[NET]: Detect hardware rx checksum faults correctly
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9 *
10 * IPv4 specific functions
11 *
12 *
13 * code split from:
14 * linux/ipv4/tcp.c
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
17 *
18 * See tcp.c for author information
19 *
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
24 */
25
26 /*
27 * Changes:
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
36 * ACK bit.
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen sematics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
47 * coma.
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
53 */
54
55 #include <linux/config.h>
56
57 #include <linux/types.h>
58 #include <linux/fcntl.h>
59 #include <linux/module.h>
60 #include <linux/random.h>
61 #include <linux/cache.h>
62 #include <linux/jhash.h>
63 #include <linux/init.h>
64 #include <linux/times.h>
65
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/xfrm.h>
73
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79
80 int sysctl_tcp_tw_reuse;
81 int sysctl_tcp_low_latency;
82
83 /* Check TCP sequence numbers in ICMP packets. */
84 #define ICMP_MIN_LENGTH 8
85
86 /* Socket used for sending RSTs */
87 static struct socket *tcp_socket;
88
89 void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,
90 struct sk_buff *skb);
91
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93 .lhash_lock = RW_LOCK_UNLOCKED,
94 .lhash_users = ATOMIC_INIT(0),
95 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
96 };
97
98 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
99 {
100 return inet_csk_get_port(&tcp_hashinfo, sk, snum);
101 }
102
103 static void tcp_v4_hash(struct sock *sk)
104 {
105 inet_hash(&tcp_hashinfo, sk);
106 }
107
108 void tcp_unhash(struct sock *sk)
109 {
110 inet_unhash(&tcp_hashinfo, sk);
111 }
112
113 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
114 {
115 return secure_tcp_sequence_number(skb->nh.iph->daddr,
116 skb->nh.iph->saddr,
117 skb->h.th->dest,
118 skb->h.th->source);
119 }
120
121 /* called with local bh disabled */
122 static int __tcp_v4_check_established(struct sock *sk, __u16 lport,
123 struct inet_timewait_sock **twp)
124 {
125 struct inet_sock *inet = inet_sk(sk);
126 u32 daddr = inet->rcv_saddr;
127 u32 saddr = inet->daddr;
128 int dif = sk->sk_bound_dev_if;
129 INET_ADDR_COOKIE(acookie, saddr, daddr)
130 const __u32 ports = INET_COMBINED_PORTS(inet->dport, lport);
131 unsigned int hash = inet_ehashfn(daddr, lport, saddr, inet->dport);
132 struct inet_ehash_bucket *head = inet_ehash_bucket(&tcp_hashinfo, hash);
133 struct sock *sk2;
134 const struct hlist_node *node;
135 struct inet_timewait_sock *tw;
136
137 prefetch(head->chain.first);
138 write_lock(&head->lock);
139
140 /* Check TIME-WAIT sockets first. */
141 sk_for_each(sk2, node, &(head + tcp_hashinfo.ehash_size)->chain) {
142 tw = inet_twsk(sk2);
143
144 if (INET_TW_MATCH(sk2, hash, acookie, saddr, daddr, ports, dif)) {
145 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk2);
146 struct tcp_sock *tp = tcp_sk(sk);
147
148 /* With PAWS, it is safe from the viewpoint
149 of data integrity. Even without PAWS it
150 is safe provided sequence spaces do not
151 overlap i.e. at data rates <= 80Mbit/sec.
152
153 Actually, the idea is close to VJ's one,
154 only timestamp cache is held not per host,
155 but per port pair and TW bucket is used
156 as state holder.
157
158 If TW bucket has been already destroyed we
159 fall back to VJ's scheme and use initial
160 timestamp retrieved from peer table.
161 */
162 if (tcptw->tw_ts_recent_stamp &&
163 (!twp || (sysctl_tcp_tw_reuse &&
164 xtime.tv_sec -
165 tcptw->tw_ts_recent_stamp > 1))) {
166 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
167 if (tp->write_seq == 0)
168 tp->write_seq = 1;
169 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
170 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
171 sock_hold(sk2);
172 goto unique;
173 } else
174 goto not_unique;
175 }
176 }
177 tw = NULL;
178
179 /* And established part... */
180 sk_for_each(sk2, node, &head->chain) {
181 if (INET_MATCH(sk2, hash, acookie, saddr, daddr, ports, dif))
182 goto not_unique;
183 }
184
185 unique:
186 /* Must record num and sport now. Otherwise we will see
187 * in hash table socket with a funny identity. */
188 inet->num = lport;
189 inet->sport = htons(lport);
190 sk->sk_hash = hash;
191 BUG_TRAP(sk_unhashed(sk));
192 __sk_add_node(sk, &head->chain);
193 sock_prot_inc_use(sk->sk_prot);
194 write_unlock(&head->lock);
195
196 if (twp) {
197 *twp = tw;
198 NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
199 } else if (tw) {
200 /* Silly. Should hash-dance instead... */
201 inet_twsk_deschedule(tw, &tcp_death_row);
202 NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
203
204 inet_twsk_put(tw);
205 }
206
207 return 0;
208
209 not_unique:
210 write_unlock(&head->lock);
211 return -EADDRNOTAVAIL;
212 }
213
214 static inline u32 connect_port_offset(const struct sock *sk)
215 {
216 const struct inet_sock *inet = inet_sk(sk);
217
218 return secure_tcp_port_ephemeral(inet->rcv_saddr, inet->daddr,
219 inet->dport);
220 }
221
222 /*
223 * Bind a port for a connect operation and hash it.
224 */
225 static inline int tcp_v4_hash_connect(struct sock *sk)
226 {
227 const unsigned short snum = inet_sk(sk)->num;
228 struct inet_bind_hashbucket *head;
229 struct inet_bind_bucket *tb;
230 int ret;
231
232 if (!snum) {
233 int low = sysctl_local_port_range[0];
234 int high = sysctl_local_port_range[1];
235 int range = high - low;
236 int i;
237 int port;
238 static u32 hint;
239 u32 offset = hint + connect_port_offset(sk);
240 struct hlist_node *node;
241 struct inet_timewait_sock *tw = NULL;
242
243 local_bh_disable();
244 for (i = 1; i <= range; i++) {
245 port = low + (i + offset) % range;
246 head = &tcp_hashinfo.bhash[inet_bhashfn(port, tcp_hashinfo.bhash_size)];
247 spin_lock(&head->lock);
248
249 /* Does not bother with rcv_saddr checks,
250 * because the established check is already
251 * unique enough.
252 */
253 inet_bind_bucket_for_each(tb, node, &head->chain) {
254 if (tb->port == port) {
255 BUG_TRAP(!hlist_empty(&tb->owners));
256 if (tb->fastreuse >= 0)
257 goto next_port;
258 if (!__tcp_v4_check_established(sk,
259 port,
260 &tw))
261 goto ok;
262 goto next_port;
263 }
264 }
265
266 tb = inet_bind_bucket_create(tcp_hashinfo.bind_bucket_cachep, head, port);
267 if (!tb) {
268 spin_unlock(&head->lock);
269 break;
270 }
271 tb->fastreuse = -1;
272 goto ok;
273
274 next_port:
275 spin_unlock(&head->lock);
276 }
277 local_bh_enable();
278
279 return -EADDRNOTAVAIL;
280
281 ok:
282 hint += i;
283
284 /* Head lock still held and bh's disabled */
285 inet_bind_hash(sk, tb, port);
286 if (sk_unhashed(sk)) {
287 inet_sk(sk)->sport = htons(port);
288 __inet_hash(&tcp_hashinfo, sk, 0);
289 }
290 spin_unlock(&head->lock);
291
292 if (tw) {
293 inet_twsk_deschedule(tw, &tcp_death_row);;
294 inet_twsk_put(tw);
295 }
296
297 ret = 0;
298 goto out;
299 }
300
301 head = &tcp_hashinfo.bhash[inet_bhashfn(snum, tcp_hashinfo.bhash_size)];
302 tb = inet_csk(sk)->icsk_bind_hash;
303 spin_lock_bh(&head->lock);
304 if (sk_head(&tb->owners) == sk && !sk->sk_bind_node.next) {
305 __inet_hash(&tcp_hashinfo, sk, 0);
306 spin_unlock_bh(&head->lock);
307 return 0;
308 } else {
309 spin_unlock(&head->lock);
310 /* No definite answer... Walk to established hash table */
311 ret = __tcp_v4_check_established(sk, snum, NULL);
312 out:
313 local_bh_enable();
314 return ret;
315 }
316 }
317
318 /* This will initiate an outgoing connection. */
319 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
320 {
321 struct inet_sock *inet = inet_sk(sk);
322 struct tcp_sock *tp = tcp_sk(sk);
323 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
324 struct rtable *rt;
325 u32 daddr, nexthop;
326 int tmp;
327 int err;
328
329 if (addr_len < sizeof(struct sockaddr_in))
330 return -EINVAL;
331
332 if (usin->sin_family != AF_INET)
333 return -EAFNOSUPPORT;
334
335 nexthop = daddr = usin->sin_addr.s_addr;
336 if (inet->opt && inet->opt->srr) {
337 if (!daddr)
338 return -EINVAL;
339 nexthop = inet->opt->faddr;
340 }
341
342 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
343 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
344 IPPROTO_TCP,
345 inet->sport, usin->sin_port, sk);
346 if (tmp < 0)
347 return tmp;
348
349 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
350 ip_rt_put(rt);
351 return -ENETUNREACH;
352 }
353
354 if (!inet->opt || !inet->opt->srr)
355 daddr = rt->rt_dst;
356
357 if (!inet->saddr)
358 inet->saddr = rt->rt_src;
359 inet->rcv_saddr = inet->saddr;
360
361 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
362 /* Reset inherited state */
363 tp->rx_opt.ts_recent = 0;
364 tp->rx_opt.ts_recent_stamp = 0;
365 tp->write_seq = 0;
366 }
367
368 if (tcp_death_row.sysctl_tw_recycle &&
369 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
370 struct inet_peer *peer = rt_get_peer(rt);
371
372 /* VJ's idea. We save last timestamp seen from
373 * the destination in peer table, when entering state TIME-WAIT
374 * and initialize rx_opt.ts_recent from it, when trying new connection.
375 */
376
377 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
378 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
379 tp->rx_opt.ts_recent = peer->tcp_ts;
380 }
381 }
382
383 inet->dport = usin->sin_port;
384 inet->daddr = daddr;
385
386 tp->ext_header_len = 0;
387 if (inet->opt)
388 tp->ext_header_len = inet->opt->optlen;
389
390 tp->rx_opt.mss_clamp = 536;
391
392 /* Socket identity is still unknown (sport may be zero).
393 * However we set state to SYN-SENT and not releasing socket
394 * lock select source port, enter ourselves into the hash tables and
395 * complete initialization after this.
396 */
397 tcp_set_state(sk, TCP_SYN_SENT);
398 err = tcp_v4_hash_connect(sk);
399 if (err)
400 goto failure;
401
402 err = ip_route_newports(&rt, inet->sport, inet->dport, sk);
403 if (err)
404 goto failure;
405
406 /* OK, now commit destination to socket. */
407 sk_setup_caps(sk, &rt->u.dst);
408
409 if (!tp->write_seq)
410 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
411 inet->daddr,
412 inet->sport,
413 usin->sin_port);
414
415 inet->id = tp->write_seq ^ jiffies;
416
417 err = tcp_connect(sk);
418 rt = NULL;
419 if (err)
420 goto failure;
421
422 return 0;
423
424 failure:
425 /* This unhashes the socket and releases the local port, if necessary. */
426 tcp_set_state(sk, TCP_CLOSE);
427 ip_rt_put(rt);
428 sk->sk_route_caps = 0;
429 inet->dport = 0;
430 return err;
431 }
432
433 /*
434 * This routine does path mtu discovery as defined in RFC1191.
435 */
436 static inline void do_pmtu_discovery(struct sock *sk, struct iphdr *iph,
437 u32 mtu)
438 {
439 struct dst_entry *dst;
440 struct inet_sock *inet = inet_sk(sk);
441 struct tcp_sock *tp = tcp_sk(sk);
442
443 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
444 * send out by Linux are always <576bytes so they should go through
445 * unfragmented).
446 */
447 if (sk->sk_state == TCP_LISTEN)
448 return;
449
450 /* We don't check in the destentry if pmtu discovery is forbidden
451 * on this route. We just assume that no packet_to_big packets
452 * are send back when pmtu discovery is not active.
453 * There is a small race when the user changes this flag in the
454 * route, but I think that's acceptable.
455 */
456 if ((dst = __sk_dst_check(sk, 0)) == NULL)
457 return;
458
459 dst->ops->update_pmtu(dst, mtu);
460
461 /* Something is about to be wrong... Remember soft error
462 * for the case, if this connection will not able to recover.
463 */
464 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
465 sk->sk_err_soft = EMSGSIZE;
466
467 mtu = dst_mtu(dst);
468
469 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
470 tp->pmtu_cookie > mtu) {
471 tcp_sync_mss(sk, mtu);
472
473 /* Resend the TCP packet because it's
474 * clear that the old packet has been
475 * dropped. This is the new "fast" path mtu
476 * discovery.
477 */
478 tcp_simple_retransmit(sk);
479 } /* else let the usual retransmit timer handle it */
480 }
481
482 /*
483 * This routine is called by the ICMP module when it gets some
484 * sort of error condition. If err < 0 then the socket should
485 * be closed and the error returned to the user. If err > 0
486 * it's just the icmp type << 8 | icmp code. After adjustment
487 * header points to the first 8 bytes of the tcp header. We need
488 * to find the appropriate port.
489 *
490 * The locking strategy used here is very "optimistic". When
491 * someone else accesses the socket the ICMP is just dropped
492 * and for some paths there is no check at all.
493 * A more general error queue to queue errors for later handling
494 * is probably better.
495 *
496 */
497
498 void tcp_v4_err(struct sk_buff *skb, u32 info)
499 {
500 struct iphdr *iph = (struct iphdr *)skb->data;
501 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
502 struct tcp_sock *tp;
503 struct inet_sock *inet;
504 int type = skb->h.icmph->type;
505 int code = skb->h.icmph->code;
506 struct sock *sk;
507 __u32 seq;
508 int err;
509
510 if (skb->len < (iph->ihl << 2) + 8) {
511 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
512 return;
513 }
514
515 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
516 th->source, inet_iif(skb));
517 if (!sk) {
518 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
519 return;
520 }
521 if (sk->sk_state == TCP_TIME_WAIT) {
522 inet_twsk_put((struct inet_timewait_sock *)sk);
523 return;
524 }
525
526 bh_lock_sock(sk);
527 /* If too many ICMPs get dropped on busy
528 * servers this needs to be solved differently.
529 */
530 if (sock_owned_by_user(sk))
531 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
532
533 if (sk->sk_state == TCP_CLOSE)
534 goto out;
535
536 tp = tcp_sk(sk);
537 seq = ntohl(th->seq);
538 if (sk->sk_state != TCP_LISTEN &&
539 !between(seq, tp->snd_una, tp->snd_nxt)) {
540 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
541 goto out;
542 }
543
544 switch (type) {
545 case ICMP_SOURCE_QUENCH:
546 /* Just silently ignore these. */
547 goto out;
548 case ICMP_PARAMETERPROB:
549 err = EPROTO;
550 break;
551 case ICMP_DEST_UNREACH:
552 if (code > NR_ICMP_UNREACH)
553 goto out;
554
555 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
556 if (!sock_owned_by_user(sk))
557 do_pmtu_discovery(sk, iph, info);
558 goto out;
559 }
560
561 err = icmp_err_convert[code].errno;
562 break;
563 case ICMP_TIME_EXCEEDED:
564 err = EHOSTUNREACH;
565 break;
566 default:
567 goto out;
568 }
569
570 switch (sk->sk_state) {
571 struct request_sock *req, **prev;
572 case TCP_LISTEN:
573 if (sock_owned_by_user(sk))
574 goto out;
575
576 req = inet_csk_search_req(sk, &prev, th->dest,
577 iph->daddr, iph->saddr);
578 if (!req)
579 goto out;
580
581 /* ICMPs are not backlogged, hence we cannot get
582 an established socket here.
583 */
584 BUG_TRAP(!req->sk);
585
586 if (seq != tcp_rsk(req)->snt_isn) {
587 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
588 goto out;
589 }
590
591 /*
592 * Still in SYN_RECV, just remove it silently.
593 * There is no good way to pass the error to the newly
594 * created socket, and POSIX does not want network
595 * errors returned from accept().
596 */
597 inet_csk_reqsk_queue_drop(sk, req, prev);
598 goto out;
599
600 case TCP_SYN_SENT:
601 case TCP_SYN_RECV: /* Cannot happen.
602 It can f.e. if SYNs crossed.
603 */
604 if (!sock_owned_by_user(sk)) {
605 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
606 sk->sk_err = err;
607
608 sk->sk_error_report(sk);
609
610 tcp_done(sk);
611 } else {
612 sk->sk_err_soft = err;
613 }
614 goto out;
615 }
616
617 /* If we've already connected we will keep trying
618 * until we time out, or the user gives up.
619 *
620 * rfc1122 4.2.3.9 allows to consider as hard errors
621 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
622 * but it is obsoleted by pmtu discovery).
623 *
624 * Note, that in modern internet, where routing is unreliable
625 * and in each dark corner broken firewalls sit, sending random
626 * errors ordered by their masters even this two messages finally lose
627 * their original sense (even Linux sends invalid PORT_UNREACHs)
628 *
629 * Now we are in compliance with RFCs.
630 * --ANK (980905)
631 */
632
633 inet = inet_sk(sk);
634 if (!sock_owned_by_user(sk) && inet->recverr) {
635 sk->sk_err = err;
636 sk->sk_error_report(sk);
637 } else { /* Only an error on timeout */
638 sk->sk_err_soft = err;
639 }
640
641 out:
642 bh_unlock_sock(sk);
643 sock_put(sk);
644 }
645
646 /* This routine computes an IPv4 TCP checksum. */
647 void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,
648 struct sk_buff *skb)
649 {
650 struct inet_sock *inet = inet_sk(sk);
651
652 if (skb->ip_summed == CHECKSUM_HW) {
653 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
654 skb->csum = offsetof(struct tcphdr, check);
655 } else {
656 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
657 csum_partial((char *)th,
658 th->doff << 2,
659 skb->csum));
660 }
661 }
662
663 /*
664 * This routine will send an RST to the other tcp.
665 *
666 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
667 * for reset.
668 * Answer: if a packet caused RST, it is not for a socket
669 * existing in our system, if it is matched to a socket,
670 * it is just duplicate segment or bug in other side's TCP.
671 * So that we build reply only basing on parameters
672 * arrived with segment.
673 * Exception: precedence violation. We do not implement it in any case.
674 */
675
676 static void tcp_v4_send_reset(struct sk_buff *skb)
677 {
678 struct tcphdr *th = skb->h.th;
679 struct tcphdr rth;
680 struct ip_reply_arg arg;
681
682 /* Never send a reset in response to a reset. */
683 if (th->rst)
684 return;
685
686 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
687 return;
688
689 /* Swap the send and the receive. */
690 memset(&rth, 0, sizeof(struct tcphdr));
691 rth.dest = th->source;
692 rth.source = th->dest;
693 rth.doff = sizeof(struct tcphdr) / 4;
694 rth.rst = 1;
695
696 if (th->ack) {
697 rth.seq = th->ack_seq;
698 } else {
699 rth.ack = 1;
700 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
701 skb->len - (th->doff << 2));
702 }
703
704 memset(&arg, 0, sizeof arg);
705 arg.iov[0].iov_base = (unsigned char *)&rth;
706 arg.iov[0].iov_len = sizeof rth;
707 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
708 skb->nh.iph->saddr, /*XXX*/
709 sizeof(struct tcphdr), IPPROTO_TCP, 0);
710 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
711
712 ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
713
714 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
715 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
716 }
717
718 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
719 outside socket context is ugly, certainly. What can I do?
720 */
721
722 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
723 u32 win, u32 ts)
724 {
725 struct tcphdr *th = skb->h.th;
726 struct {
727 struct tcphdr th;
728 u32 tsopt[3];
729 } rep;
730 struct ip_reply_arg arg;
731
732 memset(&rep.th, 0, sizeof(struct tcphdr));
733 memset(&arg, 0, sizeof arg);
734
735 arg.iov[0].iov_base = (unsigned char *)&rep;
736 arg.iov[0].iov_len = sizeof(rep.th);
737 if (ts) {
738 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
739 (TCPOPT_TIMESTAMP << 8) |
740 TCPOLEN_TIMESTAMP);
741 rep.tsopt[1] = htonl(tcp_time_stamp);
742 rep.tsopt[2] = htonl(ts);
743 arg.iov[0].iov_len = sizeof(rep);
744 }
745
746 /* Swap the send and the receive. */
747 rep.th.dest = th->source;
748 rep.th.source = th->dest;
749 rep.th.doff = arg.iov[0].iov_len / 4;
750 rep.th.seq = htonl(seq);
751 rep.th.ack_seq = htonl(ack);
752 rep.th.ack = 1;
753 rep.th.window = htons(win);
754
755 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
756 skb->nh.iph->saddr, /*XXX*/
757 arg.iov[0].iov_len, IPPROTO_TCP, 0);
758 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
759
760 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
761
762 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
763 }
764
765 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
766 {
767 struct inet_timewait_sock *tw = inet_twsk(sk);
768 const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
769
770 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
771 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
772
773 inet_twsk_put(tw);
774 }
775
776 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
777 {
778 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
779 req->ts_recent);
780 }
781
782 /*
783 * Send a SYN-ACK after having received an ACK.
784 * This still operates on a request_sock only, not on a big
785 * socket.
786 */
787 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
788 struct dst_entry *dst)
789 {
790 const struct inet_request_sock *ireq = inet_rsk(req);
791 int err = -1;
792 struct sk_buff * skb;
793
794 /* First, grab a route. */
795 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
796 goto out;
797
798 skb = tcp_make_synack(sk, dst, req);
799
800 if (skb) {
801 struct tcphdr *th = skb->h.th;
802
803 th->check = tcp_v4_check(th, skb->len,
804 ireq->loc_addr,
805 ireq->rmt_addr,
806 csum_partial((char *)th, skb->len,
807 skb->csum));
808
809 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
810 ireq->rmt_addr,
811 ireq->opt);
812 if (err == NET_XMIT_CN)
813 err = 0;
814 }
815
816 out:
817 dst_release(dst);
818 return err;
819 }
820
821 /*
822 * IPv4 request_sock destructor.
823 */
824 static void tcp_v4_reqsk_destructor(struct request_sock *req)
825 {
826 kfree(inet_rsk(req)->opt);
827 }
828
829 static inline void syn_flood_warning(struct sk_buff *skb)
830 {
831 static unsigned long warntime;
832
833 if (time_after(jiffies, (warntime + HZ * 60))) {
834 warntime = jiffies;
835 printk(KERN_INFO
836 "possible SYN flooding on port %d. Sending cookies.\n",
837 ntohs(skb->h.th->dest));
838 }
839 }
840
841 /*
842 * Save and compile IPv4 options into the request_sock if needed.
843 */
844 static inline struct ip_options *tcp_v4_save_options(struct sock *sk,
845 struct sk_buff *skb)
846 {
847 struct ip_options *opt = &(IPCB(skb)->opt);
848 struct ip_options *dopt = NULL;
849
850 if (opt && opt->optlen) {
851 int opt_size = optlength(opt);
852 dopt = kmalloc(opt_size, GFP_ATOMIC);
853 if (dopt) {
854 if (ip_options_echo(dopt, skb)) {
855 kfree(dopt);
856 dopt = NULL;
857 }
858 }
859 }
860 return dopt;
861 }
862
863 struct request_sock_ops tcp_request_sock_ops = {
864 .family = PF_INET,
865 .obj_size = sizeof(struct tcp_request_sock),
866 .rtx_syn_ack = tcp_v4_send_synack,
867 .send_ack = tcp_v4_reqsk_send_ack,
868 .destructor = tcp_v4_reqsk_destructor,
869 .send_reset = tcp_v4_send_reset,
870 };
871
872 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
873 {
874 struct inet_request_sock *ireq;
875 struct tcp_options_received tmp_opt;
876 struct request_sock *req;
877 __u32 saddr = skb->nh.iph->saddr;
878 __u32 daddr = skb->nh.iph->daddr;
879 __u32 isn = TCP_SKB_CB(skb)->when;
880 struct dst_entry *dst = NULL;
881 #ifdef CONFIG_SYN_COOKIES
882 int want_cookie = 0;
883 #else
884 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
885 #endif
886
887 /* Never answer to SYNs send to broadcast or multicast */
888 if (((struct rtable *)skb->dst)->rt_flags &
889 (RTCF_BROADCAST | RTCF_MULTICAST))
890 goto drop;
891
892 /* TW buckets are converted to open requests without
893 * limitations, they conserve resources and peer is
894 * evidently real one.
895 */
896 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
897 #ifdef CONFIG_SYN_COOKIES
898 if (sysctl_tcp_syncookies) {
899 want_cookie = 1;
900 } else
901 #endif
902 goto drop;
903 }
904
905 /* Accept backlog is full. If we have already queued enough
906 * of warm entries in syn queue, drop request. It is better than
907 * clogging syn queue with openreqs with exponentially increasing
908 * timeout.
909 */
910 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
911 goto drop;
912
913 req = reqsk_alloc(&tcp_request_sock_ops);
914 if (!req)
915 goto drop;
916
917 tcp_clear_options(&tmp_opt);
918 tmp_opt.mss_clamp = 536;
919 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
920
921 tcp_parse_options(skb, &tmp_opt, 0);
922
923 if (want_cookie) {
924 tcp_clear_options(&tmp_opt);
925 tmp_opt.saw_tstamp = 0;
926 }
927
928 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
929 /* Some OSes (unknown ones, but I see them on web server, which
930 * contains information interesting only for windows'
931 * users) do not send their stamp in SYN. It is easy case.
932 * We simply do not advertise TS support.
933 */
934 tmp_opt.saw_tstamp = 0;
935 tmp_opt.tstamp_ok = 0;
936 }
937 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
938
939 tcp_openreq_init(req, &tmp_opt, skb);
940
941 ireq = inet_rsk(req);
942 ireq->loc_addr = daddr;
943 ireq->rmt_addr = saddr;
944 ireq->opt = tcp_v4_save_options(sk, skb);
945 if (!want_cookie)
946 TCP_ECN_create_request(req, skb->h.th);
947
948 if (want_cookie) {
949 #ifdef CONFIG_SYN_COOKIES
950 syn_flood_warning(skb);
951 #endif
952 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
953 } else if (!isn) {
954 struct inet_peer *peer = NULL;
955
956 /* VJ's idea. We save last timestamp seen
957 * from the destination in peer table, when entering
958 * state TIME-WAIT, and check against it before
959 * accepting new connection request.
960 *
961 * If "isn" is not zero, this request hit alive
962 * timewait bucket, so that all the necessary checks
963 * are made in the function processing timewait state.
964 */
965 if (tmp_opt.saw_tstamp &&
966 tcp_death_row.sysctl_tw_recycle &&
967 (dst = inet_csk_route_req(sk, req)) != NULL &&
968 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
969 peer->v4daddr == saddr) {
970 if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
971 (s32)(peer->tcp_ts - req->ts_recent) >
972 TCP_PAWS_WINDOW) {
973 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
974 dst_release(dst);
975 goto drop_and_free;
976 }
977 }
978 /* Kill the following clause, if you dislike this way. */
979 else if (!sysctl_tcp_syncookies &&
980 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
981 (sysctl_max_syn_backlog >> 2)) &&
982 (!peer || !peer->tcp_ts_stamp) &&
983 (!dst || !dst_metric(dst, RTAX_RTT))) {
984 /* Without syncookies last quarter of
985 * backlog is filled with destinations,
986 * proven to be alive.
987 * It means that we continue to communicate
988 * to destinations, already remembered
989 * to the moment of synflood.
990 */
991 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
992 "request from %u.%u.%u.%u/%u\n",
993 NIPQUAD(saddr),
994 ntohs(skb->h.th->source));
995 dst_release(dst);
996 goto drop_and_free;
997 }
998
999 isn = tcp_v4_init_sequence(sk, skb);
1000 }
1001 tcp_rsk(req)->snt_isn = isn;
1002
1003 if (tcp_v4_send_synack(sk, req, dst))
1004 goto drop_and_free;
1005
1006 if (want_cookie) {
1007 reqsk_free(req);
1008 } else {
1009 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1010 }
1011 return 0;
1012
1013 drop_and_free:
1014 reqsk_free(req);
1015 drop:
1016 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
1017 return 0;
1018 }
1019
1020
1021 /*
1022 * The three way handshake has completed - we got a valid synack -
1023 * now create the new socket.
1024 */
1025 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1026 struct request_sock *req,
1027 struct dst_entry *dst)
1028 {
1029 struct inet_request_sock *ireq;
1030 struct inet_sock *newinet;
1031 struct tcp_sock *newtp;
1032 struct sock *newsk;
1033
1034 if (sk_acceptq_is_full(sk))
1035 goto exit_overflow;
1036
1037 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1038 goto exit;
1039
1040 newsk = tcp_create_openreq_child(sk, req, skb);
1041 if (!newsk)
1042 goto exit;
1043
1044 sk_setup_caps(newsk, dst);
1045
1046 newtp = tcp_sk(newsk);
1047 newinet = inet_sk(newsk);
1048 ireq = inet_rsk(req);
1049 newinet->daddr = ireq->rmt_addr;
1050 newinet->rcv_saddr = ireq->loc_addr;
1051 newinet->saddr = ireq->loc_addr;
1052 newinet->opt = ireq->opt;
1053 ireq->opt = NULL;
1054 newinet->mc_index = inet_iif(skb);
1055 newinet->mc_ttl = skb->nh.iph->ttl;
1056 newtp->ext_header_len = 0;
1057 if (newinet->opt)
1058 newtp->ext_header_len = newinet->opt->optlen;
1059 newinet->id = newtp->write_seq ^ jiffies;
1060
1061 tcp_sync_mss(newsk, dst_mtu(dst));
1062 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1063 tcp_initialize_rcv_mss(newsk);
1064
1065 __inet_hash(&tcp_hashinfo, newsk, 0);
1066 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
1067
1068 return newsk;
1069
1070 exit_overflow:
1071 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1072 exit:
1073 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1074 dst_release(dst);
1075 return NULL;
1076 }
1077
1078 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1079 {
1080 struct tcphdr *th = skb->h.th;
1081 struct iphdr *iph = skb->nh.iph;
1082 struct sock *nsk;
1083 struct request_sock **prev;
1084 /* Find possible connection requests. */
1085 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1086 iph->saddr, iph->daddr);
1087 if (req)
1088 return tcp_check_req(sk, skb, req, prev);
1089
1090 nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
1091 th->source, skb->nh.iph->daddr,
1092 ntohs(th->dest), inet_iif(skb));
1093
1094 if (nsk) {
1095 if (nsk->sk_state != TCP_TIME_WAIT) {
1096 bh_lock_sock(nsk);
1097 return nsk;
1098 }
1099 inet_twsk_put((struct inet_timewait_sock *)nsk);
1100 return NULL;
1101 }
1102
1103 #ifdef CONFIG_SYN_COOKIES
1104 if (!th->rst && !th->syn && th->ack)
1105 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1106 #endif
1107 return sk;
1108 }
1109
1110 static int tcp_v4_checksum_init(struct sk_buff *skb)
1111 {
1112 if (skb->ip_summed == CHECKSUM_HW) {
1113 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
1114 skb->nh.iph->daddr, skb->csum)) {
1115 skb->ip_summed = CHECKSUM_UNNECESSARY;
1116 return 0;
1117 }
1118 }
1119
1120 skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
1121 skb->len, IPPROTO_TCP, 0);
1122
1123 if (skb->len <= 76) {
1124 return __skb_checksum_complete(skb);
1125 }
1126 return 0;
1127 }
1128
1129
1130 /* The socket must have it's spinlock held when we get
1131 * here.
1132 *
1133 * We have a potential double-lock case here, so even when
1134 * doing backlog processing we use the BH locking scheme.
1135 * This is because we cannot sleep with the original spinlock
1136 * held.
1137 */
1138 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1139 {
1140 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1141 TCP_CHECK_TIMER(sk);
1142 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
1143 goto reset;
1144 TCP_CHECK_TIMER(sk);
1145 return 0;
1146 }
1147
1148 if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
1149 goto csum_err;
1150
1151 if (sk->sk_state == TCP_LISTEN) {
1152 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1153 if (!nsk)
1154 goto discard;
1155
1156 if (nsk != sk) {
1157 if (tcp_child_process(sk, nsk, skb))
1158 goto reset;
1159 return 0;
1160 }
1161 }
1162
1163 TCP_CHECK_TIMER(sk);
1164 if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1165 goto reset;
1166 TCP_CHECK_TIMER(sk);
1167 return 0;
1168
1169 reset:
1170 tcp_v4_send_reset(skb);
1171 discard:
1172 kfree_skb(skb);
1173 /* Be careful here. If this function gets more complicated and
1174 * gcc suffers from register pressure on the x86, sk (in %ebx)
1175 * might be destroyed here. This current version compiles correctly,
1176 * but you have been warned.
1177 */
1178 return 0;
1179
1180 csum_err:
1181 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1182 goto discard;
1183 }
1184
1185 /*
1186 * From tcp_input.c
1187 */
1188
1189 int tcp_v4_rcv(struct sk_buff *skb)
1190 {
1191 struct tcphdr *th;
1192 struct sock *sk;
1193 int ret;
1194
1195 if (skb->pkt_type != PACKET_HOST)
1196 goto discard_it;
1197
1198 /* Count it even if it's bad */
1199 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1200
1201 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1202 goto discard_it;
1203
1204 th = skb->h.th;
1205
1206 if (th->doff < sizeof(struct tcphdr) / 4)
1207 goto bad_packet;
1208 if (!pskb_may_pull(skb, th->doff * 4))
1209 goto discard_it;
1210
1211 /* An explanation is required here, I think.
1212 * Packet length and doff are validated by header prediction,
1213 * provided case of th->doff==0 is elimineted.
1214 * So, we defer the checks. */
1215 if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1216 tcp_v4_checksum_init(skb)))
1217 goto bad_packet;
1218
1219 th = skb->h.th;
1220 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1221 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1222 skb->len - th->doff * 4);
1223 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1224 TCP_SKB_CB(skb)->when = 0;
1225 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
1226 TCP_SKB_CB(skb)->sacked = 0;
1227
1228 sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1229 skb->nh.iph->daddr, ntohs(th->dest),
1230 inet_iif(skb));
1231
1232 if (!sk)
1233 goto no_tcp_socket;
1234
1235 process:
1236 if (sk->sk_state == TCP_TIME_WAIT)
1237 goto do_time_wait;
1238
1239 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1240 goto discard_and_relse;
1241
1242 if (sk_filter(sk, skb, 0))
1243 goto discard_and_relse;
1244
1245 skb->dev = NULL;
1246
1247 bh_lock_sock(sk);
1248 ret = 0;
1249 if (!sock_owned_by_user(sk)) {
1250 if (!tcp_prequeue(sk, skb))
1251 ret = tcp_v4_do_rcv(sk, skb);
1252 } else
1253 sk_add_backlog(sk, skb);
1254 bh_unlock_sock(sk);
1255
1256 sock_put(sk);
1257
1258 return ret;
1259
1260 no_tcp_socket:
1261 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1262 goto discard_it;
1263
1264 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1265 bad_packet:
1266 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1267 } else {
1268 tcp_v4_send_reset(skb);
1269 }
1270
1271 discard_it:
1272 /* Discard frame. */
1273 kfree_skb(skb);
1274 return 0;
1275
1276 discard_and_relse:
1277 sock_put(sk);
1278 goto discard_it;
1279
1280 do_time_wait:
1281 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1282 inet_twsk_put((struct inet_timewait_sock *) sk);
1283 goto discard_it;
1284 }
1285
1286 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1287 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1288 inet_twsk_put((struct inet_timewait_sock *) sk);
1289 goto discard_it;
1290 }
1291 switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1292 skb, th)) {
1293 case TCP_TW_SYN: {
1294 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1295 skb->nh.iph->daddr,
1296 ntohs(th->dest),
1297 inet_iif(skb));
1298 if (sk2) {
1299 inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1300 &tcp_death_row);
1301 inet_twsk_put((struct inet_timewait_sock *)sk);
1302 sk = sk2;
1303 goto process;
1304 }
1305 /* Fall through to ACK */
1306 }
1307 case TCP_TW_ACK:
1308 tcp_v4_timewait_ack(sk, skb);
1309 break;
1310 case TCP_TW_RST:
1311 goto no_tcp_socket;
1312 case TCP_TW_SUCCESS:;
1313 }
1314 goto discard_it;
1315 }
1316
1317 static void v4_addr2sockaddr(struct sock *sk, struct sockaddr * uaddr)
1318 {
1319 struct sockaddr_in *sin = (struct sockaddr_in *) uaddr;
1320 struct inet_sock *inet = inet_sk(sk);
1321
1322 sin->sin_family = AF_INET;
1323 sin->sin_addr.s_addr = inet->daddr;
1324 sin->sin_port = inet->dport;
1325 }
1326
1327 /* VJ's idea. Save last timestamp seen from this destination
1328 * and hold it at least for normal timewait interval to use for duplicate
1329 * segment detection in subsequent connections, before they enter synchronized
1330 * state.
1331 */
1332
1333 int tcp_v4_remember_stamp(struct sock *sk)
1334 {
1335 struct inet_sock *inet = inet_sk(sk);
1336 struct tcp_sock *tp = tcp_sk(sk);
1337 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1338 struct inet_peer *peer = NULL;
1339 int release_it = 0;
1340
1341 if (!rt || rt->rt_dst != inet->daddr) {
1342 peer = inet_getpeer(inet->daddr, 1);
1343 release_it = 1;
1344 } else {
1345 if (!rt->peer)
1346 rt_bind_peer(rt, 1);
1347 peer = rt->peer;
1348 }
1349
1350 if (peer) {
1351 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1352 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1353 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1354 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1355 peer->tcp_ts = tp->rx_opt.ts_recent;
1356 }
1357 if (release_it)
1358 inet_putpeer(peer);
1359 return 1;
1360 }
1361
1362 return 0;
1363 }
1364
1365 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1366 {
1367 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1368
1369 if (peer) {
1370 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1371
1372 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1373 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1374 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1375 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1376 peer->tcp_ts = tcptw->tw_ts_recent;
1377 }
1378 inet_putpeer(peer);
1379 return 1;
1380 }
1381
1382 return 0;
1383 }
1384
1385 struct tcp_func ipv4_specific = {
1386 .queue_xmit = ip_queue_xmit,
1387 .send_check = tcp_v4_send_check,
1388 .rebuild_header = inet_sk_rebuild_header,
1389 .conn_request = tcp_v4_conn_request,
1390 .syn_recv_sock = tcp_v4_syn_recv_sock,
1391 .remember_stamp = tcp_v4_remember_stamp,
1392 .net_header_len = sizeof(struct iphdr),
1393 .setsockopt = ip_setsockopt,
1394 .getsockopt = ip_getsockopt,
1395 .addr2sockaddr = v4_addr2sockaddr,
1396 .sockaddr_len = sizeof(struct sockaddr_in),
1397 };
1398
1399 /* NOTE: A lot of things set to zero explicitly by call to
1400 * sk_alloc() so need not be done here.
1401 */
1402 static int tcp_v4_init_sock(struct sock *sk)
1403 {
1404 struct inet_connection_sock *icsk = inet_csk(sk);
1405 struct tcp_sock *tp = tcp_sk(sk);
1406
1407 skb_queue_head_init(&tp->out_of_order_queue);
1408 tcp_init_xmit_timers(sk);
1409 tcp_prequeue_init(tp);
1410
1411 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1412 tp->mdev = TCP_TIMEOUT_INIT;
1413
1414 /* So many TCP implementations out there (incorrectly) count the
1415 * initial SYN frame in their delayed-ACK and congestion control
1416 * algorithms that we must have the following bandaid to talk
1417 * efficiently to them. -DaveM
1418 */
1419 tp->snd_cwnd = 2;
1420
1421 /* See draft-stevens-tcpca-spec-01 for discussion of the
1422 * initialization of these values.
1423 */
1424 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1425 tp->snd_cwnd_clamp = ~0;
1426 tp->mss_cache = 536;
1427
1428 tp->reordering = sysctl_tcp_reordering;
1429 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1430
1431 sk->sk_state = TCP_CLOSE;
1432
1433 sk->sk_write_space = sk_stream_write_space;
1434 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1435
1436 tp->af_specific = &ipv4_specific;
1437
1438 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1439 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1440
1441 atomic_inc(&tcp_sockets_allocated);
1442
1443 return 0;
1444 }
1445
1446 int tcp_v4_destroy_sock(struct sock *sk)
1447 {
1448 struct tcp_sock *tp = tcp_sk(sk);
1449
1450 tcp_clear_xmit_timers(sk);
1451
1452 tcp_cleanup_congestion_control(sk);
1453
1454 /* Cleanup up the write buffer. */
1455 sk_stream_writequeue_purge(sk);
1456
1457 /* Cleans up our, hopefully empty, out_of_order_queue. */
1458 __skb_queue_purge(&tp->out_of_order_queue);
1459
1460 /* Clean prequeue, it must be empty really */
1461 __skb_queue_purge(&tp->ucopy.prequeue);
1462
1463 /* Clean up a referenced TCP bind bucket. */
1464 if (inet_csk(sk)->icsk_bind_hash)
1465 inet_put_port(&tcp_hashinfo, sk);
1466
1467 /*
1468 * If sendmsg cached page exists, toss it.
1469 */
1470 if (sk->sk_sndmsg_page) {
1471 __free_page(sk->sk_sndmsg_page);
1472 sk->sk_sndmsg_page = NULL;
1473 }
1474
1475 atomic_dec(&tcp_sockets_allocated);
1476
1477 return 0;
1478 }
1479
1480 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1481
1482 #ifdef CONFIG_PROC_FS
1483 /* Proc filesystem TCP sock list dumping. */
1484
1485 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1486 {
1487 return hlist_empty(head) ? NULL :
1488 list_entry(head->first, struct inet_timewait_sock, tw_node);
1489 }
1490
1491 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1492 {
1493 return tw->tw_node.next ?
1494 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1495 }
1496
1497 static void *listening_get_next(struct seq_file *seq, void *cur)
1498 {
1499 struct inet_connection_sock *icsk;
1500 struct hlist_node *node;
1501 struct sock *sk = cur;
1502 struct tcp_iter_state* st = seq->private;
1503
1504 if (!sk) {
1505 st->bucket = 0;
1506 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1507 goto get_sk;
1508 }
1509
1510 ++st->num;
1511
1512 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1513 struct request_sock *req = cur;
1514
1515 icsk = inet_csk(st->syn_wait_sk);
1516 req = req->dl_next;
1517 while (1) {
1518 while (req) {
1519 if (req->rsk_ops->family == st->family) {
1520 cur = req;
1521 goto out;
1522 }
1523 req = req->dl_next;
1524 }
1525 if (++st->sbucket >= TCP_SYNQ_HSIZE)
1526 break;
1527 get_req:
1528 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1529 }
1530 sk = sk_next(st->syn_wait_sk);
1531 st->state = TCP_SEQ_STATE_LISTENING;
1532 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1533 } else {
1534 icsk = inet_csk(sk);
1535 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1536 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1537 goto start_req;
1538 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1539 sk = sk_next(sk);
1540 }
1541 get_sk:
1542 sk_for_each_from(sk, node) {
1543 if (sk->sk_family == st->family) {
1544 cur = sk;
1545 goto out;
1546 }
1547 icsk = inet_csk(sk);
1548 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1549 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1550 start_req:
1551 st->uid = sock_i_uid(sk);
1552 st->syn_wait_sk = sk;
1553 st->state = TCP_SEQ_STATE_OPENREQ;
1554 st->sbucket = 0;
1555 goto get_req;
1556 }
1557 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1558 }
1559 if (++st->bucket < INET_LHTABLE_SIZE) {
1560 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1561 goto get_sk;
1562 }
1563 cur = NULL;
1564 out:
1565 return cur;
1566 }
1567
1568 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1569 {
1570 void *rc = listening_get_next(seq, NULL);
1571
1572 while (rc && *pos) {
1573 rc = listening_get_next(seq, rc);
1574 --*pos;
1575 }
1576 return rc;
1577 }
1578
1579 static void *established_get_first(struct seq_file *seq)
1580 {
1581 struct tcp_iter_state* st = seq->private;
1582 void *rc = NULL;
1583
1584 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1585 struct sock *sk;
1586 struct hlist_node *node;
1587 struct inet_timewait_sock *tw;
1588
1589 /* We can reschedule _before_ having picked the target: */
1590 cond_resched_softirq();
1591
1592 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1593 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1594 if (sk->sk_family != st->family) {
1595 continue;
1596 }
1597 rc = sk;
1598 goto out;
1599 }
1600 st->state = TCP_SEQ_STATE_TIME_WAIT;
1601 inet_twsk_for_each(tw, node,
1602 &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1603 if (tw->tw_family != st->family) {
1604 continue;
1605 }
1606 rc = tw;
1607 goto out;
1608 }
1609 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1610 st->state = TCP_SEQ_STATE_ESTABLISHED;
1611 }
1612 out:
1613 return rc;
1614 }
1615
1616 static void *established_get_next(struct seq_file *seq, void *cur)
1617 {
1618 struct sock *sk = cur;
1619 struct inet_timewait_sock *tw;
1620 struct hlist_node *node;
1621 struct tcp_iter_state* st = seq->private;
1622
1623 ++st->num;
1624
1625 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1626 tw = cur;
1627 tw = tw_next(tw);
1628 get_tw:
1629 while (tw && tw->tw_family != st->family) {
1630 tw = tw_next(tw);
1631 }
1632 if (tw) {
1633 cur = tw;
1634 goto out;
1635 }
1636 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1637 st->state = TCP_SEQ_STATE_ESTABLISHED;
1638
1639 /* We can reschedule between buckets: */
1640 cond_resched_softirq();
1641
1642 if (++st->bucket < tcp_hashinfo.ehash_size) {
1643 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1644 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1645 } else {
1646 cur = NULL;
1647 goto out;
1648 }
1649 } else
1650 sk = sk_next(sk);
1651
1652 sk_for_each_from(sk, node) {
1653 if (sk->sk_family == st->family)
1654 goto found;
1655 }
1656
1657 st->state = TCP_SEQ_STATE_TIME_WAIT;
1658 tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1659 goto get_tw;
1660 found:
1661 cur = sk;
1662 out:
1663 return cur;
1664 }
1665
1666 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1667 {
1668 void *rc = established_get_first(seq);
1669
1670 while (rc && pos) {
1671 rc = established_get_next(seq, rc);
1672 --pos;
1673 }
1674 return rc;
1675 }
1676
1677 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1678 {
1679 void *rc;
1680 struct tcp_iter_state* st = seq->private;
1681
1682 inet_listen_lock(&tcp_hashinfo);
1683 st->state = TCP_SEQ_STATE_LISTENING;
1684 rc = listening_get_idx(seq, &pos);
1685
1686 if (!rc) {
1687 inet_listen_unlock(&tcp_hashinfo);
1688 local_bh_disable();
1689 st->state = TCP_SEQ_STATE_ESTABLISHED;
1690 rc = established_get_idx(seq, pos);
1691 }
1692
1693 return rc;
1694 }
1695
1696 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1697 {
1698 struct tcp_iter_state* st = seq->private;
1699 st->state = TCP_SEQ_STATE_LISTENING;
1700 st->num = 0;
1701 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1702 }
1703
1704 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1705 {
1706 void *rc = NULL;
1707 struct tcp_iter_state* st;
1708
1709 if (v == SEQ_START_TOKEN) {
1710 rc = tcp_get_idx(seq, 0);
1711 goto out;
1712 }
1713 st = seq->private;
1714
1715 switch (st->state) {
1716 case TCP_SEQ_STATE_OPENREQ:
1717 case TCP_SEQ_STATE_LISTENING:
1718 rc = listening_get_next(seq, v);
1719 if (!rc) {
1720 inet_listen_unlock(&tcp_hashinfo);
1721 local_bh_disable();
1722 st->state = TCP_SEQ_STATE_ESTABLISHED;
1723 rc = established_get_first(seq);
1724 }
1725 break;
1726 case TCP_SEQ_STATE_ESTABLISHED:
1727 case TCP_SEQ_STATE_TIME_WAIT:
1728 rc = established_get_next(seq, v);
1729 break;
1730 }
1731 out:
1732 ++*pos;
1733 return rc;
1734 }
1735
1736 static void tcp_seq_stop(struct seq_file *seq, void *v)
1737 {
1738 struct tcp_iter_state* st = seq->private;
1739
1740 switch (st->state) {
1741 case TCP_SEQ_STATE_OPENREQ:
1742 if (v) {
1743 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1744 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1745 }
1746 case TCP_SEQ_STATE_LISTENING:
1747 if (v != SEQ_START_TOKEN)
1748 inet_listen_unlock(&tcp_hashinfo);
1749 break;
1750 case TCP_SEQ_STATE_TIME_WAIT:
1751 case TCP_SEQ_STATE_ESTABLISHED:
1752 if (v)
1753 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1754 local_bh_enable();
1755 break;
1756 }
1757 }
1758
1759 static int tcp_seq_open(struct inode *inode, struct file *file)
1760 {
1761 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1762 struct seq_file *seq;
1763 struct tcp_iter_state *s;
1764 int rc;
1765
1766 if (unlikely(afinfo == NULL))
1767 return -EINVAL;
1768
1769 s = kmalloc(sizeof(*s), GFP_KERNEL);
1770 if (!s)
1771 return -ENOMEM;
1772 memset(s, 0, sizeof(*s));
1773 s->family = afinfo->family;
1774 s->seq_ops.start = tcp_seq_start;
1775 s->seq_ops.next = tcp_seq_next;
1776 s->seq_ops.show = afinfo->seq_show;
1777 s->seq_ops.stop = tcp_seq_stop;
1778
1779 rc = seq_open(file, &s->seq_ops);
1780 if (rc)
1781 goto out_kfree;
1782 seq = file->private_data;
1783 seq->private = s;
1784 out:
1785 return rc;
1786 out_kfree:
1787 kfree(s);
1788 goto out;
1789 }
1790
1791 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1792 {
1793 int rc = 0;
1794 struct proc_dir_entry *p;
1795
1796 if (!afinfo)
1797 return -EINVAL;
1798 afinfo->seq_fops->owner = afinfo->owner;
1799 afinfo->seq_fops->open = tcp_seq_open;
1800 afinfo->seq_fops->read = seq_read;
1801 afinfo->seq_fops->llseek = seq_lseek;
1802 afinfo->seq_fops->release = seq_release_private;
1803
1804 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1805 if (p)
1806 p->data = afinfo;
1807 else
1808 rc = -ENOMEM;
1809 return rc;
1810 }
1811
1812 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1813 {
1814 if (!afinfo)
1815 return;
1816 proc_net_remove(afinfo->name);
1817 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1818 }
1819
1820 static void get_openreq4(struct sock *sk, struct request_sock *req,
1821 char *tmpbuf, int i, int uid)
1822 {
1823 const struct inet_request_sock *ireq = inet_rsk(req);
1824 int ttd = req->expires - jiffies;
1825
1826 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1827 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1828 i,
1829 ireq->loc_addr,
1830 ntohs(inet_sk(sk)->sport),
1831 ireq->rmt_addr,
1832 ntohs(ireq->rmt_port),
1833 TCP_SYN_RECV,
1834 0, 0, /* could print option size, but that is af dependent. */
1835 1, /* timers active (only the expire timer) */
1836 jiffies_to_clock_t(ttd),
1837 req->retrans,
1838 uid,
1839 0, /* non standard timer */
1840 0, /* open_requests have no inode */
1841 atomic_read(&sk->sk_refcnt),
1842 req);
1843 }
1844
1845 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1846 {
1847 int timer_active;
1848 unsigned long timer_expires;
1849 struct tcp_sock *tp = tcp_sk(sp);
1850 const struct inet_connection_sock *icsk = inet_csk(sp);
1851 struct inet_sock *inet = inet_sk(sp);
1852 unsigned int dest = inet->daddr;
1853 unsigned int src = inet->rcv_saddr;
1854 __u16 destp = ntohs(inet->dport);
1855 __u16 srcp = ntohs(inet->sport);
1856
1857 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1858 timer_active = 1;
1859 timer_expires = icsk->icsk_timeout;
1860 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1861 timer_active = 4;
1862 timer_expires = icsk->icsk_timeout;
1863 } else if (timer_pending(&sp->sk_timer)) {
1864 timer_active = 2;
1865 timer_expires = sp->sk_timer.expires;
1866 } else {
1867 timer_active = 0;
1868 timer_expires = jiffies;
1869 }
1870
1871 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1872 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1873 i, src, srcp, dest, destp, sp->sk_state,
1874 tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
1875 timer_active,
1876 jiffies_to_clock_t(timer_expires - jiffies),
1877 icsk->icsk_retransmits,
1878 sock_i_uid(sp),
1879 icsk->icsk_probes_out,
1880 sock_i_ino(sp),
1881 atomic_read(&sp->sk_refcnt), sp,
1882 icsk->icsk_rto,
1883 icsk->icsk_ack.ato,
1884 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1885 tp->snd_cwnd,
1886 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1887 }
1888
1889 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1890 {
1891 unsigned int dest, src;
1892 __u16 destp, srcp;
1893 int ttd = tw->tw_ttd - jiffies;
1894
1895 if (ttd < 0)
1896 ttd = 0;
1897
1898 dest = tw->tw_daddr;
1899 src = tw->tw_rcv_saddr;
1900 destp = ntohs(tw->tw_dport);
1901 srcp = ntohs(tw->tw_sport);
1902
1903 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1904 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1905 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1906 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1907 atomic_read(&tw->tw_refcnt), tw);
1908 }
1909
1910 #define TMPSZ 150
1911
1912 static int tcp4_seq_show(struct seq_file *seq, void *v)
1913 {
1914 struct tcp_iter_state* st;
1915 char tmpbuf[TMPSZ + 1];
1916
1917 if (v == SEQ_START_TOKEN) {
1918 seq_printf(seq, "%-*s\n", TMPSZ - 1,
1919 " sl local_address rem_address st tx_queue "
1920 "rx_queue tr tm->when retrnsmt uid timeout "
1921 "inode");
1922 goto out;
1923 }
1924 st = seq->private;
1925
1926 switch (st->state) {
1927 case TCP_SEQ_STATE_LISTENING:
1928 case TCP_SEQ_STATE_ESTABLISHED:
1929 get_tcp4_sock(v, tmpbuf, st->num);
1930 break;
1931 case TCP_SEQ_STATE_OPENREQ:
1932 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1933 break;
1934 case TCP_SEQ_STATE_TIME_WAIT:
1935 get_timewait4_sock(v, tmpbuf, st->num);
1936 break;
1937 }
1938 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1939 out:
1940 return 0;
1941 }
1942
1943 static struct file_operations tcp4_seq_fops;
1944 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1945 .owner = THIS_MODULE,
1946 .name = "tcp",
1947 .family = AF_INET,
1948 .seq_show = tcp4_seq_show,
1949 .seq_fops = &tcp4_seq_fops,
1950 };
1951
1952 int __init tcp4_proc_init(void)
1953 {
1954 return tcp_proc_register(&tcp4_seq_afinfo);
1955 }
1956
1957 void tcp4_proc_exit(void)
1958 {
1959 tcp_proc_unregister(&tcp4_seq_afinfo);
1960 }
1961 #endif /* CONFIG_PROC_FS */
1962
1963 struct proto tcp_prot = {
1964 .name = "TCP",
1965 .owner = THIS_MODULE,
1966 .close = tcp_close,
1967 .connect = tcp_v4_connect,
1968 .disconnect = tcp_disconnect,
1969 .accept = inet_csk_accept,
1970 .ioctl = tcp_ioctl,
1971 .init = tcp_v4_init_sock,
1972 .destroy = tcp_v4_destroy_sock,
1973 .shutdown = tcp_shutdown,
1974 .setsockopt = tcp_setsockopt,
1975 .getsockopt = tcp_getsockopt,
1976 .sendmsg = tcp_sendmsg,
1977 .recvmsg = tcp_recvmsg,
1978 .backlog_rcv = tcp_v4_do_rcv,
1979 .hash = tcp_v4_hash,
1980 .unhash = tcp_unhash,
1981 .get_port = tcp_v4_get_port,
1982 .enter_memory_pressure = tcp_enter_memory_pressure,
1983 .sockets_allocated = &tcp_sockets_allocated,
1984 .orphan_count = &tcp_orphan_count,
1985 .memory_allocated = &tcp_memory_allocated,
1986 .memory_pressure = &tcp_memory_pressure,
1987 .sysctl_mem = sysctl_tcp_mem,
1988 .sysctl_wmem = sysctl_tcp_wmem,
1989 .sysctl_rmem = sysctl_tcp_rmem,
1990 .max_header = MAX_TCP_HEADER,
1991 .obj_size = sizeof(struct tcp_sock),
1992 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1993 .rsk_prot = &tcp_request_sock_ops,
1994 };
1995
1996
1997
1998 void __init tcp_v4_init(struct net_proto_family *ops)
1999 {
2000 int err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_TCP, &tcp_socket);
2001 if (err < 0)
2002 panic("Failed to create the TCP control socket.\n");
2003 tcp_socket->sk->sk_allocation = GFP_ATOMIC;
2004 inet_sk(tcp_socket->sk)->uc_ttl = -1;
2005
2006 /* Unhash it so that IP input processing does not even
2007 * see it, we do not wish this socket to see incoming
2008 * packets.
2009 */
2010 tcp_socket->sk->sk_prot->unhash(tcp_socket->sk);
2011 }
2012
2013 EXPORT_SYMBOL(ipv4_specific);
2014 EXPORT_SYMBOL(inet_bind_bucket_create);
2015 EXPORT_SYMBOL(tcp_hashinfo);
2016 EXPORT_SYMBOL(tcp_prot);
2017 EXPORT_SYMBOL(tcp_unhash);
2018 EXPORT_SYMBOL(tcp_v4_conn_request);
2019 EXPORT_SYMBOL(tcp_v4_connect);
2020 EXPORT_SYMBOL(tcp_v4_do_rcv);
2021 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2022 EXPORT_SYMBOL(tcp_v4_send_check);
2023 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2024
2025 #ifdef CONFIG_PROC_FS
2026 EXPORT_SYMBOL(tcp_proc_register);
2027 EXPORT_SYMBOL(tcp_proc_unregister);
2028 #endif
2029 EXPORT_SYMBOL(sysctl_local_port_range);
2030 EXPORT_SYMBOL(sysctl_tcp_low_latency);
2031 EXPORT_SYMBOL(sysctl_tcp_tw_reuse);
2032