inet: add RCU protection to inet->opt
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
64
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
84
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
88
89
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92 __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
98 {
99 return NULL;
100 }
101 #endif
102
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
105
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
107 {
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109 ip_hdr(skb)->saddr,
110 tcp_hdr(skb)->dest,
111 tcp_hdr(skb)->source);
112 }
113
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
115 {
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
118
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
122
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
125 holder.
126
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
129 */
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
135 tp->write_seq = 1;
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138 sock_hold(sktw);
139 return 1;
140 }
141
142 return 0;
143 }
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
145
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
148 {
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
150 struct inet_sock *inet = inet_sk(sk);
151 struct tcp_sock *tp = tcp_sk(sk);
152 __be16 orig_sport, orig_dport;
153 __be32 daddr, nexthop;
154 struct flowi4 fl4;
155 struct rtable *rt;
156 int err;
157 struct ip_options_rcu *inet_opt;
158
159 if (addr_len < sizeof(struct sockaddr_in))
160 return -EINVAL;
161
162 if (usin->sin_family != AF_INET)
163 return -EAFNOSUPPORT;
164
165 nexthop = daddr = usin->sin_addr.s_addr;
166 inet_opt = rcu_dereference_protected(inet->inet_opt,
167 sock_owned_by_user(sk));
168 if (inet_opt && inet_opt->opt.srr) {
169 if (!daddr)
170 return -EINVAL;
171 nexthop = inet_opt->opt.faddr;
172 }
173
174 orig_sport = inet->inet_sport;
175 orig_dport = usin->sin_port;
176 rt = ip_route_connect(&fl4, nexthop, inet->inet_saddr,
177 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
178 IPPROTO_TCP,
179 orig_sport, orig_dport, sk, true);
180 if (IS_ERR(rt)) {
181 err = PTR_ERR(rt);
182 if (err == -ENETUNREACH)
183 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
184 return err;
185 }
186
187 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
188 ip_rt_put(rt);
189 return -ENETUNREACH;
190 }
191
192 if (!inet_opt || !inet_opt->opt.srr)
193 daddr = rt->rt_dst;
194
195 if (!inet->inet_saddr)
196 inet->inet_saddr = rt->rt_src;
197 inet->inet_rcv_saddr = inet->inet_saddr;
198
199 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
200 /* Reset inherited state */
201 tp->rx_opt.ts_recent = 0;
202 tp->rx_opt.ts_recent_stamp = 0;
203 tp->write_seq = 0;
204 }
205
206 if (tcp_death_row.sysctl_tw_recycle &&
207 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
208 struct inet_peer *peer = rt_get_peer(rt);
209 /*
210 * VJ's idea. We save last timestamp seen from
211 * the destination in peer table, when entering state
212 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
213 * when trying new connection.
214 */
215 if (peer) {
216 inet_peer_refcheck(peer);
217 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
218 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
219 tp->rx_opt.ts_recent = peer->tcp_ts;
220 }
221 }
222 }
223
224 inet->inet_dport = usin->sin_port;
225 inet->inet_daddr = daddr;
226
227 inet_csk(sk)->icsk_ext_hdr_len = 0;
228 if (inet_opt)
229 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
230
231 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
232
233 /* Socket identity is still unknown (sport may be zero).
234 * However we set state to SYN-SENT and not releasing socket
235 * lock select source port, enter ourselves into the hash tables and
236 * complete initialization after this.
237 */
238 tcp_set_state(sk, TCP_SYN_SENT);
239 err = inet_hash_connect(&tcp_death_row, sk);
240 if (err)
241 goto failure;
242
243 rt = ip_route_newports(&fl4, rt, orig_sport, orig_dport,
244 inet->inet_sport, inet->inet_dport, sk);
245 if (IS_ERR(rt)) {
246 err = PTR_ERR(rt);
247 rt = NULL;
248 goto failure;
249 }
250 /* OK, now commit destination to socket. */
251 sk->sk_gso_type = SKB_GSO_TCPV4;
252 sk_setup_caps(sk, &rt->dst);
253
254 if (!tp->write_seq)
255 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
256 inet->inet_daddr,
257 inet->inet_sport,
258 usin->sin_port);
259
260 inet->inet_id = tp->write_seq ^ jiffies;
261
262 err = tcp_connect(sk);
263 rt = NULL;
264 if (err)
265 goto failure;
266
267 return 0;
268
269 failure:
270 /*
271 * This unhashes the socket and releases the local port,
272 * if necessary.
273 */
274 tcp_set_state(sk, TCP_CLOSE);
275 ip_rt_put(rt);
276 sk->sk_route_caps = 0;
277 inet->inet_dport = 0;
278 return err;
279 }
280 EXPORT_SYMBOL(tcp_v4_connect);
281
282 /*
283 * This routine does path mtu discovery as defined in RFC1191.
284 */
285 static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
286 {
287 struct dst_entry *dst;
288 struct inet_sock *inet = inet_sk(sk);
289
290 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
291 * send out by Linux are always <576bytes so they should go through
292 * unfragmented).
293 */
294 if (sk->sk_state == TCP_LISTEN)
295 return;
296
297 /* We don't check in the destentry if pmtu discovery is forbidden
298 * on this route. We just assume that no packet_to_big packets
299 * are send back when pmtu discovery is not active.
300 * There is a small race when the user changes this flag in the
301 * route, but I think that's acceptable.
302 */
303 if ((dst = __sk_dst_check(sk, 0)) == NULL)
304 return;
305
306 dst->ops->update_pmtu(dst, mtu);
307
308 /* Something is about to be wrong... Remember soft error
309 * for the case, if this connection will not able to recover.
310 */
311 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
312 sk->sk_err_soft = EMSGSIZE;
313
314 mtu = dst_mtu(dst);
315
316 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
317 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
318 tcp_sync_mss(sk, mtu);
319
320 /* Resend the TCP packet because it's
321 * clear that the old packet has been
322 * dropped. This is the new "fast" path mtu
323 * discovery.
324 */
325 tcp_simple_retransmit(sk);
326 } /* else let the usual retransmit timer handle it */
327 }
328
329 /*
330 * This routine is called by the ICMP module when it gets some
331 * sort of error condition. If err < 0 then the socket should
332 * be closed and the error returned to the user. If err > 0
333 * it's just the icmp type << 8 | icmp code. After adjustment
334 * header points to the first 8 bytes of the tcp header. We need
335 * to find the appropriate port.
336 *
337 * The locking strategy used here is very "optimistic". When
338 * someone else accesses the socket the ICMP is just dropped
339 * and for some paths there is no check at all.
340 * A more general error queue to queue errors for later handling
341 * is probably better.
342 *
343 */
344
345 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
346 {
347 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
348 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
349 struct inet_connection_sock *icsk;
350 struct tcp_sock *tp;
351 struct inet_sock *inet;
352 const int type = icmp_hdr(icmp_skb)->type;
353 const int code = icmp_hdr(icmp_skb)->code;
354 struct sock *sk;
355 struct sk_buff *skb;
356 __u32 seq;
357 __u32 remaining;
358 int err;
359 struct net *net = dev_net(icmp_skb->dev);
360
361 if (icmp_skb->len < (iph->ihl << 2) + 8) {
362 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
363 return;
364 }
365
366 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
367 iph->saddr, th->source, inet_iif(icmp_skb));
368 if (!sk) {
369 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
370 return;
371 }
372 if (sk->sk_state == TCP_TIME_WAIT) {
373 inet_twsk_put(inet_twsk(sk));
374 return;
375 }
376
377 bh_lock_sock(sk);
378 /* If too many ICMPs get dropped on busy
379 * servers this needs to be solved differently.
380 */
381 if (sock_owned_by_user(sk))
382 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
383
384 if (sk->sk_state == TCP_CLOSE)
385 goto out;
386
387 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
388 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
389 goto out;
390 }
391
392 icsk = inet_csk(sk);
393 tp = tcp_sk(sk);
394 seq = ntohl(th->seq);
395 if (sk->sk_state != TCP_LISTEN &&
396 !between(seq, tp->snd_una, tp->snd_nxt)) {
397 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
398 goto out;
399 }
400
401 switch (type) {
402 case ICMP_SOURCE_QUENCH:
403 /* Just silently ignore these. */
404 goto out;
405 case ICMP_PARAMETERPROB:
406 err = EPROTO;
407 break;
408 case ICMP_DEST_UNREACH:
409 if (code > NR_ICMP_UNREACH)
410 goto out;
411
412 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
413 if (!sock_owned_by_user(sk))
414 do_pmtu_discovery(sk, iph, info);
415 goto out;
416 }
417
418 err = icmp_err_convert[code].errno;
419 /* check if icmp_skb allows revert of backoff
420 * (see draft-zimmermann-tcp-lcd) */
421 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
422 break;
423 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
424 !icsk->icsk_backoff)
425 break;
426
427 if (sock_owned_by_user(sk))
428 break;
429
430 icsk->icsk_backoff--;
431 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
432 icsk->icsk_backoff;
433 tcp_bound_rto(sk);
434
435 skb = tcp_write_queue_head(sk);
436 BUG_ON(!skb);
437
438 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
439 tcp_time_stamp - TCP_SKB_CB(skb)->when);
440
441 if (remaining) {
442 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
443 remaining, TCP_RTO_MAX);
444 } else {
445 /* RTO revert clocked out retransmission.
446 * Will retransmit now */
447 tcp_retransmit_timer(sk);
448 }
449
450 break;
451 case ICMP_TIME_EXCEEDED:
452 err = EHOSTUNREACH;
453 break;
454 default:
455 goto out;
456 }
457
458 switch (sk->sk_state) {
459 struct request_sock *req, **prev;
460 case TCP_LISTEN:
461 if (sock_owned_by_user(sk))
462 goto out;
463
464 req = inet_csk_search_req(sk, &prev, th->dest,
465 iph->daddr, iph->saddr);
466 if (!req)
467 goto out;
468
469 /* ICMPs are not backlogged, hence we cannot get
470 an established socket here.
471 */
472 WARN_ON(req->sk);
473
474 if (seq != tcp_rsk(req)->snt_isn) {
475 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
476 goto out;
477 }
478
479 /*
480 * Still in SYN_RECV, just remove it silently.
481 * There is no good way to pass the error to the newly
482 * created socket, and POSIX does not want network
483 * errors returned from accept().
484 */
485 inet_csk_reqsk_queue_drop(sk, req, prev);
486 goto out;
487
488 case TCP_SYN_SENT:
489 case TCP_SYN_RECV: /* Cannot happen.
490 It can f.e. if SYNs crossed.
491 */
492 if (!sock_owned_by_user(sk)) {
493 sk->sk_err = err;
494
495 sk->sk_error_report(sk);
496
497 tcp_done(sk);
498 } else {
499 sk->sk_err_soft = err;
500 }
501 goto out;
502 }
503
504 /* If we've already connected we will keep trying
505 * until we time out, or the user gives up.
506 *
507 * rfc1122 4.2.3.9 allows to consider as hard errors
508 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
509 * but it is obsoleted by pmtu discovery).
510 *
511 * Note, that in modern internet, where routing is unreliable
512 * and in each dark corner broken firewalls sit, sending random
513 * errors ordered by their masters even this two messages finally lose
514 * their original sense (even Linux sends invalid PORT_UNREACHs)
515 *
516 * Now we are in compliance with RFCs.
517 * --ANK (980905)
518 */
519
520 inet = inet_sk(sk);
521 if (!sock_owned_by_user(sk) && inet->recverr) {
522 sk->sk_err = err;
523 sk->sk_error_report(sk);
524 } else { /* Only an error on timeout */
525 sk->sk_err_soft = err;
526 }
527
528 out:
529 bh_unlock_sock(sk);
530 sock_put(sk);
531 }
532
533 static void __tcp_v4_send_check(struct sk_buff *skb,
534 __be32 saddr, __be32 daddr)
535 {
536 struct tcphdr *th = tcp_hdr(skb);
537
538 if (skb->ip_summed == CHECKSUM_PARTIAL) {
539 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
540 skb->csum_start = skb_transport_header(skb) - skb->head;
541 skb->csum_offset = offsetof(struct tcphdr, check);
542 } else {
543 th->check = tcp_v4_check(skb->len, saddr, daddr,
544 csum_partial(th,
545 th->doff << 2,
546 skb->csum));
547 }
548 }
549
550 /* This routine computes an IPv4 TCP checksum. */
551 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
552 {
553 struct inet_sock *inet = inet_sk(sk);
554
555 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
556 }
557 EXPORT_SYMBOL(tcp_v4_send_check);
558
559 int tcp_v4_gso_send_check(struct sk_buff *skb)
560 {
561 const struct iphdr *iph;
562 struct tcphdr *th;
563
564 if (!pskb_may_pull(skb, sizeof(*th)))
565 return -EINVAL;
566
567 iph = ip_hdr(skb);
568 th = tcp_hdr(skb);
569
570 th->check = 0;
571 skb->ip_summed = CHECKSUM_PARTIAL;
572 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
573 return 0;
574 }
575
576 /*
577 * This routine will send an RST to the other tcp.
578 *
579 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
580 * for reset.
581 * Answer: if a packet caused RST, it is not for a socket
582 * existing in our system, if it is matched to a socket,
583 * it is just duplicate segment or bug in other side's TCP.
584 * So that we build reply only basing on parameters
585 * arrived with segment.
586 * Exception: precedence violation. We do not implement it in any case.
587 */
588
589 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
590 {
591 struct tcphdr *th = tcp_hdr(skb);
592 struct {
593 struct tcphdr th;
594 #ifdef CONFIG_TCP_MD5SIG
595 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
596 #endif
597 } rep;
598 struct ip_reply_arg arg;
599 #ifdef CONFIG_TCP_MD5SIG
600 struct tcp_md5sig_key *key;
601 #endif
602 struct net *net;
603
604 /* Never send a reset in response to a reset. */
605 if (th->rst)
606 return;
607
608 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
609 return;
610
611 /* Swap the send and the receive. */
612 memset(&rep, 0, sizeof(rep));
613 rep.th.dest = th->source;
614 rep.th.source = th->dest;
615 rep.th.doff = sizeof(struct tcphdr) / 4;
616 rep.th.rst = 1;
617
618 if (th->ack) {
619 rep.th.seq = th->ack_seq;
620 } else {
621 rep.th.ack = 1;
622 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
623 skb->len - (th->doff << 2));
624 }
625
626 memset(&arg, 0, sizeof(arg));
627 arg.iov[0].iov_base = (unsigned char *)&rep;
628 arg.iov[0].iov_len = sizeof(rep.th);
629
630 #ifdef CONFIG_TCP_MD5SIG
631 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
632 if (key) {
633 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
634 (TCPOPT_NOP << 16) |
635 (TCPOPT_MD5SIG << 8) |
636 TCPOLEN_MD5SIG);
637 /* Update length and the length the header thinks exists */
638 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
639 rep.th.doff = arg.iov[0].iov_len / 4;
640
641 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
642 key, ip_hdr(skb)->saddr,
643 ip_hdr(skb)->daddr, &rep.th);
644 }
645 #endif
646 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
647 ip_hdr(skb)->saddr, /* XXX */
648 arg.iov[0].iov_len, IPPROTO_TCP, 0);
649 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
650 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
651
652 net = dev_net(skb_dst(skb)->dev);
653 ip_send_reply(net->ipv4.tcp_sock, skb,
654 &arg, arg.iov[0].iov_len);
655
656 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
657 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
658 }
659
660 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
661 outside socket context is ugly, certainly. What can I do?
662 */
663
664 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
665 u32 win, u32 ts, int oif,
666 struct tcp_md5sig_key *key,
667 int reply_flags)
668 {
669 struct tcphdr *th = tcp_hdr(skb);
670 struct {
671 struct tcphdr th;
672 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
673 #ifdef CONFIG_TCP_MD5SIG
674 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
675 #endif
676 ];
677 } rep;
678 struct ip_reply_arg arg;
679 struct net *net = dev_net(skb_dst(skb)->dev);
680
681 memset(&rep.th, 0, sizeof(struct tcphdr));
682 memset(&arg, 0, sizeof(arg));
683
684 arg.iov[0].iov_base = (unsigned char *)&rep;
685 arg.iov[0].iov_len = sizeof(rep.th);
686 if (ts) {
687 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
688 (TCPOPT_TIMESTAMP << 8) |
689 TCPOLEN_TIMESTAMP);
690 rep.opt[1] = htonl(tcp_time_stamp);
691 rep.opt[2] = htonl(ts);
692 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
693 }
694
695 /* Swap the send and the receive. */
696 rep.th.dest = th->source;
697 rep.th.source = th->dest;
698 rep.th.doff = arg.iov[0].iov_len / 4;
699 rep.th.seq = htonl(seq);
700 rep.th.ack_seq = htonl(ack);
701 rep.th.ack = 1;
702 rep.th.window = htons(win);
703
704 #ifdef CONFIG_TCP_MD5SIG
705 if (key) {
706 int offset = (ts) ? 3 : 0;
707
708 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
709 (TCPOPT_NOP << 16) |
710 (TCPOPT_MD5SIG << 8) |
711 TCPOLEN_MD5SIG);
712 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
713 rep.th.doff = arg.iov[0].iov_len/4;
714
715 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
716 key, ip_hdr(skb)->saddr,
717 ip_hdr(skb)->daddr, &rep.th);
718 }
719 #endif
720 arg.flags = reply_flags;
721 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
722 ip_hdr(skb)->saddr, /* XXX */
723 arg.iov[0].iov_len, IPPROTO_TCP, 0);
724 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
725 if (oif)
726 arg.bound_dev_if = oif;
727
728 ip_send_reply(net->ipv4.tcp_sock, skb,
729 &arg, arg.iov[0].iov_len);
730
731 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
732 }
733
734 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
735 {
736 struct inet_timewait_sock *tw = inet_twsk(sk);
737 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
738
739 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
740 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
741 tcptw->tw_ts_recent,
742 tw->tw_bound_dev_if,
743 tcp_twsk_md5_key(tcptw),
744 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
745 );
746
747 inet_twsk_put(tw);
748 }
749
750 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
751 struct request_sock *req)
752 {
753 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
754 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
755 req->ts_recent,
756 0,
757 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
758 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
759 }
760
761 /*
762 * Send a SYN-ACK after having received a SYN.
763 * This still operates on a request_sock only, not on a big
764 * socket.
765 */
766 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
767 struct request_sock *req,
768 struct request_values *rvp)
769 {
770 const struct inet_request_sock *ireq = inet_rsk(req);
771 int err = -1;
772 struct sk_buff * skb;
773
774 /* First, grab a route. */
775 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
776 return -1;
777
778 skb = tcp_make_synack(sk, dst, req, rvp);
779
780 if (skb) {
781 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
782
783 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
784 ireq->rmt_addr,
785 ireq->opt);
786 err = net_xmit_eval(err);
787 }
788
789 dst_release(dst);
790 return err;
791 }
792
793 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
794 struct request_values *rvp)
795 {
796 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
797 return tcp_v4_send_synack(sk, NULL, req, rvp);
798 }
799
800 /*
801 * IPv4 request_sock destructor.
802 */
803 static void tcp_v4_reqsk_destructor(struct request_sock *req)
804 {
805 kfree(inet_rsk(req)->opt);
806 }
807
808 static void syn_flood_warning(const struct sk_buff *skb)
809 {
810 const char *msg;
811
812 #ifdef CONFIG_SYN_COOKIES
813 if (sysctl_tcp_syncookies)
814 msg = "Sending cookies";
815 else
816 #endif
817 msg = "Dropping request";
818
819 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
820 ntohs(tcp_hdr(skb)->dest), msg);
821 }
822
823 /*
824 * Save and compile IPv4 options into the request_sock if needed.
825 */
826 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
827 struct sk_buff *skb)
828 {
829 const struct ip_options *opt = &(IPCB(skb)->opt);
830 struct ip_options_rcu *dopt = NULL;
831
832 if (opt && opt->optlen) {
833 int opt_size = sizeof(*dopt) + opt->optlen;
834
835 dopt = kmalloc(opt_size, GFP_ATOMIC);
836 if (dopt) {
837 if (ip_options_echo(&dopt->opt, skb)) {
838 kfree(dopt);
839 dopt = NULL;
840 }
841 }
842 }
843 return dopt;
844 }
845
846 #ifdef CONFIG_TCP_MD5SIG
847 /*
848 * RFC2385 MD5 checksumming requires a mapping of
849 * IP address->MD5 Key.
850 * We need to maintain these in the sk structure.
851 */
852
853 /* Find the Key structure for an address. */
854 static struct tcp_md5sig_key *
855 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
856 {
857 struct tcp_sock *tp = tcp_sk(sk);
858 int i;
859
860 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
861 return NULL;
862 for (i = 0; i < tp->md5sig_info->entries4; i++) {
863 if (tp->md5sig_info->keys4[i].addr == addr)
864 return &tp->md5sig_info->keys4[i].base;
865 }
866 return NULL;
867 }
868
869 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
870 struct sock *addr_sk)
871 {
872 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
873 }
874 EXPORT_SYMBOL(tcp_v4_md5_lookup);
875
876 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
877 struct request_sock *req)
878 {
879 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
880 }
881
882 /* This can be called on a newly created socket, from other files */
883 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
884 u8 *newkey, u8 newkeylen)
885 {
886 /* Add Key to the list */
887 struct tcp_md5sig_key *key;
888 struct tcp_sock *tp = tcp_sk(sk);
889 struct tcp4_md5sig_key *keys;
890
891 key = tcp_v4_md5_do_lookup(sk, addr);
892 if (key) {
893 /* Pre-existing entry - just update that one. */
894 kfree(key->key);
895 key->key = newkey;
896 key->keylen = newkeylen;
897 } else {
898 struct tcp_md5sig_info *md5sig;
899
900 if (!tp->md5sig_info) {
901 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
902 GFP_ATOMIC);
903 if (!tp->md5sig_info) {
904 kfree(newkey);
905 return -ENOMEM;
906 }
907 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
908 }
909 if (tcp_alloc_md5sig_pool(sk) == NULL) {
910 kfree(newkey);
911 return -ENOMEM;
912 }
913 md5sig = tp->md5sig_info;
914
915 if (md5sig->alloced4 == md5sig->entries4) {
916 keys = kmalloc((sizeof(*keys) *
917 (md5sig->entries4 + 1)), GFP_ATOMIC);
918 if (!keys) {
919 kfree(newkey);
920 tcp_free_md5sig_pool();
921 return -ENOMEM;
922 }
923
924 if (md5sig->entries4)
925 memcpy(keys, md5sig->keys4,
926 sizeof(*keys) * md5sig->entries4);
927
928 /* Free old key list, and reference new one */
929 kfree(md5sig->keys4);
930 md5sig->keys4 = keys;
931 md5sig->alloced4++;
932 }
933 md5sig->entries4++;
934 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
935 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
936 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
937 }
938 return 0;
939 }
940 EXPORT_SYMBOL(tcp_v4_md5_do_add);
941
942 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
943 u8 *newkey, u8 newkeylen)
944 {
945 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
946 newkey, newkeylen);
947 }
948
949 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
950 {
951 struct tcp_sock *tp = tcp_sk(sk);
952 int i;
953
954 for (i = 0; i < tp->md5sig_info->entries4; i++) {
955 if (tp->md5sig_info->keys4[i].addr == addr) {
956 /* Free the key */
957 kfree(tp->md5sig_info->keys4[i].base.key);
958 tp->md5sig_info->entries4--;
959
960 if (tp->md5sig_info->entries4 == 0) {
961 kfree(tp->md5sig_info->keys4);
962 tp->md5sig_info->keys4 = NULL;
963 tp->md5sig_info->alloced4 = 0;
964 } else if (tp->md5sig_info->entries4 != i) {
965 /* Need to do some manipulation */
966 memmove(&tp->md5sig_info->keys4[i],
967 &tp->md5sig_info->keys4[i+1],
968 (tp->md5sig_info->entries4 - i) *
969 sizeof(struct tcp4_md5sig_key));
970 }
971 tcp_free_md5sig_pool();
972 return 0;
973 }
974 }
975 return -ENOENT;
976 }
977 EXPORT_SYMBOL(tcp_v4_md5_do_del);
978
979 static void tcp_v4_clear_md5_list(struct sock *sk)
980 {
981 struct tcp_sock *tp = tcp_sk(sk);
982
983 /* Free each key, then the set of key keys,
984 * the crypto element, and then decrement our
985 * hold on the last resort crypto.
986 */
987 if (tp->md5sig_info->entries4) {
988 int i;
989 for (i = 0; i < tp->md5sig_info->entries4; i++)
990 kfree(tp->md5sig_info->keys4[i].base.key);
991 tp->md5sig_info->entries4 = 0;
992 tcp_free_md5sig_pool();
993 }
994 if (tp->md5sig_info->keys4) {
995 kfree(tp->md5sig_info->keys4);
996 tp->md5sig_info->keys4 = NULL;
997 tp->md5sig_info->alloced4 = 0;
998 }
999 }
1000
1001 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1002 int optlen)
1003 {
1004 struct tcp_md5sig cmd;
1005 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1006 u8 *newkey;
1007
1008 if (optlen < sizeof(cmd))
1009 return -EINVAL;
1010
1011 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1012 return -EFAULT;
1013
1014 if (sin->sin_family != AF_INET)
1015 return -EINVAL;
1016
1017 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1018 if (!tcp_sk(sk)->md5sig_info)
1019 return -ENOENT;
1020 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1021 }
1022
1023 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1024 return -EINVAL;
1025
1026 if (!tcp_sk(sk)->md5sig_info) {
1027 struct tcp_sock *tp = tcp_sk(sk);
1028 struct tcp_md5sig_info *p;
1029
1030 p = kzalloc(sizeof(*p), sk->sk_allocation);
1031 if (!p)
1032 return -EINVAL;
1033
1034 tp->md5sig_info = p;
1035 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1036 }
1037
1038 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1039 if (!newkey)
1040 return -ENOMEM;
1041 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1042 newkey, cmd.tcpm_keylen);
1043 }
1044
1045 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1046 __be32 daddr, __be32 saddr, int nbytes)
1047 {
1048 struct tcp4_pseudohdr *bp;
1049 struct scatterlist sg;
1050
1051 bp = &hp->md5_blk.ip4;
1052
1053 /*
1054 * 1. the TCP pseudo-header (in the order: source IP address,
1055 * destination IP address, zero-padded protocol number, and
1056 * segment length)
1057 */
1058 bp->saddr = saddr;
1059 bp->daddr = daddr;
1060 bp->pad = 0;
1061 bp->protocol = IPPROTO_TCP;
1062 bp->len = cpu_to_be16(nbytes);
1063
1064 sg_init_one(&sg, bp, sizeof(*bp));
1065 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1066 }
1067
1068 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1069 __be32 daddr, __be32 saddr, struct tcphdr *th)
1070 {
1071 struct tcp_md5sig_pool *hp;
1072 struct hash_desc *desc;
1073
1074 hp = tcp_get_md5sig_pool();
1075 if (!hp)
1076 goto clear_hash_noput;
1077 desc = &hp->md5_desc;
1078
1079 if (crypto_hash_init(desc))
1080 goto clear_hash;
1081 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1082 goto clear_hash;
1083 if (tcp_md5_hash_header(hp, th))
1084 goto clear_hash;
1085 if (tcp_md5_hash_key(hp, key))
1086 goto clear_hash;
1087 if (crypto_hash_final(desc, md5_hash))
1088 goto clear_hash;
1089
1090 tcp_put_md5sig_pool();
1091 return 0;
1092
1093 clear_hash:
1094 tcp_put_md5sig_pool();
1095 clear_hash_noput:
1096 memset(md5_hash, 0, 16);
1097 return 1;
1098 }
1099
1100 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1101 struct sock *sk, struct request_sock *req,
1102 struct sk_buff *skb)
1103 {
1104 struct tcp_md5sig_pool *hp;
1105 struct hash_desc *desc;
1106 struct tcphdr *th = tcp_hdr(skb);
1107 __be32 saddr, daddr;
1108
1109 if (sk) {
1110 saddr = inet_sk(sk)->inet_saddr;
1111 daddr = inet_sk(sk)->inet_daddr;
1112 } else if (req) {
1113 saddr = inet_rsk(req)->loc_addr;
1114 daddr = inet_rsk(req)->rmt_addr;
1115 } else {
1116 const struct iphdr *iph = ip_hdr(skb);
1117 saddr = iph->saddr;
1118 daddr = iph->daddr;
1119 }
1120
1121 hp = tcp_get_md5sig_pool();
1122 if (!hp)
1123 goto clear_hash_noput;
1124 desc = &hp->md5_desc;
1125
1126 if (crypto_hash_init(desc))
1127 goto clear_hash;
1128
1129 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1130 goto clear_hash;
1131 if (tcp_md5_hash_header(hp, th))
1132 goto clear_hash;
1133 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1134 goto clear_hash;
1135 if (tcp_md5_hash_key(hp, key))
1136 goto clear_hash;
1137 if (crypto_hash_final(desc, md5_hash))
1138 goto clear_hash;
1139
1140 tcp_put_md5sig_pool();
1141 return 0;
1142
1143 clear_hash:
1144 tcp_put_md5sig_pool();
1145 clear_hash_noput:
1146 memset(md5_hash, 0, 16);
1147 return 1;
1148 }
1149 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1150
1151 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1152 {
1153 /*
1154 * This gets called for each TCP segment that arrives
1155 * so we want to be efficient.
1156 * We have 3 drop cases:
1157 * o No MD5 hash and one expected.
1158 * o MD5 hash and we're not expecting one.
1159 * o MD5 hash and its wrong.
1160 */
1161 __u8 *hash_location = NULL;
1162 struct tcp_md5sig_key *hash_expected;
1163 const struct iphdr *iph = ip_hdr(skb);
1164 struct tcphdr *th = tcp_hdr(skb);
1165 int genhash;
1166 unsigned char newhash[16];
1167
1168 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1169 hash_location = tcp_parse_md5sig_option(th);
1170
1171 /* We've parsed the options - do we have a hash? */
1172 if (!hash_expected && !hash_location)
1173 return 0;
1174
1175 if (hash_expected && !hash_location) {
1176 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1177 return 1;
1178 }
1179
1180 if (!hash_expected && hash_location) {
1181 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1182 return 1;
1183 }
1184
1185 /* Okay, so this is hash_expected and hash_location -
1186 * so we need to calculate the checksum.
1187 */
1188 genhash = tcp_v4_md5_hash_skb(newhash,
1189 hash_expected,
1190 NULL, NULL, skb);
1191
1192 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1193 if (net_ratelimit()) {
1194 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1195 &iph->saddr, ntohs(th->source),
1196 &iph->daddr, ntohs(th->dest),
1197 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1198 }
1199 return 1;
1200 }
1201 return 0;
1202 }
1203
1204 #endif
1205
1206 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1207 .family = PF_INET,
1208 .obj_size = sizeof(struct tcp_request_sock),
1209 .rtx_syn_ack = tcp_v4_rtx_synack,
1210 .send_ack = tcp_v4_reqsk_send_ack,
1211 .destructor = tcp_v4_reqsk_destructor,
1212 .send_reset = tcp_v4_send_reset,
1213 .syn_ack_timeout = tcp_syn_ack_timeout,
1214 };
1215
1216 #ifdef CONFIG_TCP_MD5SIG
1217 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1218 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1219 .calc_md5_hash = tcp_v4_md5_hash_skb,
1220 };
1221 #endif
1222
1223 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1224 {
1225 struct tcp_extend_values tmp_ext;
1226 struct tcp_options_received tmp_opt;
1227 u8 *hash_location;
1228 struct request_sock *req;
1229 struct inet_request_sock *ireq;
1230 struct tcp_sock *tp = tcp_sk(sk);
1231 struct dst_entry *dst = NULL;
1232 __be32 saddr = ip_hdr(skb)->saddr;
1233 __be32 daddr = ip_hdr(skb)->daddr;
1234 __u32 isn = TCP_SKB_CB(skb)->when;
1235 #ifdef CONFIG_SYN_COOKIES
1236 int want_cookie = 0;
1237 #else
1238 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1239 #endif
1240
1241 /* Never answer to SYNs send to broadcast or multicast */
1242 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1243 goto drop;
1244
1245 /* TW buckets are converted to open requests without
1246 * limitations, they conserve resources and peer is
1247 * evidently real one.
1248 */
1249 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1250 if (net_ratelimit())
1251 syn_flood_warning(skb);
1252 #ifdef CONFIG_SYN_COOKIES
1253 if (sysctl_tcp_syncookies) {
1254 want_cookie = 1;
1255 } else
1256 #endif
1257 goto drop;
1258 }
1259
1260 /* Accept backlog is full. If we have already queued enough
1261 * of warm entries in syn queue, drop request. It is better than
1262 * clogging syn queue with openreqs with exponentially increasing
1263 * timeout.
1264 */
1265 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1266 goto drop;
1267
1268 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1269 if (!req)
1270 goto drop;
1271
1272 #ifdef CONFIG_TCP_MD5SIG
1273 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1274 #endif
1275
1276 tcp_clear_options(&tmp_opt);
1277 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1278 tmp_opt.user_mss = tp->rx_opt.user_mss;
1279 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1280
1281 if (tmp_opt.cookie_plus > 0 &&
1282 tmp_opt.saw_tstamp &&
1283 !tp->rx_opt.cookie_out_never &&
1284 (sysctl_tcp_cookie_size > 0 ||
1285 (tp->cookie_values != NULL &&
1286 tp->cookie_values->cookie_desired > 0))) {
1287 u8 *c;
1288 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1289 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1290
1291 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1292 goto drop_and_release;
1293
1294 /* Secret recipe starts with IP addresses */
1295 *mess++ ^= (__force u32)daddr;
1296 *mess++ ^= (__force u32)saddr;
1297
1298 /* plus variable length Initiator Cookie */
1299 c = (u8 *)mess;
1300 while (l-- > 0)
1301 *c++ ^= *hash_location++;
1302
1303 #ifdef CONFIG_SYN_COOKIES
1304 want_cookie = 0; /* not our kind of cookie */
1305 #endif
1306 tmp_ext.cookie_out_never = 0; /* false */
1307 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1308 } else if (!tp->rx_opt.cookie_in_always) {
1309 /* redundant indications, but ensure initialization. */
1310 tmp_ext.cookie_out_never = 1; /* true */
1311 tmp_ext.cookie_plus = 0;
1312 } else {
1313 goto drop_and_release;
1314 }
1315 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1316
1317 if (want_cookie && !tmp_opt.saw_tstamp)
1318 tcp_clear_options(&tmp_opt);
1319
1320 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1321 tcp_openreq_init(req, &tmp_opt, skb);
1322
1323 ireq = inet_rsk(req);
1324 ireq->loc_addr = daddr;
1325 ireq->rmt_addr = saddr;
1326 ireq->no_srccheck = inet_sk(sk)->transparent;
1327 ireq->opt = tcp_v4_save_options(sk, skb);
1328
1329 if (security_inet_conn_request(sk, skb, req))
1330 goto drop_and_free;
1331
1332 if (!want_cookie || tmp_opt.tstamp_ok)
1333 TCP_ECN_create_request(req, tcp_hdr(skb));
1334
1335 if (want_cookie) {
1336 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1337 req->cookie_ts = tmp_opt.tstamp_ok;
1338 } else if (!isn) {
1339 struct inet_peer *peer = NULL;
1340
1341 /* VJ's idea. We save last timestamp seen
1342 * from the destination in peer table, when entering
1343 * state TIME-WAIT, and check against it before
1344 * accepting new connection request.
1345 *
1346 * If "isn" is not zero, this request hit alive
1347 * timewait bucket, so that all the necessary checks
1348 * are made in the function processing timewait state.
1349 */
1350 if (tmp_opt.saw_tstamp &&
1351 tcp_death_row.sysctl_tw_recycle &&
1352 (dst = inet_csk_route_req(sk, req)) != NULL &&
1353 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1354 peer->daddr.addr.a4 == saddr) {
1355 inet_peer_refcheck(peer);
1356 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1357 (s32)(peer->tcp_ts - req->ts_recent) >
1358 TCP_PAWS_WINDOW) {
1359 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1360 goto drop_and_release;
1361 }
1362 }
1363 /* Kill the following clause, if you dislike this way. */
1364 else if (!sysctl_tcp_syncookies &&
1365 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1366 (sysctl_max_syn_backlog >> 2)) &&
1367 (!peer || !peer->tcp_ts_stamp) &&
1368 (!dst || !dst_metric(dst, RTAX_RTT))) {
1369 /* Without syncookies last quarter of
1370 * backlog is filled with destinations,
1371 * proven to be alive.
1372 * It means that we continue to communicate
1373 * to destinations, already remembered
1374 * to the moment of synflood.
1375 */
1376 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1377 &saddr, ntohs(tcp_hdr(skb)->source));
1378 goto drop_and_release;
1379 }
1380
1381 isn = tcp_v4_init_sequence(skb);
1382 }
1383 tcp_rsk(req)->snt_isn = isn;
1384
1385 if (tcp_v4_send_synack(sk, dst, req,
1386 (struct request_values *)&tmp_ext) ||
1387 want_cookie)
1388 goto drop_and_free;
1389
1390 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1391 return 0;
1392
1393 drop_and_release:
1394 dst_release(dst);
1395 drop_and_free:
1396 reqsk_free(req);
1397 drop:
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(tcp_v4_conn_request);
1401
1402
1403 /*
1404 * The three way handshake has completed - we got a valid synack -
1405 * now create the new socket.
1406 */
1407 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1408 struct request_sock *req,
1409 struct dst_entry *dst)
1410 {
1411 struct inet_request_sock *ireq;
1412 struct inet_sock *newinet;
1413 struct tcp_sock *newtp;
1414 struct sock *newsk;
1415 #ifdef CONFIG_TCP_MD5SIG
1416 struct tcp_md5sig_key *key;
1417 #endif
1418 struct ip_options_rcu *inet_opt;
1419
1420 if (sk_acceptq_is_full(sk))
1421 goto exit_overflow;
1422
1423 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1424 goto exit;
1425
1426 newsk = tcp_create_openreq_child(sk, req, skb);
1427 if (!newsk)
1428 goto exit_nonewsk;
1429
1430 newsk->sk_gso_type = SKB_GSO_TCPV4;
1431 sk_setup_caps(newsk, dst);
1432
1433 newtp = tcp_sk(newsk);
1434 newinet = inet_sk(newsk);
1435 ireq = inet_rsk(req);
1436 newinet->inet_daddr = ireq->rmt_addr;
1437 newinet->inet_rcv_saddr = ireq->loc_addr;
1438 newinet->inet_saddr = ireq->loc_addr;
1439 inet_opt = ireq->opt;
1440 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1441 ireq->opt = NULL;
1442 newinet->mc_index = inet_iif(skb);
1443 newinet->mc_ttl = ip_hdr(skb)->ttl;
1444 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1445 if (inet_opt)
1446 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1447 newinet->inet_id = newtp->write_seq ^ jiffies;
1448
1449 tcp_mtup_init(newsk);
1450 tcp_sync_mss(newsk, dst_mtu(dst));
1451 newtp->advmss = dst_metric_advmss(dst);
1452 if (tcp_sk(sk)->rx_opt.user_mss &&
1453 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1454 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1455
1456 tcp_initialize_rcv_mss(newsk);
1457
1458 #ifdef CONFIG_TCP_MD5SIG
1459 /* Copy over the MD5 key from the original socket */
1460 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1461 if (key != NULL) {
1462 /*
1463 * We're using one, so create a matching key
1464 * on the newsk structure. If we fail to get
1465 * memory, then we end up not copying the key
1466 * across. Shucks.
1467 */
1468 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1469 if (newkey != NULL)
1470 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1471 newkey, key->keylen);
1472 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1473 }
1474 #endif
1475
1476 if (__inet_inherit_port(sk, newsk) < 0) {
1477 sock_put(newsk);
1478 goto exit;
1479 }
1480 __inet_hash_nolisten(newsk, NULL);
1481
1482 return newsk;
1483
1484 exit_overflow:
1485 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1486 exit_nonewsk:
1487 dst_release(dst);
1488 exit:
1489 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1490 return NULL;
1491 }
1492 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1493
1494 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1495 {
1496 struct tcphdr *th = tcp_hdr(skb);
1497 const struct iphdr *iph = ip_hdr(skb);
1498 struct sock *nsk;
1499 struct request_sock **prev;
1500 /* Find possible connection requests. */
1501 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1502 iph->saddr, iph->daddr);
1503 if (req)
1504 return tcp_check_req(sk, skb, req, prev);
1505
1506 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1507 th->source, iph->daddr, th->dest, inet_iif(skb));
1508
1509 if (nsk) {
1510 if (nsk->sk_state != TCP_TIME_WAIT) {
1511 bh_lock_sock(nsk);
1512 return nsk;
1513 }
1514 inet_twsk_put(inet_twsk(nsk));
1515 return NULL;
1516 }
1517
1518 #ifdef CONFIG_SYN_COOKIES
1519 if (!th->syn)
1520 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1521 #endif
1522 return sk;
1523 }
1524
1525 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1526 {
1527 const struct iphdr *iph = ip_hdr(skb);
1528
1529 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1530 if (!tcp_v4_check(skb->len, iph->saddr,
1531 iph->daddr, skb->csum)) {
1532 skb->ip_summed = CHECKSUM_UNNECESSARY;
1533 return 0;
1534 }
1535 }
1536
1537 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1538 skb->len, IPPROTO_TCP, 0);
1539
1540 if (skb->len <= 76) {
1541 return __skb_checksum_complete(skb);
1542 }
1543 return 0;
1544 }
1545
1546
1547 /* The socket must have it's spinlock held when we get
1548 * here.
1549 *
1550 * We have a potential double-lock case here, so even when
1551 * doing backlog processing we use the BH locking scheme.
1552 * This is because we cannot sleep with the original spinlock
1553 * held.
1554 */
1555 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1556 {
1557 struct sock *rsk;
1558 #ifdef CONFIG_TCP_MD5SIG
1559 /*
1560 * We really want to reject the packet as early as possible
1561 * if:
1562 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1563 * o There is an MD5 option and we're not expecting one
1564 */
1565 if (tcp_v4_inbound_md5_hash(sk, skb))
1566 goto discard;
1567 #endif
1568
1569 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1570 sock_rps_save_rxhash(sk, skb->rxhash);
1571 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1572 rsk = sk;
1573 goto reset;
1574 }
1575 return 0;
1576 }
1577
1578 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1579 goto csum_err;
1580
1581 if (sk->sk_state == TCP_LISTEN) {
1582 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1583 if (!nsk)
1584 goto discard;
1585
1586 if (nsk != sk) {
1587 if (tcp_child_process(sk, nsk, skb)) {
1588 rsk = nsk;
1589 goto reset;
1590 }
1591 return 0;
1592 }
1593 } else
1594 sock_rps_save_rxhash(sk, skb->rxhash);
1595
1596 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1597 rsk = sk;
1598 goto reset;
1599 }
1600 return 0;
1601
1602 reset:
1603 tcp_v4_send_reset(rsk, skb);
1604 discard:
1605 kfree_skb(skb);
1606 /* Be careful here. If this function gets more complicated and
1607 * gcc suffers from register pressure on the x86, sk (in %ebx)
1608 * might be destroyed here. This current version compiles correctly,
1609 * but you have been warned.
1610 */
1611 return 0;
1612
1613 csum_err:
1614 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1615 goto discard;
1616 }
1617 EXPORT_SYMBOL(tcp_v4_do_rcv);
1618
1619 /*
1620 * From tcp_input.c
1621 */
1622
1623 int tcp_v4_rcv(struct sk_buff *skb)
1624 {
1625 const struct iphdr *iph;
1626 struct tcphdr *th;
1627 struct sock *sk;
1628 int ret;
1629 struct net *net = dev_net(skb->dev);
1630
1631 if (skb->pkt_type != PACKET_HOST)
1632 goto discard_it;
1633
1634 /* Count it even if it's bad */
1635 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1636
1637 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1638 goto discard_it;
1639
1640 th = tcp_hdr(skb);
1641
1642 if (th->doff < sizeof(struct tcphdr) / 4)
1643 goto bad_packet;
1644 if (!pskb_may_pull(skb, th->doff * 4))
1645 goto discard_it;
1646
1647 /* An explanation is required here, I think.
1648 * Packet length and doff are validated by header prediction,
1649 * provided case of th->doff==0 is eliminated.
1650 * So, we defer the checks. */
1651 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1652 goto bad_packet;
1653
1654 th = tcp_hdr(skb);
1655 iph = ip_hdr(skb);
1656 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1657 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1658 skb->len - th->doff * 4);
1659 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1660 TCP_SKB_CB(skb)->when = 0;
1661 TCP_SKB_CB(skb)->flags = iph->tos;
1662 TCP_SKB_CB(skb)->sacked = 0;
1663
1664 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1665 if (!sk)
1666 goto no_tcp_socket;
1667
1668 process:
1669 if (sk->sk_state == TCP_TIME_WAIT)
1670 goto do_time_wait;
1671
1672 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1673 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1674 goto discard_and_relse;
1675 }
1676
1677 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1678 goto discard_and_relse;
1679 nf_reset(skb);
1680
1681 if (sk_filter(sk, skb))
1682 goto discard_and_relse;
1683
1684 skb->dev = NULL;
1685
1686 bh_lock_sock_nested(sk);
1687 ret = 0;
1688 if (!sock_owned_by_user(sk)) {
1689 #ifdef CONFIG_NET_DMA
1690 struct tcp_sock *tp = tcp_sk(sk);
1691 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1692 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1693 if (tp->ucopy.dma_chan)
1694 ret = tcp_v4_do_rcv(sk, skb);
1695 else
1696 #endif
1697 {
1698 if (!tcp_prequeue(sk, skb))
1699 ret = tcp_v4_do_rcv(sk, skb);
1700 }
1701 } else if (unlikely(sk_add_backlog(sk, skb))) {
1702 bh_unlock_sock(sk);
1703 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1704 goto discard_and_relse;
1705 }
1706 bh_unlock_sock(sk);
1707
1708 sock_put(sk);
1709
1710 return ret;
1711
1712 no_tcp_socket:
1713 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1714 goto discard_it;
1715
1716 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1717 bad_packet:
1718 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1719 } else {
1720 tcp_v4_send_reset(NULL, skb);
1721 }
1722
1723 discard_it:
1724 /* Discard frame. */
1725 kfree_skb(skb);
1726 return 0;
1727
1728 discard_and_relse:
1729 sock_put(sk);
1730 goto discard_it;
1731
1732 do_time_wait:
1733 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1734 inet_twsk_put(inet_twsk(sk));
1735 goto discard_it;
1736 }
1737
1738 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1739 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1740 inet_twsk_put(inet_twsk(sk));
1741 goto discard_it;
1742 }
1743 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1744 case TCP_TW_SYN: {
1745 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1746 &tcp_hashinfo,
1747 iph->daddr, th->dest,
1748 inet_iif(skb));
1749 if (sk2) {
1750 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1751 inet_twsk_put(inet_twsk(sk));
1752 sk = sk2;
1753 goto process;
1754 }
1755 /* Fall through to ACK */
1756 }
1757 case TCP_TW_ACK:
1758 tcp_v4_timewait_ack(sk, skb);
1759 break;
1760 case TCP_TW_RST:
1761 goto no_tcp_socket;
1762 case TCP_TW_SUCCESS:;
1763 }
1764 goto discard_it;
1765 }
1766
1767 struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1768 {
1769 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1770 struct inet_sock *inet = inet_sk(sk);
1771 struct inet_peer *peer;
1772
1773 if (!rt || rt->rt_dst != inet->inet_daddr) {
1774 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1775 *release_it = true;
1776 } else {
1777 if (!rt->peer)
1778 rt_bind_peer(rt, 1);
1779 peer = rt->peer;
1780 *release_it = false;
1781 }
1782
1783 return peer;
1784 }
1785 EXPORT_SYMBOL(tcp_v4_get_peer);
1786
1787 void *tcp_v4_tw_get_peer(struct sock *sk)
1788 {
1789 struct inet_timewait_sock *tw = inet_twsk(sk);
1790
1791 return inet_getpeer_v4(tw->tw_daddr, 1);
1792 }
1793 EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1794
1795 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1796 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1797 .twsk_unique = tcp_twsk_unique,
1798 .twsk_destructor= tcp_twsk_destructor,
1799 .twsk_getpeer = tcp_v4_tw_get_peer,
1800 };
1801
1802 const struct inet_connection_sock_af_ops ipv4_specific = {
1803 .queue_xmit = ip_queue_xmit,
1804 .send_check = tcp_v4_send_check,
1805 .rebuild_header = inet_sk_rebuild_header,
1806 .conn_request = tcp_v4_conn_request,
1807 .syn_recv_sock = tcp_v4_syn_recv_sock,
1808 .get_peer = tcp_v4_get_peer,
1809 .net_header_len = sizeof(struct iphdr),
1810 .setsockopt = ip_setsockopt,
1811 .getsockopt = ip_getsockopt,
1812 .addr2sockaddr = inet_csk_addr2sockaddr,
1813 .sockaddr_len = sizeof(struct sockaddr_in),
1814 .bind_conflict = inet_csk_bind_conflict,
1815 #ifdef CONFIG_COMPAT
1816 .compat_setsockopt = compat_ip_setsockopt,
1817 .compat_getsockopt = compat_ip_getsockopt,
1818 #endif
1819 };
1820 EXPORT_SYMBOL(ipv4_specific);
1821
1822 #ifdef CONFIG_TCP_MD5SIG
1823 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1824 .md5_lookup = tcp_v4_md5_lookup,
1825 .calc_md5_hash = tcp_v4_md5_hash_skb,
1826 .md5_add = tcp_v4_md5_add_func,
1827 .md5_parse = tcp_v4_parse_md5_keys,
1828 };
1829 #endif
1830
1831 /* NOTE: A lot of things set to zero explicitly by call to
1832 * sk_alloc() so need not be done here.
1833 */
1834 static int tcp_v4_init_sock(struct sock *sk)
1835 {
1836 struct inet_connection_sock *icsk = inet_csk(sk);
1837 struct tcp_sock *tp = tcp_sk(sk);
1838
1839 skb_queue_head_init(&tp->out_of_order_queue);
1840 tcp_init_xmit_timers(sk);
1841 tcp_prequeue_init(tp);
1842
1843 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1844 tp->mdev = TCP_TIMEOUT_INIT;
1845
1846 /* So many TCP implementations out there (incorrectly) count the
1847 * initial SYN frame in their delayed-ACK and congestion control
1848 * algorithms that we must have the following bandaid to talk
1849 * efficiently to them. -DaveM
1850 */
1851 tp->snd_cwnd = 2;
1852
1853 /* See draft-stevens-tcpca-spec-01 for discussion of the
1854 * initialization of these values.
1855 */
1856 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1857 tp->snd_cwnd_clamp = ~0;
1858 tp->mss_cache = TCP_MSS_DEFAULT;
1859
1860 tp->reordering = sysctl_tcp_reordering;
1861 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1862
1863 sk->sk_state = TCP_CLOSE;
1864
1865 sk->sk_write_space = sk_stream_write_space;
1866 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1867
1868 icsk->icsk_af_ops = &ipv4_specific;
1869 icsk->icsk_sync_mss = tcp_sync_mss;
1870 #ifdef CONFIG_TCP_MD5SIG
1871 tp->af_specific = &tcp_sock_ipv4_specific;
1872 #endif
1873
1874 /* TCP Cookie Transactions */
1875 if (sysctl_tcp_cookie_size > 0) {
1876 /* Default, cookies without s_data_payload. */
1877 tp->cookie_values =
1878 kzalloc(sizeof(*tp->cookie_values),
1879 sk->sk_allocation);
1880 if (tp->cookie_values != NULL)
1881 kref_init(&tp->cookie_values->kref);
1882 }
1883 /* Presumed zeroed, in order of appearance:
1884 * cookie_in_always, cookie_out_never,
1885 * s_data_constant, s_data_in, s_data_out
1886 */
1887 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1888 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1889
1890 local_bh_disable();
1891 percpu_counter_inc(&tcp_sockets_allocated);
1892 local_bh_enable();
1893
1894 return 0;
1895 }
1896
1897 void tcp_v4_destroy_sock(struct sock *sk)
1898 {
1899 struct tcp_sock *tp = tcp_sk(sk);
1900
1901 tcp_clear_xmit_timers(sk);
1902
1903 tcp_cleanup_congestion_control(sk);
1904
1905 /* Cleanup up the write buffer. */
1906 tcp_write_queue_purge(sk);
1907
1908 /* Cleans up our, hopefully empty, out_of_order_queue. */
1909 __skb_queue_purge(&tp->out_of_order_queue);
1910
1911 #ifdef CONFIG_TCP_MD5SIG
1912 /* Clean up the MD5 key list, if any */
1913 if (tp->md5sig_info) {
1914 tcp_v4_clear_md5_list(sk);
1915 kfree(tp->md5sig_info);
1916 tp->md5sig_info = NULL;
1917 }
1918 #endif
1919
1920 #ifdef CONFIG_NET_DMA
1921 /* Cleans up our sk_async_wait_queue */
1922 __skb_queue_purge(&sk->sk_async_wait_queue);
1923 #endif
1924
1925 /* Clean prequeue, it must be empty really */
1926 __skb_queue_purge(&tp->ucopy.prequeue);
1927
1928 /* Clean up a referenced TCP bind bucket. */
1929 if (inet_csk(sk)->icsk_bind_hash)
1930 inet_put_port(sk);
1931
1932 /*
1933 * If sendmsg cached page exists, toss it.
1934 */
1935 if (sk->sk_sndmsg_page) {
1936 __free_page(sk->sk_sndmsg_page);
1937 sk->sk_sndmsg_page = NULL;
1938 }
1939
1940 /* TCP Cookie Transactions */
1941 if (tp->cookie_values != NULL) {
1942 kref_put(&tp->cookie_values->kref,
1943 tcp_cookie_values_release);
1944 tp->cookie_values = NULL;
1945 }
1946
1947 percpu_counter_dec(&tcp_sockets_allocated);
1948 }
1949 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1950
1951 #ifdef CONFIG_PROC_FS
1952 /* Proc filesystem TCP sock list dumping. */
1953
1954 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1955 {
1956 return hlist_nulls_empty(head) ? NULL :
1957 list_entry(head->first, struct inet_timewait_sock, tw_node);
1958 }
1959
1960 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1961 {
1962 return !is_a_nulls(tw->tw_node.next) ?
1963 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1964 }
1965
1966 /*
1967 * Get next listener socket follow cur. If cur is NULL, get first socket
1968 * starting from bucket given in st->bucket; when st->bucket is zero the
1969 * very first socket in the hash table is returned.
1970 */
1971 static void *listening_get_next(struct seq_file *seq, void *cur)
1972 {
1973 struct inet_connection_sock *icsk;
1974 struct hlist_nulls_node *node;
1975 struct sock *sk = cur;
1976 struct inet_listen_hashbucket *ilb;
1977 struct tcp_iter_state *st = seq->private;
1978 struct net *net = seq_file_net(seq);
1979
1980 if (!sk) {
1981 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1982 spin_lock_bh(&ilb->lock);
1983 sk = sk_nulls_head(&ilb->head);
1984 st->offset = 0;
1985 goto get_sk;
1986 }
1987 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1988 ++st->num;
1989 ++st->offset;
1990
1991 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1992 struct request_sock *req = cur;
1993
1994 icsk = inet_csk(st->syn_wait_sk);
1995 req = req->dl_next;
1996 while (1) {
1997 while (req) {
1998 if (req->rsk_ops->family == st->family) {
1999 cur = req;
2000 goto out;
2001 }
2002 req = req->dl_next;
2003 }
2004 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2005 break;
2006 get_req:
2007 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2008 }
2009 sk = sk_nulls_next(st->syn_wait_sk);
2010 st->state = TCP_SEQ_STATE_LISTENING;
2011 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2012 } else {
2013 icsk = inet_csk(sk);
2014 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2015 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2016 goto start_req;
2017 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2018 sk = sk_nulls_next(sk);
2019 }
2020 get_sk:
2021 sk_nulls_for_each_from(sk, node) {
2022 if (!net_eq(sock_net(sk), net))
2023 continue;
2024 if (sk->sk_family == st->family) {
2025 cur = sk;
2026 goto out;
2027 }
2028 icsk = inet_csk(sk);
2029 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2030 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2031 start_req:
2032 st->uid = sock_i_uid(sk);
2033 st->syn_wait_sk = sk;
2034 st->state = TCP_SEQ_STATE_OPENREQ;
2035 st->sbucket = 0;
2036 goto get_req;
2037 }
2038 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2039 }
2040 spin_unlock_bh(&ilb->lock);
2041 st->offset = 0;
2042 if (++st->bucket < INET_LHTABLE_SIZE) {
2043 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2044 spin_lock_bh(&ilb->lock);
2045 sk = sk_nulls_head(&ilb->head);
2046 goto get_sk;
2047 }
2048 cur = NULL;
2049 out:
2050 return cur;
2051 }
2052
2053 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2054 {
2055 struct tcp_iter_state *st = seq->private;
2056 void *rc;
2057
2058 st->bucket = 0;
2059 st->offset = 0;
2060 rc = listening_get_next(seq, NULL);
2061
2062 while (rc && *pos) {
2063 rc = listening_get_next(seq, rc);
2064 --*pos;
2065 }
2066 return rc;
2067 }
2068
2069 static inline int empty_bucket(struct tcp_iter_state *st)
2070 {
2071 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2072 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2073 }
2074
2075 /*
2076 * Get first established socket starting from bucket given in st->bucket.
2077 * If st->bucket is zero, the very first socket in the hash is returned.
2078 */
2079 static void *established_get_first(struct seq_file *seq)
2080 {
2081 struct tcp_iter_state *st = seq->private;
2082 struct net *net = seq_file_net(seq);
2083 void *rc = NULL;
2084
2085 st->offset = 0;
2086 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2087 struct sock *sk;
2088 struct hlist_nulls_node *node;
2089 struct inet_timewait_sock *tw;
2090 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2091
2092 /* Lockless fast path for the common case of empty buckets */
2093 if (empty_bucket(st))
2094 continue;
2095
2096 spin_lock_bh(lock);
2097 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2098 if (sk->sk_family != st->family ||
2099 !net_eq(sock_net(sk), net)) {
2100 continue;
2101 }
2102 rc = sk;
2103 goto out;
2104 }
2105 st->state = TCP_SEQ_STATE_TIME_WAIT;
2106 inet_twsk_for_each(tw, node,
2107 &tcp_hashinfo.ehash[st->bucket].twchain) {
2108 if (tw->tw_family != st->family ||
2109 !net_eq(twsk_net(tw), net)) {
2110 continue;
2111 }
2112 rc = tw;
2113 goto out;
2114 }
2115 spin_unlock_bh(lock);
2116 st->state = TCP_SEQ_STATE_ESTABLISHED;
2117 }
2118 out:
2119 return rc;
2120 }
2121
2122 static void *established_get_next(struct seq_file *seq, void *cur)
2123 {
2124 struct sock *sk = cur;
2125 struct inet_timewait_sock *tw;
2126 struct hlist_nulls_node *node;
2127 struct tcp_iter_state *st = seq->private;
2128 struct net *net = seq_file_net(seq);
2129
2130 ++st->num;
2131 ++st->offset;
2132
2133 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2134 tw = cur;
2135 tw = tw_next(tw);
2136 get_tw:
2137 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2138 tw = tw_next(tw);
2139 }
2140 if (tw) {
2141 cur = tw;
2142 goto out;
2143 }
2144 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2145 st->state = TCP_SEQ_STATE_ESTABLISHED;
2146
2147 /* Look for next non empty bucket */
2148 st->offset = 0;
2149 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2150 empty_bucket(st))
2151 ;
2152 if (st->bucket > tcp_hashinfo.ehash_mask)
2153 return NULL;
2154
2155 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2156 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2157 } else
2158 sk = sk_nulls_next(sk);
2159
2160 sk_nulls_for_each_from(sk, node) {
2161 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2162 goto found;
2163 }
2164
2165 st->state = TCP_SEQ_STATE_TIME_WAIT;
2166 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2167 goto get_tw;
2168 found:
2169 cur = sk;
2170 out:
2171 return cur;
2172 }
2173
2174 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2175 {
2176 struct tcp_iter_state *st = seq->private;
2177 void *rc;
2178
2179 st->bucket = 0;
2180 rc = established_get_first(seq);
2181
2182 while (rc && pos) {
2183 rc = established_get_next(seq, rc);
2184 --pos;
2185 }
2186 return rc;
2187 }
2188
2189 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2190 {
2191 void *rc;
2192 struct tcp_iter_state *st = seq->private;
2193
2194 st->state = TCP_SEQ_STATE_LISTENING;
2195 rc = listening_get_idx(seq, &pos);
2196
2197 if (!rc) {
2198 st->state = TCP_SEQ_STATE_ESTABLISHED;
2199 rc = established_get_idx(seq, pos);
2200 }
2201
2202 return rc;
2203 }
2204
2205 static void *tcp_seek_last_pos(struct seq_file *seq)
2206 {
2207 struct tcp_iter_state *st = seq->private;
2208 int offset = st->offset;
2209 int orig_num = st->num;
2210 void *rc = NULL;
2211
2212 switch (st->state) {
2213 case TCP_SEQ_STATE_OPENREQ:
2214 case TCP_SEQ_STATE_LISTENING:
2215 if (st->bucket >= INET_LHTABLE_SIZE)
2216 break;
2217 st->state = TCP_SEQ_STATE_LISTENING;
2218 rc = listening_get_next(seq, NULL);
2219 while (offset-- && rc)
2220 rc = listening_get_next(seq, rc);
2221 if (rc)
2222 break;
2223 st->bucket = 0;
2224 /* Fallthrough */
2225 case TCP_SEQ_STATE_ESTABLISHED:
2226 case TCP_SEQ_STATE_TIME_WAIT:
2227 st->state = TCP_SEQ_STATE_ESTABLISHED;
2228 if (st->bucket > tcp_hashinfo.ehash_mask)
2229 break;
2230 rc = established_get_first(seq);
2231 while (offset-- && rc)
2232 rc = established_get_next(seq, rc);
2233 }
2234
2235 st->num = orig_num;
2236
2237 return rc;
2238 }
2239
2240 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2241 {
2242 struct tcp_iter_state *st = seq->private;
2243 void *rc;
2244
2245 if (*pos && *pos == st->last_pos) {
2246 rc = tcp_seek_last_pos(seq);
2247 if (rc)
2248 goto out;
2249 }
2250
2251 st->state = TCP_SEQ_STATE_LISTENING;
2252 st->num = 0;
2253 st->bucket = 0;
2254 st->offset = 0;
2255 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2256
2257 out:
2258 st->last_pos = *pos;
2259 return rc;
2260 }
2261
2262 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2263 {
2264 struct tcp_iter_state *st = seq->private;
2265 void *rc = NULL;
2266
2267 if (v == SEQ_START_TOKEN) {
2268 rc = tcp_get_idx(seq, 0);
2269 goto out;
2270 }
2271
2272 switch (st->state) {
2273 case TCP_SEQ_STATE_OPENREQ:
2274 case TCP_SEQ_STATE_LISTENING:
2275 rc = listening_get_next(seq, v);
2276 if (!rc) {
2277 st->state = TCP_SEQ_STATE_ESTABLISHED;
2278 st->bucket = 0;
2279 st->offset = 0;
2280 rc = established_get_first(seq);
2281 }
2282 break;
2283 case TCP_SEQ_STATE_ESTABLISHED:
2284 case TCP_SEQ_STATE_TIME_WAIT:
2285 rc = established_get_next(seq, v);
2286 break;
2287 }
2288 out:
2289 ++*pos;
2290 st->last_pos = *pos;
2291 return rc;
2292 }
2293
2294 static void tcp_seq_stop(struct seq_file *seq, void *v)
2295 {
2296 struct tcp_iter_state *st = seq->private;
2297
2298 switch (st->state) {
2299 case TCP_SEQ_STATE_OPENREQ:
2300 if (v) {
2301 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2302 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2303 }
2304 case TCP_SEQ_STATE_LISTENING:
2305 if (v != SEQ_START_TOKEN)
2306 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2307 break;
2308 case TCP_SEQ_STATE_TIME_WAIT:
2309 case TCP_SEQ_STATE_ESTABLISHED:
2310 if (v)
2311 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2312 break;
2313 }
2314 }
2315
2316 static int tcp_seq_open(struct inode *inode, struct file *file)
2317 {
2318 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2319 struct tcp_iter_state *s;
2320 int err;
2321
2322 err = seq_open_net(inode, file, &afinfo->seq_ops,
2323 sizeof(struct tcp_iter_state));
2324 if (err < 0)
2325 return err;
2326
2327 s = ((struct seq_file *)file->private_data)->private;
2328 s->family = afinfo->family;
2329 s->last_pos = 0;
2330 return 0;
2331 }
2332
2333 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2334 {
2335 int rc = 0;
2336 struct proc_dir_entry *p;
2337
2338 afinfo->seq_fops.open = tcp_seq_open;
2339 afinfo->seq_fops.read = seq_read;
2340 afinfo->seq_fops.llseek = seq_lseek;
2341 afinfo->seq_fops.release = seq_release_net;
2342
2343 afinfo->seq_ops.start = tcp_seq_start;
2344 afinfo->seq_ops.next = tcp_seq_next;
2345 afinfo->seq_ops.stop = tcp_seq_stop;
2346
2347 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2348 &afinfo->seq_fops, afinfo);
2349 if (!p)
2350 rc = -ENOMEM;
2351 return rc;
2352 }
2353 EXPORT_SYMBOL(tcp_proc_register);
2354
2355 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2356 {
2357 proc_net_remove(net, afinfo->name);
2358 }
2359 EXPORT_SYMBOL(tcp_proc_unregister);
2360
2361 static void get_openreq4(struct sock *sk, struct request_sock *req,
2362 struct seq_file *f, int i, int uid, int *len)
2363 {
2364 const struct inet_request_sock *ireq = inet_rsk(req);
2365 int ttd = req->expires - jiffies;
2366
2367 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2368 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2369 i,
2370 ireq->loc_addr,
2371 ntohs(inet_sk(sk)->inet_sport),
2372 ireq->rmt_addr,
2373 ntohs(ireq->rmt_port),
2374 TCP_SYN_RECV,
2375 0, 0, /* could print option size, but that is af dependent. */
2376 1, /* timers active (only the expire timer) */
2377 jiffies_to_clock_t(ttd),
2378 req->retrans,
2379 uid,
2380 0, /* non standard timer */
2381 0, /* open_requests have no inode */
2382 atomic_read(&sk->sk_refcnt),
2383 req,
2384 len);
2385 }
2386
2387 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2388 {
2389 int timer_active;
2390 unsigned long timer_expires;
2391 struct tcp_sock *tp = tcp_sk(sk);
2392 const struct inet_connection_sock *icsk = inet_csk(sk);
2393 struct inet_sock *inet = inet_sk(sk);
2394 __be32 dest = inet->inet_daddr;
2395 __be32 src = inet->inet_rcv_saddr;
2396 __u16 destp = ntohs(inet->inet_dport);
2397 __u16 srcp = ntohs(inet->inet_sport);
2398 int rx_queue;
2399
2400 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2401 timer_active = 1;
2402 timer_expires = icsk->icsk_timeout;
2403 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2404 timer_active = 4;
2405 timer_expires = icsk->icsk_timeout;
2406 } else if (timer_pending(&sk->sk_timer)) {
2407 timer_active = 2;
2408 timer_expires = sk->sk_timer.expires;
2409 } else {
2410 timer_active = 0;
2411 timer_expires = jiffies;
2412 }
2413
2414 if (sk->sk_state == TCP_LISTEN)
2415 rx_queue = sk->sk_ack_backlog;
2416 else
2417 /*
2418 * because we dont lock socket, we might find a transient negative value
2419 */
2420 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2421
2422 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2423 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2424 i, src, srcp, dest, destp, sk->sk_state,
2425 tp->write_seq - tp->snd_una,
2426 rx_queue,
2427 timer_active,
2428 jiffies_to_clock_t(timer_expires - jiffies),
2429 icsk->icsk_retransmits,
2430 sock_i_uid(sk),
2431 icsk->icsk_probes_out,
2432 sock_i_ino(sk),
2433 atomic_read(&sk->sk_refcnt), sk,
2434 jiffies_to_clock_t(icsk->icsk_rto),
2435 jiffies_to_clock_t(icsk->icsk_ack.ato),
2436 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2437 tp->snd_cwnd,
2438 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2439 len);
2440 }
2441
2442 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2443 struct seq_file *f, int i, int *len)
2444 {
2445 __be32 dest, src;
2446 __u16 destp, srcp;
2447 int ttd = tw->tw_ttd - jiffies;
2448
2449 if (ttd < 0)
2450 ttd = 0;
2451
2452 dest = tw->tw_daddr;
2453 src = tw->tw_rcv_saddr;
2454 destp = ntohs(tw->tw_dport);
2455 srcp = ntohs(tw->tw_sport);
2456
2457 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2458 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2459 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2460 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2461 atomic_read(&tw->tw_refcnt), tw, len);
2462 }
2463
2464 #define TMPSZ 150
2465
2466 static int tcp4_seq_show(struct seq_file *seq, void *v)
2467 {
2468 struct tcp_iter_state *st;
2469 int len;
2470
2471 if (v == SEQ_START_TOKEN) {
2472 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2473 " sl local_address rem_address st tx_queue "
2474 "rx_queue tr tm->when retrnsmt uid timeout "
2475 "inode");
2476 goto out;
2477 }
2478 st = seq->private;
2479
2480 switch (st->state) {
2481 case TCP_SEQ_STATE_LISTENING:
2482 case TCP_SEQ_STATE_ESTABLISHED:
2483 get_tcp4_sock(v, seq, st->num, &len);
2484 break;
2485 case TCP_SEQ_STATE_OPENREQ:
2486 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2487 break;
2488 case TCP_SEQ_STATE_TIME_WAIT:
2489 get_timewait4_sock(v, seq, st->num, &len);
2490 break;
2491 }
2492 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2493 out:
2494 return 0;
2495 }
2496
2497 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2498 .name = "tcp",
2499 .family = AF_INET,
2500 .seq_fops = {
2501 .owner = THIS_MODULE,
2502 },
2503 .seq_ops = {
2504 .show = tcp4_seq_show,
2505 },
2506 };
2507
2508 static int __net_init tcp4_proc_init_net(struct net *net)
2509 {
2510 return tcp_proc_register(net, &tcp4_seq_afinfo);
2511 }
2512
2513 static void __net_exit tcp4_proc_exit_net(struct net *net)
2514 {
2515 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2516 }
2517
2518 static struct pernet_operations tcp4_net_ops = {
2519 .init = tcp4_proc_init_net,
2520 .exit = tcp4_proc_exit_net,
2521 };
2522
2523 int __init tcp4_proc_init(void)
2524 {
2525 return register_pernet_subsys(&tcp4_net_ops);
2526 }
2527
2528 void tcp4_proc_exit(void)
2529 {
2530 unregister_pernet_subsys(&tcp4_net_ops);
2531 }
2532 #endif /* CONFIG_PROC_FS */
2533
2534 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2535 {
2536 const struct iphdr *iph = skb_gro_network_header(skb);
2537
2538 switch (skb->ip_summed) {
2539 case CHECKSUM_COMPLETE:
2540 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2541 skb->csum)) {
2542 skb->ip_summed = CHECKSUM_UNNECESSARY;
2543 break;
2544 }
2545
2546 /* fall through */
2547 case CHECKSUM_NONE:
2548 NAPI_GRO_CB(skb)->flush = 1;
2549 return NULL;
2550 }
2551
2552 return tcp_gro_receive(head, skb);
2553 }
2554
2555 int tcp4_gro_complete(struct sk_buff *skb)
2556 {
2557 const struct iphdr *iph = ip_hdr(skb);
2558 struct tcphdr *th = tcp_hdr(skb);
2559
2560 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2561 iph->saddr, iph->daddr, 0);
2562 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2563
2564 return tcp_gro_complete(skb);
2565 }
2566
2567 struct proto tcp_prot = {
2568 .name = "TCP",
2569 .owner = THIS_MODULE,
2570 .close = tcp_close,
2571 .connect = tcp_v4_connect,
2572 .disconnect = tcp_disconnect,
2573 .accept = inet_csk_accept,
2574 .ioctl = tcp_ioctl,
2575 .init = tcp_v4_init_sock,
2576 .destroy = tcp_v4_destroy_sock,
2577 .shutdown = tcp_shutdown,
2578 .setsockopt = tcp_setsockopt,
2579 .getsockopt = tcp_getsockopt,
2580 .recvmsg = tcp_recvmsg,
2581 .sendmsg = tcp_sendmsg,
2582 .sendpage = tcp_sendpage,
2583 .backlog_rcv = tcp_v4_do_rcv,
2584 .hash = inet_hash,
2585 .unhash = inet_unhash,
2586 .get_port = inet_csk_get_port,
2587 .enter_memory_pressure = tcp_enter_memory_pressure,
2588 .sockets_allocated = &tcp_sockets_allocated,
2589 .orphan_count = &tcp_orphan_count,
2590 .memory_allocated = &tcp_memory_allocated,
2591 .memory_pressure = &tcp_memory_pressure,
2592 .sysctl_mem = sysctl_tcp_mem,
2593 .sysctl_wmem = sysctl_tcp_wmem,
2594 .sysctl_rmem = sysctl_tcp_rmem,
2595 .max_header = MAX_TCP_HEADER,
2596 .obj_size = sizeof(struct tcp_sock),
2597 .slab_flags = SLAB_DESTROY_BY_RCU,
2598 .twsk_prot = &tcp_timewait_sock_ops,
2599 .rsk_prot = &tcp_request_sock_ops,
2600 .h.hashinfo = &tcp_hashinfo,
2601 .no_autobind = true,
2602 #ifdef CONFIG_COMPAT
2603 .compat_setsockopt = compat_tcp_setsockopt,
2604 .compat_getsockopt = compat_tcp_getsockopt,
2605 #endif
2606 };
2607 EXPORT_SYMBOL(tcp_prot);
2608
2609
2610 static int __net_init tcp_sk_init(struct net *net)
2611 {
2612 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2613 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2614 }
2615
2616 static void __net_exit tcp_sk_exit(struct net *net)
2617 {
2618 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2619 }
2620
2621 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2622 {
2623 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2624 }
2625
2626 static struct pernet_operations __net_initdata tcp_sk_ops = {
2627 .init = tcp_sk_init,
2628 .exit = tcp_sk_exit,
2629 .exit_batch = tcp_sk_exit_batch,
2630 };
2631
2632 void __init tcp_v4_init(void)
2633 {
2634 inet_hashinfo_init(&tcp_hashinfo);
2635 if (register_pernet_subsys(&tcp_sk_ops))
2636 panic("Failed to create the TCP control socket.\n");
2637 }