_SYN_COOKIES
814 if (sysctl_tcp_syncookies)
815 msg = "Sending cookies";
816 else
817 #endif
818 msg = "Dropping request";
819
820 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
821 ntohs(tcp_hdr(skb)->dest), msg);
822 }
823
824 /*
825 * Save and compile IPv4 options into the request_sock if needed.
826 */
827 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
828 struct sk_buff *skb)
829 {
830 const struct ip_options *opt = &(IPCB(skb)->opt);
831 struct ip_options_rcu *dopt = NULL;
832
833 if (opt && opt->optlen) {
834 int opt_size = sizeof(*dopt) + opt->optlen;
835
836 dopt = kmalloc(opt_size, GFP_ATOMIC);
837 if (dopt) {
838 if (ip_options_echo(&dopt->opt, skb)) {
839 kfree(dopt);
840 dopt = NULL;
841 }
842 }
843 }
844 return dopt;
845 }
846
847 #ifdef CONFIG_TCP_MD5SIG
848 /*
849 * RFC2385 MD5 checksumming requires a mapping of
850 * IP address->MD5 Key.
851 * We need to maintain these in the sk structure.
852 */
853
854 /* Find the Key structure for an address. */
855 static struct tcp_md5sig_key *
856 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 int i;
860
861 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
862 return NULL;
863 for (i = 0; i < tp->md5sig_info->entries4; i++) {
864 if (tp->md5sig_info->keys4[i].addr == addr)
865 return &tp->md5sig_info->keys4[i].base;
866 }
867 return NULL;
868 }
869
870 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
871 struct sock *addr_sk)
872 {
873 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
874 }
875 EXPORT_SYMBOL(tcp_v4_md5_lookup);
876
877 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
878 struct request_sock *req)
879 {
880 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
881 }
882
883 /* This can be called on a newly created socket, from other files */
884 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
885 u8 *newkey, u8 newkeylen)
886 {
887 /* Add Key to the list */
888 struct tcp_md5sig_key *key;
889 struct tcp_sock *tp = tcp_sk(sk);
890 struct tcp4_md5sig_key *keys;
891
892 key = tcp_v4_md5_do_lookup(sk, addr);
893 if (key) {
894 /* Pre-existing entry - just update that one. */
895 kfree(key->key);
896 key->key = newkey;
897 key->keylen = newkeylen;
898 } else {
899 struct tcp_md5sig_info *md5sig;
900
901 if (!tp->md5sig_info) {
902 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
903 GFP_ATOMIC);
904 if (!tp->md5sig_info) {
905 kfree(newkey);
906 return -ENOMEM;
907 }
908 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
909 }
910 if (tcp_alloc_md5sig_pool(sk) == NULL) {
911 kfree(newkey);
912 return -ENOMEM;
913 }
914 md5sig = tp->md5sig_info;
915
916 if (md5sig->alloced4 == md5sig->entries4) {
917 keys = kmalloc((sizeof(*keys) *
918 (md5sig->entries4 + 1)), GFP_ATOMIC);
919 if (!keys) {
920 kfree(newkey);
921 tcp_free_md5sig_pool();
922 return -ENOMEM;
923 }
924
925 if (md5sig->entries4)
926 memcpy(keys, md5sig->keys4,
927 sizeof(*keys) * md5sig->entries4);
928
929 /* Free old key list, and reference new one */
930 kfree(md5sig->keys4);
931 md5sig->keys4 = keys;
932 md5sig->alloced4++;
933 }
934 md5sig->entries4++;
935 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
936 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
937 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
938 }
939 return 0;
940 }
941 EXPORT_SYMBOL(tcp_v4_md5_do_add);
942
943 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
944 u8 *newkey, u8 newkeylen)
945 {
946 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
947 newkey, newkeylen);
948 }
949
950 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
951 {
952 struct tcp_sock *tp = tcp_sk(sk);
953 int i;
954
955 for (i = 0; i < tp->md5sig_info->entries4; i++) {
956 if (tp->md5sig_info->keys4[i].addr == addr) {
957 /* Free the key */
958 kfree(tp->md5sig_info->keys4[i].base.key);
959 tp->md5sig_info->entries4--;
960
961 if (tp->md5sig_info->entries4 == 0) {
962 kfree(tp->md5sig_info->keys4);
963 tp->md5sig_info->keys4 = NULL;
964 tp->md5sig_info->alloced4 = 0;
965 } else if (tp->md5sig_info->entries4 != i) {
966 /* Need to do some manipulation */
967 memmove(&tp->md5sig_info->keys4[i],
968 &tp->md5sig_info->keys4[i+1],
969 (tp->md5sig_info->entries4 - i) *
970 sizeof(struct tcp4_md5sig_key));
971 }
972 tcp_free_md5sig_pool();
973 return 0;
974 }
975 }
976 return -ENOENT;
977 }
978 EXPORT_SYMBOL(tcp_v4_md5_do_del);
979
980 static void tcp_v4_clear_md5_list(struct sock *sk)
981 {
982 struct tcp_sock *tp = tcp_sk(sk);
983
984 /* Free each key, then the set of key keys,
985 * the crypto element, and then decrement our
986 * hold on the last resort crypto.
987 */
988 if (tp->md5sig_info->entries4) {
989 int i;
990 for (i = 0; i < tp->md5sig_info->entries4; i++)
991 kfree(tp->md5sig_info->keys4[i].base.key);
992 tp->md5sig_info->entries4 = 0;
993 tcp_free_md5sig_pool();
994 }
995 if (tp->md5sig_info->keys4) {
996 kfree(tp->md5sig_info->keys4);
997 tp->md5sig_info->keys4 = NULL;
998 tp->md5sig_info->alloced4 = 0;
999 }
1000 }
1001
1002 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1003 int optlen)
1004 {
1005 struct tcp_md5sig cmd;
1006 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1007 u8 *newkey;
1008
1009 if (optlen < sizeof(cmd))
1010 return -EINVAL;
1011
1012 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1013 return -EFAULT;
1014
1015 if (sin->sin_family != AF_INET)
1016 return -EINVAL;
1017
1018 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1019 if (!tcp_sk(sk)->md5sig_info)
1020 return -ENOENT;
1021 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1022 }
1023
1024 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1025 return -EINVAL;
1026
1027 if (!tcp_sk(sk)->md5sig_info) {
1028 struct tcp_sock *tp = tcp_sk(sk);
1029 struct tcp_md5sig_info *p;
1030
1031 p = kzalloc(sizeof(*p), sk->sk_allocation);
1032 if (!p)
1033 return -EINVAL;
1034
1035 tp->md5sig_info = p;
1036 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1037 }
1038
1039 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1040 if (!newkey)
1041 return -ENOMEM;
1042 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1043 newkey, cmd.tcpm_keylen);
1044 }
1045
1046 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1047 __be32 daddr, __be32 saddr, int nbytes)
1048 {
1049 struct tcp4_pseudohdr *bp;
1050 struct scatterlist sg;
1051
1052 bp = &hp->md5_blk.ip4;
1053
1054 /*
1055 * 1. the TCP pseudo-header (in the order: source IP address,
1056 * destination IP address, zero-padded protocol number, and
1057 * segment length)
1058 */
1059 bp->saddr = saddr;
1060 bp->daddr = daddr;
1061 bp->pad = 0;
1062 bp->protocol = IPPROTO_TCP;
1063 bp->len = cpu_to_be16(nbytes);
1064
1065 sg_init_one(&sg, bp, sizeof(*bp));
1066 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1067 }
1068
1069 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1070 __be32 daddr, __be32 saddr, struct tcphdr *th)
1071 {
1072 struct tcp_md5sig_pool *hp;
1073 struct hash_desc *desc;
1074
1075 hp = tcp_get_md5sig_pool();
1076 if (!hp)
1077 goto clear_hash_noput;
1078 desc = &hp->md5_desc;
1079
1080 if (crypto_hash_init(desc))
1081 goto clear_hash;
1082 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1083 goto clear_hash;
1084 if (tcp_md5_hash_header(hp, th))
1085 goto clear_hash;
1086 if (tcp_md5_hash_key(hp, key))
1087 goto clear_hash;
1088 if (crypto_hash_final(desc, md5_hash))
1089 goto clear_hash;
1090
1091 tcp_put_md5sig_pool();
1092 return 0;
1093
1094 clear_hash:
1095 tcp_put_md5sig_pool();
1096 clear_hash_noput:
1097 memset(md5_hash, 0, 16);
1098 return 1;
1099 }
1100
1101 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1102 struct sock *sk, struct request_sock *req,
1103 struct sk_buff *skb)
1104 {
1105 struct tcp_md5sig_pool *hp;
1106 struct hash_desc *desc;
1107 struct tcphdr *th = tcp_hdr(skb);
1108 __be32 saddr, daddr;
1109
1110 if (sk) {
1111 saddr = inet_sk(sk)->inet_saddr;
1112 daddr = inet_sk(sk)->inet_daddr;
1113 } else if (req) {
1114 saddr = inet_rsk(req)->loc_addr;
1115 daddr = inet_rsk(req)->rmt_addr;
1116 } else {
1117 const struct iphdr *iph = ip_hdr(skb);
1118 saddr = iph->saddr;
1119 daddr = iph->daddr;
1120 }
1121
1122 hp = tcp_get_md5sig_pool();
1123 if (!hp)
1124 goto clear_hash_noput;
1125 desc = &hp->md5_desc;
1126
1127 if (crypto_hash_init(desc))
1128 goto clear_hash;
1129
1130 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1131 goto clear_hash;
1132 if (tcp_md5_hash_header(hp, th))
1133 goto clear_hash;
1134 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1135 goto clear_hash;
1136 if (tcp_md5_hash_key(hp, key))
1137 goto clear_hash;
1138 if (crypto_hash_final(desc, md5_hash))
1139 goto clear_hash;
1140
1141 tcp_put_md5sig_pool();
1142 return 0;
1143
1144 clear_hash:
1145 tcp_put_md5sig_pool();
1146 clear_hash_noput:
1147 memset(md5_hash, 0, 16);
1148 return 1;
1149 }
1150 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1151
1152 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1153 {
1154 /*
1155 * This gets called for each TCP segment that arrives
1156 * so we want to be efficient.
1157 * We have 3 drop cases:
1158 * o No MD5 hash and one expected.
1159 * o MD5 hash and we're not expecting one.
1160 * o MD5 hash and its wrong.
1161 */
1162 __u8 *hash_location = NULL;
1163 struct tcp_md5sig_key *hash_expected;
1164 const struct iphdr *iph = ip_hdr(skb);
1165 struct tcphdr *th = tcp_hdr(skb);
1166 int genhash;
1167 unsigned char newhash[16];
1168
1169 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1170 hash_location = tcp_parse_md5sig_option(th);
1171
1172 /* We've parsed the options - do we have a hash? */
1173 if (!hash_expected && !hash_location)
1174 return 0;
1175
1176 if (hash_expected && !hash_location) {
1177 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1178 return 1;
1179 }
1180
1181 if (!hash_expected && hash_location) {
1182 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1183 return 1;
1184 }
1185
1186 /* Okay, so this is hash_expected and hash_location -
1187 * so we need to calculate the checksum.
1188 */
1189 genhash = tcp_v4_md5_hash_skb(newhash,
1190 hash_expected,
1191 NULL, NULL, skb);
1192
1193 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1194 if (net_ratelimit()) {
1195 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1196 &iph->saddr, ntohs(th->source),
1197 &iph->daddr, ntohs(th->dest),
1198 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1199 }
1200 return 1;
1201 }
1202 return 0;
1203 }
1204
1205 #endif
1206
1207 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1208 .family = PF_INET,
1209 .obj_size = sizeof(struct tcp_request_sock),
1210 .rtx_syn_ack = tcp_v4_rtx_synack,
1211 .send_ack = tcp_v4_reqsk_send_ack,
1212 .destructor = tcp_v4_reqsk_destructor,
1213 .send_reset = tcp_v4_send_reset,
1214 .syn_ack_timeout = tcp_syn_ack_timeout,
1215 };
1216
1217 #ifdef CONFIG_TCP_MD5SIG
1218 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1219 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1220 .calc_md5_hash = tcp_v4_md5_hash_skb,
1221 };
1222 #endif
1223
1224 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1225 {
1226 struct tcp_extend_values tmp_ext;
1227 struct tcp_options_received tmp_opt;
1228 u8 *hash_location;
1229 struct request_sock *req;
1230 struct inet_request_sock *ireq;
1231 struct tcp_sock *tp = tcp_sk(sk);
1232 struct dst_entry *dst = NULL;
1233 __be32 saddr = ip_hdr(skb)->saddr;
1234 __be32 daddr = ip_hdr(skb)->daddr;
1235 __u32 isn = TCP_SKB_CB(skb)->when;
1236 #ifdef CONFIG_SYN_COOKIES
1237 int want_cookie = 0;
1238 #else
1239 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1240 #endif
1241
1242 /* Never answer to SYNs send to broadcast or multicast */
1243 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1244 goto drop;
1245
1246 /* TW buckets are converted to open requests without
1247 * limitations, they conserve resources and peer is
1248 * evidently real one.
1249 */
1250 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1251 if (net_ratelimit())
1252 syn_flood_warning(skb);
1253 #ifdef CONFIG_SYN_COOKIES
1254 if (sysctl_tcp_syncookies) {
1255 want_cookie = 1;
1256 } else
1257 #endif
1258 goto drop;
1259 }
1260
1261 /* Accept backlog is full. If we have already queued enough
1262 * of warm entries in syn queue, drop request. It is better than
1263 * clogging syn queue with openreqs with exponentially increasing
1264 * timeout.
1265 */
1266 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1267 goto drop;
1268
1269 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1270 if (!req)
1271 goto drop;
1272
1273 #ifdef CONFIG_TCP_MD5SIG
1274 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1275 #endif
1276
1277 tcp_clear_options(&tmp_opt);
1278 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1279 tmp_opt.user_mss = tp->rx_opt.user_mss;
1280 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1281
1282 if (tmp_opt.cookie_plus > 0 &&
1283 tmp_opt.saw_tstamp &&
1284 !tp->rx_opt.cookie_out_never &&
1285 (sysctl_tcp_cookie_size > 0 ||
1286 (tp->cookie_values != NULL &&
1287 tp->cookie_values->cookie_desired > 0))) {
1288 u8 *c;
1289 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1290 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1291
1292 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1293 goto drop_and_release;
1294
1295 /* Secret recipe starts with IP addresses */
1296 *mess++ ^= (__force u32)daddr;
1297 *mess++ ^= (__force u32)saddr;
1298
1299 /* plus variable length Initiator Cookie */
1300 c = (u8 *)mess;
1301 while (l-- > 0)
1302 *c++ ^= *hash_location++;
1303
1304 #ifdef CONFIG_SYN_COOKIES
1305 want_cookie = 0; /* not our kind of cookie */
1306 #endif
1307 tmp_ext.cookie_out_never = 0; /* false */
1308 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1309 } else if (!tp->rx_opt.cookie_in_always) {
1310 /* redundant indications, but ensure initialization. */
1311 tmp_ext.cookie_out_never = 1; /* true */
1312 tmp_ext.cookie_plus = 0;
1313 } else {
1314 goto drop_and_release;
1315 }
1316 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1317
1318 if (want_cookie && !tmp_opt.saw_tstamp)
1319 tcp_clear_options(&tmp_opt);
1320
1321 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1322 tcp_openreq_init(req, &tmp_opt, skb);
1323
1324 ireq = inet_rsk(req);
1325 ireq->loc_addr = daddr;
1326 ireq->rmt_addr = saddr;
1327 ireq->no_srccheck = inet_sk(sk)->transparent;
1328 ireq->opt = tcp_v4_save_options(sk, skb);
1329
1330 if (security_inet_conn_request(sk, skb, req))
1331 goto drop_and_free;
1332
1333 if (!want_cookie || tmp_opt.tstamp_ok)
1334 TCP_ECN_create_request(req, tcp_hdr(skb));
1335
1336 if (want_cookie) {
1337 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1338 req->cookie_ts = tmp_opt.tstamp_ok;
1339 } else if (!isn) {
1340 struct inet_peer *peer = NULL;
1341
1342 /* VJ's idea. We save last timestamp seen
1343 * from the destination in peer table, when entering
1344 * state TIME-WAIT, and check against it before
1345 * accepting new connection request.
1346 *
1347 * If "isn" is not zero, this request hit alive
1348 * timewait bucket, so that all the necessary checks
1349 * are made in the function processing timewait state.
1350 */
1351 if (tmp_opt.saw_tstamp &&
1352 tcp_death_row.sysctl_tw_recycle &&
1353 (dst = inet_csk_route_req(sk, req)) != NULL &&
1354 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1355 peer->daddr.addr.a4 == saddr) {
1356 inet_peer_refcheck(peer);
1357 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1358 (s32)(peer->tcp_ts - req->ts_recent) >
1359 TCP_PAWS_WINDOW) {
1360 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1361 goto drop_and_release;
1362 }
1363 }
1364 /* Kill the following clause, if you dislike this way. */
1365 else if (!sysctl_tcp_syncookies &&
1366 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1367 (sysctl_max_syn_backlog >> 2)) &&
1368 (!peer || !peer->tcp_ts_stamp) &&
1369 (!dst || !dst_metric(dst, RTAX_RTT))) {
1370 /* Without syncookies last quarter of
1371 * backlog is filled with destinations,
1372 * proven to be alive.
1373 * It means that we continue to communicate
1374 * to destinations, already remembered
1375 * to the moment of synflood.
1376 */
1377 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1378 &saddr, ntohs(tcp_hdr(skb)->source));
1379 goto drop_and_release;
1380 }
1381
1382 isn = tcp_v4_init_sequence(skb);
1383 }
1384 tcp_rsk(req)->snt_isn = isn;
1385
1386 if (tcp_v4_send_synack(sk, dst, req,
1387 (struct request_values *)&tmp_ext) ||
1388 want_cookie)
1389 goto drop_and_free;
1390
1391 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1392 return 0;
1393
1394 drop_and_release:
1395 dst_release(dst);
1396 drop_and_free:
1397 reqsk_free(req);
1398 drop:
1399 return 0;
1400 }
1401 EXPORT_SYMBOL(tcp_v4_conn_request);
1402
1403
1404 /*
1405 * The three way handshake has completed - we got a valid synack -
1406 * now create the new socket.
1407 */
1408 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1409 struct request_sock *req,
1410 struct dst_entry *dst)
1411 {
1412 struct inet_request_sock *ireq;
1413 struct inet_sock *newinet;
1414 struct tcp_sock *newtp;
1415 struct sock *newsk;
1416 #ifdef CONFIG_TCP_MD5SIG
1417 struct tcp_md5sig_key *key;
1418 #endif
1419 struct ip_options_rcu *inet_opt;
1420
1421 if (sk_acceptq_is_full(sk))
1422 goto exit_overflow;
1423
1424 newsk = tcp_create_openreq_child(sk, req, skb);
1425 if (!newsk)
1426 goto exit_nonewsk;
1427
1428 newsk->sk_gso_type = SKB_GSO_TCPV4;
1429
1430 newtp = tcp_sk(newsk);
1431 newinet = inet_sk(newsk);
1432 ireq = inet_rsk(req);
1433 newinet->inet_daddr = ireq->rmt_addr;
1434 newinet->inet_rcv_saddr = ireq->loc_addr;
1435 newinet->inet_saddr = ireq->loc_addr;
1436 inet_opt = ireq->opt;
1437 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1438 ireq->opt = NULL;
1439 newinet->mc_index = inet_iif(skb);
1440 newinet->mc_ttl = ip_hdr(skb)->ttl;
1441 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1442 if (inet_opt)
1443 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1444 newinet->inet_id = newtp->write_seq ^ jiffies;
1445
1446 if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1447 goto put_and_exit;
1448
1449 sk_setup_caps(newsk, dst);
1450
1451 tcp_mtup_init(newsk);
1452 tcp_sync_mss(newsk, dst_mtu(dst));
1453 newtp->advmss = dst_metric_advmss(dst);
1454 if (tcp_sk(sk)->rx_opt.user_mss &&
1455 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1456 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1457
1458 tcp_initialize_rcv_mss(newsk);
1459
1460 #ifdef CONFIG_TCP_MD5SIG
1461 /* Copy over the MD5 key from the original socket */
1462 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1463 if (key != NULL) {
1464 /*
1465 * We're using one, so create a matching key
1466 * on the newsk structure. If we fail to get
1467 * memory, then we end up not copying the key
1468 * across. Shucks.
1469 */
1470 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1471 if (newkey != NULL)
1472 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1473 newkey, key->keylen);
1474 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1475 }
1476 #endif
1477
1478 if (__inet_inherit_port(sk, newsk) < 0)
1479 goto put_and_exit;
1480 __inet_hash_nolisten(newsk, NULL);
1481
1482 return newsk;
1483
1484 exit_overflow:
1485 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1486 exit_nonewsk:
1487 dst_release(dst);
1488 exit:
1489 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1490 return NULL;
1491 put_and_exit:
1492 sock_put(newsk);
1493 goto exit;
1494 }
1495 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1496
1497 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1498 {
1499 struct tcphdr *th = tcp_hdr(skb);
1500 const struct iphdr *iph = ip_hdr(skb);
1501 struct sock *nsk;
1502 struct request_sock **prev;
1503 /* Find possible connection requests. */
1504 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1505 iph->saddr, iph->daddr);
1506 if (req)
1507 return tcp_check_req(sk, skb, req, prev);
1508
1509 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1510 th->source, iph->daddr, th->dest, inet_iif(skb));
1511
1512 if (nsk) {
1513 if (nsk->sk_state != TCP_TIME_WAIT) {
1514 bh_lock_sock(nsk);
1515 return nsk;
1516 }
1517 inet_twsk_put(inet_twsk(nsk));
1518 return NULL;
1519 }
1520
1521 #ifdef CONFIG_SYN_COOKIES
1522 if (!th->syn)
1523 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1524 #endif
1525 return sk;
1526 }
1527
1528 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1529 {
1530 const struct iphdr *iph = ip_hdr(skb);
1531
1532 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1533 if (!tcp_v4_check(skb->len, iph->saddr,
1534 iph->daddr, skb->csum)) {
1535 skb->ip_summed = CHECKSUM_UNNECESSARY;
1536 return 0;
1537 }
1538 }
1539
1540 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1541 skb->len, IPPROTO_TCP, 0);
1542
1543 if (skb->len <= 76) {
1544 return __skb_checksum_complete(skb);
1545 }
1546 return 0;
1547 }
1548
1549
1550 /* The socket must have it's spinlock held when we get
1551 * here.
1552 *
1553 * We have a potential double-lock case here, so even when
1554 * doing backlog processing we use the BH locking scheme.
1555 * This is because we cannot sleep with the original spinlock
1556 * held.
1557 */
1558 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1559 {
1560 struct sock *rsk;
1561 #ifdef CONFIG_TCP_MD5SIG
1562 /*
1563 * We really want to reject the packet as early as possible
1564 * if:
1565 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1566 * o There is an MD5 option and we're not expecting one
1567 */
1568 if (tcp_v4_inbound_md5_hash(sk, skb))
1569 goto discard;
1570 #endif
1571
1572 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1573 sock_rps_save_rxhash(sk, skb->rxhash);
1574 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1575 rsk = sk;
1576 goto reset;
1577 }
1578 return 0;
1579 }
1580
1581 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1582 goto csum_err;
1583
1584 if (sk->sk_state == TCP_LISTEN) {
1585 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1586 if (!nsk)
1587 goto discard;
1588
1589 if (nsk != sk) {
1590 if (tcp_child_process(sk, nsk, skb)) {
1591 rsk = nsk;
1592 goto reset;
1593 }
1594 return 0;
1595 }
1596 } else
1597 sock_rps_save_rxhash(sk, skb->rxhash);
1598
1599 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1600 rsk = sk;
1601 goto reset;
1602 }
1603 return 0;
1604
1605 reset:
1606 tcp_v4_send_reset(rsk, skb);
1607 discard:
1608 kfree_skb(skb);
1609 /* Be careful here. If this function gets more complicated and
1610 * gcc suffers from register pressure on the x86, sk (in %ebx)
1611 * might be destroyed here. This current version compiles correctly,
1612 * but you have been warned.
1613 */
1614 return 0;
1615
1616 csum_err:
1617 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1618 goto discard;
1619 }
1620 EXPORT_SYMBOL(tcp_v4_do_rcv);
1621
1622 /*
1623 * From tcp_input.c
1624 */
1625
1626 int tcp_v4_rcv(struct sk_buff *skb)
1627 {
1628 const struct iphdr *iph;
1629 struct tcphdr *th;
1630 struct sock *sk;
1631 int ret;
1632 struct net *net = dev_net(skb->dev);
1633
1634 if (skb->pkt_type != PACKET_HOST)
1635 goto discard_it;
1636
1637 /* Count it even if it's bad */
1638 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1639
1640 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1641 goto discard_it;
1642
1643 th = tcp_hdr(skb);
1644
1645 if (th->doff < sizeof(struct tcphdr) / 4)
1646 goto bad_packet;
1647 if (!pskb_may_pull(skb, th->doff * 4))
1648 goto discard_it;
1649
1650 /* An explanation is required here, I think.
1651 * Packet length and doff are validated by header prediction,
1652 * provided case of th->doff==0 is eliminated.
1653 * So, we defer the checks. */
1654 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1655 goto bad_packet;
1656
1657 th = tcp_hdr(skb);
1658 iph = ip_hdr(skb);
1659 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1660 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1661 skb->len - th->doff * 4);
1662 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1663 TCP_SKB_CB(skb)->when = 0;
1664 TCP_SKB_CB(skb)->flags = iph->tos;
1665 TCP_SKB_CB(skb)->sacked = 0;
1666
1667 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1668 if (!sk)
1669 goto no_tcp_socket;
1670
1671 process:
1672 if (sk->sk_state == TCP_TIME_WAIT)
1673 goto do_time_wait;
1674
1675 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1676 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1677 goto discard_and_relse;
1678 }
1679
1680 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1681 goto discard_and_relse;
1682 nf_reset(skb);
1683
1684 if (sk_filter(sk, skb))
1685 goto discard_and_relse;
1686
1687 skb->dev = NULL;
1688
1689 bh_lock_sock_nested(sk);
1690 ret = 0;
1691 if (!sock_owned_by_user(sk)) {
1692 #ifdef CONFIG_NET_DMA
1693 struct tcp_sock *tp = tcp_sk(sk);
1694 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1695 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1696 if (tp->ucopy.dma_chan)
1697 ret = tcp_v4_do_rcv(sk, skb);
1698 else
1699 #endif
1700 {
1701 if (!tcp_prequeue(sk, skb))
1702 ret = tcp_v4_do_rcv(sk, skb);
1703 }
1704 } else if (unlikely(sk_add_backlog(sk, skb))) {
1705 bh_unlock_sock(sk);
1706 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1707 goto discard_and_relse;
1708 }
1709 bh_unlock_sock(sk);
1710
1711 sock_put(sk);
1712
1713 return ret;
1714
1715 no_tcp_socket:
1716 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1717 goto discard_it;
1718
1719 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1720 bad_packet:
1721 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1722 } else {
1723 tcp_v4_send_reset(NULL, skb);
1724 }
1725
1726 discard_it:
1727 /* Discard frame. */
1728 kfree_skb(skb);
1729 return 0;
1730
1731 discard_and_relse:
1732 sock_put(sk);
1733 goto discard_it;
1734
1735 do_time_wait:
1736 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1737 inet_twsk_put(inet_twsk(sk));
1738 goto discard_it;
1739 }
1740
1741 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1742 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1743 inet_twsk_put(inet_twsk(sk));
1744 goto discard_it;
1745 }
1746 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1747 case TCP_TW_SYN: {
1748 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1749 &tcp_hashinfo,
1750 iph->daddr, th->dest,
1751 inet_iif(skb));
1752 if (sk2) {
1753 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1754 inet_twsk_put(inet_twsk(sk));
1755 sk = sk2;
1756 goto process;
1757 }
1758 /* Fall through to ACK */
1759 }
1760 case TCP_TW_ACK:
1761 tcp_v4_timewait_ack(sk, skb);
1762 break;
1763 case TCP_TW_RST:
1764 goto no_tcp_socket;
1765 case TCP_TW_SUCCESS:;
1766 }
1767 goto discard_it;
1768 }
1769
1770 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1771 {
1772 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1773 struct inet_sock *inet = inet_sk(sk);
1774 struct inet_peer *peer;
1775
1776 if (!rt ||
1777 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1778 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1779 *release_it = true;
1780 } else {
1781 if (!rt->peer)
1782 rt_bind_peer(rt, 1);
1783 peer = rt->peer;
1784 *release_it = false;
1785 }
1786
1787 return peer;
1788 }
1789 EXPORT_SYMBOL(tcp_v4_get_peer);
1790
1791 void *tcp_v4_tw_get_peer(struct sock *sk)
1792 {
1793 struct inet_timewait_sock *tw = inet_twsk(sk);
1794
1795 return inet_getpeer_v4(tw->tw_daddr, 1);
1796 }
1797 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1798
1799 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1800 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1801 .twsk_unique = tcp_twsk_unique,
1802 .twsk_destructor= tcp_twsk_destructor,
1803 .twsk_getpeer = tcp_v4_tw_get_peer,
1804 };
1805
1806 const struct inet_connection_sock_af_ops ipv4_specific = {
1807 .queue_xmit = ip_queue_xmit,
1808 .send_check = tcp_v4_send_check,
1809 .rebuild_header = inet_sk_rebuild_header,
1810 .conn_request = tcp_v4_conn_request,
1811 .syn_recv_sock = tcp_v4_syn_recv_sock,
1812 .get_peer = tcp_v4_get_peer,
1813 .net_header_len = sizeof(struct iphdr),
1814 .setsockopt = ip_setsockopt,
1815 .getsockopt = ip_getsockopt,
1816 .addr2sockaddr = inet_csk_addr2sockaddr,
1817 .sockaddr_len = sizeof(struct sockaddr_in),
1818 .bind_conflict = inet_csk_bind_conflict,
1819 #ifdef CONFIG_COMPAT
1820 .compat_setsockopt = compat_ip_setsockopt,
1821 .compat_getsockopt = compat_ip_getsockopt,
1822 #endif
1823 };
1824 EXPORT_SYMBOL(ipv4_specific);
1825
1826 #ifdef CONFIG_TCP_MD5SIG
1827 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1828 .md5_lookup = tcp_v4_md5_lookup,
1829 .calc_md5_hash = tcp_v4_md5_hash_skb,
1830 .md5_add = tcp_v4_md5_add_func,
1831 .md5_parse = tcp_v4_parse_md5_keys,
1832 };
1833 #endif
1834
1835 /* NOTE: A lot of things set to zero explicitly by call to
1836 * sk_alloc() so need not be done here.
1837 */
1838 static int tcp_v4_init_sock(struct sock *sk)
1839 {
1840 struct inet_connection_sock *icsk = inet_csk(sk);
1841 struct tcp_sock *tp = tcp_sk(sk);
1842
1843 skb_queue_head_init(&tp->out_of_order_queue);
1844 tcp_init_xmit_timers(sk);
1845 tcp_prequeue_init(tp);
1846
1847 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1848 tp->mdev = TCP_TIMEOUT_INIT;
1849
1850 /* So many TCP implementations out there (incorrectly) count the
1851 * initial SYN frame in their delayed-ACK and congestion control
1852 * algorithms that we must have the following bandaid to talk
1853 * efficiently to them. -DaveM
1854 */
1855 tp->snd_cwnd = 2;
1856
1857 /* See draft-stevens-tcpca-spec-01 for discussion of the
1858 * initialization of these values.
1859 */
1860 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1861 tp->snd_cwnd_clamp = ~0;
1862 tp->mss_cache = TCP_MSS_DEFAULT;
1863
1864 tp->reordering = sysctl_tcp_reordering;
1865 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1866
1867 sk->sk_state = TCP_CLOSE;
1868
1869 sk->sk_write_space = sk_stream_write_space;
1870 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1871
1872 icsk->icsk_af_ops = &ipv4_specific;
1873 icsk->icsk_sync_mss = tcp_sync_mss;
1874 #ifdef CONFIG_TCP_MD5SIG
1875 tp->af_specific = &tcp_sock_ipv4_specific;
1876 #endif
1877
1878 /* TCP Cookie Transactions */
1879 if (sysctl_tcp_cookie_size > 0) {
1880 /* Default, cookies without s_data_payload. */
1881 tp->cookie_values =
1882 kzalloc(sizeof(*tp->cookie_values),
1883 sk->sk_allocation);
1884 if (tp->cookie_values != NULL)
1885 kref_init(&tp->cookie_values->kref);
1886 }
1887 /* Presumed zeroed, in order of appearance:
1888 * cookie_in_always, cookie_out_never,
1889 * s_data_constant, s_data_in, s_data_out
1890 */
1891 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1892 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1893
1894 local_bh_disable();
1895 percpu_counter_inc(&tcp_sockets_allocated);
1896 local_bh_enable();
1897
1898 return 0;
1899 }
1900
1901 void tcp_v4_destroy_sock(struct sock *sk)
1902 {
1903 struct tcp_sock *tp = tcp_sk(sk);
1904
1905 tcp_clear_xmit_timers(sk);
1906
1907 tcp_cleanup_congestion_control(sk);
1908
1909 /* Cleanup up the write buffer. */
1910 tcp_write_queue_purge(sk);
1911
1912 /* Cleans up our, hopefully empty, out_of_order_queue. */
1913 __skb_queue_purge(&tp->out_of_order_queue);
1914
1915 #ifdef CONFIG_TCP_MD5SIG
1916 /* Clean up the MD5 key list, if any */
1917 if (tp->md5sig_info) {
1918 tcp_v4_clear_md5_list(sk);
1919 kfree(tp->md5sig_info);
1920 tp->md5sig_info = NULL;
1921 }
1922 #endif
1923
1924 #ifdef CONFIG_NET_DMA
1925 /* Cleans up our sk_async_wait_queue */
1926 __skb_queue_purge(&sk->sk_async_wait_queue);
1927 #endif
1928
1929 /* Clean prequeue, it must be empty really */
1930 __skb_queue_purge(&tp->ucopy.prequeue);
1931
1932 /* Clean up a referenced TCP bind bucket. */
1933 if (inet_csk(sk)->icsk_bind_hash)
1934 inet_put_port(sk);
1935
1936 /*
1937 * If sendmsg cached page exists, toss it.
1938 */
1939 if (sk->sk_sndmsg_page) {
1940 __free_page(sk->sk_sndmsg_page);
1941 sk->sk_sndmsg_page = NULL;
1942 }
1943
1944 /* TCP Cookie Transactions */
1945 if (tp->cookie_values != NULL) {
1946 kref_put(&tp->cookie_values->kref,
1947 tcp_cookie_values_release);
1948 tp->cookie_values = NULL;
1949 }
1950
1951 percpu_counter_dec(&tcp_sockets_allocated);
1952 }
1953 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1954
1955 #ifdef CONFIG_PROC_FS
1956 /* Proc filesystem TCP sock list dumping. */
1957
1958 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1959 {
1960 return hlist_nulls_empty(head) ? NULL :
1961 list_entry(head->first, struct inet_timewait_sock, tw_node);
1962 }
1963
1964 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1965 {
1966 return !is_a_nulls(tw->tw_node.next) ?
1967 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1968 }
1969
1970 /*
1971 * Get next listener socket follow cur. If cur is NULL, get first socket
1972 * starting from bucket given in st->bucket; when st->bucket is zero the
1973 * very first socket in the hash table is returned.
1974 */
1975 static void *listening_get_next(struct seq_file *seq, void *cur)
1976 {
1977 struct inet_connection_sock *icsk;
1978 struct hlist_nulls_node *node;
1979 struct sock *sk = cur;
1980 struct inet_listen_hashbucket *ilb;
1981 struct tcp_iter_state *st = seq->private;
1982 struct net *net = seq_file_net(seq);
1983
1984 if (!sk) {
1985 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1986 spin_lock_bh(&ilb->lock);
1987 sk = sk_nulls_head(&ilb->head);
1988 st->offset = 0;
1989 goto get_sk;
1990 }
1991 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992 ++st->num;
1993 ++st->offset;
1994
1995 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1996 struct request_sock *req = cur;
1997
1998 icsk = inet_csk(st->syn_wait_sk);
1999 req = req->dl_next;
2000 while (1) {
2001 while (req) {
2002 if (req->rsk_ops->family == st->family) {
2003 cur = req;
2004 goto out;
2005 }
2006 req = req->dl_next;
2007 }
2008 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2009 break;
2010 get_req:
2011 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2012 }
2013 sk = sk_nulls_next(st->syn_wait_sk);
2014 st->state = TCP_SEQ_STATE_LISTENING;
2015 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2016 } else {
2017 icsk = inet_csk(sk);
2018 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2019 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2020 goto start_req;
2021 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022 sk = sk_nulls_next(sk);
2023 }
2024 get_sk:
2025 sk_nulls_for_each_from(sk, node) {
2026 if (!net_eq(sock_net(sk), net))
2027 continue;
2028 if (sk->sk_family == st->family) {
2029 cur = sk;
2030 goto out;
2031 }
2032 icsk = inet_csk(sk);
2033 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2034 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2035 start_req:
2036 st->uid = sock_i_uid(sk);
2037 st->syn_wait_sk = sk;
2038 st->state = TCP_SEQ_STATE_OPENREQ;
2039 st->sbucket = 0;
2040 goto get_req;
2041 }
2042 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2043 }
2044 spin_unlock_bh(&ilb->lock);
2045 st->offset = 0;
2046 if (++st->bucket < INET_LHTABLE_SIZE) {
2047 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2048 spin_lock_bh(&ilb->lock);
2049 sk = sk_nulls_head(&ilb->head);
2050 goto get_sk;
2051 }
2052 cur = NULL;
2053 out:
2054 return cur;
2055 }
2056
2057 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2058 {
2059 struct tcp_iter_state *st = seq->private;
2060 void *rc;
2061
2062 st->bucket = 0;
2063 st->offset = 0;
2064 rc = listening_get_next(seq, NULL);
2065
2066 while (rc && *pos) {
2067 rc = listening_get_next(seq, rc);
2068 --*pos;
2069 }
2070 return rc;
2071 }
2072
2073 static inline int empty_bucket(struct tcp_iter_state *st)
2074 {
2075 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2076 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2077 }
2078
2079 /*
2080 * Get first established socket starting from bucket given in st->bucket.
2081 * If st->bucket is zero, the very first socket in the hash is returned.
2082 */
2083 static void *established_get_first(struct seq_file *seq)
2084 {
2085 struct tcp_iter_state *st = seq->private;
2086 struct net *net = seq_file_net(seq);
2087 void *rc = NULL;
2088
2089 st->offset = 0;
2090 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2091 struct sock *sk;
2092 struct hlist_nulls_node *node;
2093 struct inet_timewait_sock *tw;
2094 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2095
2096 /* Lockless fast path for the common case of empty buckets */
2097 if (empty_bucket(st))
2098 continue;
2099
2100 spin_lock_bh(lock);
2101 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2102 if (sk->sk_family != st->family ||
2103 !net_eq(sock_net(sk), net)) {
2104 continue;
2105 }
2106 rc = sk;
2107 goto out;
2108 }
2109 st->state = TCP_SEQ_STATE_TIME_WAIT;
2110 inet_twsk_for_each(tw, node,
2111 &tcp_hashinfo.ehash[st->bucket].twchain) {
2112 if (tw->tw_family != st->family ||
2113 !net_eq(twsk_net(tw), net)) {
2114 continue;
2115 }
2116 rc = tw;
2117 goto out;
2118 }
2119 spin_unlock_bh(lock);
2120 st->state = TCP_SEQ_STATE_ESTABLISHED;
2121 }
2122 out:
2123 return rc;
2124 }
2125
2126 static void *established_get_next(struct seq_file *seq, void *cur)
2127 {
2128 struct sock *sk = cur;
2129 struct inet_timewait_sock *tw;
2130 struct hlist_nulls_node *node;
2131 struct tcp_iter_state *st = seq->private;
2132 struct net *net = seq_file_net(seq);
2133
2134 ++st->num;
2135 ++st->offset;
2136
2137 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2138 tw = cur;
2139 tw = tw_next(tw);
2140 get_tw:
2141 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2142 tw = tw_next(tw);
2143 }
2144 if (tw) {
2145 cur = tw;
2146 goto out;
2147 }
2148 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2149 st->state = TCP_SEQ_STATE_ESTABLISHED;
2150
2151 /* Look for next non empty bucket */
2152 st->offset = 0;
2153 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2154 empty_bucket(st))
2155 ;
2156 if (st->bucket > tcp_hashinfo.ehash_mask)
2157 return NULL;
2158
2159 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2160 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2161 } else
2162 sk = sk_nulls_next(sk);
2163
2164 sk_nulls_for_each_from(sk, node) {
2165 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2166 goto found;
2167 }
2168
2169 st->state = TCP_SEQ_STATE_TIME_WAIT;
2170 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2171 goto get_tw;
2172 found:
2173 cur = sk;
2174 out:
2175 return cur;
2176 }
2177
2178 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2179 {
2180 struct tcp_iter_state *st = seq->private;
2181 void *rc;
2182
2183 st->bucket = 0;
2184 rc = established_get_first(seq);
2185
2186 while (rc && pos) {
2187 rc = established_get_next(seq, rc);
2188 --pos;
2189 }
2190 return rc;
2191 }
2192
2193 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2194 {
2195 void *rc;
2196 struct tcp_iter_state *st = seq->private;
2197
2198 st->state = TCP_SEQ_STATE_LISTENING;
2199 rc = listening_get_idx(seq, &pos);
2200
2201 if (!rc) {
2202 st->state = TCP_SEQ_STATE_ESTABLISHED;
2203 rc = established_get_idx(seq, pos);
2204 }
2205
2206 return rc;
2207 }
2208
2209 static void *tcp_seek_last_pos(struct seq_file *seq)
2210 {
2211 struct tcp_iter_state *st = seq->private;
2212 int offset = st->offset;
2213 int orig_num = st->num;
2214 void *rc = NULL;
2215
2216 switch (st->state) {
2217 case TCP_SEQ_STATE_OPENREQ:
2218 case TCP_SEQ_STATE_LISTENING:
2219 if (st->bucket >= INET_LHTABLE_SIZE)
2220 break;
2221 st->state = TCP_SEQ_STATE_LISTENING;
2222 rc = listening_get_next(seq, NULL);
2223 while (offset-- && rc)
2224 rc = listening_get_next(seq, rc);
2225 if (rc)
2226 break;
2227 st->bucket = 0;
2228 /* Fallthrough */
2229 case TCP_SEQ_STATE_ESTABLISHED:
2230 case TCP_SEQ_STATE_TIME_WAIT:
2231 st->state = TCP_SEQ_STATE_ESTABLISHED;
2232 if (st->bucket > tcp_hashinfo.ehash_mask)
2233 break;
2234 rc = established_get_first(seq);
2235 while (offset-- && rc)
2236 rc = established_get_next(seq, rc);
2237 }
2238
2239 st->num = orig_num;
2240
2241 return rc;
2242 }
2243
2244 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2245 {
2246 struct tcp_iter_state *st = seq->private;
2247 void *rc;
2248
2249 if (*pos && *pos == st->last_pos) {
2250 rc = tcp_seek_last_pos(seq);
2251 if (rc)
2252 goto out;
2253 }
2254
2255 st->state = TCP_SEQ_STATE_LISTENING;
2256 st->num = 0;
2257 st->bucket = 0;
2258 st->offset = 0;
2259 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2260
2261 out:
2262 st->last_pos = *pos;
2263 return rc;
2264 }
2265
2266 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2267 {
2268 struct tcp_iter_state *st = seq->private;
2269 void *rc = NULL;
2270
2271 if (v == SEQ_START_TOKEN) {
2272 rc = tcp_get_idx(seq, 0);
2273 goto out;
2274 }
2275
2276 switch (st->state) {
2277 case TCP_SEQ_STATE_OPENREQ:
2278 case TCP_SEQ_STATE_LISTENING:
2279 rc = listening_get_next(seq, v);
2280 if (!rc) {
2281 st->state = TCP_SEQ_STATE_ESTABLISHED;
2282 st->bucket = 0;
2283 st->offset = 0;
2284 rc = established_get_first(seq);
2285 }
2286 break;
2287 case TCP_SEQ_STATE_ESTABLISHED:
2288 case TCP_SEQ_STATE_TIME_WAIT:
2289 rc = established_get_next(seq, v);
2290 break;
2291 }
2292 out:
2293 ++*pos;
2294 st->last_pos = *pos;
2295 return rc;
2296 }
2297
2298 static void tcp_seq_stop(struct seq_file *seq, void *v)
2299 {
2300 struct tcp_iter_state *st = seq->private;
2301
2302 switch (st->state) {
2303 case TCP_SEQ_STATE_OPENREQ:
2304 if (v) {
2305 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2306 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2307 }
2308 case TCP_SEQ_STATE_LISTENING:
2309 if (v != SEQ_START_TOKEN)
2310 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2311 break;
2312 case TCP_SEQ_STATE_TIME_WAIT:
2313 case TCP_SEQ_STATE_ESTABLISHED:
2314 if (v)
2315 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2316 break;
2317 }
2318 }
2319
2320 static int tcp_seq_open(struct inode *inode, struct file *file)
2321 {
2322 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2323 struct tcp_iter_state *s;
2324 int err;
2325
2326 err = seq_open_net(inode, file, &afinfo->seq_ops,
2327 sizeof(struct tcp_iter_state));
2328 if (err < 0)
2329 return err;
2330
2331 s = ((struct seq_file *)file->private_data)->private;
2332 s->family = afinfo->family;
2333 s->last_pos = 0;
2334 return 0;
2335 }
2336
2337 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2338 {
2339 int rc = 0;
2340 struct proc_dir_entry *p;
2341
2342 afinfo->seq_fops.open = tcp_seq_open;
2343 afinfo->seq_fops.read = seq_read;
2344 afinfo->seq_fops.llseek = seq_lseek;
2345 afinfo->seq_fops.release = seq_release_net;
2346
2347 afinfo->seq_ops.start = tcp_seq_start;
2348 afinfo->seq_ops.next = tcp_seq_next;
2349 afinfo->seq_ops.stop = tcp_seq_stop;
2350
2351 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2352 &afinfo->seq_fops, afinfo);
2353 if (!p)
2354 rc = -ENOMEM;
2355 return rc;
2356 }
2357 EXPORT_SYMBOL(tcp_proc_register);
2358
2359 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2360 {
2361 proc_net_remove(net, afinfo->name);
2362 }
2363 EXPORT_SYMBOL(tcp_proc_unregister);
2364
2365 static void get_openreq4(struct sock *sk, struct request_sock *req,
2366 struct seq_file *f, int i, int uid, int *len)
2367 {
2368 const struct inet_request_sock *ireq = inet_rsk(req);
2369 int ttd = req->expires - jiffies;
2370
2371 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2372 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2373 i,
2374 ireq->loc_addr,
2375 ntohs(inet_sk(sk)->inet_sport),
2376 ireq->rmt_addr,
2377 ntohs(ireq->rmt_port),
2378 TCP_SYN_RECV,
2379 0, 0, /* could print option size, but that is af dependent. */
2380 1, /* timers active (only the expire timer) */
2381 jiffies_to_clock_t(ttd),
2382 req->retrans,
2383 uid,
2384 0, /* non standard timer */
2385 0, /* open_requests have no inode */
2386 atomic_read(&sk->sk_refcnt),
2387 req,
2388 len);
2389 }
2390
2391 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2392 {
2393 int timer_active;
2394 unsigned long timer_expires;
2395 struct tcp_sock *tp = tcp_sk(sk);
2396 const struct inet_connection_sock *icsk = inet_csk(sk);
2397 struct inet_sock *inet = inet_sk(sk);
2398 __be32 dest = inet->inet_daddr;
2399 __be32 src = inet->inet_rcv_saddr;
2400 __u16 destp = ntohs(inet->inet_dport);
2401 __u16 srcp = ntohs(inet->inet_sport);
2402 int rx_queue;
2403
2404 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2405 timer_active = 1;
2406 timer_expires = icsk->icsk_timeout;
2407 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2408 timer_active = 4;
2409 timer_expires = icsk->icsk_timeout;
2410 } else if (timer_pending(&sk->sk_timer)) {
2411 timer_active = 2;
2412 timer_expires = sk->sk_timer.expires;
2413 } else {
2414 timer_active = 0;
2415 timer_expires = jiffies;
2416 }
2417
2418 if (sk->sk_state == TCP_LISTEN)
2419 rx_queue = sk->sk_ack_backlog;
2420 else
2421 /*
2422 * because we dont lock socket, we might find a transient negative value
2423 */
2424 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2425
2426 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2427 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2428 i, src, srcp, dest, destp, sk->sk_state,
2429 tp->write_seq - tp->snd_una,
2430 rx_queue,
2431 timer_active,
2432 jiffies_to_clock_t(timer_expires - jiffies),
2433 icsk->icsk_retransmits,
2434 sock_i_uid(sk),
2435 icsk->icsk_probes_out,
2436 sock_i_ino(sk),
2437 atomic_read(&sk->sk_refcnt), sk,
2438 jiffies_to_clock_t(icsk->icsk_rto),
2439 jiffies_to_clock_t(icsk->icsk_ack.ato),
2440 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2441 tp->snd_cwnd,
2442 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2443 len);
2444 }
2445
2446 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2447 struct seq_file *f, int i, int *len)
2448 {
2449 __be32 dest, src;
2450 __u16 destp, srcp;
2451 int ttd = tw->tw_ttd - jiffies;
2452
2453 if (ttd < 0)
2454 ttd = 0;
2455
2456 dest = tw->tw_daddr;
2457 src = tw->tw_rcv_saddr;
2458 destp = ntohs(tw->tw_dport);
2459 srcp = ntohs(tw->tw_sport);
2460
2461 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2462 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2463 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2464 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2465 atomic_read(&tw->tw_refcnt), tw, len);
2466 }
2467
2468 #define TMPSZ 150
2469
2470 static int tcp4_seq_show(struct seq_file *seq, void *v)
2471 {
2472 struct tcp_iter_state *st;
2473 int len;
2474
2475 if (v == SEQ_START_TOKEN) {
2476 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2477 " sl local_address rem_address st tx_queue "
2478 "rx_queue tr tm->when retrnsmt uid timeout "
2479 "inode");
2480 goto out;
2481 }
2482 st = seq->private;
2483
2484 switch (st->state) {
2485 case TCP_SEQ_STATE_LISTENING:
2486 case TCP_SEQ_STATE_ESTABLISHED:
2487 get_tcp4_sock(v, seq, st->num, &len);
2488 break;
2489 case TCP_SEQ_STATE_OPENREQ:
2490 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2491 break;
2492 case TCP_SEQ_STATE_TIME_WAIT:
2493 get_timewait4_sock(v, seq, st->num, &len);
2494 break;
2495 }
2496 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2497 out:
2498 return 0;
2499 }
2500
2501 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2502 .name = "tcp",
2503 .family = AF_INET,
2504 .seq_fops = {
2505 .owner = THIS_MODULE,
2506 },
2507 .seq_ops = {
2508 .show = tcp4_seq_show,
2509 },
2510 };
2511
2512 static int __net_init tcp4_proc_init_net(struct net *net)
2513 {
2514 return tcp_proc_register(net, &tcp4_seq_afinfo);
2515 }
2516
2517 static void __net_exit tcp4_proc_exit_net(struct net *net)
2518 {
2519 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2520 }
2521
2522 static struct pernet_operations tcp4_net_ops = {
2523 .init = tcp4_proc_init_net,
2524 .exit = tcp4_proc_exit_net,
2525 };
2526
2527 int __init tcp4_proc_init(void)
2528 {
2529 return register_pernet_subsys(&tcp4_net_ops);
2530 }
2531
2532 void tcp4_proc_exit(void)
2533 {
2534 unregister_pernet_subsys(&tcp4_net_ops);
2535 }
2536 #endif /* CONFIG_PROC_FS */
2537
2538 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2539 {
2540 const struct iphdr *iph = skb_gro_network_header(skb);
2541
2542 switch (skb->ip_summed) {
2543 case CHECKSUM_COMPLETE:
2544 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2545 skb->csum)) {
2546 skb->ip_summed = CHECKSUM_UNNECESSARY;
2547 break;
2548 }
2549
2550 /* fall through */
2551 case CHECKSUM_NONE:
2552 NAPI_GRO_CB(skb)->flush = 1;
2553 return NULL;
2554 }
2555
2556 return tcp_gro_receive(head, skb);
2557 }
2558
2559 int tcp4_gro_complete(struct sk_buff *skb)
2560 {
2561 const struct iphdr *iph = ip_hdr(skb);
2562 struct tcphdr *th = tcp_hdr(skb);
2563
2564 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2565 iph->saddr, iph->daddr, 0);
2566 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2567
2568 return tcp_gro_complete(skb);
2569 }
2570
2571 struct proto tcp_prot = {
2572 .name = "TCP",
2573 .owner = THIS_MODULE,
2574 .close = tcp_close,
2575 .connect = tcp_v4_connect,
2576 .disconnect = tcp_disconnect,
2577 .accept = inet_csk_accept,
2578 .ioctl = tcp_ioctl,
2579 .init = tcp_v4_init_sock,
2580 .destroy = tcp_v4_destroy_sock,
2581 .shutdown = tcp_shutdown,
2582 .setsockopt = tcp_setsockopt,
2583 .getsockopt = tcp_getsockopt,
2584 .recvmsg = tcp_recvmsg,
2585 .sendmsg = tcp_sendmsg,
2586 .sendpage = tcp_sendpage,
2587 .backlog_rcv = tcp_v4_do_rcv,
2588 .hash = inet_hash,
2589 .unhash = inet_unhash,
2590 .get_port = inet_csk_get_port,
2591 .enter_memory_pressure = tcp_enter_memory_pressure,
2592 .sockets_allocated = &tcp_sockets_allocated,
2593 .orphan_count = &tcp_orphan_count,
2594 .memory_allocated = &tcp_memory_allocated,
2595 .memory_pressure = &tcp_memory_pressure,
2596 .sysctl_mem = sysctl_tcp_mem,
2597 .sysctl_wmem = sysctl_tcp_wmem,
2598 .sysctl_rmem = sysctl_tcp_rmem,
2599 .max_header = MAX_TCP_HEADER,
2600 .obj_size = sizeof(struct tcp_sock),
2601 .slab_flags = SLAB_DESTROY_BY_RCU,
2602 .twsk_prot = &tcp_timewait_sock_ops,
2603 .rsk_prot = &tcp_request_sock_ops,
2604 .h.hashinfo = &tcp_hashinfo,
2605 .no_autobind = true,
2606 #ifdef CONFIG_COMPAT
2607 .compat_setsockopt = compat_tcp_setsockopt,
2608 .compat_getsockopt = compat_tcp_getsockopt,
2609 #endif
2610 };
2611 EXPORT_SYMBOL(tcp_prot);
2612
2613
2614 static int __net_init tcp_sk_init(struct net *net)
2615 {
2616 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2617 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2618 }
2619
2620 static void __net_exit tcp_sk_exit(struct net *net)
2621 {
2622 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2623 }
2624
2625 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2626 {
2627 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2628 }
2629
2630 static struct pernet_operations __net_initdata tcp_sk_ops = {
2631 .init = tcp_sk_init,
2632 .exit = tcp_sk_exit,
2633 .exit_batch = tcp_sk_exit_batch,
2634 };
2635
2636 void __init tcp_v4_init(void)
2637 {
2638 inet_hashinfo_init(&tcp_hashinfo);
2639 if (register_pernet_subsys(&tcp_sk_ops))
2640 panic("Failed to create the TCP control socket.\n");
2641 }