net: Improve handling of failures on link and route dumps
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77 #include <net/busy_poll.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92 #ifdef CONFIG_TCP_MD5SIG
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, const struct tcphdr *th);
95 #endif
96
97 struct inet_hashinfo tcp_hashinfo;
98 EXPORT_SYMBOL(tcp_hashinfo);
99
100 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
101 {
102 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
103 ip_hdr(skb)->saddr,
104 tcp_hdr(skb)->dest,
105 tcp_hdr(skb)->source);
106 }
107
108 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
109 {
110 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
111 struct tcp_sock *tp = tcp_sk(sk);
112
113 /* With PAWS, it is safe from the viewpoint
114 of data integrity. Even without PAWS it is safe provided sequence
115 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
116
117 Actually, the idea is close to VJ's one, only timestamp cache is
118 held not per host, but per port pair and TW bucket is used as state
119 holder.
120
121 If TW bucket has been already destroyed we fall back to VJ's scheme
122 and use initial timestamp retrieved from peer table.
123 */
124 if (tcptw->tw_ts_recent_stamp &&
125 (!twp || (sysctl_tcp_tw_reuse &&
126 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
127 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
128 if (tp->write_seq == 0)
129 tp->write_seq = 1;
130 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
131 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
132 sock_hold(sktw);
133 return 1;
134 }
135
136 return 0;
137 }
138 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
139
140 /* This will initiate an outgoing connection. */
141 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
142 {
143 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
144 struct inet_sock *inet = inet_sk(sk);
145 struct tcp_sock *tp = tcp_sk(sk);
146 __be16 orig_sport, orig_dport;
147 __be32 daddr, nexthop;
148 struct flowi4 *fl4;
149 struct rtable *rt;
150 int err;
151 struct ip_options_rcu *inet_opt;
152
153 if (addr_len < sizeof(struct sockaddr_in))
154 return -EINVAL;
155
156 if (usin->sin_family != AF_INET)
157 return -EAFNOSUPPORT;
158
159 nexthop = daddr = usin->sin_addr.s_addr;
160 inet_opt = rcu_dereference_protected(inet->inet_opt,
161 sock_owned_by_user(sk));
162 if (inet_opt && inet_opt->opt.srr) {
163 if (!daddr)
164 return -EINVAL;
165 nexthop = inet_opt->opt.faddr;
166 }
167
168 orig_sport = inet->inet_sport;
169 orig_dport = usin->sin_port;
170 fl4 = &inet->cork.fl.u.ip4;
171 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
173 IPPROTO_TCP,
174 orig_sport, orig_dport, sk);
175 if (IS_ERR(rt)) {
176 err = PTR_ERR(rt);
177 if (err == -ENETUNREACH)
178 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 return err;
180 }
181
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 ip_rt_put(rt);
184 return -ENETUNREACH;
185 }
186
187 if (!inet_opt || !inet_opt->opt.srr)
188 daddr = fl4->daddr;
189
190 if (!inet->inet_saddr)
191 inet->inet_saddr = fl4->saddr;
192 sk_rcv_saddr_set(sk, inet->inet_saddr);
193
194 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
198 if (likely(!tp->repair))
199 tp->write_seq = 0;
200 }
201
202 if (tcp_death_row.sysctl_tw_recycle &&
203 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
204 tcp_fetch_timewait_stamp(sk, &rt->dst);
205
206 inet->inet_dport = usin->sin_port;
207 sk_daddr_set(sk, daddr);
208
209 inet_csk(sk)->icsk_ext_hdr_len = 0;
210 if (inet_opt)
211 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
212
213 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
214
215 /* Socket identity is still unknown (sport may be zero).
216 * However we set state to SYN-SENT and not releasing socket
217 * lock select source port, enter ourselves into the hash tables and
218 * complete initialization after this.
219 */
220 tcp_set_state(sk, TCP_SYN_SENT);
221 err = inet_hash_connect(&tcp_death_row, sk);
222 if (err)
223 goto failure;
224
225 sk_set_txhash(sk);
226
227 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228 inet->inet_sport, inet->inet_dport, sk);
229 if (IS_ERR(rt)) {
230 err = PTR_ERR(rt);
231 rt = NULL;
232 goto failure;
233 }
234 /* OK, now commit destination to socket. */
235 sk->sk_gso_type = SKB_GSO_TCPV4;
236 sk_setup_caps(sk, &rt->dst);
237
238 if (!tp->write_seq && likely(!tp->repair))
239 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240 inet->inet_daddr,
241 inet->inet_sport,
242 usin->sin_port);
243
244 inet->inet_id = tp->write_seq ^ jiffies;
245
246 err = tcp_connect(sk);
247
248 rt = NULL;
249 if (err)
250 goto failure;
251
252 return 0;
253
254 failure:
255 /*
256 * This unhashes the socket and releases the local port,
257 * if necessary.
258 */
259 tcp_set_state(sk, TCP_CLOSE);
260 ip_rt_put(rt);
261 sk->sk_route_caps = 0;
262 inet->inet_dport = 0;
263 return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269 * It can be called through tcp_release_cb() if socket was owned by user
270 * at the time tcp_v4_err() was called to handle ICMP message.
271 */
272 void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274 struct inet_sock *inet = inet_sk(sk);
275 struct dst_entry *dst;
276 u32 mtu;
277
278 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
279 return;
280 mtu = tcp_sk(sk)->mtu_info;
281 dst = inet_csk_update_pmtu(sk, mtu);
282 if (!dst)
283 return;
284
285 /* Something is about to be wrong... Remember soft error
286 * for the case, if this connection will not able to recover.
287 */
288 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
289 sk->sk_err_soft = EMSGSIZE;
290
291 mtu = dst_mtu(dst);
292
293 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
294 ip_sk_accept_pmtu(sk) &&
295 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
296 tcp_sync_mss(sk, mtu);
297
298 /* Resend the TCP packet because it's
299 * clear that the old packet has been
300 * dropped. This is the new "fast" path mtu
301 * discovery.
302 */
303 tcp_simple_retransmit(sk);
304 } /* else let the usual retransmit timer handle it */
305 }
306 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
307
308 static void do_redirect(struct sk_buff *skb, struct sock *sk)
309 {
310 struct dst_entry *dst = __sk_dst_check(sk, 0);
311
312 if (dst)
313 dst->ops->redirect(dst, sk, skb);
314 }
315
316
317 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
318 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
319 {
320 struct request_sock *req = inet_reqsk(sk);
321 struct net *net = sock_net(sk);
322
323 /* ICMPs are not backlogged, hence we cannot get
324 * an established socket here.
325 */
326 if (seq != tcp_rsk(req)->snt_isn) {
327 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
328 } else if (abort) {
329 /*
330 * Still in SYN_RECV, just remove it silently.
331 * There is no good way to pass the error to the newly
332 * created socket, and POSIX does not want network
333 * errors returned from accept().
334 */
335 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
336 NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
337 }
338 reqsk_put(req);
339 }
340 EXPORT_SYMBOL(tcp_req_err);
341
342 /*
343 * This routine is called by the ICMP module when it gets some
344 * sort of error condition. If err < 0 then the socket should
345 * be closed and the error returned to the user. If err > 0
346 * it's just the icmp type << 8 | icmp code. After adjustment
347 * header points to the first 8 bytes of the tcp header. We need
348 * to find the appropriate port.
349 *
350 * The locking strategy used here is very "optimistic". When
351 * someone else accesses the socket the ICMP is just dropped
352 * and for some paths there is no check at all.
353 * A more general error queue to queue errors for later handling
354 * is probably better.
355 *
356 */
357
358 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
359 {
360 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
361 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
362 struct inet_connection_sock *icsk;
363 struct tcp_sock *tp;
364 struct inet_sock *inet;
365 const int type = icmp_hdr(icmp_skb)->type;
366 const int code = icmp_hdr(icmp_skb)->code;
367 struct sock *sk;
368 struct sk_buff *skb;
369 struct request_sock *fastopen;
370 __u32 seq, snd_una;
371 __u32 remaining;
372 int err;
373 struct net *net = dev_net(icmp_skb->dev);
374
375 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
376 th->dest, iph->saddr, ntohs(th->source),
377 inet_iif(icmp_skb));
378 if (!sk) {
379 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
380 return;
381 }
382 if (sk->sk_state == TCP_TIME_WAIT) {
383 inet_twsk_put(inet_twsk(sk));
384 return;
385 }
386 seq = ntohl(th->seq);
387 if (sk->sk_state == TCP_NEW_SYN_RECV)
388 return tcp_req_err(sk, seq,
389 type == ICMP_PARAMETERPROB ||
390 type == ICMP_TIME_EXCEEDED ||
391 (type == ICMP_DEST_UNREACH &&
392 (code == ICMP_NET_UNREACH ||
393 code == ICMP_HOST_UNREACH)));
394
395 bh_lock_sock(sk);
396 /* If too many ICMPs get dropped on busy
397 * servers this needs to be solved differently.
398 * We do take care of PMTU discovery (RFC1191) special case :
399 * we can receive locally generated ICMP messages while socket is held.
400 */
401 if (sock_owned_by_user(sk)) {
402 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
403 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
404 }
405 if (sk->sk_state == TCP_CLOSE)
406 goto out;
407
408 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
409 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
410 goto out;
411 }
412
413 icsk = inet_csk(sk);
414 tp = tcp_sk(sk);
415 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
416 fastopen = tp->fastopen_rsk;
417 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
418 if (sk->sk_state != TCP_LISTEN &&
419 !between(seq, snd_una, tp->snd_nxt)) {
420 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
421 goto out;
422 }
423
424 switch (type) {
425 case ICMP_REDIRECT:
426 if (!sock_owned_by_user(sk))
427 do_redirect(icmp_skb, sk);
428 goto out;
429 case ICMP_SOURCE_QUENCH:
430 /* Just silently ignore these. */
431 goto out;
432 case ICMP_PARAMETERPROB:
433 err = EPROTO;
434 break;
435 case ICMP_DEST_UNREACH:
436 if (code > NR_ICMP_UNREACH)
437 goto out;
438
439 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
440 /* We are not interested in TCP_LISTEN and open_requests
441 * (SYN-ACKs send out by Linux are always <576bytes so
442 * they should go through unfragmented).
443 */
444 if (sk->sk_state == TCP_LISTEN)
445 goto out;
446
447 tp->mtu_info = info;
448 if (!sock_owned_by_user(sk)) {
449 tcp_v4_mtu_reduced(sk);
450 } else {
451 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
452 sock_hold(sk);
453 }
454 goto out;
455 }
456
457 err = icmp_err_convert[code].errno;
458 /* check if icmp_skb allows revert of backoff
459 * (see draft-zimmermann-tcp-lcd) */
460 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
461 break;
462 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
463 !icsk->icsk_backoff || fastopen)
464 break;
465
466 if (sock_owned_by_user(sk))
467 break;
468
469 icsk->icsk_backoff--;
470 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
471 TCP_TIMEOUT_INIT;
472 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
473
474 skb = tcp_write_queue_head(sk);
475 BUG_ON(!skb);
476
477 remaining = icsk->icsk_rto -
478 min(icsk->icsk_rto,
479 tcp_time_stamp - tcp_skb_timestamp(skb));
480
481 if (remaining) {
482 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
483 remaining, TCP_RTO_MAX);
484 } else {
485 /* RTO revert clocked out retransmission.
486 * Will retransmit now */
487 tcp_retransmit_timer(sk);
488 }
489
490 break;
491 case ICMP_TIME_EXCEEDED:
492 err = EHOSTUNREACH;
493 break;
494 default:
495 goto out;
496 }
497
498 switch (sk->sk_state) {
499 case TCP_SYN_SENT:
500 case TCP_SYN_RECV:
501 /* Only in fast or simultaneous open. If a fast open socket is
502 * is already accepted it is treated as a connected one below.
503 */
504 if (fastopen && !fastopen->sk)
505 break;
506
507 if (!sock_owned_by_user(sk)) {
508 sk->sk_err = err;
509
510 sk->sk_error_report(sk);
511
512 tcp_done(sk);
513 } else {
514 sk->sk_err_soft = err;
515 }
516 goto out;
517 }
518
519 /* If we've already connected we will keep trying
520 * until we time out, or the user gives up.
521 *
522 * rfc1122 4.2.3.9 allows to consider as hard errors
523 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 * but it is obsoleted by pmtu discovery).
525 *
526 * Note, that in modern internet, where routing is unreliable
527 * and in each dark corner broken firewalls sit, sending random
528 * errors ordered by their masters even this two messages finally lose
529 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 *
531 * Now we are in compliance with RFCs.
532 * --ANK (980905)
533 */
534
535 inet = inet_sk(sk);
536 if (!sock_owned_by_user(sk) && inet->recverr) {
537 sk->sk_err = err;
538 sk->sk_error_report(sk);
539 } else { /* Only an error on timeout */
540 sk->sk_err_soft = err;
541 }
542
543 out:
544 bh_unlock_sock(sk);
545 sock_put(sk);
546 }
547
548 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
549 {
550 struct tcphdr *th = tcp_hdr(skb);
551
552 if (skb->ip_summed == CHECKSUM_PARTIAL) {
553 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
554 skb->csum_start = skb_transport_header(skb) - skb->head;
555 skb->csum_offset = offsetof(struct tcphdr, check);
556 } else {
557 th->check = tcp_v4_check(skb->len, saddr, daddr,
558 csum_partial(th,
559 th->doff << 2,
560 skb->csum));
561 }
562 }
563
564 /* This routine computes an IPv4 TCP checksum. */
565 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
566 {
567 const struct inet_sock *inet = inet_sk(sk);
568
569 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
570 }
571 EXPORT_SYMBOL(tcp_v4_send_check);
572
573 /*
574 * This routine will send an RST to the other tcp.
575 *
576 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
577 * for reset.
578 * Answer: if a packet caused RST, it is not for a socket
579 * existing in our system, if it is matched to a socket,
580 * it is just duplicate segment or bug in other side's TCP.
581 * So that we build reply only basing on parameters
582 * arrived with segment.
583 * Exception: precedence violation. We do not implement it in any case.
584 */
585
586 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
587 {
588 const struct tcphdr *th = tcp_hdr(skb);
589 struct {
590 struct tcphdr th;
591 #ifdef CONFIG_TCP_MD5SIG
592 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
593 #endif
594 } rep;
595 struct ip_reply_arg arg;
596 #ifdef CONFIG_TCP_MD5SIG
597 struct tcp_md5sig_key *key;
598 const __u8 *hash_location = NULL;
599 unsigned char newhash[16];
600 int genhash;
601 struct sock *sk1 = NULL;
602 #endif
603 struct net *net;
604
605 /* Never send a reset in response to a reset. */
606 if (th->rst)
607 return;
608
609 /* If sk not NULL, it means we did a successful lookup and incoming
610 * route had to be correct. prequeue might have dropped our dst.
611 */
612 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
613 return;
614
615 /* Swap the send and the receive. */
616 memset(&rep, 0, sizeof(rep));
617 rep.th.dest = th->source;
618 rep.th.source = th->dest;
619 rep.th.doff = sizeof(struct tcphdr) / 4;
620 rep.th.rst = 1;
621
622 if (th->ack) {
623 rep.th.seq = th->ack_seq;
624 } else {
625 rep.th.ack = 1;
626 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
627 skb->len - (th->doff << 2));
628 }
629
630 memset(&arg, 0, sizeof(arg));
631 arg.iov[0].iov_base = (unsigned char *)&rep;
632 arg.iov[0].iov_len = sizeof(rep.th);
633
634 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
635 #ifdef CONFIG_TCP_MD5SIG
636 hash_location = tcp_parse_md5sig_option(th);
637 if (!sk && hash_location) {
638 /*
639 * active side is lost. Try to find listening socket through
640 * source port, and then find md5 key through listening socket.
641 * we are not loose security here:
642 * Incoming packet is checked with md5 hash with finding key,
643 * no RST generated if md5 hash doesn't match.
644 */
645 sk1 = __inet_lookup_listener(net,
646 &tcp_hashinfo, ip_hdr(skb)->saddr,
647 th->source, ip_hdr(skb)->daddr,
648 ntohs(th->source), inet_iif(skb));
649 /* don't send rst if it can't find key */
650 if (!sk1)
651 return;
652 rcu_read_lock();
653 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
654 &ip_hdr(skb)->saddr, AF_INET);
655 if (!key)
656 goto release_sk1;
657
658 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
659 if (genhash || memcmp(hash_location, newhash, 16) != 0)
660 goto release_sk1;
661 } else {
662 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
663 &ip_hdr(skb)->saddr,
664 AF_INET) : NULL;
665 }
666
667 if (key) {
668 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
669 (TCPOPT_NOP << 16) |
670 (TCPOPT_MD5SIG << 8) |
671 TCPOLEN_MD5SIG);
672 /* Update length and the length the header thinks exists */
673 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
674 rep.th.doff = arg.iov[0].iov_len / 4;
675
676 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
677 key, ip_hdr(skb)->saddr,
678 ip_hdr(skb)->daddr, &rep.th);
679 }
680 #endif
681 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
682 ip_hdr(skb)->saddr, /* XXX */
683 arg.iov[0].iov_len, IPPROTO_TCP, 0);
684 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
685 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
686 /* When socket is gone, all binding information is lost.
687 * routing might fail in this case. No choice here, if we choose to force
688 * input interface, we will misroute in case of asymmetric route.
689 */
690 if (sk)
691 arg.bound_dev_if = sk->sk_bound_dev_if;
692
693 arg.tos = ip_hdr(skb)->tos;
694 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
695 skb, &TCP_SKB_CB(skb)->header.h4.opt,
696 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
697 &arg, arg.iov[0].iov_len);
698
699 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
700 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
701
702 #ifdef CONFIG_TCP_MD5SIG
703 release_sk1:
704 if (sk1) {
705 rcu_read_unlock();
706 sock_put(sk1);
707 }
708 #endif
709 }
710
711 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
712 outside socket context is ugly, certainly. What can I do?
713 */
714
715 static void tcp_v4_send_ack(struct net *net,
716 struct sk_buff *skb, u32 seq, u32 ack,
717 u32 win, u32 tsval, u32 tsecr, int oif,
718 struct tcp_md5sig_key *key,
719 int reply_flags, u8 tos)
720 {
721 const struct tcphdr *th = tcp_hdr(skb);
722 struct {
723 struct tcphdr th;
724 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
725 #ifdef CONFIG_TCP_MD5SIG
726 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
727 #endif
728 ];
729 } rep;
730 struct ip_reply_arg arg;
731
732 memset(&rep.th, 0, sizeof(struct tcphdr));
733 memset(&arg, 0, sizeof(arg));
734
735 arg.iov[0].iov_base = (unsigned char *)&rep;
736 arg.iov[0].iov_len = sizeof(rep.th);
737 if (tsecr) {
738 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
739 (TCPOPT_TIMESTAMP << 8) |
740 TCPOLEN_TIMESTAMP);
741 rep.opt[1] = htonl(tsval);
742 rep.opt[2] = htonl(tsecr);
743 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
744 }
745
746 /* Swap the send and the receive. */
747 rep.th.dest = th->source;
748 rep.th.source = th->dest;
749 rep.th.doff = arg.iov[0].iov_len / 4;
750 rep.th.seq = htonl(seq);
751 rep.th.ack_seq = htonl(ack);
752 rep.th.ack = 1;
753 rep.th.window = htons(win);
754
755 #ifdef CONFIG_TCP_MD5SIG
756 if (key) {
757 int offset = (tsecr) ? 3 : 0;
758
759 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
760 (TCPOPT_NOP << 16) |
761 (TCPOPT_MD5SIG << 8) |
762 TCPOLEN_MD5SIG);
763 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
764 rep.th.doff = arg.iov[0].iov_len/4;
765
766 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
767 key, ip_hdr(skb)->saddr,
768 ip_hdr(skb)->daddr, &rep.th);
769 }
770 #endif
771 arg.flags = reply_flags;
772 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
773 ip_hdr(skb)->saddr, /* XXX */
774 arg.iov[0].iov_len, IPPROTO_TCP, 0);
775 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
776 if (oif)
777 arg.bound_dev_if = oif;
778 arg.tos = tos;
779 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
780 skb, &TCP_SKB_CB(skb)->header.h4.opt,
781 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
782 &arg, arg.iov[0].iov_len);
783
784 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
785 }
786
787 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
788 {
789 struct inet_timewait_sock *tw = inet_twsk(sk);
790 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
791
792 tcp_v4_send_ack(sock_net(sk), skb,
793 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
794 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
795 tcp_time_stamp + tcptw->tw_ts_offset,
796 tcptw->tw_ts_recent,
797 tw->tw_bound_dev_if,
798 tcp_twsk_md5_key(tcptw),
799 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
800 tw->tw_tos
801 );
802
803 inet_twsk_put(tw);
804 }
805
806 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
807 struct request_sock *req)
808 {
809 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
810 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
811 */
812 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
813 tcp_sk(sk)->snd_nxt;
814
815 /* RFC 7323 2.3
816 * The window field (SEG.WND) of every outgoing segment, with the
817 * exception of <SYN> segments, MUST be right-shifted by
818 * Rcv.Wind.Shift bits:
819 */
820 tcp_v4_send_ack(sock_net(sk), skb, seq,
821 tcp_rsk(req)->rcv_nxt,
822 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
823 tcp_time_stamp,
824 req->ts_recent,
825 0,
826 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
827 AF_INET),
828 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
829 ip_hdr(skb)->tos);
830 }
831
832 /*
833 * Send a SYN-ACK after having received a SYN.
834 * This still operates on a request_sock only, not on a big
835 * socket.
836 */
837 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
838 struct flowi *fl,
839 struct request_sock *req,
840 struct tcp_fastopen_cookie *foc,
841 bool attach_req)
842 {
843 const struct inet_request_sock *ireq = inet_rsk(req);
844 struct flowi4 fl4;
845 int err = -1;
846 struct sk_buff *skb;
847
848 /* First, grab a route. */
849 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
850 return -1;
851
852 skb = tcp_make_synack(sk, dst, req, foc, attach_req);
853
854 if (skb) {
855 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
856
857 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
858 ireq->ir_rmt_addr,
859 ireq->opt);
860 err = net_xmit_eval(err);
861 }
862
863 return err;
864 }
865
866 /*
867 * IPv4 request_sock destructor.
868 */
869 static void tcp_v4_reqsk_destructor(struct request_sock *req)
870 {
871 kfree(inet_rsk(req)->opt);
872 }
873
874
875 #ifdef CONFIG_TCP_MD5SIG
876 /*
877 * RFC2385 MD5 checksumming requires a mapping of
878 * IP address->MD5 Key.
879 * We need to maintain these in the sk structure.
880 */
881
882 /* Find the Key structure for an address. */
883 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
884 const union tcp_md5_addr *addr,
885 int family)
886 {
887 const struct tcp_sock *tp = tcp_sk(sk);
888 struct tcp_md5sig_key *key;
889 unsigned int size = sizeof(struct in_addr);
890 const struct tcp_md5sig_info *md5sig;
891
892 /* caller either holds rcu_read_lock() or socket lock */
893 md5sig = rcu_dereference_check(tp->md5sig_info,
894 sock_owned_by_user(sk) ||
895 lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
896 if (!md5sig)
897 return NULL;
898 #if IS_ENABLED(CONFIG_IPV6)
899 if (family == AF_INET6)
900 size = sizeof(struct in6_addr);
901 #endif
902 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
903 if (key->family != family)
904 continue;
905 if (!memcmp(&key->addr, addr, size))
906 return key;
907 }
908 return NULL;
909 }
910 EXPORT_SYMBOL(tcp_md5_do_lookup);
911
912 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
913 const struct sock *addr_sk)
914 {
915 const union tcp_md5_addr *addr;
916
917 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
918 return tcp_md5_do_lookup(sk, addr, AF_INET);
919 }
920 EXPORT_SYMBOL(tcp_v4_md5_lookup);
921
922 /* This can be called on a newly created socket, from other files */
923 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
924 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
925 {
926 /* Add Key to the list */
927 struct tcp_md5sig_key *key;
928 struct tcp_sock *tp = tcp_sk(sk);
929 struct tcp_md5sig_info *md5sig;
930
931 key = tcp_md5_do_lookup(sk, addr, family);
932 if (key) {
933 /* Pre-existing entry - just update that one. */
934 memcpy(key->key, newkey, newkeylen);
935 key->keylen = newkeylen;
936 return 0;
937 }
938
939 md5sig = rcu_dereference_protected(tp->md5sig_info,
940 sock_owned_by_user(sk) ||
941 lockdep_is_held(&sk->sk_lock.slock));
942 if (!md5sig) {
943 md5sig = kmalloc(sizeof(*md5sig), gfp);
944 if (!md5sig)
945 return -ENOMEM;
946
947 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
948 INIT_HLIST_HEAD(&md5sig->head);
949 rcu_assign_pointer(tp->md5sig_info, md5sig);
950 }
951
952 key = sock_kmalloc(sk, sizeof(*key), gfp);
953 if (!key)
954 return -ENOMEM;
955 if (!tcp_alloc_md5sig_pool()) {
956 sock_kfree_s(sk, key, sizeof(*key));
957 return -ENOMEM;
958 }
959
960 memcpy(key->key, newkey, newkeylen);
961 key->keylen = newkeylen;
962 key->family = family;
963 memcpy(&key->addr, addr,
964 (family == AF_INET6) ? sizeof(struct in6_addr) :
965 sizeof(struct in_addr));
966 hlist_add_head_rcu(&key->node, &md5sig->head);
967 return 0;
968 }
969 EXPORT_SYMBOL(tcp_md5_do_add);
970
971 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
972 {
973 struct tcp_md5sig_key *key;
974
975 key = tcp_md5_do_lookup(sk, addr, family);
976 if (!key)
977 return -ENOENT;
978 hlist_del_rcu(&key->node);
979 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
980 kfree_rcu(key, rcu);
981 return 0;
982 }
983 EXPORT_SYMBOL(tcp_md5_do_del);
984
985 static void tcp_clear_md5_list(struct sock *sk)
986 {
987 struct tcp_sock *tp = tcp_sk(sk);
988 struct tcp_md5sig_key *key;
989 struct hlist_node *n;
990 struct tcp_md5sig_info *md5sig;
991
992 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
993
994 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
995 hlist_del_rcu(&key->node);
996 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
997 kfree_rcu(key, rcu);
998 }
999 }
1000
1001 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1002 int optlen)
1003 {
1004 struct tcp_md5sig cmd;
1005 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1006
1007 if (optlen < sizeof(cmd))
1008 return -EINVAL;
1009
1010 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1011 return -EFAULT;
1012
1013 if (sin->sin_family != AF_INET)
1014 return -EINVAL;
1015
1016 if (!cmd.tcpm_keylen)
1017 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1018 AF_INET);
1019
1020 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1021 return -EINVAL;
1022
1023 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1024 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1025 GFP_KERNEL);
1026 }
1027
1028 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1029 __be32 daddr, __be32 saddr, int nbytes)
1030 {
1031 struct tcp4_pseudohdr *bp;
1032 struct scatterlist sg;
1033
1034 bp = &hp->md5_blk.ip4;
1035
1036 /*
1037 * 1. the TCP pseudo-header (in the order: source IP address,
1038 * destination IP address, zero-padded protocol number, and
1039 * segment length)
1040 */
1041 bp->saddr = saddr;
1042 bp->daddr = daddr;
1043 bp->pad = 0;
1044 bp->protocol = IPPROTO_TCP;
1045 bp->len = cpu_to_be16(nbytes);
1046
1047 sg_init_one(&sg, bp, sizeof(*bp));
1048 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1049 }
1050
1051 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1052 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1053 {
1054 struct tcp_md5sig_pool *hp;
1055 struct hash_desc *desc;
1056
1057 hp = tcp_get_md5sig_pool();
1058 if (!hp)
1059 goto clear_hash_noput;
1060 desc = &hp->md5_desc;
1061
1062 if (crypto_hash_init(desc))
1063 goto clear_hash;
1064 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1065 goto clear_hash;
1066 if (tcp_md5_hash_header(hp, th))
1067 goto clear_hash;
1068 if (tcp_md5_hash_key(hp, key))
1069 goto clear_hash;
1070 if (crypto_hash_final(desc, md5_hash))
1071 goto clear_hash;
1072
1073 tcp_put_md5sig_pool();
1074 return 0;
1075
1076 clear_hash:
1077 tcp_put_md5sig_pool();
1078 clear_hash_noput:
1079 memset(md5_hash, 0, 16);
1080 return 1;
1081 }
1082
1083 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1084 const struct sock *sk,
1085 const struct sk_buff *skb)
1086 {
1087 struct tcp_md5sig_pool *hp;
1088 struct hash_desc *desc;
1089 const struct tcphdr *th = tcp_hdr(skb);
1090 __be32 saddr, daddr;
1091
1092 if (sk) { /* valid for establish/request sockets */
1093 saddr = sk->sk_rcv_saddr;
1094 daddr = sk->sk_daddr;
1095 } else {
1096 const struct iphdr *iph = ip_hdr(skb);
1097 saddr = iph->saddr;
1098 daddr = iph->daddr;
1099 }
1100
1101 hp = tcp_get_md5sig_pool();
1102 if (!hp)
1103 goto clear_hash_noput;
1104 desc = &hp->md5_desc;
1105
1106 if (crypto_hash_init(desc))
1107 goto clear_hash;
1108
1109 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1110 goto clear_hash;
1111 if (tcp_md5_hash_header(hp, th))
1112 goto clear_hash;
1113 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1114 goto clear_hash;
1115 if (tcp_md5_hash_key(hp, key))
1116 goto clear_hash;
1117 if (crypto_hash_final(desc, md5_hash))
1118 goto clear_hash;
1119
1120 tcp_put_md5sig_pool();
1121 return 0;
1122
1123 clear_hash:
1124 tcp_put_md5sig_pool();
1125 clear_hash_noput:
1126 memset(md5_hash, 0, 16);
1127 return 1;
1128 }
1129 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1130
1131 #endif
1132
1133 /* Called with rcu_read_lock() */
1134 static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1135 const struct sk_buff *skb)
1136 {
1137 #ifdef CONFIG_TCP_MD5SIG
1138 /*
1139 * This gets called for each TCP segment that arrives
1140 * so we want to be efficient.
1141 * We have 3 drop cases:
1142 * o No MD5 hash and one expected.
1143 * o MD5 hash and we're not expecting one.
1144 * o MD5 hash and its wrong.
1145 */
1146 const __u8 *hash_location = NULL;
1147 struct tcp_md5sig_key *hash_expected;
1148 const struct iphdr *iph = ip_hdr(skb);
1149 const struct tcphdr *th = tcp_hdr(skb);
1150 int genhash;
1151 unsigned char newhash[16];
1152
1153 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1154 AF_INET);
1155 hash_location = tcp_parse_md5sig_option(th);
1156
1157 /* We've parsed the options - do we have a hash? */
1158 if (!hash_expected && !hash_location)
1159 return false;
1160
1161 if (hash_expected && !hash_location) {
1162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1163 return true;
1164 }
1165
1166 if (!hash_expected && hash_location) {
1167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1168 return true;
1169 }
1170
1171 /* Okay, so this is hash_expected and hash_location -
1172 * so we need to calculate the checksum.
1173 */
1174 genhash = tcp_v4_md5_hash_skb(newhash,
1175 hash_expected,
1176 NULL, skb);
1177
1178 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1179 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1180 &iph->saddr, ntohs(th->source),
1181 &iph->daddr, ntohs(th->dest),
1182 genhash ? " tcp_v4_calc_md5_hash failed"
1183 : "");
1184 return true;
1185 }
1186 return false;
1187 #endif
1188 return false;
1189 }
1190
1191 static void tcp_v4_init_req(struct request_sock *req,
1192 const struct sock *sk_listener,
1193 struct sk_buff *skb)
1194 {
1195 struct inet_request_sock *ireq = inet_rsk(req);
1196
1197 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1198 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1199 ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1200 ireq->opt = tcp_v4_save_options(skb);
1201 }
1202
1203 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1204 struct flowi *fl,
1205 const struct request_sock *req,
1206 bool *strict)
1207 {
1208 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1209
1210 if (strict) {
1211 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1212 *strict = true;
1213 else
1214 *strict = false;
1215 }
1216
1217 return dst;
1218 }
1219
1220 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1221 .family = PF_INET,
1222 .obj_size = sizeof(struct tcp_request_sock),
1223 .rtx_syn_ack = tcp_rtx_synack,
1224 .send_ack = tcp_v4_reqsk_send_ack,
1225 .destructor = tcp_v4_reqsk_destructor,
1226 .send_reset = tcp_v4_send_reset,
1227 .syn_ack_timeout = tcp_syn_ack_timeout,
1228 };
1229
1230 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1231 .mss_clamp = TCP_MSS_DEFAULT,
1232 #ifdef CONFIG_TCP_MD5SIG
1233 .req_md5_lookup = tcp_v4_md5_lookup,
1234 .calc_md5_hash = tcp_v4_md5_hash_skb,
1235 #endif
1236 .init_req = tcp_v4_init_req,
1237 #ifdef CONFIG_SYN_COOKIES
1238 .cookie_init_seq = cookie_v4_init_sequence,
1239 #endif
1240 .route_req = tcp_v4_route_req,
1241 .init_seq = tcp_v4_init_sequence,
1242 .send_synack = tcp_v4_send_synack,
1243 };
1244
1245 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1246 {
1247 /* Never answer to SYNs send to broadcast or multicast */
1248 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1249 goto drop;
1250
1251 return tcp_conn_request(&tcp_request_sock_ops,
1252 &tcp_request_sock_ipv4_ops, sk, skb);
1253
1254 drop:
1255 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1256 return 0;
1257 }
1258 EXPORT_SYMBOL(tcp_v4_conn_request);
1259
1260
1261 /*
1262 * The three way handshake has completed - we got a valid synack -
1263 * now create the new socket.
1264 */
1265 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1266 struct request_sock *req,
1267 struct dst_entry *dst,
1268 struct request_sock *req_unhash,
1269 bool *own_req)
1270 {
1271 struct inet_request_sock *ireq;
1272 struct inet_sock *newinet;
1273 struct tcp_sock *newtp;
1274 struct sock *newsk;
1275 #ifdef CONFIG_TCP_MD5SIG
1276 struct tcp_md5sig_key *key;
1277 #endif
1278 struct ip_options_rcu *inet_opt;
1279
1280 if (sk_acceptq_is_full(sk))
1281 goto exit_overflow;
1282
1283 newsk = tcp_create_openreq_child(sk, req, skb);
1284 if (!newsk)
1285 goto exit_nonewsk;
1286
1287 newsk->sk_gso_type = SKB_GSO_TCPV4;
1288 inet_sk_rx_dst_set(newsk, skb);
1289
1290 newtp = tcp_sk(newsk);
1291 newinet = inet_sk(newsk);
1292 ireq = inet_rsk(req);
1293 sk_daddr_set(newsk, ireq->ir_rmt_addr);
1294 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1295 newinet->inet_saddr = ireq->ir_loc_addr;
1296 inet_opt = ireq->opt;
1297 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1298 ireq->opt = NULL;
1299 newinet->mc_index = inet_iif(skb);
1300 newinet->mc_ttl = ip_hdr(skb)->ttl;
1301 newinet->rcv_tos = ip_hdr(skb)->tos;
1302 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1303 if (inet_opt)
1304 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1305 newinet->inet_id = newtp->write_seq ^ jiffies;
1306
1307 if (!dst) {
1308 dst = inet_csk_route_child_sock(sk, newsk, req);
1309 if (!dst)
1310 goto put_and_exit;
1311 } else {
1312 /* syncookie case : see end of cookie_v4_check() */
1313 }
1314 sk_setup_caps(newsk, dst);
1315
1316 tcp_ca_openreq_child(newsk, dst);
1317
1318 tcp_sync_mss(newsk, dst_mtu(dst));
1319 newtp->advmss = dst_metric_advmss(dst);
1320 if (tcp_sk(sk)->rx_opt.user_mss &&
1321 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1322 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1323
1324 tcp_initialize_rcv_mss(newsk);
1325
1326 #ifdef CONFIG_TCP_MD5SIG
1327 /* Copy over the MD5 key from the original socket */
1328 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1329 AF_INET);
1330 if (key) {
1331 /*
1332 * We're using one, so create a matching key
1333 * on the newsk structure. If we fail to get
1334 * memory, then we end up not copying the key
1335 * across. Shucks.
1336 */
1337 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1338 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1339 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1340 }
1341 #endif
1342
1343 if (__inet_inherit_port(sk, newsk) < 0)
1344 goto put_and_exit;
1345 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1346 if (*own_req)
1347 tcp_move_syn(newtp, req);
1348
1349 return newsk;
1350
1351 exit_overflow:
1352 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1353 exit_nonewsk:
1354 dst_release(dst);
1355 exit:
1356 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1357 return NULL;
1358 put_and_exit:
1359 inet_csk_prepare_forced_close(newsk);
1360 tcp_done(newsk);
1361 goto exit;
1362 }
1363 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1364
1365 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1366 {
1367 #ifdef CONFIG_SYN_COOKIES
1368 const struct tcphdr *th = tcp_hdr(skb);
1369
1370 if (!th->syn)
1371 sk = cookie_v4_check(sk, skb);
1372 #endif
1373 return sk;
1374 }
1375
1376 /* The socket must have it's spinlock held when we get
1377 * here, unless it is a TCP_LISTEN socket.
1378 *
1379 * We have a potential double-lock case here, so even when
1380 * doing backlog processing we use the BH locking scheme.
1381 * This is because we cannot sleep with the original spinlock
1382 * held.
1383 */
1384 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1385 {
1386 struct sock *rsk;
1387
1388 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1389 struct dst_entry *dst = sk->sk_rx_dst;
1390
1391 sock_rps_save_rxhash(sk, skb);
1392 sk_mark_napi_id(sk, skb);
1393 if (dst) {
1394 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1395 !dst->ops->check(dst, 0)) {
1396 dst_release(dst);
1397 sk->sk_rx_dst = NULL;
1398 }
1399 }
1400 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1401 return 0;
1402 }
1403
1404 if (tcp_checksum_complete(skb))
1405 goto csum_err;
1406
1407 if (sk->sk_state == TCP_LISTEN) {
1408 struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1409
1410 if (!nsk)
1411 goto discard;
1412 if (nsk != sk) {
1413 sock_rps_save_rxhash(nsk, skb);
1414 sk_mark_napi_id(nsk, skb);
1415 if (tcp_child_process(sk, nsk, skb)) {
1416 rsk = nsk;
1417 goto reset;
1418 }
1419 return 0;
1420 }
1421 } else
1422 sock_rps_save_rxhash(sk, skb);
1423
1424 if (tcp_rcv_state_process(sk, skb)) {
1425 rsk = sk;
1426 goto reset;
1427 }
1428 return 0;
1429
1430 reset:
1431 tcp_v4_send_reset(rsk, skb);
1432 discard:
1433 kfree_skb(skb);
1434 /* Be careful here. If this function gets more complicated and
1435 * gcc suffers from register pressure on the x86, sk (in %ebx)
1436 * might be destroyed here. This current version compiles correctly,
1437 * but you have been warned.
1438 */
1439 return 0;
1440
1441 csum_err:
1442 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1443 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1444 goto discard;
1445 }
1446 EXPORT_SYMBOL(tcp_v4_do_rcv);
1447
1448 void tcp_v4_early_demux(struct sk_buff *skb)
1449 {
1450 const struct iphdr *iph;
1451 const struct tcphdr *th;
1452 struct sock *sk;
1453
1454 if (skb->pkt_type != PACKET_HOST)
1455 return;
1456
1457 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1458 return;
1459
1460 iph = ip_hdr(skb);
1461 th = tcp_hdr(skb);
1462
1463 if (th->doff < sizeof(struct tcphdr) / 4)
1464 return;
1465
1466 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1467 iph->saddr, th->source,
1468 iph->daddr, ntohs(th->dest),
1469 skb->skb_iif);
1470 if (sk) {
1471 skb->sk = sk;
1472 skb->destructor = sock_edemux;
1473 if (sk_fullsock(sk)) {
1474 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1475
1476 if (dst)
1477 dst = dst_check(dst, 0);
1478 if (dst &&
1479 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1480 skb_dst_set_noref(skb, dst);
1481 }
1482 }
1483 }
1484
1485 /* Packet is added to VJ-style prequeue for processing in process
1486 * context, if a reader task is waiting. Apparently, this exciting
1487 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1488 * failed somewhere. Latency? Burstiness? Well, at least now we will
1489 * see, why it failed. 8)8) --ANK
1490 *
1491 */
1492 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1493 {
1494 struct tcp_sock *tp = tcp_sk(sk);
1495
1496 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1497 return false;
1498
1499 if (skb->len <= tcp_hdrlen(skb) &&
1500 skb_queue_len(&tp->ucopy.prequeue) == 0)
1501 return false;
1502
1503 /* Before escaping RCU protected region, we need to take care of skb
1504 * dst. Prequeue is only enabled for established sockets.
1505 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1506 * Instead of doing full sk_rx_dst validity here, let's perform
1507 * an optimistic check.
1508 */
1509 if (likely(sk->sk_rx_dst))
1510 skb_dst_drop(skb);
1511 else
1512 skb_dst_force_safe(skb);
1513
1514 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1515 tp->ucopy.memory += skb->truesize;
1516 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1517 struct sk_buff *skb1;
1518
1519 BUG_ON(sock_owned_by_user(sk));
1520
1521 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1522 sk_backlog_rcv(sk, skb1);
1523 NET_INC_STATS_BH(sock_net(sk),
1524 LINUX_MIB_TCPPREQUEUEDROPPED);
1525 }
1526
1527 tp->ucopy.memory = 0;
1528 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1529 wake_up_interruptible_sync_poll(sk_sleep(sk),
1530 POLLIN | POLLRDNORM | POLLRDBAND);
1531 if (!inet_csk_ack_scheduled(sk))
1532 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1533 (3 * tcp_rto_min(sk)) / 4,
1534 TCP_RTO_MAX);
1535 }
1536 return true;
1537 }
1538 EXPORT_SYMBOL(tcp_prequeue);
1539
1540 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1541 {
1542 struct tcphdr *th = (struct tcphdr *)skb->data;
1543 unsigned int eaten = skb->len;
1544 int err;
1545
1546 err = sk_filter_trim_cap(sk, skb, th->doff * 4);
1547 if (!err) {
1548 eaten -= skb->len;
1549 TCP_SKB_CB(skb)->end_seq -= eaten;
1550 }
1551 return err;
1552 }
1553 EXPORT_SYMBOL(tcp_filter);
1554
1555 /*
1556 * From tcp_input.c
1557 */
1558
1559 int tcp_v4_rcv(struct sk_buff *skb)
1560 {
1561 const struct iphdr *iph;
1562 const struct tcphdr *th;
1563 struct sock *sk;
1564 int ret;
1565 struct net *net = dev_net(skb->dev);
1566
1567 if (skb->pkt_type != PACKET_HOST)
1568 goto discard_it;
1569
1570 /* Count it even if it's bad */
1571 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1572
1573 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1574 goto discard_it;
1575
1576 th = tcp_hdr(skb);
1577
1578 if (th->doff < sizeof(struct tcphdr) / 4)
1579 goto bad_packet;
1580 if (!pskb_may_pull(skb, th->doff * 4))
1581 goto discard_it;
1582
1583 /* An explanation is required here, I think.
1584 * Packet length and doff are validated by header prediction,
1585 * provided case of th->doff==0 is eliminated.
1586 * So, we defer the checks. */
1587
1588 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1589 goto csum_error;
1590
1591 th = tcp_hdr(skb);
1592 iph = ip_hdr(skb);
1593 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1594 * barrier() makes sure compiler wont play fool^Waliasing games.
1595 */
1596 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1597 sizeof(struct inet_skb_parm));
1598 barrier();
1599
1600 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1601 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1602 skb->len - th->doff * 4);
1603 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1604 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1605 TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1606 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1607 TCP_SKB_CB(skb)->sacked = 0;
1608
1609 lookup:
1610 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1611 if (!sk)
1612 goto no_tcp_socket;
1613
1614 process:
1615 if (sk->sk_state == TCP_TIME_WAIT)
1616 goto do_time_wait;
1617
1618 if (sk->sk_state == TCP_NEW_SYN_RECV) {
1619 struct request_sock *req = inet_reqsk(sk);
1620 struct sock *nsk;
1621
1622 sk = req->rsk_listener;
1623 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
1624 reqsk_put(req);
1625 goto discard_it;
1626 }
1627 if (unlikely(sk->sk_state != TCP_LISTEN)) {
1628 inet_csk_reqsk_queue_drop_and_put(sk, req);
1629 goto lookup;
1630 }
1631 sock_hold(sk);
1632 nsk = tcp_check_req(sk, skb, req, false);
1633 if (!nsk) {
1634 reqsk_put(req);
1635 goto discard_and_relse;
1636 }
1637 if (nsk == sk) {
1638 reqsk_put(req);
1639 } else if (tcp_child_process(sk, nsk, skb)) {
1640 tcp_v4_send_reset(nsk, skb);
1641 goto discard_and_relse;
1642 } else {
1643 sock_put(sk);
1644 return 0;
1645 }
1646 }
1647 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1648 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1649 goto discard_and_relse;
1650 }
1651
1652 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1653 goto discard_and_relse;
1654
1655 if (tcp_v4_inbound_md5_hash(sk, skb))
1656 goto discard_and_relse;
1657
1658 nf_reset(skb);
1659
1660 if (tcp_filter(sk, skb))
1661 goto discard_and_relse;
1662 th = (const struct tcphdr *)skb->data;
1663 iph = ip_hdr(skb);
1664
1665 skb->dev = NULL;
1666
1667 if (sk->sk_state == TCP_LISTEN) {
1668 ret = tcp_v4_do_rcv(sk, skb);
1669 goto put_and_return;
1670 }
1671
1672 sk_incoming_cpu_update(sk);
1673
1674 bh_lock_sock_nested(sk);
1675 tcp_sk(sk)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1676 ret = 0;
1677 if (!sock_owned_by_user(sk)) {
1678 if (!tcp_prequeue(sk, skb))
1679 ret = tcp_v4_do_rcv(sk, skb);
1680 } else if (unlikely(sk_add_backlog(sk, skb,
1681 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1682 bh_unlock_sock(sk);
1683 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1684 goto discard_and_relse;
1685 }
1686 bh_unlock_sock(sk);
1687
1688 put_and_return:
1689 sock_put(sk);
1690
1691 return ret;
1692
1693 no_tcp_socket:
1694 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1695 goto discard_it;
1696
1697 if (tcp_checksum_complete(skb)) {
1698 csum_error:
1699 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1700 bad_packet:
1701 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1702 } else {
1703 tcp_v4_send_reset(NULL, skb);
1704 }
1705
1706 discard_it:
1707 /* Discard frame. */
1708 kfree_skb(skb);
1709 return 0;
1710
1711 discard_and_relse:
1712 sock_put(sk);
1713 goto discard_it;
1714
1715 do_time_wait:
1716 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1717 inet_twsk_put(inet_twsk(sk));
1718 goto discard_it;
1719 }
1720
1721 if (tcp_checksum_complete(skb)) {
1722 inet_twsk_put(inet_twsk(sk));
1723 goto csum_error;
1724 }
1725 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1726 case TCP_TW_SYN: {
1727 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1728 &tcp_hashinfo,
1729 iph->saddr, th->source,
1730 iph->daddr, th->dest,
1731 inet_iif(skb));
1732 if (sk2) {
1733 inet_twsk_deschedule_put(inet_twsk(sk));
1734 sk = sk2;
1735 goto process;
1736 }
1737 /* Fall through to ACK */
1738 }
1739 case TCP_TW_ACK:
1740 tcp_v4_timewait_ack(sk, skb);
1741 break;
1742 case TCP_TW_RST:
1743 goto no_tcp_socket;
1744 case TCP_TW_SUCCESS:;
1745 }
1746 goto discard_it;
1747 }
1748
1749 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1750 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1751 .twsk_unique = tcp_twsk_unique,
1752 .twsk_destructor= tcp_twsk_destructor,
1753 };
1754
1755 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1756 {
1757 struct dst_entry *dst = skb_dst(skb);
1758
1759 if (dst && dst_hold_safe(dst)) {
1760 sk->sk_rx_dst = dst;
1761 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1762 }
1763 }
1764 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1765
1766 const struct inet_connection_sock_af_ops ipv4_specific = {
1767 .queue_xmit = ip_queue_xmit,
1768 .send_check = tcp_v4_send_check,
1769 .rebuild_header = inet_sk_rebuild_header,
1770 .sk_rx_dst_set = inet_sk_rx_dst_set,
1771 .conn_request = tcp_v4_conn_request,
1772 .syn_recv_sock = tcp_v4_syn_recv_sock,
1773 .net_header_len = sizeof(struct iphdr),
1774 .setsockopt = ip_setsockopt,
1775 .getsockopt = ip_getsockopt,
1776 .addr2sockaddr = inet_csk_addr2sockaddr,
1777 .sockaddr_len = sizeof(struct sockaddr_in),
1778 .bind_conflict = inet_csk_bind_conflict,
1779 #ifdef CONFIG_COMPAT
1780 .compat_setsockopt = compat_ip_setsockopt,
1781 .compat_getsockopt = compat_ip_getsockopt,
1782 #endif
1783 .mtu_reduced = tcp_v4_mtu_reduced,
1784 };
1785 EXPORT_SYMBOL(ipv4_specific);
1786
1787 #ifdef CONFIG_TCP_MD5SIG
1788 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1789 .md5_lookup = tcp_v4_md5_lookup,
1790 .calc_md5_hash = tcp_v4_md5_hash_skb,
1791 .md5_parse = tcp_v4_parse_md5_keys,
1792 };
1793 #endif
1794
1795 /* NOTE: A lot of things set to zero explicitly by call to
1796 * sk_alloc() so need not be done here.
1797 */
1798 static int tcp_v4_init_sock(struct sock *sk)
1799 {
1800 struct inet_connection_sock *icsk = inet_csk(sk);
1801
1802 tcp_init_sock(sk);
1803
1804 icsk->icsk_af_ops = &ipv4_specific;
1805
1806 #ifdef CONFIG_TCP_MD5SIG
1807 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1808 #endif
1809
1810 return 0;
1811 }
1812
1813 void tcp_v4_destroy_sock(struct sock *sk)
1814 {
1815 struct tcp_sock *tp = tcp_sk(sk);
1816
1817 tcp_clear_xmit_timers(sk);
1818
1819 tcp_cleanup_congestion_control(sk);
1820
1821 /* Cleanup up the write buffer. */
1822 tcp_write_queue_purge(sk);
1823
1824 /* Cleans up our, hopefully empty, out_of_order_queue. */
1825 __skb_queue_purge(&tp->out_of_order_queue);
1826
1827 #ifdef CONFIG_TCP_MD5SIG
1828 /* Clean up the MD5 key list, if any */
1829 if (tp->md5sig_info) {
1830 tcp_clear_md5_list(sk);
1831 kfree_rcu(tp->md5sig_info, rcu);
1832 tp->md5sig_info = NULL;
1833 }
1834 #endif
1835
1836 /* Clean prequeue, it must be empty really */
1837 __skb_queue_purge(&tp->ucopy.prequeue);
1838
1839 /* Clean up a referenced TCP bind bucket. */
1840 if (inet_csk(sk)->icsk_bind_hash)
1841 inet_put_port(sk);
1842
1843 BUG_ON(tp->fastopen_rsk);
1844
1845 /* If socket is aborted during connect operation */
1846 tcp_free_fastopen_req(tp);
1847 tcp_saved_syn_free(tp);
1848
1849 sk_sockets_allocated_dec(sk);
1850 sock_release_memcg(sk);
1851 }
1852 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1853
1854 #ifdef CONFIG_PROC_FS
1855 /* Proc filesystem TCP sock list dumping. */
1856
1857 /*
1858 * Get next listener socket follow cur. If cur is NULL, get first socket
1859 * starting from bucket given in st->bucket; when st->bucket is zero the
1860 * very first socket in the hash table is returned.
1861 */
1862 static void *listening_get_next(struct seq_file *seq, void *cur)
1863 {
1864 struct inet_connection_sock *icsk;
1865 struct hlist_nulls_node *node;
1866 struct sock *sk = cur;
1867 struct inet_listen_hashbucket *ilb;
1868 struct tcp_iter_state *st = seq->private;
1869 struct net *net = seq_file_net(seq);
1870
1871 if (!sk) {
1872 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1873 spin_lock_bh(&ilb->lock);
1874 sk = sk_nulls_head(&ilb->head);
1875 st->offset = 0;
1876 goto get_sk;
1877 }
1878 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1879 ++st->num;
1880 ++st->offset;
1881
1882 sk = sk_nulls_next(sk);
1883 get_sk:
1884 sk_nulls_for_each_from(sk, node) {
1885 if (!net_eq(sock_net(sk), net))
1886 continue;
1887 if (sk->sk_family == st->family) {
1888 cur = sk;
1889 goto out;
1890 }
1891 icsk = inet_csk(sk);
1892 }
1893 spin_unlock_bh(&ilb->lock);
1894 st->offset = 0;
1895 if (++st->bucket < INET_LHTABLE_SIZE) {
1896 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1897 spin_lock_bh(&ilb->lock);
1898 sk = sk_nulls_head(&ilb->head);
1899 goto get_sk;
1900 }
1901 cur = NULL;
1902 out:
1903 return cur;
1904 }
1905
1906 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1907 {
1908 struct tcp_iter_state *st = seq->private;
1909 void *rc;
1910
1911 st->bucket = 0;
1912 st->offset = 0;
1913 rc = listening_get_next(seq, NULL);
1914
1915 while (rc && *pos) {
1916 rc = listening_get_next(seq, rc);
1917 --*pos;
1918 }
1919 return rc;
1920 }
1921
1922 static inline bool empty_bucket(const struct tcp_iter_state *st)
1923 {
1924 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1925 }
1926
1927 /*
1928 * Get first established socket starting from bucket given in st->bucket.
1929 * If st->bucket is zero, the very first socket in the hash is returned.
1930 */
1931 static void *established_get_first(struct seq_file *seq)
1932 {
1933 struct tcp_iter_state *st = seq->private;
1934 struct net *net = seq_file_net(seq);
1935 void *rc = NULL;
1936
1937 st->offset = 0;
1938 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1939 struct sock *sk;
1940 struct hlist_nulls_node *node;
1941 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1942
1943 /* Lockless fast path for the common case of empty buckets */
1944 if (empty_bucket(st))
1945 continue;
1946
1947 spin_lock_bh(lock);
1948 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1949 if (sk->sk_family != st->family ||
1950 !net_eq(sock_net(sk), net)) {
1951 continue;
1952 }
1953 rc = sk;
1954 goto out;
1955 }
1956 spin_unlock_bh(lock);
1957 }
1958 out:
1959 return rc;
1960 }
1961
1962 static void *established_get_next(struct seq_file *seq, void *cur)
1963 {
1964 struct sock *sk = cur;
1965 struct hlist_nulls_node *node;
1966 struct tcp_iter_state *st = seq->private;
1967 struct net *net = seq_file_net(seq);
1968
1969 ++st->num;
1970 ++st->offset;
1971
1972 sk = sk_nulls_next(sk);
1973
1974 sk_nulls_for_each_from(sk, node) {
1975 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1976 return sk;
1977 }
1978
1979 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1980 ++st->bucket;
1981 return established_get_first(seq);
1982 }
1983
1984 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1985 {
1986 struct tcp_iter_state *st = seq->private;
1987 void *rc;
1988
1989 st->bucket = 0;
1990 rc = established_get_first(seq);
1991
1992 while (rc && pos) {
1993 rc = established_get_next(seq, rc);
1994 --pos;
1995 }
1996 return rc;
1997 }
1998
1999 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2000 {
2001 void *rc;
2002 struct tcp_iter_state *st = seq->private;
2003
2004 st->state = TCP_SEQ_STATE_LISTENING;
2005 rc = listening_get_idx(seq, &pos);
2006
2007 if (!rc) {
2008 st->state = TCP_SEQ_STATE_ESTABLISHED;
2009 rc = established_get_idx(seq, pos);
2010 }
2011
2012 return rc;
2013 }
2014
2015 static void *tcp_seek_last_pos(struct seq_file *seq)
2016 {
2017 struct tcp_iter_state *st = seq->private;
2018 int offset = st->offset;
2019 int orig_num = st->num;
2020 void *rc = NULL;
2021
2022 switch (st->state) {
2023 case TCP_SEQ_STATE_LISTENING:
2024 if (st->bucket >= INET_LHTABLE_SIZE)
2025 break;
2026 st->state = TCP_SEQ_STATE_LISTENING;
2027 rc = listening_get_next(seq, NULL);
2028 while (offset-- && rc)
2029 rc = listening_get_next(seq, rc);
2030 if (rc)
2031 break;
2032 st->bucket = 0;
2033 st->state = TCP_SEQ_STATE_ESTABLISHED;
2034 /* Fallthrough */
2035 case TCP_SEQ_STATE_ESTABLISHED:
2036 if (st->bucket > tcp_hashinfo.ehash_mask)
2037 break;
2038 rc = established_get_first(seq);
2039 while (offset-- && rc)
2040 rc = established_get_next(seq, rc);
2041 }
2042
2043 st->num = orig_num;
2044
2045 return rc;
2046 }
2047
2048 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2049 {
2050 struct tcp_iter_state *st = seq->private;
2051 void *rc;
2052
2053 if (*pos && *pos == st->last_pos) {
2054 rc = tcp_seek_last_pos(seq);
2055 if (rc)
2056 goto out;
2057 }
2058
2059 st->state = TCP_SEQ_STATE_LISTENING;
2060 st->num = 0;
2061 st->bucket = 0;
2062 st->offset = 0;
2063 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2064
2065 out:
2066 st->last_pos = *pos;
2067 return rc;
2068 }
2069
2070 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2071 {
2072 struct tcp_iter_state *st = seq->private;
2073 void *rc = NULL;
2074
2075 if (v == SEQ_START_TOKEN) {
2076 rc = tcp_get_idx(seq, 0);
2077 goto out;
2078 }
2079
2080 switch (st->state) {
2081 case TCP_SEQ_STATE_LISTENING:
2082 rc = listening_get_next(seq, v);
2083 if (!rc) {
2084 st->state = TCP_SEQ_STATE_ESTABLISHED;
2085 st->bucket = 0;
2086 st->offset = 0;
2087 rc = established_get_first(seq);
2088 }
2089 break;
2090 case TCP_SEQ_STATE_ESTABLISHED:
2091 rc = established_get_next(seq, v);
2092 break;
2093 }
2094 out:
2095 ++*pos;
2096 st->last_pos = *pos;
2097 return rc;
2098 }
2099
2100 static void tcp_seq_stop(struct seq_file *seq, void *v)
2101 {
2102 struct tcp_iter_state *st = seq->private;
2103
2104 switch (st->state) {
2105 case TCP_SEQ_STATE_LISTENING:
2106 if (v != SEQ_START_TOKEN)
2107 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2108 break;
2109 case TCP_SEQ_STATE_ESTABLISHED:
2110 if (v)
2111 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2112 break;
2113 }
2114 }
2115
2116 int tcp_seq_open(struct inode *inode, struct file *file)
2117 {
2118 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2119 struct tcp_iter_state *s;
2120 int err;
2121
2122 err = seq_open_net(inode, file, &afinfo->seq_ops,
2123 sizeof(struct tcp_iter_state));
2124 if (err < 0)
2125 return err;
2126
2127 s = ((struct seq_file *)file->private_data)->private;
2128 s->family = afinfo->family;
2129 s->last_pos = 0;
2130 return 0;
2131 }
2132 EXPORT_SYMBOL(tcp_seq_open);
2133
2134 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2135 {
2136 int rc = 0;
2137 struct proc_dir_entry *p;
2138
2139 afinfo->seq_ops.start = tcp_seq_start;
2140 afinfo->seq_ops.next = tcp_seq_next;
2141 afinfo->seq_ops.stop = tcp_seq_stop;
2142
2143 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2144 afinfo->seq_fops, afinfo);
2145 if (!p)
2146 rc = -ENOMEM;
2147 return rc;
2148 }
2149 EXPORT_SYMBOL(tcp_proc_register);
2150
2151 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2152 {
2153 remove_proc_entry(afinfo->name, net->proc_net);
2154 }
2155 EXPORT_SYMBOL(tcp_proc_unregister);
2156
2157 static void get_openreq4(const struct request_sock *req,
2158 struct seq_file *f, int i)
2159 {
2160 const struct inet_request_sock *ireq = inet_rsk(req);
2161 long delta = req->rsk_timer.expires - jiffies;
2162
2163 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2164 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2165 i,
2166 ireq->ir_loc_addr,
2167 ireq->ir_num,
2168 ireq->ir_rmt_addr,
2169 ntohs(ireq->ir_rmt_port),
2170 TCP_SYN_RECV,
2171 0, 0, /* could print option size, but that is af dependent. */
2172 1, /* timers active (only the expire timer) */
2173 jiffies_delta_to_clock_t(delta),
2174 req->num_timeout,
2175 from_kuid_munged(seq_user_ns(f),
2176 sock_i_uid(req->rsk_listener)),
2177 0, /* non standard timer */
2178 0, /* open_requests have no inode */
2179 0,
2180 req);
2181 }
2182
2183 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2184 {
2185 int timer_active;
2186 unsigned long timer_expires;
2187 const struct tcp_sock *tp = tcp_sk(sk);
2188 const struct inet_connection_sock *icsk = inet_csk(sk);
2189 const struct inet_sock *inet = inet_sk(sk);
2190 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2191 __be32 dest = inet->inet_daddr;
2192 __be32 src = inet->inet_rcv_saddr;
2193 __u16 destp = ntohs(inet->inet_dport);
2194 __u16 srcp = ntohs(inet->inet_sport);
2195 int rx_queue;
2196 int state;
2197
2198 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2199 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2200 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2201 timer_active = 1;
2202 timer_expires = icsk->icsk_timeout;
2203 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2204 timer_active = 4;
2205 timer_expires = icsk->icsk_timeout;
2206 } else if (timer_pending(&sk->sk_timer)) {
2207 timer_active = 2;
2208 timer_expires = sk->sk_timer.expires;
2209 } else {
2210 timer_active = 0;
2211 timer_expires = jiffies;
2212 }
2213
2214 state = sk_state_load(sk);
2215 if (state == TCP_LISTEN)
2216 rx_queue = sk->sk_ack_backlog;
2217 else
2218 /* Because we don't lock the socket,
2219 * we might find a transient negative value.
2220 */
2221 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2222
2223 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2224 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2225 i, src, srcp, dest, destp, state,
2226 tp->write_seq - tp->snd_una,
2227 rx_queue,
2228 timer_active,
2229 jiffies_delta_to_clock_t(timer_expires - jiffies),
2230 icsk->icsk_retransmits,
2231 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2232 icsk->icsk_probes_out,
2233 sock_i_ino(sk),
2234 atomic_read(&sk->sk_refcnt), sk,
2235 jiffies_to_clock_t(icsk->icsk_rto),
2236 jiffies_to_clock_t(icsk->icsk_ack.ato),
2237 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2238 tp->snd_cwnd,
2239 state == TCP_LISTEN ?
2240 fastopenq->max_qlen :
2241 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2242 }
2243
2244 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2245 struct seq_file *f, int i)
2246 {
2247 long delta = tw->tw_timer.expires - jiffies;
2248 __be32 dest, src;
2249 __u16 destp, srcp;
2250
2251 dest = tw->tw_daddr;
2252 src = tw->tw_rcv_saddr;
2253 destp = ntohs(tw->tw_dport);
2254 srcp = ntohs(tw->tw_sport);
2255
2256 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2257 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2258 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2259 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2260 atomic_read(&tw->tw_refcnt), tw);
2261 }
2262
2263 #define TMPSZ 150
2264
2265 static int tcp4_seq_show(struct seq_file *seq, void *v)
2266 {
2267 struct tcp_iter_state *st;
2268 struct sock *sk = v;
2269
2270 seq_setwidth(seq, TMPSZ - 1);
2271 if (v == SEQ_START_TOKEN) {
2272 seq_puts(seq, " sl local_address rem_address st tx_queue "
2273 "rx_queue tr tm->when retrnsmt uid timeout "
2274 "inode");
2275 goto out;
2276 }
2277 st = seq->private;
2278
2279 if (sk->sk_state == TCP_TIME_WAIT)
2280 get_timewait4_sock(v, seq, st->num);
2281 else if (sk->sk_state == TCP_NEW_SYN_RECV)
2282 get_openreq4(v, seq, st->num);
2283 else
2284 get_tcp4_sock(v, seq, st->num);
2285 out:
2286 seq_pad(seq, '\n');
2287 return 0;
2288 }
2289
2290 static const struct file_operations tcp_afinfo_seq_fops = {
2291 .owner = THIS_MODULE,
2292 .open = tcp_seq_open,
2293 .read = seq_read,
2294 .llseek = seq_lseek,
2295 .release = seq_release_net
2296 };
2297
2298 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2299 .name = "tcp",
2300 .family = AF_INET,
2301 .seq_fops = &tcp_afinfo_seq_fops,
2302 .seq_ops = {
2303 .show = tcp4_seq_show,
2304 },
2305 };
2306
2307 static int __net_init tcp4_proc_init_net(struct net *net)
2308 {
2309 return tcp_proc_register(net, &tcp4_seq_afinfo);
2310 }
2311
2312 static void __net_exit tcp4_proc_exit_net(struct net *net)
2313 {
2314 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2315 }
2316
2317 static struct pernet_operations tcp4_net_ops = {
2318 .init = tcp4_proc_init_net,
2319 .exit = tcp4_proc_exit_net,
2320 };
2321
2322 int __init tcp4_proc_init(void)
2323 {
2324 return register_pernet_subsys(&tcp4_net_ops);
2325 }
2326
2327 void tcp4_proc_exit(void)
2328 {
2329 unregister_pernet_subsys(&tcp4_net_ops);
2330 }
2331 #endif /* CONFIG_PROC_FS */
2332
2333 struct proto tcp_prot = {
2334 .name = "TCP",
2335 .owner = THIS_MODULE,
2336 .close = tcp_close,
2337 .connect = tcp_v4_connect,
2338 .disconnect = tcp_disconnect,
2339 .accept = inet_csk_accept,
2340 .ioctl = tcp_ioctl,
2341 .init = tcp_v4_init_sock,
2342 .destroy = tcp_v4_destroy_sock,
2343 .shutdown = tcp_shutdown,
2344 .setsockopt = tcp_setsockopt,
2345 .getsockopt = tcp_getsockopt,
2346 .recvmsg = tcp_recvmsg,
2347 .sendmsg = tcp_sendmsg,
2348 .sendpage = tcp_sendpage,
2349 .backlog_rcv = tcp_v4_do_rcv,
2350 .release_cb = tcp_release_cb,
2351 .hash = inet_hash,
2352 .unhash = inet_unhash,
2353 .get_port = inet_csk_get_port,
2354 .enter_memory_pressure = tcp_enter_memory_pressure,
2355 .stream_memory_free = tcp_stream_memory_free,
2356 .sockets_allocated = &tcp_sockets_allocated,
2357 .orphan_count = &tcp_orphan_count,
2358 .memory_allocated = &tcp_memory_allocated,
2359 .memory_pressure = &tcp_memory_pressure,
2360 .sysctl_mem = sysctl_tcp_mem,
2361 .sysctl_wmem = sysctl_tcp_wmem,
2362 .sysctl_rmem = sysctl_tcp_rmem,
2363 .max_header = MAX_TCP_HEADER,
2364 .obj_size = sizeof(struct tcp_sock),
2365 .slab_flags = SLAB_DESTROY_BY_RCU,
2366 .twsk_prot = &tcp_timewait_sock_ops,
2367 .rsk_prot = &tcp_request_sock_ops,
2368 .h.hashinfo = &tcp_hashinfo,
2369 .no_autobind = true,
2370 #ifdef CONFIG_COMPAT
2371 .compat_setsockopt = compat_tcp_setsockopt,
2372 .compat_getsockopt = compat_tcp_getsockopt,
2373 #endif
2374 #ifdef CONFIG_MEMCG_KMEM
2375 .init_cgroup = tcp_init_cgroup,
2376 .destroy_cgroup = tcp_destroy_cgroup,
2377 .proto_cgroup = tcp_proto_cgroup,
2378 #endif
2379 };
2380 EXPORT_SYMBOL(tcp_prot);
2381
2382 static void __net_exit tcp_sk_exit(struct net *net)
2383 {
2384 int cpu;
2385
2386 for_each_possible_cpu(cpu)
2387 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2388 free_percpu(net->ipv4.tcp_sk);
2389 }
2390
2391 static int __net_init tcp_sk_init(struct net *net)
2392 {
2393 int res, cpu;
2394
2395 net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2396 if (!net->ipv4.tcp_sk)
2397 return -ENOMEM;
2398
2399 for_each_possible_cpu(cpu) {
2400 struct sock *sk;
2401
2402 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2403 IPPROTO_TCP, net);
2404 if (res)
2405 goto fail;
2406 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2407 }
2408
2409 net->ipv4.sysctl_tcp_ecn = 2;
2410 net->ipv4.sysctl_tcp_ecn_fallback = 1;
2411
2412 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
2413 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2414 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
2415
2416 return 0;
2417 fail:
2418 tcp_sk_exit(net);
2419
2420 return res;
2421 }
2422
2423 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2424 {
2425 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2426 }
2427
2428 static struct pernet_operations __net_initdata tcp_sk_ops = {
2429 .init = tcp_sk_init,
2430 .exit = tcp_sk_exit,
2431 .exit_batch = tcp_sk_exit_batch,
2432 };
2433
2434 void __init tcp_v4_init(void)
2435 {
2436 inet_hashinfo_init(&tcp_hashinfo);
2437 if (register_pernet_subsys(&tcp_sk_ops))
2438 panic("Failed to create the TCP control socket.\n");
2439 }