2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly
= 1;
79 int sysctl_tcp_window_scaling __read_mostly
= 1;
80 int sysctl_tcp_sack __read_mostly
= 1;
81 int sysctl_tcp_fack __read_mostly
= 1;
82 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
83 EXPORT_SYMBOL(sysctl_tcp_reordering
);
84 int sysctl_tcp_ecn __read_mostly
= 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn
);
86 int sysctl_tcp_dsack __read_mostly
= 1;
87 int sysctl_tcp_app_win __read_mostly
= 31;
88 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit
= 100;
94 int sysctl_tcp_stdurg __read_mostly
;
95 int sysctl_tcp_rfc1337 __read_mostly
;
96 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
97 int sysctl_tcp_frto __read_mostly
= 2;
98 int sysctl_tcp_frto_response __read_mostly
;
100 int sysctl_tcp_thin_dupack __read_mostly
;
102 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
103 int sysctl_tcp_abc __read_mostly
;
104 int sysctl_tcp_early_retrans __read_mostly
= 2;
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
129 /* Adapt the MSS value used to make delayed ack decision to the
132 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
134 struct inet_connection_sock
*icsk
= inet_csk(sk
);
135 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
138 icsk
->icsk_ack
.last_seg_size
= 0;
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
143 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
144 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
145 icsk
->icsk_ack
.rcv_mss
= len
;
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
150 * "len" is invariant segment length, including TCP header.
152 len
+= skb
->data
- skb_transport_header(skb
);
153 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
159 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
160 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
165 len
-= tcp_sk(sk
)->tcp_header_len
;
166 icsk
->icsk_ack
.last_seg_size
= len
;
168 icsk
->icsk_ack
.rcv_mss
= len
;
172 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
173 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
174 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
178 static void tcp_incr_quickack(struct sock
*sk
)
180 struct inet_connection_sock
*icsk
= inet_csk(sk
);
181 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
185 if (quickacks
> icsk
->icsk_ack
.quick
)
186 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
189 static void tcp_enter_quickack_mode(struct sock
*sk
)
191 struct inet_connection_sock
*icsk
= inet_csk(sk
);
192 tcp_incr_quickack(sk
);
193 icsk
->icsk_ack
.pingpong
= 0;
194 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
197 /* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
201 static inline bool tcp_in_quickack_mode(const struct sock
*sk
)
203 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
205 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
208 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
210 if (tp
->ecn_flags
& TCP_ECN_OK
)
211 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
214 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
216 if (tcp_hdr(skb
)->cwr
)
217 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
222 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
225 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
227 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
230 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
231 case INET_ECN_NOT_ECT
:
232 /* Funny extension: if ECT is not set on a segment,
233 * and we already seen ECT on a previous segment,
234 * it is probably a retransmit.
236 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
237 tcp_enter_quickack_mode((struct sock
*)tp
);
240 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
241 /* Better not delay acks, sender can have a very low cwnd */
242 tcp_enter_quickack_mode((struct sock
*)tp
);
243 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
247 tp
->ecn_flags
|= TCP_ECN_SEEN
;
251 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
253 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
254 tp
->ecn_flags
&= ~TCP_ECN_OK
;
257 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
259 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
260 tp
->ecn_flags
&= ~TCP_ECN_OK
;
263 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
265 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
270 /* Buffer size and advertised window tuning.
272 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
275 static void tcp_fixup_sndbuf(struct sock
*sk
)
277 int sndmem
= SKB_TRUESIZE(tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
);
279 sndmem
*= TCP_INIT_CWND
;
280 if (sk
->sk_sndbuf
< sndmem
)
281 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
284 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
286 * All tcp_full_space() is split to two parts: "network" buffer, allocated
287 * forward and advertised in receiver window (tp->rcv_wnd) and
288 * "application buffer", required to isolate scheduling/application
289 * latencies from network.
290 * window_clamp is maximal advertised window. It can be less than
291 * tcp_full_space(), in this case tcp_full_space() - window_clamp
292 * is reserved for "application" buffer. The less window_clamp is
293 * the smoother our behaviour from viewpoint of network, but the lower
294 * throughput and the higher sensitivity of the connection to losses. 8)
296 * rcv_ssthresh is more strict window_clamp used at "slow start"
297 * phase to predict further behaviour of this connection.
298 * It is used for two goals:
299 * - to enforce header prediction at sender, even when application
300 * requires some significant "application buffer". It is check #1.
301 * - to prevent pruning of receive queue because of misprediction
302 * of receiver window. Check #2.
304 * The scheme does not work when sender sends good segments opening
305 * window and then starts to feed us spaghetti. But it should work
306 * in common situations. Otherwise, we have to rely on queue collapsing.
309 /* Slow part of check#2. */
310 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
312 struct tcp_sock
*tp
= tcp_sk(sk
);
314 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
315 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
317 while (tp
->rcv_ssthresh
<= window
) {
318 if (truesize
<= skb
->len
)
319 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
327 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
329 struct tcp_sock
*tp
= tcp_sk(sk
);
332 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
333 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
334 !sk_under_memory_pressure(sk
)) {
337 /* Check #2. Increase window, if skb with such overhead
338 * will fit to rcvbuf in future.
340 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
341 incr
= 2 * tp
->advmss
;
343 incr
= __tcp_grow_window(sk
, skb
);
346 incr
= max_t(int, incr
, 2 * skb
->len
);
347 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
349 inet_csk(sk
)->icsk_ack
.quick
|= 1;
354 /* 3. Tuning rcvbuf, when connection enters established state. */
356 static void tcp_fixup_rcvbuf(struct sock
*sk
)
358 u32 mss
= tcp_sk(sk
)->advmss
;
359 u32 icwnd
= TCP_DEFAULT_INIT_RCVWND
;
362 /* Limit to 10 segments if mss <= 1460,
363 * or 14600/mss segments, with a minimum of two segments.
366 icwnd
= max_t(u32
, (1460 * TCP_DEFAULT_INIT_RCVWND
) / mss
, 2);
368 rcvmem
= SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
);
369 while (tcp_win_from_space(rcvmem
) < mss
)
374 if (sk
->sk_rcvbuf
< rcvmem
)
375 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
378 /* 4. Try to fixup all. It is made immediately after connection enters
381 void tcp_init_buffer_space(struct sock
*sk
)
383 struct tcp_sock
*tp
= tcp_sk(sk
);
386 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
387 tcp_fixup_rcvbuf(sk
);
388 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
389 tcp_fixup_sndbuf(sk
);
391 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
393 maxwin
= tcp_full_space(sk
);
395 if (tp
->window_clamp
>= maxwin
) {
396 tp
->window_clamp
= maxwin
;
398 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
399 tp
->window_clamp
= max(maxwin
-
400 (maxwin
>> sysctl_tcp_app_win
),
404 /* Force reservation of one segment. */
405 if (sysctl_tcp_app_win
&&
406 tp
->window_clamp
> 2 * tp
->advmss
&&
407 tp
->window_clamp
+ tp
->advmss
> maxwin
)
408 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
410 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
411 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
414 /* 5. Recalculate window clamp after socket hit its memory bounds. */
415 static void tcp_clamp_window(struct sock
*sk
)
417 struct tcp_sock
*tp
= tcp_sk(sk
);
418 struct inet_connection_sock
*icsk
= inet_csk(sk
);
420 icsk
->icsk_ack
.quick
= 0;
422 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
423 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
424 !sk_under_memory_pressure(sk
) &&
425 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
426 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
429 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
430 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
433 /* Initialize RCV_MSS value.
434 * RCV_MSS is an our guess about MSS used by the peer.
435 * We haven't any direct information about the MSS.
436 * It's better to underestimate the RCV_MSS rather than overestimate.
437 * Overestimations make us ACKing less frequently than needed.
438 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
440 void tcp_initialize_rcv_mss(struct sock
*sk
)
442 const struct tcp_sock
*tp
= tcp_sk(sk
);
443 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
445 hint
= min(hint
, tp
->rcv_wnd
/ 2);
446 hint
= min(hint
, TCP_MSS_DEFAULT
);
447 hint
= max(hint
, TCP_MIN_MSS
);
449 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
451 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
453 /* Receiver "autotuning" code.
455 * The algorithm for RTT estimation w/o timestamps is based on
456 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
457 * <http://public.lanl.gov/radiant/pubs.html#DRS>
459 * More detail on this code can be found at
460 * <http://staff.psc.edu/jheffner/>,
461 * though this reference is out of date. A new paper
464 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
466 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
472 if (new_sample
!= 0) {
473 /* If we sample in larger samples in the non-timestamp
474 * case, we could grossly overestimate the RTT especially
475 * with chatty applications or bulk transfer apps which
476 * are stalled on filesystem I/O.
478 * Also, since we are only going for a minimum in the
479 * non-timestamp case, we do not smooth things out
480 * else with timestamps disabled convergence takes too
484 m
-= (new_sample
>> 3);
492 /* No previous measure. */
496 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
497 tp
->rcv_rtt_est
.rtt
= new_sample
;
500 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
502 if (tp
->rcv_rtt_est
.time
== 0)
504 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
506 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
509 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
510 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
513 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
514 const struct sk_buff
*skb
)
516 struct tcp_sock
*tp
= tcp_sk(sk
);
517 if (tp
->rx_opt
.rcv_tsecr
&&
518 (TCP_SKB_CB(skb
)->end_seq
-
519 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
520 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
524 * This function should be called every time data is copied to user space.
525 * It calculates the appropriate TCP receive buffer space.
527 void tcp_rcv_space_adjust(struct sock
*sk
)
529 struct tcp_sock
*tp
= tcp_sk(sk
);
533 if (tp
->rcvq_space
.time
== 0)
536 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
537 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
540 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
542 space
= max(tp
->rcvq_space
.space
, space
);
544 if (tp
->rcvq_space
.space
!= space
) {
547 tp
->rcvq_space
.space
= space
;
549 if (sysctl_tcp_moderate_rcvbuf
&&
550 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
551 int new_clamp
= space
;
553 /* Receive space grows, normalize in order to
554 * take into account packet headers and sk_buff
555 * structure overhead.
560 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
561 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
564 space
= min(space
, sysctl_tcp_rmem
[2]);
565 if (space
> sk
->sk_rcvbuf
) {
566 sk
->sk_rcvbuf
= space
;
568 /* Make the window clamp follow along. */
569 tp
->window_clamp
= new_clamp
;
575 tp
->rcvq_space
.seq
= tp
->copied_seq
;
576 tp
->rcvq_space
.time
= tcp_time_stamp
;
579 /* There is something which you must keep in mind when you analyze the
580 * behavior of the tp->ato delayed ack timeout interval. When a
581 * connection starts up, we want to ack as quickly as possible. The
582 * problem is that "good" TCP's do slow start at the beginning of data
583 * transmission. The means that until we send the first few ACK's the
584 * sender will sit on his end and only queue most of his data, because
585 * he can only send snd_cwnd unacked packets at any given time. For
586 * each ACK we send, he increments snd_cwnd and transmits more of his
589 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
591 struct tcp_sock
*tp
= tcp_sk(sk
);
592 struct inet_connection_sock
*icsk
= inet_csk(sk
);
595 inet_csk_schedule_ack(sk
);
597 tcp_measure_rcv_mss(sk
, skb
);
599 tcp_rcv_rtt_measure(tp
);
601 now
= tcp_time_stamp
;
603 if (!icsk
->icsk_ack
.ato
) {
604 /* The _first_ data packet received, initialize
605 * delayed ACK engine.
607 tcp_incr_quickack(sk
);
608 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
610 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
612 if (m
<= TCP_ATO_MIN
/ 2) {
613 /* The fastest case is the first. */
614 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
615 } else if (m
< icsk
->icsk_ack
.ato
) {
616 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
617 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
618 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
619 } else if (m
> icsk
->icsk_rto
) {
620 /* Too long gap. Apparently sender failed to
621 * restart window, so that we send ACKs quickly.
623 tcp_incr_quickack(sk
);
627 icsk
->icsk_ack
.lrcvtime
= now
;
629 TCP_ECN_check_ce(tp
, skb
);
632 tcp_grow_window(sk
, skb
);
635 /* Called to compute a smoothed rtt estimate. The data fed to this
636 * routine either comes from timestamps, or from segments that were
637 * known _not_ to have been retransmitted [see Karn/Partridge
638 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
639 * piece by Van Jacobson.
640 * NOTE: the next three routines used to be one big routine.
641 * To save cycles in the RFC 1323 implementation it was better to break
642 * it up into three procedures. -- erics
644 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
646 struct tcp_sock
*tp
= tcp_sk(sk
);
647 long m
= mrtt
; /* RTT */
649 /* The following amusing code comes from Jacobson's
650 * article in SIGCOMM '88. Note that rtt and mdev
651 * are scaled versions of rtt and mean deviation.
652 * This is designed to be as fast as possible
653 * m stands for "measurement".
655 * On a 1990 paper the rto value is changed to:
656 * RTO = rtt + 4 * mdev
658 * Funny. This algorithm seems to be very broken.
659 * These formulae increase RTO, when it should be decreased, increase
660 * too slowly, when it should be increased quickly, decrease too quickly
661 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
662 * does not matter how to _calculate_ it. Seems, it was trap
663 * that VJ failed to avoid. 8)
668 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
669 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
671 m
= -m
; /* m is now abs(error) */
672 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
673 /* This is similar to one of Eifel findings.
674 * Eifel blocks mdev updates when rtt decreases.
675 * This solution is a bit different: we use finer gain
676 * for mdev in this case (alpha*beta).
677 * Like Eifel it also prevents growth of rto,
678 * but also it limits too fast rto decreases,
679 * happening in pure Eifel.
684 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
686 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
687 if (tp
->mdev
> tp
->mdev_max
) {
688 tp
->mdev_max
= tp
->mdev
;
689 if (tp
->mdev_max
> tp
->rttvar
)
690 tp
->rttvar
= tp
->mdev_max
;
692 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
693 if (tp
->mdev_max
< tp
->rttvar
)
694 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
695 tp
->rtt_seq
= tp
->snd_nxt
;
696 tp
->mdev_max
= tcp_rto_min(sk
);
699 /* no previous measure. */
700 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
701 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
702 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
703 tp
->rtt_seq
= tp
->snd_nxt
;
707 /* Calculate rto without backoff. This is the second half of Van Jacobson's
708 * routine referred to above.
710 void tcp_set_rto(struct sock
*sk
)
712 const struct tcp_sock
*tp
= tcp_sk(sk
);
713 /* Old crap is replaced with new one. 8)
716 * 1. If rtt variance happened to be less 50msec, it is hallucination.
717 * It cannot be less due to utterly erratic ACK generation made
718 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
719 * to do with delayed acks, because at cwnd>2 true delack timeout
720 * is invisible. Actually, Linux-2.4 also generates erratic
721 * ACKs in some circumstances.
723 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
725 /* 2. Fixups made earlier cannot be right.
726 * If we do not estimate RTO correctly without them,
727 * all the algo is pure shit and should be replaced
728 * with correct one. It is exactly, which we pretend to do.
731 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
732 * guarantees that rto is higher.
737 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
739 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
742 cwnd
= TCP_INIT_CWND
;
743 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
747 * Packet counting of FACK is based on in-order assumptions, therefore TCP
748 * disables it when reordering is detected
750 void tcp_disable_fack(struct tcp_sock
*tp
)
752 /* RFC3517 uses different metric in lost marker => reset on change */
754 tp
->lost_skb_hint
= NULL
;
755 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
758 /* Take a notice that peer is sending D-SACKs */
759 static void tcp_dsack_seen(struct tcp_sock
*tp
)
761 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
764 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
767 struct tcp_sock
*tp
= tcp_sk(sk
);
768 if (metric
> tp
->reordering
) {
771 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
773 /* This exciting event is worth to be remembered. 8) */
775 mib_idx
= LINUX_MIB_TCPTSREORDER
;
776 else if (tcp_is_reno(tp
))
777 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
778 else if (tcp_is_fack(tp
))
779 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
781 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
783 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
784 #if FASTRETRANS_DEBUG > 1
785 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
786 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
790 tp
->undo_marker
? tp
->undo_retrans
: 0);
792 tcp_disable_fack(tp
);
796 tcp_disable_early_retrans(tp
);
799 /* This must be called before lost_out is incremented */
800 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
802 if ((tp
->retransmit_skb_hint
== NULL
) ||
803 before(TCP_SKB_CB(skb
)->seq
,
804 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
805 tp
->retransmit_skb_hint
= skb
;
808 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
809 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
812 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
814 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
815 tcp_verify_retransmit_hint(tp
, skb
);
817 tp
->lost_out
+= tcp_skb_pcount(skb
);
818 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
822 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
825 tcp_verify_retransmit_hint(tp
, skb
);
827 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
828 tp
->lost_out
+= tcp_skb_pcount(skb
);
829 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
833 /* This procedure tags the retransmission queue when SACKs arrive.
835 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
836 * Packets in queue with these bits set are counted in variables
837 * sacked_out, retrans_out and lost_out, correspondingly.
839 * Valid combinations are:
840 * Tag InFlight Description
841 * 0 1 - orig segment is in flight.
842 * S 0 - nothing flies, orig reached receiver.
843 * L 0 - nothing flies, orig lost by net.
844 * R 2 - both orig and retransmit are in flight.
845 * L|R 1 - orig is lost, retransmit is in flight.
846 * S|R 1 - orig reached receiver, retrans is still in flight.
847 * (L|S|R is logically valid, it could occur when L|R is sacked,
848 * but it is equivalent to plain S and code short-curcuits it to S.
849 * L|S is logically invalid, it would mean -1 packet in flight 8))
851 * These 6 states form finite state machine, controlled by the following events:
852 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
853 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
854 * 3. Loss detection event of two flavors:
855 * A. Scoreboard estimator decided the packet is lost.
856 * A'. Reno "three dupacks" marks head of queue lost.
857 * A''. Its FACK modification, head until snd.fack is lost.
858 * B. SACK arrives sacking SND.NXT at the moment, when the
859 * segment was retransmitted.
860 * 4. D-SACK added new rule: D-SACK changes any tag to S.
862 * It is pleasant to note, that state diagram turns out to be commutative,
863 * so that we are allowed not to be bothered by order of our actions,
864 * when multiple events arrive simultaneously. (see the function below).
866 * Reordering detection.
867 * --------------------
868 * Reordering metric is maximal distance, which a packet can be displaced
869 * in packet stream. With SACKs we can estimate it:
871 * 1. SACK fills old hole and the corresponding segment was not
872 * ever retransmitted -> reordering. Alas, we cannot use it
873 * when segment was retransmitted.
874 * 2. The last flaw is solved with D-SACK. D-SACK arrives
875 * for retransmitted and already SACKed segment -> reordering..
876 * Both of these heuristics are not used in Loss state, when we cannot
877 * account for retransmits accurately.
879 * SACK block validation.
880 * ----------------------
882 * SACK block range validation checks that the received SACK block fits to
883 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
884 * Note that SND.UNA is not included to the range though being valid because
885 * it means that the receiver is rather inconsistent with itself reporting
886 * SACK reneging when it should advance SND.UNA. Such SACK block this is
887 * perfectly valid, however, in light of RFC2018 which explicitly states
888 * that "SACK block MUST reflect the newest segment. Even if the newest
889 * segment is going to be discarded ...", not that it looks very clever
890 * in case of head skb. Due to potentional receiver driven attacks, we
891 * choose to avoid immediate execution of a walk in write queue due to
892 * reneging and defer head skb's loss recovery to standard loss recovery
893 * procedure that will eventually trigger (nothing forbids us doing this).
895 * Implements also blockage to start_seq wrap-around. Problem lies in the
896 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
897 * there's no guarantee that it will be before snd_nxt (n). The problem
898 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
901 * <- outs wnd -> <- wrapzone ->
902 * u e n u_w e_w s n_w
904 * |<------------+------+----- TCP seqno space --------------+---------->|
905 * ...-- <2^31 ->| |<--------...
906 * ...---- >2^31 ------>| |<--------...
908 * Current code wouldn't be vulnerable but it's better still to discard such
909 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
910 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
911 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
912 * equal to the ideal case (infinite seqno space without wrap caused issues).
914 * With D-SACK the lower bound is extended to cover sequence space below
915 * SND.UNA down to undo_marker, which is the last point of interest. Yet
916 * again, D-SACK block must not to go across snd_una (for the same reason as
917 * for the normal SACK blocks, explained above). But there all simplicity
918 * ends, TCP might receive valid D-SACKs below that. As long as they reside
919 * fully below undo_marker they do not affect behavior in anyway and can
920 * therefore be safely ignored. In rare cases (which are more or less
921 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
922 * fragmentation and packet reordering past skb's retransmission. To consider
923 * them correctly, the acceptable range must be extended even more though
924 * the exact amount is rather hard to quantify. However, tp->max_window can
925 * be used as an exaggerated estimate.
927 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
928 u32 start_seq
, u32 end_seq
)
930 /* Too far in future, or reversed (interpretation is ambiguous) */
931 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
934 /* Nasty start_seq wrap-around check (see comments above) */
935 if (!before(start_seq
, tp
->snd_nxt
))
938 /* In outstanding window? ...This is valid exit for D-SACKs too.
939 * start_seq == snd_una is non-sensical (see comments above)
941 if (after(start_seq
, tp
->snd_una
))
944 if (!is_dsack
|| !tp
->undo_marker
)
947 /* ...Then it's D-SACK, and must reside below snd_una completely */
948 if (after(end_seq
, tp
->snd_una
))
951 if (!before(start_seq
, tp
->undo_marker
))
955 if (!after(end_seq
, tp
->undo_marker
))
958 /* Undo_marker boundary crossing (overestimates a lot). Known already:
959 * start_seq < undo_marker and end_seq >= undo_marker.
961 return !before(start_seq
, end_seq
- tp
->max_window
);
964 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
965 * Event "B". Later note: FACK people cheated me again 8), we have to account
966 * for reordering! Ugly, but should help.
968 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
969 * less than what is now known to be received by the other end (derived from
970 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
971 * retransmitted skbs to avoid some costly processing per ACKs.
973 static void tcp_mark_lost_retrans(struct sock
*sk
)
975 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
976 struct tcp_sock
*tp
= tcp_sk(sk
);
979 u32 new_low_seq
= tp
->snd_nxt
;
980 u32 received_upto
= tcp_highest_sack_seq(tp
);
982 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
983 !after(received_upto
, tp
->lost_retrans_low
) ||
984 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
987 tcp_for_write_queue(skb
, sk
) {
988 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
990 if (skb
== tcp_send_head(sk
))
992 if (cnt
== tp
->retrans_out
)
994 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
997 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
1000 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1001 * constraint here (see above) but figuring out that at
1002 * least tp->reordering SACK blocks reside between ack_seq
1003 * and received_upto is not easy task to do cheaply with
1004 * the available datastructures.
1006 * Whether FACK should check here for tp->reordering segs
1007 * in-between one could argue for either way (it would be
1008 * rather simple to implement as we could count fack_count
1009 * during the walk and do tp->fackets_out - fack_count).
1011 if (after(received_upto
, ack_seq
)) {
1012 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1013 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1015 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1016 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1018 if (before(ack_seq
, new_low_seq
))
1019 new_low_seq
= ack_seq
;
1020 cnt
+= tcp_skb_pcount(skb
);
1024 if (tp
->retrans_out
)
1025 tp
->lost_retrans_low
= new_low_seq
;
1028 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1029 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1032 struct tcp_sock
*tp
= tcp_sk(sk
);
1033 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1034 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1035 bool dup_sack
= false;
1037 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1040 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1041 } else if (num_sacks
> 1) {
1042 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1043 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1045 if (!after(end_seq_0
, end_seq_1
) &&
1046 !before(start_seq_0
, start_seq_1
)) {
1049 NET_INC_STATS_BH(sock_net(sk
),
1050 LINUX_MIB_TCPDSACKOFORECV
);
1054 /* D-SACK for already forgotten data... Do dumb counting. */
1055 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1056 !after(end_seq_0
, prior_snd_una
) &&
1057 after(end_seq_0
, tp
->undo_marker
))
1063 struct tcp_sacktag_state
{
1069 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1070 * the incoming SACK may not exactly match but we can find smaller MSS
1071 * aligned portion of it that matches. Therefore we might need to fragment
1072 * which may fail and creates some hassle (caller must handle error case
1075 * FIXME: this could be merged to shift decision code
1077 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1078 u32 start_seq
, u32 end_seq
)
1082 unsigned int pkt_len
;
1085 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1086 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1088 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1089 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1090 mss
= tcp_skb_mss(skb
);
1091 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1094 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1098 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1103 /* Round if necessary so that SACKs cover only full MSSes
1104 * and/or the remaining small portion (if present)
1106 if (pkt_len
> mss
) {
1107 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1108 if (!in_sack
&& new_len
< pkt_len
) {
1110 if (new_len
> skb
->len
)
1115 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1123 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1124 static u8
tcp_sacktag_one(struct sock
*sk
,
1125 struct tcp_sacktag_state
*state
, u8 sacked
,
1126 u32 start_seq
, u32 end_seq
,
1127 bool dup_sack
, int pcount
)
1129 struct tcp_sock
*tp
= tcp_sk(sk
);
1130 int fack_count
= state
->fack_count
;
1132 /* Account D-SACK for retransmitted packet. */
1133 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1134 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1135 after(end_seq
, tp
->undo_marker
))
1137 if (sacked
& TCPCB_SACKED_ACKED
)
1138 state
->reord
= min(fack_count
, state
->reord
);
1141 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1142 if (!after(end_seq
, tp
->snd_una
))
1145 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1146 if (sacked
& TCPCB_SACKED_RETRANS
) {
1147 /* If the segment is not tagged as lost,
1148 * we do not clear RETRANS, believing
1149 * that retransmission is still in flight.
1151 if (sacked
& TCPCB_LOST
) {
1152 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1153 tp
->lost_out
-= pcount
;
1154 tp
->retrans_out
-= pcount
;
1157 if (!(sacked
& TCPCB_RETRANS
)) {
1158 /* New sack for not retransmitted frame,
1159 * which was in hole. It is reordering.
1161 if (before(start_seq
,
1162 tcp_highest_sack_seq(tp
)))
1163 state
->reord
= min(fack_count
,
1166 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1167 if (!after(end_seq
, tp
->frto_highmark
))
1168 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1171 if (sacked
& TCPCB_LOST
) {
1172 sacked
&= ~TCPCB_LOST
;
1173 tp
->lost_out
-= pcount
;
1177 sacked
|= TCPCB_SACKED_ACKED
;
1178 state
->flag
|= FLAG_DATA_SACKED
;
1179 tp
->sacked_out
+= pcount
;
1181 fack_count
+= pcount
;
1183 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1184 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1185 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1186 tp
->lost_cnt_hint
+= pcount
;
1188 if (fack_count
> tp
->fackets_out
)
1189 tp
->fackets_out
= fack_count
;
1192 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1193 * frames and clear it. undo_retrans is decreased above, L|R frames
1194 * are accounted above as well.
1196 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1197 sacked
&= ~TCPCB_SACKED_RETRANS
;
1198 tp
->retrans_out
-= pcount
;
1204 /* Shift newly-SACKed bytes from this skb to the immediately previous
1205 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1207 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1208 struct tcp_sacktag_state
*state
,
1209 unsigned int pcount
, int shifted
, int mss
,
1212 struct tcp_sock
*tp
= tcp_sk(sk
);
1213 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1214 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1215 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1219 /* Adjust counters and hints for the newly sacked sequence
1220 * range but discard the return value since prev is already
1221 * marked. We must tag the range first because the seq
1222 * advancement below implicitly advances
1223 * tcp_highest_sack_seq() when skb is highest_sack.
1225 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1226 start_seq
, end_seq
, dup_sack
, pcount
);
1228 if (skb
== tp
->lost_skb_hint
)
1229 tp
->lost_cnt_hint
+= pcount
;
1231 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1232 TCP_SKB_CB(skb
)->seq
+= shifted
;
1234 skb_shinfo(prev
)->gso_segs
+= pcount
;
1235 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1236 skb_shinfo(skb
)->gso_segs
-= pcount
;
1238 /* When we're adding to gso_segs == 1, gso_size will be zero,
1239 * in theory this shouldn't be necessary but as long as DSACK
1240 * code can come after this skb later on it's better to keep
1241 * setting gso_size to something.
1243 if (!skb_shinfo(prev
)->gso_size
) {
1244 skb_shinfo(prev
)->gso_size
= mss
;
1245 skb_shinfo(prev
)->gso_type
= sk
->sk_gso_type
;
1248 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1249 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1250 skb_shinfo(skb
)->gso_size
= 0;
1251 skb_shinfo(skb
)->gso_type
= 0;
1254 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1255 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1258 BUG_ON(!tcp_skb_pcount(skb
));
1259 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1263 /* Whole SKB was eaten :-) */
1265 if (skb
== tp
->retransmit_skb_hint
)
1266 tp
->retransmit_skb_hint
= prev
;
1267 if (skb
== tp
->scoreboard_skb_hint
)
1268 tp
->scoreboard_skb_hint
= prev
;
1269 if (skb
== tp
->lost_skb_hint
) {
1270 tp
->lost_skb_hint
= prev
;
1271 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1274 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(prev
)->tcp_flags
;
1275 if (skb
== tcp_highest_sack(sk
))
1276 tcp_advance_highest_sack(sk
, skb
);
1278 tcp_unlink_write_queue(skb
, sk
);
1279 sk_wmem_free_skb(sk
, skb
);
1281 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1286 /* I wish gso_size would have a bit more sane initialization than
1287 * something-or-zero which complicates things
1289 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1291 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1294 /* Shifting pages past head area doesn't work */
1295 static int skb_can_shift(const struct sk_buff
*skb
)
1297 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1300 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1303 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1304 struct tcp_sacktag_state
*state
,
1305 u32 start_seq
, u32 end_seq
,
1308 struct tcp_sock
*tp
= tcp_sk(sk
);
1309 struct sk_buff
*prev
;
1315 if (!sk_can_gso(sk
))
1318 /* Normally R but no L won't result in plain S */
1320 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1322 if (!skb_can_shift(skb
))
1324 /* This frame is about to be dropped (was ACKed). */
1325 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1328 /* Can only happen with delayed DSACK + discard craziness */
1329 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1331 prev
= tcp_write_queue_prev(sk
, skb
);
1333 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1336 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1337 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1341 pcount
= tcp_skb_pcount(skb
);
1342 mss
= tcp_skb_seglen(skb
);
1344 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1345 * drop this restriction as unnecessary
1347 if (mss
!= tcp_skb_seglen(prev
))
1350 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1352 /* CHECKME: This is non-MSS split case only?, this will
1353 * cause skipped skbs due to advancing loop btw, original
1354 * has that feature too
1356 if (tcp_skb_pcount(skb
) <= 1)
1359 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1361 /* TODO: head merge to next could be attempted here
1362 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1363 * though it might not be worth of the additional hassle
1365 * ...we can probably just fallback to what was done
1366 * previously. We could try merging non-SACKed ones
1367 * as well but it probably isn't going to buy off
1368 * because later SACKs might again split them, and
1369 * it would make skb timestamp tracking considerably
1375 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1377 BUG_ON(len
> skb
->len
);
1379 /* MSS boundaries should be honoured or else pcount will
1380 * severely break even though it makes things bit trickier.
1381 * Optimize common case to avoid most of the divides
1383 mss
= tcp_skb_mss(skb
);
1385 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1386 * drop this restriction as unnecessary
1388 if (mss
!= tcp_skb_seglen(prev
))
1393 } else if (len
< mss
) {
1401 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1402 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1405 if (!skb_shift(prev
, skb
, len
))
1407 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1410 /* Hole filled allows collapsing with the next as well, this is very
1411 * useful when hole on every nth skb pattern happens
1413 if (prev
== tcp_write_queue_tail(sk
))
1415 skb
= tcp_write_queue_next(sk
, prev
);
1417 if (!skb_can_shift(skb
) ||
1418 (skb
== tcp_send_head(sk
)) ||
1419 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1420 (mss
!= tcp_skb_seglen(skb
)))
1424 if (skb_shift(prev
, skb
, len
)) {
1425 pcount
+= tcp_skb_pcount(skb
);
1426 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1430 state
->fack_count
+= pcount
;
1437 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1441 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1442 struct tcp_sack_block
*next_dup
,
1443 struct tcp_sacktag_state
*state
,
1444 u32 start_seq
, u32 end_seq
,
1447 struct tcp_sock
*tp
= tcp_sk(sk
);
1448 struct sk_buff
*tmp
;
1450 tcp_for_write_queue_from(skb
, sk
) {
1452 bool dup_sack
= dup_sack_in
;
1454 if (skb
== tcp_send_head(sk
))
1457 /* queue is in-order => we can short-circuit the walk early */
1458 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1461 if ((next_dup
!= NULL
) &&
1462 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1463 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1464 next_dup
->start_seq
,
1470 /* skb reference here is a bit tricky to get right, since
1471 * shifting can eat and free both this skb and the next,
1472 * so not even _safe variant of the loop is enough.
1475 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1476 start_seq
, end_seq
, dup_sack
);
1485 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1491 if (unlikely(in_sack
< 0))
1495 TCP_SKB_CB(skb
)->sacked
=
1498 TCP_SKB_CB(skb
)->sacked
,
1499 TCP_SKB_CB(skb
)->seq
,
1500 TCP_SKB_CB(skb
)->end_seq
,
1502 tcp_skb_pcount(skb
));
1504 if (!before(TCP_SKB_CB(skb
)->seq
,
1505 tcp_highest_sack_seq(tp
)))
1506 tcp_advance_highest_sack(sk
, skb
);
1509 state
->fack_count
+= tcp_skb_pcount(skb
);
1514 /* Avoid all extra work that is being done by sacktag while walking in
1517 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1518 struct tcp_sacktag_state
*state
,
1521 tcp_for_write_queue_from(skb
, sk
) {
1522 if (skb
== tcp_send_head(sk
))
1525 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1528 state
->fack_count
+= tcp_skb_pcount(skb
);
1533 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1535 struct tcp_sack_block
*next_dup
,
1536 struct tcp_sacktag_state
*state
,
1539 if (next_dup
== NULL
)
1542 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1543 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1544 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1545 next_dup
->start_seq
, next_dup
->end_seq
,
1552 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1554 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1558 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1561 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1562 struct tcp_sock
*tp
= tcp_sk(sk
);
1563 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1564 TCP_SKB_CB(ack_skb
)->sacked
);
1565 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1566 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1567 struct tcp_sack_block
*cache
;
1568 struct tcp_sacktag_state state
;
1569 struct sk_buff
*skb
;
1570 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1572 bool found_dup_sack
= false;
1574 int first_sack_index
;
1577 state
.reord
= tp
->packets_out
;
1579 if (!tp
->sacked_out
) {
1580 if (WARN_ON(tp
->fackets_out
))
1581 tp
->fackets_out
= 0;
1582 tcp_highest_sack_reset(sk
);
1585 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1586 num_sacks
, prior_snd_una
);
1588 state
.flag
|= FLAG_DSACKING_ACK
;
1590 /* Eliminate too old ACKs, but take into
1591 * account more or less fresh ones, they can
1592 * contain valid SACK info.
1594 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1597 if (!tp
->packets_out
)
1601 first_sack_index
= 0;
1602 for (i
= 0; i
< num_sacks
; i
++) {
1603 bool dup_sack
= !i
&& found_dup_sack
;
1605 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1606 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1608 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1609 sp
[used_sacks
].start_seq
,
1610 sp
[used_sacks
].end_seq
)) {
1614 if (!tp
->undo_marker
)
1615 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1617 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1619 /* Don't count olds caused by ACK reordering */
1620 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1621 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1623 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1626 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1628 first_sack_index
= -1;
1632 /* Ignore very old stuff early */
1633 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1639 /* order SACK blocks to allow in order walk of the retrans queue */
1640 for (i
= used_sacks
- 1; i
> 0; i
--) {
1641 for (j
= 0; j
< i
; j
++) {
1642 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1643 swap(sp
[j
], sp
[j
+ 1]);
1645 /* Track where the first SACK block goes to */
1646 if (j
== first_sack_index
)
1647 first_sack_index
= j
+ 1;
1652 skb
= tcp_write_queue_head(sk
);
1653 state
.fack_count
= 0;
1656 if (!tp
->sacked_out
) {
1657 /* It's already past, so skip checking against it */
1658 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1660 cache
= tp
->recv_sack_cache
;
1661 /* Skip empty blocks in at head of the cache */
1662 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1667 while (i
< used_sacks
) {
1668 u32 start_seq
= sp
[i
].start_seq
;
1669 u32 end_seq
= sp
[i
].end_seq
;
1670 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1671 struct tcp_sack_block
*next_dup
= NULL
;
1673 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1674 next_dup
= &sp
[i
+ 1];
1676 /* Skip too early cached blocks */
1677 while (tcp_sack_cache_ok(tp
, cache
) &&
1678 !before(start_seq
, cache
->end_seq
))
1681 /* Can skip some work by looking recv_sack_cache? */
1682 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1683 after(end_seq
, cache
->start_seq
)) {
1686 if (before(start_seq
, cache
->start_seq
)) {
1687 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1689 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1696 /* Rest of the block already fully processed? */
1697 if (!after(end_seq
, cache
->end_seq
))
1700 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1704 /* ...tail remains todo... */
1705 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1706 /* ...but better entrypoint exists! */
1707 skb
= tcp_highest_sack(sk
);
1710 state
.fack_count
= tp
->fackets_out
;
1715 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1716 /* Check overlap against next cached too (past this one already) */
1721 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1722 skb
= tcp_highest_sack(sk
);
1725 state
.fack_count
= tp
->fackets_out
;
1727 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1730 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1731 start_seq
, end_seq
, dup_sack
);
1734 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1735 * due to in-order walk
1737 if (after(end_seq
, tp
->frto_highmark
))
1738 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1743 /* Clear the head of the cache sack blocks so we can skip it next time */
1744 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1745 tp
->recv_sack_cache
[i
].start_seq
= 0;
1746 tp
->recv_sack_cache
[i
].end_seq
= 0;
1748 for (j
= 0; j
< used_sacks
; j
++)
1749 tp
->recv_sack_cache
[i
++] = sp
[j
];
1751 tcp_mark_lost_retrans(sk
);
1753 tcp_verify_left_out(tp
);
1755 if ((state
.reord
< tp
->fackets_out
) &&
1756 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1757 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1758 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1762 #if FASTRETRANS_DEBUG > 0
1763 WARN_ON((int)tp
->sacked_out
< 0);
1764 WARN_ON((int)tp
->lost_out
< 0);
1765 WARN_ON((int)tp
->retrans_out
< 0);
1766 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1771 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1772 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1774 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1778 holes
= max(tp
->lost_out
, 1U);
1779 holes
= min(holes
, tp
->packets_out
);
1781 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1782 tp
->sacked_out
= tp
->packets_out
- holes
;
1788 /* If we receive more dupacks than we expected counting segments
1789 * in assumption of absent reordering, interpret this as reordering.
1790 * The only another reason could be bug in receiver TCP.
1792 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1794 struct tcp_sock
*tp
= tcp_sk(sk
);
1795 if (tcp_limit_reno_sacked(tp
))
1796 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1799 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1801 static void tcp_add_reno_sack(struct sock
*sk
)
1803 struct tcp_sock
*tp
= tcp_sk(sk
);
1805 tcp_check_reno_reordering(sk
, 0);
1806 tcp_verify_left_out(tp
);
1809 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1811 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1813 struct tcp_sock
*tp
= tcp_sk(sk
);
1816 /* One ACK acked hole. The rest eat duplicate ACKs. */
1817 if (acked
- 1 >= tp
->sacked_out
)
1820 tp
->sacked_out
-= acked
- 1;
1822 tcp_check_reno_reordering(sk
, acked
);
1823 tcp_verify_left_out(tp
);
1826 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1831 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1833 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1836 /* F-RTO can only be used if TCP has never retransmitted anything other than
1837 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1839 bool tcp_use_frto(struct sock
*sk
)
1841 const struct tcp_sock
*tp
= tcp_sk(sk
);
1842 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1843 struct sk_buff
*skb
;
1845 if (!sysctl_tcp_frto
)
1848 /* MTU probe and F-RTO won't really play nicely along currently */
1849 if (icsk
->icsk_mtup
.probe_size
)
1852 if (tcp_is_sackfrto(tp
))
1855 /* Avoid expensive walking of rexmit queue if possible */
1856 if (tp
->retrans_out
> 1)
1859 skb
= tcp_write_queue_head(sk
);
1860 if (tcp_skb_is_last(sk
, skb
))
1862 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
1863 tcp_for_write_queue_from(skb
, sk
) {
1864 if (skb
== tcp_send_head(sk
))
1866 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1868 /* Short-circuit when first non-SACKed skb has been checked */
1869 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
1875 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1876 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1877 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1878 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1879 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1880 * bits are handled if the Loss state is really to be entered (in
1881 * tcp_enter_frto_loss).
1883 * Do like tcp_enter_loss() would; when RTO expires the second time it
1885 * "Reduce ssthresh if it has not yet been made inside this window."
1887 void tcp_enter_frto(struct sock
*sk
)
1889 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1890 struct tcp_sock
*tp
= tcp_sk(sk
);
1891 struct sk_buff
*skb
;
1893 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
1894 tp
->snd_una
== tp
->high_seq
||
1895 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
1896 !icsk
->icsk_retransmits
)) {
1897 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1898 /* Our state is too optimistic in ssthresh() call because cwnd
1899 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1900 * recovery has not yet completed. Pattern would be this: RTO,
1901 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1903 * RFC4138 should be more specific on what to do, even though
1904 * RTO is quite unlikely to occur after the first Cumulative ACK
1905 * due to back-off and complexity of triggering events ...
1907 if (tp
->frto_counter
) {
1909 stored_cwnd
= tp
->snd_cwnd
;
1911 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1912 tp
->snd_cwnd
= stored_cwnd
;
1914 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1916 /* ... in theory, cong.control module could do "any tricks" in
1917 * ssthresh(), which means that ca_state, lost bits and lost_out
1918 * counter would have to be faked before the call occurs. We
1919 * consider that too expensive, unlikely and hacky, so modules
1920 * using these in ssthresh() must deal these incompatibility
1921 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1923 tcp_ca_event(sk
, CA_EVENT_FRTO
);
1926 tp
->undo_marker
= tp
->snd_una
;
1927 tp
->undo_retrans
= 0;
1929 skb
= tcp_write_queue_head(sk
);
1930 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1931 tp
->undo_marker
= 0;
1932 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1933 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1934 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1936 tcp_verify_left_out(tp
);
1938 /* Too bad if TCP was application limited */
1939 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
1941 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1942 * The last condition is necessary at least in tp->frto_counter case.
1944 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
1945 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
1946 after(tp
->high_seq
, tp
->snd_una
)) {
1947 tp
->frto_highmark
= tp
->high_seq
;
1949 tp
->frto_highmark
= tp
->snd_nxt
;
1951 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
1952 tp
->high_seq
= tp
->snd_nxt
;
1953 tp
->frto_counter
= 1;
1956 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1957 * which indicates that we should follow the traditional RTO recovery,
1958 * i.e. mark everything lost and do go-back-N retransmission.
1960 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
1962 struct tcp_sock
*tp
= tcp_sk(sk
);
1963 struct sk_buff
*skb
;
1966 tp
->retrans_out
= 0;
1967 if (tcp_is_reno(tp
))
1968 tcp_reset_reno_sack(tp
);
1970 tcp_for_write_queue(skb
, sk
) {
1971 if (skb
== tcp_send_head(sk
))
1974 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1976 * Count the retransmission made on RTO correctly (only when
1977 * waiting for the first ACK and did not get it)...
1979 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
1980 /* For some reason this R-bit might get cleared? */
1981 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1982 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1983 /* ...enter this if branch just for the first segment */
1984 flag
|= FLAG_DATA_ACKED
;
1986 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1987 tp
->undo_marker
= 0;
1988 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1991 /* Marking forward transmissions that were made after RTO lost
1992 * can cause unnecessary retransmissions in some scenarios,
1993 * SACK blocks will mitigate that in some but not in all cases.
1994 * We used to not mark them but it was causing break-ups with
1995 * receivers that do only in-order receival.
1997 * TODO: we could detect presence of such receiver and select
1998 * different behavior per flow.
2000 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2001 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2002 tp
->lost_out
+= tcp_skb_pcount(skb
);
2003 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2006 tcp_verify_left_out(tp
);
2008 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2009 tp
->snd_cwnd_cnt
= 0;
2010 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2011 tp
->frto_counter
= 0;
2012 tp
->bytes_acked
= 0;
2014 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2015 sysctl_tcp_reordering
);
2016 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2017 tp
->high_seq
= tp
->snd_nxt
;
2018 TCP_ECN_queue_cwr(tp
);
2020 tcp_clear_all_retrans_hints(tp
);
2023 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2025 tp
->retrans_out
= 0;
2028 tp
->undo_marker
= 0;
2029 tp
->undo_retrans
= 0;
2032 void tcp_clear_retrans(struct tcp_sock
*tp
)
2034 tcp_clear_retrans_partial(tp
);
2036 tp
->fackets_out
= 0;
2040 /* Enter Loss state. If "how" is not zero, forget all SACK information
2041 * and reset tags completely, otherwise preserve SACKs. If receiver
2042 * dropped its ofo queue, we will know this due to reneging detection.
2044 void tcp_enter_loss(struct sock
*sk
, int how
)
2046 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2047 struct tcp_sock
*tp
= tcp_sk(sk
);
2048 struct sk_buff
*skb
;
2050 /* Reduce ssthresh if it has not yet been made inside this window. */
2051 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2052 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2053 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2054 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2055 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2058 tp
->snd_cwnd_cnt
= 0;
2059 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2061 tp
->bytes_acked
= 0;
2062 tcp_clear_retrans_partial(tp
);
2064 if (tcp_is_reno(tp
))
2065 tcp_reset_reno_sack(tp
);
2068 /* Push undo marker, if it was plain RTO and nothing
2069 * was retransmitted. */
2070 tp
->undo_marker
= tp
->snd_una
;
2073 tp
->fackets_out
= 0;
2075 tcp_clear_all_retrans_hints(tp
);
2077 tcp_for_write_queue(skb
, sk
) {
2078 if (skb
== tcp_send_head(sk
))
2081 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2082 tp
->undo_marker
= 0;
2083 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2084 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2085 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2086 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2087 tp
->lost_out
+= tcp_skb_pcount(skb
);
2088 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2091 tcp_verify_left_out(tp
);
2093 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2094 sysctl_tcp_reordering
);
2095 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2096 tp
->high_seq
= tp
->snd_nxt
;
2097 TCP_ECN_queue_cwr(tp
);
2098 /* Abort F-RTO algorithm if one is in progress */
2099 tp
->frto_counter
= 0;
2102 /* If ACK arrived pointing to a remembered SACK, it means that our
2103 * remembered SACKs do not reflect real state of receiver i.e.
2104 * receiver _host_ is heavily congested (or buggy).
2106 * Do processing similar to RTO timeout.
2108 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2110 if (flag
& FLAG_SACK_RENEGING
) {
2111 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2112 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2114 tcp_enter_loss(sk
, 1);
2115 icsk
->icsk_retransmits
++;
2116 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2117 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2118 icsk
->icsk_rto
, TCP_RTO_MAX
);
2124 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2126 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2129 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2130 * counter when SACK is enabled (without SACK, sacked_out is used for
2133 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2134 * segments up to the highest received SACK block so far and holes in
2137 * With reordering, holes may still be in flight, so RFC3517 recovery
2138 * uses pure sacked_out (total number of SACKed segments) even though
2139 * it violates the RFC that uses duplicate ACKs, often these are equal
2140 * but when e.g. out-of-window ACKs or packet duplication occurs,
2141 * they differ. Since neither occurs due to loss, TCP should really
2144 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2146 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2149 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
2151 struct tcp_sock
*tp
= tcp_sk(sk
);
2152 unsigned long delay
;
2154 /* Delay early retransmit and entering fast recovery for
2155 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2156 * available, or RTO is scheduled to fire first.
2158 if (sysctl_tcp_early_retrans
< 2 || (flag
& FLAG_ECE
) || !tp
->srtt
)
2161 delay
= max_t(unsigned long, (tp
->srtt
>> 5), msecs_to_jiffies(2));
2162 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2165 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, delay
, TCP_RTO_MAX
);
2166 tp
->early_retrans_delayed
= 1;
2170 static inline int tcp_skb_timedout(const struct sock
*sk
,
2171 const struct sk_buff
*skb
)
2173 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2176 static inline int tcp_head_timedout(const struct sock
*sk
)
2178 const struct tcp_sock
*tp
= tcp_sk(sk
);
2180 return tp
->packets_out
&&
2181 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2184 /* Linux NewReno/SACK/FACK/ECN state machine.
2185 * --------------------------------------
2187 * "Open" Normal state, no dubious events, fast path.
2188 * "Disorder" In all the respects it is "Open",
2189 * but requires a bit more attention. It is entered when
2190 * we see some SACKs or dupacks. It is split of "Open"
2191 * mainly to move some processing from fast path to slow one.
2192 * "CWR" CWND was reduced due to some Congestion Notification event.
2193 * It can be ECN, ICMP source quench, local device congestion.
2194 * "Recovery" CWND was reduced, we are fast-retransmitting.
2195 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2197 * tcp_fastretrans_alert() is entered:
2198 * - each incoming ACK, if state is not "Open"
2199 * - when arrived ACK is unusual, namely:
2204 * Counting packets in flight is pretty simple.
2206 * in_flight = packets_out - left_out + retrans_out
2208 * packets_out is SND.NXT-SND.UNA counted in packets.
2210 * retrans_out is number of retransmitted segments.
2212 * left_out is number of segments left network, but not ACKed yet.
2214 * left_out = sacked_out + lost_out
2216 * sacked_out: Packets, which arrived to receiver out of order
2217 * and hence not ACKed. With SACKs this number is simply
2218 * amount of SACKed data. Even without SACKs
2219 * it is easy to give pretty reliable estimate of this number,
2220 * counting duplicate ACKs.
2222 * lost_out: Packets lost by network. TCP has no explicit
2223 * "loss notification" feedback from network (for now).
2224 * It means that this number can be only _guessed_.
2225 * Actually, it is the heuristics to predict lossage that
2226 * distinguishes different algorithms.
2228 * F.e. after RTO, when all the queue is considered as lost,
2229 * lost_out = packets_out and in_flight = retrans_out.
2231 * Essentially, we have now two algorithms counting
2234 * FACK: It is the simplest heuristics. As soon as we decided
2235 * that something is lost, we decide that _all_ not SACKed
2236 * packets until the most forward SACK are lost. I.e.
2237 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2238 * It is absolutely correct estimate, if network does not reorder
2239 * packets. And it loses any connection to reality when reordering
2240 * takes place. We use FACK by default until reordering
2241 * is suspected on the path to this destination.
2243 * NewReno: when Recovery is entered, we assume that one segment
2244 * is lost (classic Reno). While we are in Recovery and
2245 * a partial ACK arrives, we assume that one more packet
2246 * is lost (NewReno). This heuristics are the same in NewReno
2249 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2250 * deflation etc. CWND is real congestion window, never inflated, changes
2251 * only according to classic VJ rules.
2253 * Really tricky (and requiring careful tuning) part of algorithm
2254 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2255 * The first determines the moment _when_ we should reduce CWND and,
2256 * hence, slow down forward transmission. In fact, it determines the moment
2257 * when we decide that hole is caused by loss, rather than by a reorder.
2259 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2260 * holes, caused by lost packets.
2262 * And the most logically complicated part of algorithm is undo
2263 * heuristics. We detect false retransmits due to both too early
2264 * fast retransmit (reordering) and underestimated RTO, analyzing
2265 * timestamps and D-SACKs. When we detect that some segments were
2266 * retransmitted by mistake and CWND reduction was wrong, we undo
2267 * window reduction and abort recovery phase. This logic is hidden
2268 * inside several functions named tcp_try_undo_<something>.
2271 /* This function decides, when we should leave Disordered state
2272 * and enter Recovery phase, reducing congestion window.
2274 * Main question: may we further continue forward transmission
2275 * with the same cwnd?
2277 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2279 struct tcp_sock
*tp
= tcp_sk(sk
);
2282 /* Do not perform any recovery during F-RTO algorithm */
2283 if (tp
->frto_counter
)
2286 /* Trick#1: The loss is proven. */
2290 /* Not-A-Trick#2 : Classic rule... */
2291 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2294 /* Trick#3 : when we use RFC2988 timer restart, fast
2295 * retransmit can be triggered by timeout of queue head.
2297 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2300 /* Trick#4: It is still not OK... But will it be useful to delay
2303 packets_out
= tp
->packets_out
;
2304 if (packets_out
<= tp
->reordering
&&
2305 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2306 !tcp_may_send_now(sk
)) {
2307 /* We have nothing to send. This connection is limited
2308 * either by receiver window or by application.
2313 /* If a thin stream is detected, retransmit after first
2314 * received dupack. Employ only if SACK is supported in order
2315 * to avoid possible corner-case series of spurious retransmissions
2316 * Use only if there are no unsent data.
2318 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2319 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2320 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2323 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2324 * retransmissions due to small network reorderings, we implement
2325 * Mitigation A.3 in the RFC and delay the retransmission for a short
2326 * interval if appropriate.
2328 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2329 (tp
->packets_out
== (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2330 !tcp_may_send_now(sk
))
2331 return !tcp_pause_early_retransmit(sk
, flag
);
2336 /* New heuristics: it is possible only after we switched to restart timer
2337 * each time when something is ACKed. Hence, we can detect timed out packets
2338 * during fast retransmit without falling to slow start.
2340 * Usefulness of this as is very questionable, since we should know which of
2341 * the segments is the next to timeout which is relatively expensive to find
2342 * in general case unless we add some data structure just for that. The
2343 * current approach certainly won't find the right one too often and when it
2344 * finally does find _something_ it usually marks large part of the window
2345 * right away (because a retransmission with a larger timestamp blocks the
2346 * loop from advancing). -ij
2348 static void tcp_timeout_skbs(struct sock
*sk
)
2350 struct tcp_sock
*tp
= tcp_sk(sk
);
2351 struct sk_buff
*skb
;
2353 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2356 skb
= tp
->scoreboard_skb_hint
;
2357 if (tp
->scoreboard_skb_hint
== NULL
)
2358 skb
= tcp_write_queue_head(sk
);
2360 tcp_for_write_queue_from(skb
, sk
) {
2361 if (skb
== tcp_send_head(sk
))
2363 if (!tcp_skb_timedout(sk
, skb
))
2366 tcp_skb_mark_lost(tp
, skb
);
2369 tp
->scoreboard_skb_hint
= skb
;
2371 tcp_verify_left_out(tp
);
2374 /* Detect loss in event "A" above by marking head of queue up as lost.
2375 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2376 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2377 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2378 * the maximum SACKed segments to pass before reaching this limit.
2380 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2382 struct tcp_sock
*tp
= tcp_sk(sk
);
2383 struct sk_buff
*skb
;
2387 /* Use SACK to deduce losses of new sequences sent during recovery */
2388 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2390 WARN_ON(packets
> tp
->packets_out
);
2391 if (tp
->lost_skb_hint
) {
2392 skb
= tp
->lost_skb_hint
;
2393 cnt
= tp
->lost_cnt_hint
;
2394 /* Head already handled? */
2395 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2398 skb
= tcp_write_queue_head(sk
);
2402 tcp_for_write_queue_from(skb
, sk
) {
2403 if (skb
== tcp_send_head(sk
))
2405 /* TODO: do this better */
2406 /* this is not the most efficient way to do this... */
2407 tp
->lost_skb_hint
= skb
;
2408 tp
->lost_cnt_hint
= cnt
;
2410 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2414 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2415 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2416 cnt
+= tcp_skb_pcount(skb
);
2418 if (cnt
> packets
) {
2419 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2420 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2421 (oldcnt
>= packets
))
2424 mss
= skb_shinfo(skb
)->gso_size
;
2425 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2431 tcp_skb_mark_lost(tp
, skb
);
2436 tcp_verify_left_out(tp
);
2439 /* Account newly detected lost packet(s) */
2441 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2443 struct tcp_sock
*tp
= tcp_sk(sk
);
2445 if (tcp_is_reno(tp
)) {
2446 tcp_mark_head_lost(sk
, 1, 1);
2447 } else if (tcp_is_fack(tp
)) {
2448 int lost
= tp
->fackets_out
- tp
->reordering
;
2451 tcp_mark_head_lost(sk
, lost
, 0);
2453 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2454 if (sacked_upto
>= 0)
2455 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2456 else if (fast_rexmit
)
2457 tcp_mark_head_lost(sk
, 1, 1);
2460 tcp_timeout_skbs(sk
);
2463 /* CWND moderation, preventing bursts due to too big ACKs
2464 * in dubious situations.
2466 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2468 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2469 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2470 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2473 /* Nothing was retransmitted or returned timestamp is less
2474 * than timestamp of the first retransmission.
2476 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2478 return !tp
->retrans_stamp
||
2479 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2480 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2483 /* Undo procedures. */
2485 #if FASTRETRANS_DEBUG > 1
2486 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2488 struct tcp_sock
*tp
= tcp_sk(sk
);
2489 struct inet_sock
*inet
= inet_sk(sk
);
2491 if (sk
->sk_family
== AF_INET
) {
2492 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2494 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2495 tp
->snd_cwnd
, tcp_left_out(tp
),
2496 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2499 #if IS_ENABLED(CONFIG_IPV6)
2500 else if (sk
->sk_family
== AF_INET6
) {
2501 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2502 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2504 &np
->daddr
, ntohs(inet
->inet_dport
),
2505 tp
->snd_cwnd
, tcp_left_out(tp
),
2506 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2512 #define DBGUNDO(x...) do { } while (0)
2515 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2517 struct tcp_sock
*tp
= tcp_sk(sk
);
2519 if (tp
->prior_ssthresh
) {
2520 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2522 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2523 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2525 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2527 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2528 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2529 TCP_ECN_withdraw_cwr(tp
);
2532 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2534 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2537 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2539 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2542 /* People celebrate: "We love our President!" */
2543 static bool tcp_try_undo_recovery(struct sock
*sk
)
2545 struct tcp_sock
*tp
= tcp_sk(sk
);
2547 if (tcp_may_undo(tp
)) {
2550 /* Happy end! We did not retransmit anything
2551 * or our original transmission succeeded.
2553 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2554 tcp_undo_cwr(sk
, true);
2555 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2556 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2558 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2560 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2561 tp
->undo_marker
= 0;
2563 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2564 /* Hold old state until something *above* high_seq
2565 * is ACKed. For Reno it is MUST to prevent false
2566 * fast retransmits (RFC2582). SACK TCP is safe. */
2567 tcp_moderate_cwnd(tp
);
2570 tcp_set_ca_state(sk
, TCP_CA_Open
);
2574 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2575 static void tcp_try_undo_dsack(struct sock
*sk
)
2577 struct tcp_sock
*tp
= tcp_sk(sk
);
2579 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2580 DBGUNDO(sk
, "D-SACK");
2581 tcp_undo_cwr(sk
, true);
2582 tp
->undo_marker
= 0;
2583 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2587 /* We can clear retrans_stamp when there are no retransmissions in the
2588 * window. It would seem that it is trivially available for us in
2589 * tp->retrans_out, however, that kind of assumptions doesn't consider
2590 * what will happen if errors occur when sending retransmission for the
2591 * second time. ...It could the that such segment has only
2592 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2593 * the head skb is enough except for some reneging corner cases that
2594 * are not worth the effort.
2596 * Main reason for all this complexity is the fact that connection dying
2597 * time now depends on the validity of the retrans_stamp, in particular,
2598 * that successive retransmissions of a segment must not advance
2599 * retrans_stamp under any conditions.
2601 static bool tcp_any_retrans_done(const struct sock
*sk
)
2603 const struct tcp_sock
*tp
= tcp_sk(sk
);
2604 struct sk_buff
*skb
;
2606 if (tp
->retrans_out
)
2609 skb
= tcp_write_queue_head(sk
);
2610 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2616 /* Undo during fast recovery after partial ACK. */
2618 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2620 struct tcp_sock
*tp
= tcp_sk(sk
);
2621 /* Partial ACK arrived. Force Hoe's retransmit. */
2622 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2624 if (tcp_may_undo(tp
)) {
2625 /* Plain luck! Hole if filled with delayed
2626 * packet, rather than with a retransmit.
2628 if (!tcp_any_retrans_done(sk
))
2629 tp
->retrans_stamp
= 0;
2631 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2634 tcp_undo_cwr(sk
, false);
2635 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2637 /* So... Do not make Hoe's retransmit yet.
2638 * If the first packet was delayed, the rest
2639 * ones are most probably delayed as well.
2646 /* Undo during loss recovery after partial ACK. */
2647 static bool tcp_try_undo_loss(struct sock
*sk
)
2649 struct tcp_sock
*tp
= tcp_sk(sk
);
2651 if (tcp_may_undo(tp
)) {
2652 struct sk_buff
*skb
;
2653 tcp_for_write_queue(skb
, sk
) {
2654 if (skb
== tcp_send_head(sk
))
2656 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2659 tcp_clear_all_retrans_hints(tp
);
2661 DBGUNDO(sk
, "partial loss");
2663 tcp_undo_cwr(sk
, true);
2664 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2665 inet_csk(sk
)->icsk_retransmits
= 0;
2666 tp
->undo_marker
= 0;
2667 if (tcp_is_sack(tp
))
2668 tcp_set_ca_state(sk
, TCP_CA_Open
);
2674 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2675 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2676 * It computes the number of packets to send (sndcnt) based on packets newly
2678 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2679 * cwnd reductions across a full RTT.
2680 * 2) If packets in flight is lower than ssthresh (such as due to excess
2681 * losses and/or application stalls), do not perform any further cwnd
2682 * reductions, but instead slow start up to ssthresh.
2684 static void tcp_init_cwnd_reduction(struct sock
*sk
, const bool set_ssthresh
)
2686 struct tcp_sock
*tp
= tcp_sk(sk
);
2688 tp
->high_seq
= tp
->snd_nxt
;
2689 tp
->bytes_acked
= 0;
2690 tp
->snd_cwnd_cnt
= 0;
2691 tp
->prior_cwnd
= tp
->snd_cwnd
;
2692 tp
->prr_delivered
= 0;
2695 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2696 TCP_ECN_queue_cwr(tp
);
2699 static void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
,
2702 struct tcp_sock
*tp
= tcp_sk(sk
);
2704 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2706 tp
->prr_delivered
+= newly_acked_sacked
;
2707 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
2708 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2710 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2712 sndcnt
= min_t(int, delta
,
2713 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2714 newly_acked_sacked
) + 1);
2717 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2718 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2721 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2723 struct tcp_sock
*tp
= tcp_sk(sk
);
2725 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2726 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2727 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2728 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2729 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2731 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2734 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2735 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
2737 struct tcp_sock
*tp
= tcp_sk(sk
);
2739 tp
->prior_ssthresh
= 0;
2740 tp
->bytes_acked
= 0;
2741 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2742 tp
->undo_marker
= 0;
2743 tcp_init_cwnd_reduction(sk
, set_ssthresh
);
2744 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2748 static void tcp_try_keep_open(struct sock
*sk
)
2750 struct tcp_sock
*tp
= tcp_sk(sk
);
2751 int state
= TCP_CA_Open
;
2753 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2754 state
= TCP_CA_Disorder
;
2756 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2757 tcp_set_ca_state(sk
, state
);
2758 tp
->high_seq
= tp
->snd_nxt
;
2762 static void tcp_try_to_open(struct sock
*sk
, int flag
, int newly_acked_sacked
)
2764 struct tcp_sock
*tp
= tcp_sk(sk
);
2766 tcp_verify_left_out(tp
);
2768 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2769 tp
->retrans_stamp
= 0;
2771 if (flag
& FLAG_ECE
)
2772 tcp_enter_cwr(sk
, 1);
2774 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2775 tcp_try_keep_open(sk
);
2776 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2777 tcp_moderate_cwnd(tp
);
2779 tcp_cwnd_reduction(sk
, newly_acked_sacked
, 0);
2783 static void tcp_mtup_probe_failed(struct sock
*sk
)
2785 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2787 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2788 icsk
->icsk_mtup
.probe_size
= 0;
2791 static void tcp_mtup_probe_success(struct sock
*sk
)
2793 struct tcp_sock
*tp
= tcp_sk(sk
);
2794 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2796 /* FIXME: breaks with very large cwnd */
2797 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2798 tp
->snd_cwnd
= tp
->snd_cwnd
*
2799 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2800 icsk
->icsk_mtup
.probe_size
;
2801 tp
->snd_cwnd_cnt
= 0;
2802 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2803 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2805 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2806 icsk
->icsk_mtup
.probe_size
= 0;
2807 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2810 /* Do a simple retransmit without using the backoff mechanisms in
2811 * tcp_timer. This is used for path mtu discovery.
2812 * The socket is already locked here.
2814 void tcp_simple_retransmit(struct sock
*sk
)
2816 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2817 struct tcp_sock
*tp
= tcp_sk(sk
);
2818 struct sk_buff
*skb
;
2819 unsigned int mss
= tcp_current_mss(sk
);
2820 u32 prior_lost
= tp
->lost_out
;
2822 tcp_for_write_queue(skb
, sk
) {
2823 if (skb
== tcp_send_head(sk
))
2825 if (tcp_skb_seglen(skb
) > mss
&&
2826 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2827 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2828 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2829 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2831 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2835 tcp_clear_retrans_hints_partial(tp
);
2837 if (prior_lost
== tp
->lost_out
)
2840 if (tcp_is_reno(tp
))
2841 tcp_limit_reno_sacked(tp
);
2843 tcp_verify_left_out(tp
);
2845 /* Don't muck with the congestion window here.
2846 * Reason is that we do not increase amount of _data_
2847 * in network, but units changed and effective
2848 * cwnd/ssthresh really reduced now.
2850 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2851 tp
->high_seq
= tp
->snd_nxt
;
2852 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2853 tp
->prior_ssthresh
= 0;
2854 tp
->undo_marker
= 0;
2855 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2857 tcp_xmit_retransmit_queue(sk
);
2859 EXPORT_SYMBOL(tcp_simple_retransmit
);
2861 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2863 struct tcp_sock
*tp
= tcp_sk(sk
);
2866 if (tcp_is_reno(tp
))
2867 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2869 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2871 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2873 tp
->prior_ssthresh
= 0;
2874 tp
->undo_marker
= tp
->snd_una
;
2875 tp
->undo_retrans
= tp
->retrans_out
;
2877 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2879 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2880 tcp_init_cwnd_reduction(sk
, true);
2882 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2885 /* Process an event, which can update packets-in-flight not trivially.
2886 * Main goal of this function is to calculate new estimate for left_out,
2887 * taking into account both packets sitting in receiver's buffer and
2888 * packets lost by network.
2890 * Besides that it does CWND reduction, when packet loss is detected
2891 * and changes state of machine.
2893 * It does _not_ decide what to send, it is made in function
2894 * tcp_xmit_retransmit_queue().
2896 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
,
2897 int prior_sacked
, bool is_dupack
,
2900 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2901 struct tcp_sock
*tp
= tcp_sk(sk
);
2902 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2903 (tcp_fackets_out(tp
) > tp
->reordering
));
2904 int newly_acked_sacked
= 0;
2905 int fast_rexmit
= 0;
2907 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2909 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2910 tp
->fackets_out
= 0;
2912 /* Now state machine starts.
2913 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2914 if (flag
& FLAG_ECE
)
2915 tp
->prior_ssthresh
= 0;
2917 /* B. In all the states check for reneging SACKs. */
2918 if (tcp_check_sack_reneging(sk
, flag
))
2921 /* C. Check consistency of the current state. */
2922 tcp_verify_left_out(tp
);
2924 /* D. Check state exit conditions. State can be terminated
2925 * when high_seq is ACKed. */
2926 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2927 WARN_ON(tp
->retrans_out
!= 0);
2928 tp
->retrans_stamp
= 0;
2929 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2930 switch (icsk
->icsk_ca_state
) {
2932 icsk
->icsk_retransmits
= 0;
2933 if (tcp_try_undo_recovery(sk
))
2938 /* CWR is to be held something *above* high_seq
2939 * is ACKed for CWR bit to reach receiver. */
2940 if (tp
->snd_una
!= tp
->high_seq
) {
2941 tcp_end_cwnd_reduction(sk
);
2942 tcp_set_ca_state(sk
, TCP_CA_Open
);
2946 case TCP_CA_Recovery
:
2947 if (tcp_is_reno(tp
))
2948 tcp_reset_reno_sack(tp
);
2949 if (tcp_try_undo_recovery(sk
))
2951 tcp_end_cwnd_reduction(sk
);
2956 /* E. Process state. */
2957 switch (icsk
->icsk_ca_state
) {
2958 case TCP_CA_Recovery
:
2959 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2960 if (tcp_is_reno(tp
) && is_dupack
)
2961 tcp_add_reno_sack(sk
);
2963 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2964 newly_acked_sacked
= pkts_acked
+ tp
->sacked_out
- prior_sacked
;
2967 if (flag
& FLAG_DATA_ACKED
)
2968 icsk
->icsk_retransmits
= 0;
2969 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
2970 tcp_reset_reno_sack(tp
);
2971 if (!tcp_try_undo_loss(sk
)) {
2972 tcp_moderate_cwnd(tp
);
2973 tcp_xmit_retransmit_queue(sk
);
2976 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2978 /* Loss is undone; fall through to processing in Open state. */
2980 if (tcp_is_reno(tp
)) {
2981 if (flag
& FLAG_SND_UNA_ADVANCED
)
2982 tcp_reset_reno_sack(tp
);
2984 tcp_add_reno_sack(sk
);
2986 newly_acked_sacked
= pkts_acked
+ tp
->sacked_out
- prior_sacked
;
2988 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2989 tcp_try_undo_dsack(sk
);
2991 if (!tcp_time_to_recover(sk
, flag
)) {
2992 tcp_try_to_open(sk
, flag
, newly_acked_sacked
);
2996 /* MTU probe failure: don't reduce cwnd */
2997 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2998 icsk
->icsk_mtup
.probe_size
&&
2999 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3000 tcp_mtup_probe_failed(sk
);
3001 /* Restores the reduction we did in tcp_mtup_probe() */
3003 tcp_simple_retransmit(sk
);
3007 /* Otherwise enter Recovery state */
3008 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
3012 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3013 tcp_update_scoreboard(sk
, fast_rexmit
);
3014 tcp_cwnd_reduction(sk
, newly_acked_sacked
, fast_rexmit
);
3015 tcp_xmit_retransmit_queue(sk
);
3018 void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3020 tcp_rtt_estimator(sk
, seq_rtt
);
3022 inet_csk(sk
)->icsk_backoff
= 0;
3024 EXPORT_SYMBOL(tcp_valid_rtt_meas
);
3026 /* Read draft-ietf-tcplw-high-performance before mucking
3027 * with this code. (Supersedes RFC1323)
3029 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3031 /* RTTM Rule: A TSecr value received in a segment is used to
3032 * update the averaged RTT measurement only if the segment
3033 * acknowledges some new data, i.e., only if it advances the
3034 * left edge of the send window.
3036 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3037 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3039 * Changed: reset backoff as soon as we see the first valid sample.
3040 * If we do not, we get strongly overestimated rto. With timestamps
3041 * samples are accepted even from very old segments: f.e., when rtt=1
3042 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3043 * answer arrives rto becomes 120 seconds! If at least one of segments
3044 * in window is lost... Voila. --ANK (010210)
3046 struct tcp_sock
*tp
= tcp_sk(sk
);
3048 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3051 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3053 /* We don't have a timestamp. Can only use
3054 * packets that are not retransmitted to determine
3055 * rtt estimates. Also, we must not reset the
3056 * backoff for rto until we get a non-retransmitted
3057 * packet. This allows us to deal with a situation
3058 * where the network delay has increased suddenly.
3059 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3062 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3065 tcp_valid_rtt_meas(sk
, seq_rtt
);
3068 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3071 const struct tcp_sock
*tp
= tcp_sk(sk
);
3072 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3073 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3074 tcp_ack_saw_tstamp(sk
, flag
);
3075 else if (seq_rtt
>= 0)
3076 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3079 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3081 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3082 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3083 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3086 /* Restart timer after forward progress on connection.
3087 * RFC2988 recommends to restart timer to now+rto.
3089 void tcp_rearm_rto(struct sock
*sk
)
3091 struct tcp_sock
*tp
= tcp_sk(sk
);
3093 /* If the retrans timer is currently being used by Fast Open
3094 * for SYN-ACK retrans purpose, stay put.
3096 if (tp
->fastopen_rsk
)
3099 if (!tp
->packets_out
) {
3100 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3102 u32 rto
= inet_csk(sk
)->icsk_rto
;
3103 /* Offset the time elapsed after installing regular RTO */
3104 if (tp
->early_retrans_delayed
) {
3105 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3106 const u32 rto_time_stamp
= TCP_SKB_CB(skb
)->when
+ rto
;
3107 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3108 /* delta may not be positive if the socket is locked
3109 * when the delayed ER timer fires and is rescheduled.
3114 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3117 tp
->early_retrans_delayed
= 0;
3120 /* This function is called when the delayed ER timer fires. TCP enters
3121 * fast recovery and performs fast-retransmit.
3123 void tcp_resume_early_retransmit(struct sock
*sk
)
3125 struct tcp_sock
*tp
= tcp_sk(sk
);
3129 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3130 if (!tp
->do_early_retrans
)
3133 tcp_enter_recovery(sk
, false);
3134 tcp_update_scoreboard(sk
, 1);
3135 tcp_xmit_retransmit_queue(sk
);
3138 /* If we get here, the whole TSO packet has not been acked. */
3139 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3141 struct tcp_sock
*tp
= tcp_sk(sk
);
3144 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3146 packets_acked
= tcp_skb_pcount(skb
);
3147 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3149 packets_acked
-= tcp_skb_pcount(skb
);
3151 if (packets_acked
) {
3152 BUG_ON(tcp_skb_pcount(skb
) == 0);
3153 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3156 return packets_acked
;
3159 /* Remove acknowledged frames from the retransmission queue. If our packet
3160 * is before the ack sequence we can discard it as it's confirmed to have
3161 * arrived at the other end.
3163 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3166 struct tcp_sock
*tp
= tcp_sk(sk
);
3167 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3168 struct sk_buff
*skb
;
3169 u32 now
= tcp_time_stamp
;
3170 int fully_acked
= true;
3173 u32 reord
= tp
->packets_out
;
3174 u32 prior_sacked
= tp
->sacked_out
;
3176 s32 ca_seq_rtt
= -1;
3177 ktime_t last_ackt
= net_invalid_timestamp();
3179 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3180 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3182 u8 sacked
= scb
->sacked
;
3184 /* Determine how many packets and what bytes were acked, tso and else */
3185 if (after(scb
->end_seq
, tp
->snd_una
)) {
3186 if (tcp_skb_pcount(skb
) == 1 ||
3187 !after(tp
->snd_una
, scb
->seq
))
3190 acked_pcount
= tcp_tso_acked(sk
, skb
);
3194 fully_acked
= false;
3196 acked_pcount
= tcp_skb_pcount(skb
);
3199 if (sacked
& TCPCB_RETRANS
) {
3200 if (sacked
& TCPCB_SACKED_RETRANS
)
3201 tp
->retrans_out
-= acked_pcount
;
3202 flag
|= FLAG_RETRANS_DATA_ACKED
;
3205 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3206 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3208 ca_seq_rtt
= now
- scb
->when
;
3209 last_ackt
= skb
->tstamp
;
3211 seq_rtt
= ca_seq_rtt
;
3213 if (!(sacked
& TCPCB_SACKED_ACKED
))
3214 reord
= min(pkts_acked
, reord
);
3217 if (sacked
& TCPCB_SACKED_ACKED
)
3218 tp
->sacked_out
-= acked_pcount
;
3219 if (sacked
& TCPCB_LOST
)
3220 tp
->lost_out
-= acked_pcount
;
3222 tp
->packets_out
-= acked_pcount
;
3223 pkts_acked
+= acked_pcount
;
3225 /* Initial outgoing SYN's get put onto the write_queue
3226 * just like anything else we transmit. It is not
3227 * true data, and if we misinform our callers that
3228 * this ACK acks real data, we will erroneously exit
3229 * connection startup slow start one packet too
3230 * quickly. This is severely frowned upon behavior.
3232 if (!(scb
->tcp_flags
& TCPHDR_SYN
)) {
3233 flag
|= FLAG_DATA_ACKED
;
3235 flag
|= FLAG_SYN_ACKED
;
3236 tp
->retrans_stamp
= 0;
3242 tcp_unlink_write_queue(skb
, sk
);
3243 sk_wmem_free_skb(sk
, skb
);
3244 tp
->scoreboard_skb_hint
= NULL
;
3245 if (skb
== tp
->retransmit_skb_hint
)
3246 tp
->retransmit_skb_hint
= NULL
;
3247 if (skb
== tp
->lost_skb_hint
)
3248 tp
->lost_skb_hint
= NULL
;
3251 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3252 tp
->snd_up
= tp
->snd_una
;
3254 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3255 flag
|= FLAG_SACK_RENEGING
;
3257 if (flag
& FLAG_ACKED
) {
3258 const struct tcp_congestion_ops
*ca_ops
3259 = inet_csk(sk
)->icsk_ca_ops
;
3261 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3262 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3263 tcp_mtup_probe_success(sk
);
3266 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3269 if (tcp_is_reno(tp
)) {
3270 tcp_remove_reno_sacks(sk
, pkts_acked
);
3274 /* Non-retransmitted hole got filled? That's reordering */
3275 if (reord
< prior_fackets
)
3276 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3278 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3279 prior_sacked
- tp
->sacked_out
;
3280 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3283 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3285 if (ca_ops
->pkts_acked
) {
3288 /* Is the ACK triggering packet unambiguous? */
3289 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3290 /* High resolution needed and available? */
3291 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3292 !ktime_equal(last_ackt
,
3293 net_invalid_timestamp()))
3294 rtt_us
= ktime_us_delta(ktime_get_real(),
3296 else if (ca_seq_rtt
>= 0)
3297 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3300 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3304 #if FASTRETRANS_DEBUG > 0
3305 WARN_ON((int)tp
->sacked_out
< 0);
3306 WARN_ON((int)tp
->lost_out
< 0);
3307 WARN_ON((int)tp
->retrans_out
< 0);
3308 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3309 icsk
= inet_csk(sk
);
3311 pr_debug("Leak l=%u %d\n",
3312 tp
->lost_out
, icsk
->icsk_ca_state
);
3315 if (tp
->sacked_out
) {
3316 pr_debug("Leak s=%u %d\n",
3317 tp
->sacked_out
, icsk
->icsk_ca_state
);
3320 if (tp
->retrans_out
) {
3321 pr_debug("Leak r=%u %d\n",
3322 tp
->retrans_out
, icsk
->icsk_ca_state
);
3323 tp
->retrans_out
= 0;
3330 static void tcp_ack_probe(struct sock
*sk
)
3332 const struct tcp_sock
*tp
= tcp_sk(sk
);
3333 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3335 /* Was it a usable window open? */
3337 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3338 icsk
->icsk_backoff
= 0;
3339 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3340 /* Socket must be waked up by subsequent tcp_data_snd_check().
3341 * This function is not for random using!
3344 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3345 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3350 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3352 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3353 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3356 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3358 const struct tcp_sock
*tp
= tcp_sk(sk
);
3359 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3360 !tcp_in_cwnd_reduction(sk
);
3363 /* Check that window update is acceptable.
3364 * The function assumes that snd_una<=ack<=snd_next.
3366 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3367 const u32 ack
, const u32 ack_seq
,
3370 return after(ack
, tp
->snd_una
) ||
3371 after(ack_seq
, tp
->snd_wl1
) ||
3372 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3375 /* Update our send window.
3377 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3378 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3380 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3383 struct tcp_sock
*tp
= tcp_sk(sk
);
3385 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3387 if (likely(!tcp_hdr(skb
)->syn
))
3388 nwin
<<= tp
->rx_opt
.snd_wscale
;
3390 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3391 flag
|= FLAG_WIN_UPDATE
;
3392 tcp_update_wl(tp
, ack_seq
);
3394 if (tp
->snd_wnd
!= nwin
) {
3397 /* Note, it is the only place, where
3398 * fast path is recovered for sending TCP.
3401 tcp_fast_path_check(sk
);
3403 if (nwin
> tp
->max_window
) {
3404 tp
->max_window
= nwin
;
3405 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3415 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3416 * continue in congestion avoidance.
3418 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3420 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3421 tp
->snd_cwnd_cnt
= 0;
3422 tp
->bytes_acked
= 0;
3423 TCP_ECN_queue_cwr(tp
);
3424 tcp_moderate_cwnd(tp
);
3427 /* A conservative spurious RTO response algorithm: reduce cwnd using
3428 * PRR and continue in congestion avoidance.
3430 static void tcp_cwr_spur_to_response(struct sock
*sk
)
3432 tcp_enter_cwr(sk
, 0);
3435 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3437 if (flag
& FLAG_ECE
)
3438 tcp_cwr_spur_to_response(sk
);
3440 tcp_undo_cwr(sk
, true);
3443 /* F-RTO spurious RTO detection algorithm (RFC4138)
3445 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3446 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3447 * window (but not to or beyond highest sequence sent before RTO):
3448 * On First ACK, send two new segments out.
3449 * On Second ACK, RTO was likely spurious. Do spurious response (response
3450 * algorithm is not part of the F-RTO detection algorithm
3451 * given in RFC4138 but can be selected separately).
3452 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3453 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3454 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3455 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3457 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3458 * original window even after we transmit two new data segments.
3461 * on first step, wait until first cumulative ACK arrives, then move to
3462 * the second step. In second step, the next ACK decides.
3464 * F-RTO is implemented (mainly) in four functions:
3465 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3466 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3467 * called when tcp_use_frto() showed green light
3468 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3469 * - tcp_enter_frto_loss() is called if there is not enough evidence
3470 * to prove that the RTO is indeed spurious. It transfers the control
3471 * from F-RTO to the conventional RTO recovery
3473 static bool tcp_process_frto(struct sock
*sk
, int flag
)
3475 struct tcp_sock
*tp
= tcp_sk(sk
);
3477 tcp_verify_left_out(tp
);
3479 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3480 if (flag
& FLAG_DATA_ACKED
)
3481 inet_csk(sk
)->icsk_retransmits
= 0;
3483 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3484 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3485 tp
->undo_marker
= 0;
3487 if (!before(tp
->snd_una
, tp
->frto_highmark
)) {
3488 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3492 if (!tcp_is_sackfrto(tp
)) {
3493 /* RFC4138 shortcoming in step 2; should also have case c):
3494 * ACK isn't duplicate nor advances window, e.g., opposite dir
3497 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3500 if (!(flag
& FLAG_DATA_ACKED
)) {
3501 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3506 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3507 /* Prevent sending of new data. */
3508 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3509 tcp_packets_in_flight(tp
));
3513 if ((tp
->frto_counter
>= 2) &&
3514 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3515 ((flag
& FLAG_DATA_SACKED
) &&
3516 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3517 /* RFC4138 shortcoming (see comment above) */
3518 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3519 (flag
& FLAG_NOT_DUP
))
3522 tcp_enter_frto_loss(sk
, 3, flag
);
3527 if (tp
->frto_counter
== 1) {
3528 /* tcp_may_send_now needs to see updated state */
3529 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3530 tp
->frto_counter
= 2;
3532 if (!tcp_may_send_now(sk
))
3533 tcp_enter_frto_loss(sk
, 2, flag
);
3537 switch (sysctl_tcp_frto_response
) {
3539 tcp_undo_spur_to_response(sk
, flag
);
3542 tcp_conservative_spur_to_response(tp
);
3545 tcp_cwr_spur_to_response(sk
);
3548 tp
->frto_counter
= 0;
3549 tp
->undo_marker
= 0;
3550 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3555 /* RFC 5961 7 [ACK Throttling] */
3556 static void tcp_send_challenge_ack(struct sock
*sk
)
3558 /* unprotected vars, we dont care of overwrites */
3559 static u32 challenge_timestamp
;
3560 static unsigned int challenge_count
;
3561 u32 now
= jiffies
/ HZ
;
3563 if (now
!= challenge_timestamp
) {
3564 challenge_timestamp
= now
;
3565 challenge_count
= 0;
3567 if (++challenge_count
<= sysctl_tcp_challenge_ack_limit
) {
3568 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3573 /* This routine deals with incoming acks, but not outgoing ones. */
3574 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3576 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3577 struct tcp_sock
*tp
= tcp_sk(sk
);
3578 u32 prior_snd_una
= tp
->snd_una
;
3579 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3580 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3581 bool is_dupack
= false;
3582 u32 prior_in_flight
;
3585 int prior_sacked
= tp
->sacked_out
;
3587 bool frto_cwnd
= false;
3589 /* If the ack is older than previous acks
3590 * then we can probably ignore it.
3592 if (before(ack
, prior_snd_una
)) {
3593 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3594 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3595 tcp_send_challenge_ack(sk
);
3601 /* If the ack includes data we haven't sent yet, discard
3602 * this segment (RFC793 Section 3.9).
3604 if (after(ack
, tp
->snd_nxt
))
3607 if (tp
->early_retrans_delayed
)
3610 if (after(ack
, prior_snd_una
))
3611 flag
|= FLAG_SND_UNA_ADVANCED
;
3613 if (sysctl_tcp_abc
) {
3614 if (icsk
->icsk_ca_state
< TCP_CA_CWR
)
3615 tp
->bytes_acked
+= ack
- prior_snd_una
;
3616 else if (icsk
->icsk_ca_state
== TCP_CA_Loss
)
3617 /* we assume just one segment left network */
3618 tp
->bytes_acked
+= min(ack
- prior_snd_una
,
3622 prior_fackets
= tp
->fackets_out
;
3623 prior_in_flight
= tcp_packets_in_flight(tp
);
3625 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3626 /* Window is constant, pure forward advance.
3627 * No more checks are required.
3628 * Note, we use the fact that SND.UNA>=SND.WL2.
3630 tcp_update_wl(tp
, ack_seq
);
3632 flag
|= FLAG_WIN_UPDATE
;
3634 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3636 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3638 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3641 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3643 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3645 if (TCP_SKB_CB(skb
)->sacked
)
3646 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3648 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3651 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3654 /* We passed data and got it acked, remove any soft error
3655 * log. Something worked...
3657 sk
->sk_err_soft
= 0;
3658 icsk
->icsk_probes_out
= 0;
3659 tp
->rcv_tstamp
= tcp_time_stamp
;
3660 prior_packets
= tp
->packets_out
;
3664 /* See if we can take anything off of the retransmit queue. */
3665 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3667 pkts_acked
= prior_packets
- tp
->packets_out
;
3669 if (tp
->frto_counter
)
3670 frto_cwnd
= tcp_process_frto(sk
, flag
);
3671 /* Guarantee sacktag reordering detection against wrap-arounds */
3672 if (before(tp
->frto_highmark
, tp
->snd_una
))
3673 tp
->frto_highmark
= 0;
3675 if (tcp_ack_is_dubious(sk
, flag
)) {
3676 /* Advance CWND, if state allows this. */
3677 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3678 tcp_may_raise_cwnd(sk
, flag
))
3679 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3680 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3681 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3684 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3685 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3688 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3689 struct dst_entry
*dst
= __sk_dst_get(sk
);
3696 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3697 if (flag
& FLAG_DSACKING_ACK
)
3698 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3700 /* If this ack opens up a zero window, clear backoff. It was
3701 * being used to time the probes, and is probably far higher than
3702 * it needs to be for normal retransmission.
3704 if (tcp_send_head(sk
))
3709 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3713 /* If data was SACKed, tag it and see if we should send more data.
3714 * If data was DSACKed, see if we can undo a cwnd reduction.
3716 if (TCP_SKB_CB(skb
)->sacked
) {
3717 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3718 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3722 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3726 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3727 * But, this can also be called on packets in the established flow when
3728 * the fast version below fails.
3730 void tcp_parse_options(const struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3731 const u8
**hvpp
, int estab
,
3732 struct tcp_fastopen_cookie
*foc
)
3734 const unsigned char *ptr
;
3735 const struct tcphdr
*th
= tcp_hdr(skb
);
3736 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3738 ptr
= (const unsigned char *)(th
+ 1);
3739 opt_rx
->saw_tstamp
= 0;
3741 while (length
> 0) {
3742 int opcode
= *ptr
++;
3748 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3753 if (opsize
< 2) /* "silly options" */
3755 if (opsize
> length
)
3756 return; /* don't parse partial options */
3759 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3760 u16 in_mss
= get_unaligned_be16(ptr
);
3762 if (opt_rx
->user_mss
&&
3763 opt_rx
->user_mss
< in_mss
)
3764 in_mss
= opt_rx
->user_mss
;
3765 opt_rx
->mss_clamp
= in_mss
;
3770 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3771 !estab
&& sysctl_tcp_window_scaling
) {
3772 __u8 snd_wscale
= *(__u8
*)ptr
;
3773 opt_rx
->wscale_ok
= 1;
3774 if (snd_wscale
> 14) {
3775 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3780 opt_rx
->snd_wscale
= snd_wscale
;
3783 case TCPOPT_TIMESTAMP
:
3784 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3785 ((estab
&& opt_rx
->tstamp_ok
) ||
3786 (!estab
&& sysctl_tcp_timestamps
))) {
3787 opt_rx
->saw_tstamp
= 1;
3788 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3789 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3792 case TCPOPT_SACK_PERM
:
3793 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3794 !estab
&& sysctl_tcp_sack
) {
3795 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3796 tcp_sack_reset(opt_rx
);
3801 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3802 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3804 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3807 #ifdef CONFIG_TCP_MD5SIG
3810 * The MD5 Hash has already been
3811 * checked (see tcp_v{4,6}_do_rcv()).
3816 /* This option is variable length.
3819 case TCPOLEN_COOKIE_BASE
:
3820 /* not yet implemented */
3822 case TCPOLEN_COOKIE_PAIR
:
3823 /* not yet implemented */
3825 case TCPOLEN_COOKIE_MIN
+0:
3826 case TCPOLEN_COOKIE_MIN
+2:
3827 case TCPOLEN_COOKIE_MIN
+4:
3828 case TCPOLEN_COOKIE_MIN
+6:
3829 case TCPOLEN_COOKIE_MAX
:
3830 /* 16-bit multiple */
3831 opt_rx
->cookie_plus
= opsize
;
3841 /* Fast Open option shares code 254 using a
3842 * 16 bits magic number. It's valid only in
3843 * SYN or SYN-ACK with an even size.
3845 if (opsize
< TCPOLEN_EXP_FASTOPEN_BASE
||
3846 get_unaligned_be16(ptr
) != TCPOPT_FASTOPEN_MAGIC
||
3847 foc
== NULL
|| !th
->syn
|| (opsize
& 1))
3849 foc
->len
= opsize
- TCPOLEN_EXP_FASTOPEN_BASE
;
3850 if (foc
->len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3851 foc
->len
<= TCP_FASTOPEN_COOKIE_MAX
)
3852 memcpy(foc
->val
, ptr
+ 2, foc
->len
);
3853 else if (foc
->len
!= 0)
3863 EXPORT_SYMBOL(tcp_parse_options
);
3865 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3867 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3869 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3870 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3871 tp
->rx_opt
.saw_tstamp
= 1;
3873 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3875 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3881 /* Fast parse options. This hopes to only see timestamps.
3882 * If it is wrong it falls back on tcp_parse_options().
3884 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3885 const struct tcphdr
*th
,
3886 struct tcp_sock
*tp
, const u8
**hvpp
)
3888 /* In the spirit of fast parsing, compare doff directly to constant
3889 * values. Because equality is used, short doff can be ignored here.
3891 if (th
->doff
== (sizeof(*th
) / 4)) {
3892 tp
->rx_opt
.saw_tstamp
= 0;
3894 } else if (tp
->rx_opt
.tstamp_ok
&&
3895 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3896 if (tcp_parse_aligned_timestamp(tp
, th
))
3899 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1, NULL
);
3903 #ifdef CONFIG_TCP_MD5SIG
3905 * Parse MD5 Signature option
3907 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3909 int length
= (th
->doff
<< 2) - sizeof(*th
);
3910 const u8
*ptr
= (const u8
*)(th
+ 1);
3912 /* If the TCP option is too short, we can short cut */
3913 if (length
< TCPOLEN_MD5SIG
)
3916 while (length
> 0) {
3917 int opcode
= *ptr
++;
3928 if (opsize
< 2 || opsize
> length
)
3930 if (opcode
== TCPOPT_MD5SIG
)
3931 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3938 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3941 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3943 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3944 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3947 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3949 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3950 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3951 * extra check below makes sure this can only happen
3952 * for pure ACK frames. -DaveM
3954 * Not only, also it occurs for expired timestamps.
3957 if (tcp_paws_check(&tp
->rx_opt
, 0))
3958 tcp_store_ts_recent(tp
);
3962 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3964 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3965 * it can pass through stack. So, the following predicate verifies that
3966 * this segment is not used for anything but congestion avoidance or
3967 * fast retransmit. Moreover, we even are able to eliminate most of such
3968 * second order effects, if we apply some small "replay" window (~RTO)
3969 * to timestamp space.
3971 * All these measures still do not guarantee that we reject wrapped ACKs
3972 * on networks with high bandwidth, when sequence space is recycled fastly,
3973 * but it guarantees that such events will be very rare and do not affect
3974 * connection seriously. This doesn't look nice, but alas, PAWS is really
3977 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3978 * states that events when retransmit arrives after original data are rare.
3979 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3980 * the biggest problem on large power networks even with minor reordering.
3981 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3982 * up to bandwidth of 18Gigabit/sec. 8) ]
3985 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3987 const struct tcp_sock
*tp
= tcp_sk(sk
);
3988 const struct tcphdr
*th
= tcp_hdr(skb
);
3989 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3990 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3992 return (/* 1. Pure ACK with correct sequence number. */
3993 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3995 /* 2. ... and duplicate ACK. */
3996 ack
== tp
->snd_una
&&
3998 /* 3. ... and does not update window. */
3999 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4001 /* 4. ... and sits in replay window. */
4002 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
4005 static inline bool tcp_paws_discard(const struct sock
*sk
,
4006 const struct sk_buff
*skb
)
4008 const struct tcp_sock
*tp
= tcp_sk(sk
);
4010 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4011 !tcp_disordered_ack(sk
, skb
);
4014 /* Check segment sequence number for validity.
4016 * Segment controls are considered valid, if the segment
4017 * fits to the window after truncation to the window. Acceptability
4018 * of data (and SYN, FIN, of course) is checked separately.
4019 * See tcp_data_queue(), for example.
4021 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4022 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4023 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4024 * (borrowed from freebsd)
4027 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4029 return !before(end_seq
, tp
->rcv_wup
) &&
4030 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4033 /* When we get a reset we do this. */
4034 void tcp_reset(struct sock
*sk
)
4036 /* We want the right error as BSD sees it (and indeed as we do). */
4037 switch (sk
->sk_state
) {
4039 sk
->sk_err
= ECONNREFUSED
;
4041 case TCP_CLOSE_WAIT
:
4047 sk
->sk_err
= ECONNRESET
;
4049 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4052 if (!sock_flag(sk
, SOCK_DEAD
))
4053 sk
->sk_error_report(sk
);
4059 * Process the FIN bit. This now behaves as it is supposed to work
4060 * and the FIN takes effect when it is validly part of sequence
4061 * space. Not before when we get holes.
4063 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4064 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4067 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4068 * close and we go into CLOSING (and later onto TIME-WAIT)
4070 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4072 static void tcp_fin(struct sock
*sk
)
4074 struct tcp_sock
*tp
= tcp_sk(sk
);
4076 inet_csk_schedule_ack(sk
);
4078 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4079 sock_set_flag(sk
, SOCK_DONE
);
4081 switch (sk
->sk_state
) {
4083 case TCP_ESTABLISHED
:
4084 /* Move to CLOSE_WAIT */
4085 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4086 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4089 case TCP_CLOSE_WAIT
:
4091 /* Received a retransmission of the FIN, do
4096 /* RFC793: Remain in the LAST-ACK state. */
4100 /* This case occurs when a simultaneous close
4101 * happens, we must ack the received FIN and
4102 * enter the CLOSING state.
4105 tcp_set_state(sk
, TCP_CLOSING
);
4108 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4110 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4113 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4114 * cases we should never reach this piece of code.
4116 pr_err("%s: Impossible, sk->sk_state=%d\n",
4117 __func__
, sk
->sk_state
);
4121 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4122 * Probably, we should reset in this case. For now drop them.
4124 __skb_queue_purge(&tp
->out_of_order_queue
);
4125 if (tcp_is_sack(tp
))
4126 tcp_sack_reset(&tp
->rx_opt
);
4129 if (!sock_flag(sk
, SOCK_DEAD
)) {
4130 sk
->sk_state_change(sk
);
4132 /* Do not send POLL_HUP for half duplex close. */
4133 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4134 sk
->sk_state
== TCP_CLOSE
)
4135 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4137 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4141 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4144 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4145 if (before(seq
, sp
->start_seq
))
4146 sp
->start_seq
= seq
;
4147 if (after(end_seq
, sp
->end_seq
))
4148 sp
->end_seq
= end_seq
;
4154 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4156 struct tcp_sock
*tp
= tcp_sk(sk
);
4158 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4161 if (before(seq
, tp
->rcv_nxt
))
4162 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4164 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4166 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4168 tp
->rx_opt
.dsack
= 1;
4169 tp
->duplicate_sack
[0].start_seq
= seq
;
4170 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4174 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4176 struct tcp_sock
*tp
= tcp_sk(sk
);
4178 if (!tp
->rx_opt
.dsack
)
4179 tcp_dsack_set(sk
, seq
, end_seq
);
4181 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4184 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4186 struct tcp_sock
*tp
= tcp_sk(sk
);
4188 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4189 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4190 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4191 tcp_enter_quickack_mode(sk
);
4193 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4194 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4196 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4197 end_seq
= tp
->rcv_nxt
;
4198 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4205 /* These routines update the SACK block as out-of-order packets arrive or
4206 * in-order packets close up the sequence space.
4208 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4211 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4212 struct tcp_sack_block
*swalk
= sp
+ 1;
4214 /* See if the recent change to the first SACK eats into
4215 * or hits the sequence space of other SACK blocks, if so coalesce.
4217 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4218 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4221 /* Zap SWALK, by moving every further SACK up by one slot.
4222 * Decrease num_sacks.
4224 tp
->rx_opt
.num_sacks
--;
4225 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4229 this_sack
++, swalk
++;
4233 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4235 struct tcp_sock
*tp
= tcp_sk(sk
);
4236 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4237 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4243 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4244 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4245 /* Rotate this_sack to the first one. */
4246 for (; this_sack
> 0; this_sack
--, sp
--)
4247 swap(*sp
, *(sp
- 1));
4249 tcp_sack_maybe_coalesce(tp
);
4254 /* Could not find an adjacent existing SACK, build a new one,
4255 * put it at the front, and shift everyone else down. We
4256 * always know there is at least one SACK present already here.
4258 * If the sack array is full, forget about the last one.
4260 if (this_sack
>= TCP_NUM_SACKS
) {
4262 tp
->rx_opt
.num_sacks
--;
4265 for (; this_sack
> 0; this_sack
--, sp
--)
4269 /* Build the new head SACK, and we're done. */
4270 sp
->start_seq
= seq
;
4271 sp
->end_seq
= end_seq
;
4272 tp
->rx_opt
.num_sacks
++;
4275 /* RCV.NXT advances, some SACKs should be eaten. */
4277 static void tcp_sack_remove(struct tcp_sock
*tp
)
4279 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4280 int num_sacks
= tp
->rx_opt
.num_sacks
;
4283 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4284 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4285 tp
->rx_opt
.num_sacks
= 0;
4289 for (this_sack
= 0; this_sack
< num_sacks
;) {
4290 /* Check if the start of the sack is covered by RCV.NXT. */
4291 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4294 /* RCV.NXT must cover all the block! */
4295 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4297 /* Zap this SACK, by moving forward any other SACKS. */
4298 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4299 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4306 tp
->rx_opt
.num_sacks
= num_sacks
;
4309 /* This one checks to see if we can put data from the
4310 * out_of_order queue into the receive_queue.
4312 static void tcp_ofo_queue(struct sock
*sk
)
4314 struct tcp_sock
*tp
= tcp_sk(sk
);
4315 __u32 dsack_high
= tp
->rcv_nxt
;
4316 struct sk_buff
*skb
;
4318 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4319 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4322 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4323 __u32 dsack
= dsack_high
;
4324 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4325 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4326 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4329 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4330 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4331 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4335 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4336 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4337 TCP_SKB_CB(skb
)->end_seq
);
4339 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4340 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4341 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4342 if (tcp_hdr(skb
)->fin
)
4347 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4348 static int tcp_prune_queue(struct sock
*sk
);
4350 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4353 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4354 !sk_rmem_schedule(sk
, skb
, size
)) {
4356 if (tcp_prune_queue(sk
) < 0)
4359 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4360 if (!tcp_prune_ofo_queue(sk
))
4363 if (!sk_rmem_schedule(sk
, skb
, size
))
4371 * tcp_try_coalesce - try to merge skb to prior one
4374 * @from: buffer to add in queue
4375 * @fragstolen: pointer to boolean
4377 * Before queueing skb @from after @to, try to merge them
4378 * to reduce overall memory use and queue lengths, if cost is small.
4379 * Packets in ofo or receive queues can stay a long time.
4380 * Better try to coalesce them right now to avoid future collapses.
4381 * Returns true if caller should free @from instead of queueing it
4383 static bool tcp_try_coalesce(struct sock
*sk
,
4385 struct sk_buff
*from
,
4390 *fragstolen
= false;
4392 if (tcp_hdr(from
)->fin
)
4395 /* Its possible this segment overlaps with prior segment in queue */
4396 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4399 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4402 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4403 sk_mem_charge(sk
, delta
);
4404 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4405 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4406 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4410 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4412 struct tcp_sock
*tp
= tcp_sk(sk
);
4413 struct sk_buff
*skb1
;
4416 TCP_ECN_check_ce(tp
, skb
);
4418 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4419 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4424 /* Disable header prediction. */
4426 inet_csk_schedule_ack(sk
);
4428 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4429 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4430 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4432 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4434 /* Initial out of order segment, build 1 SACK. */
4435 if (tcp_is_sack(tp
)) {
4436 tp
->rx_opt
.num_sacks
= 1;
4437 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4438 tp
->selective_acks
[0].end_seq
=
4439 TCP_SKB_CB(skb
)->end_seq
;
4441 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4445 seq
= TCP_SKB_CB(skb
)->seq
;
4446 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4448 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4451 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4452 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4454 kfree_skb_partial(skb
, fragstolen
);
4458 if (!tp
->rx_opt
.num_sacks
||
4459 tp
->selective_acks
[0].end_seq
!= seq
)
4462 /* Common case: data arrive in order after hole. */
4463 tp
->selective_acks
[0].end_seq
= end_seq
;
4467 /* Find place to insert this segment. */
4469 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4471 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4475 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4478 /* Do skb overlap to previous one? */
4479 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4480 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4481 /* All the bits are present. Drop. */
4482 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4485 tcp_dsack_set(sk
, seq
, end_seq
);
4488 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4489 /* Partial overlap. */
4490 tcp_dsack_set(sk
, seq
,
4491 TCP_SKB_CB(skb1
)->end_seq
);
4493 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4497 skb1
= skb_queue_prev(
4498 &tp
->out_of_order_queue
,
4503 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4505 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4507 /* And clean segments covered by new one as whole. */
4508 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4509 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4511 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4513 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4514 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4518 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4519 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4520 TCP_SKB_CB(skb1
)->end_seq
);
4521 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4526 if (tcp_is_sack(tp
))
4527 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4530 skb_set_owner_r(skb
, sk
);
4533 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4537 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4539 __skb_pull(skb
, hdrlen
);
4541 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4542 tcp_sk(sk
)->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4544 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4545 skb_set_owner_r(skb
, sk
);
4550 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4552 struct sk_buff
*skb
= NULL
;
4559 skb
= alloc_skb(size
+ sizeof(*th
), sk
->sk_allocation
);
4563 if (tcp_try_rmem_schedule(sk
, skb
, size
+ sizeof(*th
)))
4566 th
= (struct tcphdr
*)skb_put(skb
, sizeof(*th
));
4567 skb_reset_transport_header(skb
);
4568 memset(th
, 0, sizeof(*th
));
4570 if (memcpy_fromiovec(skb_put(skb
, size
), msg
->msg_iov
, size
))
4573 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4574 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4575 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4577 if (tcp_queue_rcv(sk
, skb
, sizeof(*th
), &fragstolen
)) {
4578 WARN_ON_ONCE(fragstolen
); /* should not happen */
4589 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4591 const struct tcphdr
*th
= tcp_hdr(skb
);
4592 struct tcp_sock
*tp
= tcp_sk(sk
);
4594 bool fragstolen
= false;
4596 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4600 __skb_pull(skb
, th
->doff
* 4);
4602 TCP_ECN_accept_cwr(tp
, skb
);
4604 tp
->rx_opt
.dsack
= 0;
4606 /* Queue data for delivery to the user.
4607 * Packets in sequence go to the receive queue.
4608 * Out of sequence packets to the out_of_order_queue.
4610 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4611 if (tcp_receive_window(tp
) == 0)
4614 /* Ok. In sequence. In window. */
4615 if (tp
->ucopy
.task
== current
&&
4616 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4617 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4618 int chunk
= min_t(unsigned int, skb
->len
,
4621 __set_current_state(TASK_RUNNING
);
4624 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4625 tp
->ucopy
.len
-= chunk
;
4626 tp
->copied_seq
+= chunk
;
4627 eaten
= (chunk
== skb
->len
);
4628 tcp_rcv_space_adjust(sk
);
4636 tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4639 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4641 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4643 tcp_event_data_recv(sk
, skb
);
4647 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4650 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4651 * gap in queue is filled.
4653 if (skb_queue_empty(&tp
->out_of_order_queue
))
4654 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4657 if (tp
->rx_opt
.num_sacks
)
4658 tcp_sack_remove(tp
);
4660 tcp_fast_path_check(sk
);
4663 kfree_skb_partial(skb
, fragstolen
);
4664 if (!sock_flag(sk
, SOCK_DEAD
))
4665 sk
->sk_data_ready(sk
, 0);
4669 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4670 /* A retransmit, 2nd most common case. Force an immediate ack. */
4671 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4672 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4675 tcp_enter_quickack_mode(sk
);
4676 inet_csk_schedule_ack(sk
);
4682 /* Out of window. F.e. zero window probe. */
4683 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4686 tcp_enter_quickack_mode(sk
);
4688 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4689 /* Partial packet, seq < rcv_next < end_seq */
4690 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4691 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4692 TCP_SKB_CB(skb
)->end_seq
);
4694 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4696 /* If window is closed, drop tail of packet. But after
4697 * remembering D-SACK for its head made in previous line.
4699 if (!tcp_receive_window(tp
))
4704 tcp_data_queue_ofo(sk
, skb
);
4707 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4708 struct sk_buff_head
*list
)
4710 struct sk_buff
*next
= NULL
;
4712 if (!skb_queue_is_last(list
, skb
))
4713 next
= skb_queue_next(list
, skb
);
4715 __skb_unlink(skb
, list
);
4717 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4722 /* Collapse contiguous sequence of skbs head..tail with
4723 * sequence numbers start..end.
4725 * If tail is NULL, this means until the end of the list.
4727 * Segments with FIN/SYN are not collapsed (only because this
4731 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4732 struct sk_buff
*head
, struct sk_buff
*tail
,
4735 struct sk_buff
*skb
, *n
;
4738 /* First, check that queue is collapsible and find
4739 * the point where collapsing can be useful. */
4743 skb_queue_walk_from_safe(list
, skb
, n
) {
4746 /* No new bits? It is possible on ofo queue. */
4747 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4748 skb
= tcp_collapse_one(sk
, skb
, list
);
4754 /* The first skb to collapse is:
4756 * - bloated or contains data before "start" or
4757 * overlaps to the next one.
4759 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4760 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4761 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4762 end_of_skbs
= false;
4766 if (!skb_queue_is_last(list
, skb
)) {
4767 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4769 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4770 end_of_skbs
= false;
4775 /* Decided to skip this, advance start seq. */
4776 start
= TCP_SKB_CB(skb
)->end_seq
;
4778 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4781 while (before(start
, end
)) {
4782 struct sk_buff
*nskb
;
4783 unsigned int header
= skb_headroom(skb
);
4784 int copy
= SKB_MAX_ORDER(header
, 0);
4786 /* Too big header? This can happen with IPv6. */
4789 if (end
- start
< copy
)
4791 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4795 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4796 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4798 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4800 skb_reserve(nskb
, header
);
4801 memcpy(nskb
->head
, skb
->head
, header
);
4802 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4803 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4804 __skb_queue_before(list
, skb
, nskb
);
4805 skb_set_owner_r(nskb
, sk
);
4807 /* Copy data, releasing collapsed skbs. */
4809 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4810 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4814 size
= min(copy
, size
);
4815 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4817 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4821 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4822 skb
= tcp_collapse_one(sk
, skb
, list
);
4825 tcp_hdr(skb
)->syn
||
4833 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4834 * and tcp_collapse() them until all the queue is collapsed.
4836 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4838 struct tcp_sock
*tp
= tcp_sk(sk
);
4839 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4840 struct sk_buff
*head
;
4846 start
= TCP_SKB_CB(skb
)->seq
;
4847 end
= TCP_SKB_CB(skb
)->end_seq
;
4851 struct sk_buff
*next
= NULL
;
4853 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4854 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4857 /* Segment is terminated when we see gap or when
4858 * we are at the end of all the queue. */
4860 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4861 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4862 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4863 head
, skb
, start
, end
);
4867 /* Start new segment */
4868 start
= TCP_SKB_CB(skb
)->seq
;
4869 end
= TCP_SKB_CB(skb
)->end_seq
;
4871 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4872 start
= TCP_SKB_CB(skb
)->seq
;
4873 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4874 end
= TCP_SKB_CB(skb
)->end_seq
;
4880 * Purge the out-of-order queue.
4881 * Return true if queue was pruned.
4883 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4885 struct tcp_sock
*tp
= tcp_sk(sk
);
4888 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4889 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4890 __skb_queue_purge(&tp
->out_of_order_queue
);
4892 /* Reset SACK state. A conforming SACK implementation will
4893 * do the same at a timeout based retransmit. When a connection
4894 * is in a sad state like this, we care only about integrity
4895 * of the connection not performance.
4897 if (tp
->rx_opt
.sack_ok
)
4898 tcp_sack_reset(&tp
->rx_opt
);
4905 /* Reduce allocated memory if we can, trying to get
4906 * the socket within its memory limits again.
4908 * Return less than zero if we should start dropping frames
4909 * until the socket owning process reads some of the data
4910 * to stabilize the situation.
4912 static int tcp_prune_queue(struct sock
*sk
)
4914 struct tcp_sock
*tp
= tcp_sk(sk
);
4916 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4918 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4920 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4921 tcp_clamp_window(sk
);
4922 else if (sk_under_memory_pressure(sk
))
4923 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4925 tcp_collapse_ofo_queue(sk
);
4926 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4927 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4928 skb_peek(&sk
->sk_receive_queue
),
4930 tp
->copied_seq
, tp
->rcv_nxt
);
4933 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4936 /* Collapsing did not help, destructive actions follow.
4937 * This must not ever occur. */
4939 tcp_prune_ofo_queue(sk
);
4941 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4944 /* If we are really being abused, tell the caller to silently
4945 * drop receive data on the floor. It will get retransmitted
4946 * and hopefully then we'll have sufficient space.
4948 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4950 /* Massive buffer overcommit. */
4955 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4956 * As additional protections, we do not touch cwnd in retransmission phases,
4957 * and if application hit its sndbuf limit recently.
4959 void tcp_cwnd_application_limited(struct sock
*sk
)
4961 struct tcp_sock
*tp
= tcp_sk(sk
);
4963 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4964 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4965 /* Limited by application or receiver window. */
4966 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4967 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4968 if (win_used
< tp
->snd_cwnd
) {
4969 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4970 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4972 tp
->snd_cwnd_used
= 0;
4974 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4977 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4979 const struct tcp_sock
*tp
= tcp_sk(sk
);
4981 /* If the user specified a specific send buffer setting, do
4984 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4987 /* If we are under global TCP memory pressure, do not expand. */
4988 if (sk_under_memory_pressure(sk
))
4991 /* If we are under soft global TCP memory pressure, do not expand. */
4992 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4995 /* If we filled the congestion window, do not expand. */
4996 if (tp
->packets_out
>= tp
->snd_cwnd
)
5002 /* When incoming ACK allowed to free some skb from write_queue,
5003 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5004 * on the exit from tcp input handler.
5006 * PROBLEM: sndbuf expansion does not work well with largesend.
5008 static void tcp_new_space(struct sock
*sk
)
5010 struct tcp_sock
*tp
= tcp_sk(sk
);
5012 if (tcp_should_expand_sndbuf(sk
)) {
5013 int sndmem
= SKB_TRUESIZE(max_t(u32
,
5014 tp
->rx_opt
.mss_clamp
,
5017 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
5018 tp
->reordering
+ 1);
5019 sndmem
*= 2 * demanded
;
5020 if (sndmem
> sk
->sk_sndbuf
)
5021 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
5022 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5025 sk
->sk_write_space(sk
);
5028 static void tcp_check_space(struct sock
*sk
)
5030 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5031 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5032 if (sk
->sk_socket
&&
5033 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5038 static inline void tcp_data_snd_check(struct sock
*sk
)
5040 tcp_push_pending_frames(sk
);
5041 tcp_check_space(sk
);
5045 * Check if sending an ack is needed.
5047 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5049 struct tcp_sock
*tp
= tcp_sk(sk
);
5051 /* More than one full frame received... */
5052 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5053 /* ... and right edge of window advances far enough.
5054 * (tcp_recvmsg() will send ACK otherwise). Or...
5056 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5057 /* We ACK each frame or... */
5058 tcp_in_quickack_mode(sk
) ||
5059 /* We have out of order data. */
5060 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5061 /* Then ack it now */
5064 /* Else, send delayed ack. */
5065 tcp_send_delayed_ack(sk
);
5069 static inline void tcp_ack_snd_check(struct sock
*sk
)
5071 if (!inet_csk_ack_scheduled(sk
)) {
5072 /* We sent a data segment already. */
5075 __tcp_ack_snd_check(sk
, 1);
5079 * This routine is only called when we have urgent data
5080 * signaled. Its the 'slow' part of tcp_urg. It could be
5081 * moved inline now as tcp_urg is only called from one
5082 * place. We handle URGent data wrong. We have to - as
5083 * BSD still doesn't use the correction from RFC961.
5084 * For 1003.1g we should support a new option TCP_STDURG to permit
5085 * either form (or just set the sysctl tcp_stdurg).
5088 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5090 struct tcp_sock
*tp
= tcp_sk(sk
);
5091 u32 ptr
= ntohs(th
->urg_ptr
);
5093 if (ptr
&& !sysctl_tcp_stdurg
)
5095 ptr
+= ntohl(th
->seq
);
5097 /* Ignore urgent data that we've already seen and read. */
5098 if (after(tp
->copied_seq
, ptr
))
5101 /* Do not replay urg ptr.
5103 * NOTE: interesting situation not covered by specs.
5104 * Misbehaving sender may send urg ptr, pointing to segment,
5105 * which we already have in ofo queue. We are not able to fetch
5106 * such data and will stay in TCP_URG_NOTYET until will be eaten
5107 * by recvmsg(). Seems, we are not obliged to handle such wicked
5108 * situations. But it is worth to think about possibility of some
5109 * DoSes using some hypothetical application level deadlock.
5111 if (before(ptr
, tp
->rcv_nxt
))
5114 /* Do we already have a newer (or duplicate) urgent pointer? */
5115 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5118 /* Tell the world about our new urgent pointer. */
5121 /* We may be adding urgent data when the last byte read was
5122 * urgent. To do this requires some care. We cannot just ignore
5123 * tp->copied_seq since we would read the last urgent byte again
5124 * as data, nor can we alter copied_seq until this data arrives
5125 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5127 * NOTE. Double Dutch. Rendering to plain English: author of comment
5128 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5129 * and expect that both A and B disappear from stream. This is _wrong_.
5130 * Though this happens in BSD with high probability, this is occasional.
5131 * Any application relying on this is buggy. Note also, that fix "works"
5132 * only in this artificial test. Insert some normal data between A and B and we will
5133 * decline of BSD again. Verdict: it is better to remove to trap
5136 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5137 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5138 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5140 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5141 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5146 tp
->urg_data
= TCP_URG_NOTYET
;
5149 /* Disable header prediction. */
5153 /* This is the 'fast' part of urgent handling. */
5154 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5156 struct tcp_sock
*tp
= tcp_sk(sk
);
5158 /* Check if we get a new urgent pointer - normally not. */
5160 tcp_check_urg(sk
, th
);
5162 /* Do we wait for any urgent data? - normally not... */
5163 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5164 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5167 /* Is the urgent pointer pointing into this packet? */
5168 if (ptr
< skb
->len
) {
5170 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5172 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5173 if (!sock_flag(sk
, SOCK_DEAD
))
5174 sk
->sk_data_ready(sk
, 0);
5179 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5181 struct tcp_sock
*tp
= tcp_sk(sk
);
5182 int chunk
= skb
->len
- hlen
;
5186 if (skb_csum_unnecessary(skb
))
5187 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5189 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5193 tp
->ucopy
.len
-= chunk
;
5194 tp
->copied_seq
+= chunk
;
5195 tcp_rcv_space_adjust(sk
);
5202 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5203 struct sk_buff
*skb
)
5207 if (sock_owned_by_user(sk
)) {
5209 result
= __tcp_checksum_complete(skb
);
5212 result
= __tcp_checksum_complete(skb
);
5217 static inline bool tcp_checksum_complete_user(struct sock
*sk
,
5218 struct sk_buff
*skb
)
5220 return !skb_csum_unnecessary(skb
) &&
5221 __tcp_checksum_complete_user(sk
, skb
);
5224 #ifdef CONFIG_NET_DMA
5225 static bool tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5228 struct tcp_sock
*tp
= tcp_sk(sk
);
5229 int chunk
= skb
->len
- hlen
;
5231 bool copied_early
= false;
5233 if (tp
->ucopy
.wakeup
)
5236 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5237 tp
->ucopy
.dma_chan
= net_dma_find_channel();
5239 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5241 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5243 tp
->ucopy
.iov
, chunk
,
5244 tp
->ucopy
.pinned_list
);
5249 tp
->ucopy
.dma_cookie
= dma_cookie
;
5250 copied_early
= true;
5252 tp
->ucopy
.len
-= chunk
;
5253 tp
->copied_seq
+= chunk
;
5254 tcp_rcv_space_adjust(sk
);
5256 if ((tp
->ucopy
.len
== 0) ||
5257 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5258 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5259 tp
->ucopy
.wakeup
= 1;
5260 sk
->sk_data_ready(sk
, 0);
5262 } else if (chunk
> 0) {
5263 tp
->ucopy
.wakeup
= 1;
5264 sk
->sk_data_ready(sk
, 0);
5267 return copied_early
;
5269 #endif /* CONFIG_NET_DMA */
5271 /* Does PAWS and seqno based validation of an incoming segment, flags will
5272 * play significant role here.
5274 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5275 const struct tcphdr
*th
, int syn_inerr
)
5277 const u8
*hash_location
;
5278 struct tcp_sock
*tp
= tcp_sk(sk
);
5280 /* RFC1323: H1. Apply PAWS check first. */
5281 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5282 tp
->rx_opt
.saw_tstamp
&&
5283 tcp_paws_discard(sk
, skb
)) {
5285 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5286 tcp_send_dupack(sk
, skb
);
5289 /* Reset is accepted even if it did not pass PAWS. */
5292 /* Step 1: check sequence number */
5293 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5294 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5295 * (RST) segments are validated by checking their SEQ-fields."
5296 * And page 69: "If an incoming segment is not acceptable,
5297 * an acknowledgment should be sent in reply (unless the RST
5298 * bit is set, if so drop the segment and return)".
5303 tcp_send_dupack(sk
, skb
);
5308 /* Step 2: check RST bit */
5311 * If sequence number exactly matches RCV.NXT, then
5312 * RESET the connection
5314 * Send a challenge ACK
5316 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
)
5319 tcp_send_challenge_ack(sk
);
5323 /* step 3: check security and precedence [ignored] */
5325 /* step 4: Check for a SYN
5326 * RFC 5691 4.2 : Send a challenge ack
5331 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5332 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5333 tcp_send_challenge_ack(sk
);
5345 * TCP receive function for the ESTABLISHED state.
5347 * It is split into a fast path and a slow path. The fast path is
5349 * - A zero window was announced from us - zero window probing
5350 * is only handled properly in the slow path.
5351 * - Out of order segments arrived.
5352 * - Urgent data is expected.
5353 * - There is no buffer space left
5354 * - Unexpected TCP flags/window values/header lengths are received
5355 * (detected by checking the TCP header against pred_flags)
5356 * - Data is sent in both directions. Fast path only supports pure senders
5357 * or pure receivers (this means either the sequence number or the ack
5358 * value must stay constant)
5359 * - Unexpected TCP option.
5361 * When these conditions are not satisfied it drops into a standard
5362 * receive procedure patterned after RFC793 to handle all cases.
5363 * The first three cases are guaranteed by proper pred_flags setting,
5364 * the rest is checked inline. Fast processing is turned on in
5365 * tcp_data_queue when everything is OK.
5367 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5368 const struct tcphdr
*th
, unsigned int len
)
5370 struct tcp_sock
*tp
= tcp_sk(sk
);
5372 if (unlikely(sk
->sk_rx_dst
== NULL
))
5373 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5375 * Header prediction.
5376 * The code loosely follows the one in the famous
5377 * "30 instruction TCP receive" Van Jacobson mail.
5379 * Van's trick is to deposit buffers into socket queue
5380 * on a device interrupt, to call tcp_recv function
5381 * on the receive process context and checksum and copy
5382 * the buffer to user space. smart...
5384 * Our current scheme is not silly either but we take the
5385 * extra cost of the net_bh soft interrupt processing...
5386 * We do checksum and copy also but from device to kernel.
5389 tp
->rx_opt
.saw_tstamp
= 0;
5391 /* pred_flags is 0xS?10 << 16 + snd_wnd
5392 * if header_prediction is to be made
5393 * 'S' will always be tp->tcp_header_len >> 2
5394 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5395 * turn it off (when there are holes in the receive
5396 * space for instance)
5397 * PSH flag is ignored.
5400 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5401 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5402 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5403 int tcp_header_len
= tp
->tcp_header_len
;
5405 /* Timestamp header prediction: tcp_header_len
5406 * is automatically equal to th->doff*4 due to pred_flags
5410 /* Check timestamp */
5411 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5412 /* No? Slow path! */
5413 if (!tcp_parse_aligned_timestamp(tp
, th
))
5416 /* If PAWS failed, check it more carefully in slow path */
5417 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5420 /* DO NOT update ts_recent here, if checksum fails
5421 * and timestamp was corrupted part, it will result
5422 * in a hung connection since we will drop all
5423 * future packets due to the PAWS test.
5427 if (len
<= tcp_header_len
) {
5428 /* Bulk data transfer: sender */
5429 if (len
== tcp_header_len
) {
5430 /* Predicted packet is in window by definition.
5431 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5432 * Hence, check seq<=rcv_wup reduces to:
5434 if (tcp_header_len
==
5435 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5436 tp
->rcv_nxt
== tp
->rcv_wup
)
5437 tcp_store_ts_recent(tp
);
5439 /* We know that such packets are checksummed
5442 tcp_ack(sk
, skb
, 0);
5444 tcp_data_snd_check(sk
);
5446 } else { /* Header too small */
5447 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5452 int copied_early
= 0;
5453 bool fragstolen
= false;
5455 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5456 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5457 #ifdef CONFIG_NET_DMA
5458 if (tp
->ucopy
.task
== current
&&
5459 sock_owned_by_user(sk
) &&
5460 tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5465 if (tp
->ucopy
.task
== current
&&
5466 sock_owned_by_user(sk
) && !copied_early
) {
5467 __set_current_state(TASK_RUNNING
);
5469 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5473 /* Predicted packet is in window by definition.
5474 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5475 * Hence, check seq<=rcv_wup reduces to:
5477 if (tcp_header_len
==
5478 (sizeof(struct tcphdr
) +
5479 TCPOLEN_TSTAMP_ALIGNED
) &&
5480 tp
->rcv_nxt
== tp
->rcv_wup
)
5481 tcp_store_ts_recent(tp
);
5483 tcp_rcv_rtt_measure_ts(sk
, skb
);
5485 __skb_pull(skb
, tcp_header_len
);
5486 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5487 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5490 tcp_cleanup_rbuf(sk
, skb
->len
);
5493 if (tcp_checksum_complete_user(sk
, skb
))
5496 /* Predicted packet is in window by definition.
5497 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5498 * Hence, check seq<=rcv_wup reduces to:
5500 if (tcp_header_len
==
5501 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5502 tp
->rcv_nxt
== tp
->rcv_wup
)
5503 tcp_store_ts_recent(tp
);
5505 tcp_rcv_rtt_measure_ts(sk
, skb
);
5507 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5510 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5512 /* Bulk data transfer: receiver */
5513 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5517 tcp_event_data_recv(sk
, skb
);
5519 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5520 /* Well, only one small jumplet in fast path... */
5521 tcp_ack(sk
, skb
, FLAG_DATA
);
5522 tcp_data_snd_check(sk
);
5523 if (!inet_csk_ack_scheduled(sk
))
5527 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5528 __tcp_ack_snd_check(sk
, 0);
5530 #ifdef CONFIG_NET_DMA
5532 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5536 kfree_skb_partial(skb
, fragstolen
);
5537 sk
->sk_data_ready(sk
, 0);
5543 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5546 if (!th
->ack
&& !th
->rst
)
5550 * Standard slow path.
5553 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5557 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5560 /* ts_recent update must be made after we are sure that the packet
5563 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5565 tcp_rcv_rtt_measure_ts(sk
, skb
);
5567 /* Process urgent data. */
5568 tcp_urg(sk
, skb
, th
);
5570 /* step 7: process the segment text */
5571 tcp_data_queue(sk
, skb
);
5573 tcp_data_snd_check(sk
);
5574 tcp_ack_snd_check(sk
);
5578 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5584 EXPORT_SYMBOL(tcp_rcv_established
);
5586 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5588 struct tcp_sock
*tp
= tcp_sk(sk
);
5589 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5591 tcp_set_state(sk
, TCP_ESTABLISHED
);
5594 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5595 security_inet_conn_established(sk
, skb
);
5598 /* Make sure socket is routed, for correct metrics. */
5599 icsk
->icsk_af_ops
->rebuild_header(sk
);
5601 tcp_init_metrics(sk
);
5603 tcp_init_congestion_control(sk
);
5605 /* Prevent spurious tcp_cwnd_restart() on first data
5608 tp
->lsndtime
= tcp_time_stamp
;
5610 tcp_init_buffer_space(sk
);
5612 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5613 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5615 if (!tp
->rx_opt
.snd_wscale
)
5616 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5620 if (!sock_flag(sk
, SOCK_DEAD
)) {
5621 sk
->sk_state_change(sk
);
5622 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5626 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5627 struct tcp_fastopen_cookie
*cookie
)
5629 struct tcp_sock
*tp
= tcp_sk(sk
);
5630 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5631 u16 mss
= tp
->rx_opt
.mss_clamp
;
5634 if (mss
== tp
->rx_opt
.user_mss
) {
5635 struct tcp_options_received opt
;
5636 const u8
*hash_location
;
5638 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5639 tcp_clear_options(&opt
);
5640 opt
.user_mss
= opt
.mss_clamp
= 0;
5641 tcp_parse_options(synack
, &opt
, &hash_location
, 0, NULL
);
5642 mss
= opt
.mss_clamp
;
5645 if (!tp
->syn_fastopen
) /* Ignore an unsolicited cookie */
5648 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5649 * the remote receives only the retransmitted (regular) SYNs: either
5650 * the original SYN-data or the corresponding SYN-ACK is lost.
5652 syn_drop
= (cookie
->len
<= 0 && data
&& tp
->total_retrans
);
5654 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
);
5656 if (data
) { /* Retransmit unacked data in SYN */
5657 tcp_for_write_queue_from(data
, sk
) {
5658 if (data
== tcp_send_head(sk
) ||
5659 __tcp_retransmit_skb(sk
, data
))
5665 tp
->syn_data_acked
= tp
->syn_data
;
5669 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5670 const struct tcphdr
*th
, unsigned int len
)
5672 const u8
*hash_location
;
5673 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5674 struct tcp_sock
*tp
= tcp_sk(sk
);
5675 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5676 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5677 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5679 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0, &foc
);
5683 * "If the state is SYN-SENT then
5684 * first check the ACK bit
5685 * If the ACK bit is set
5686 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5687 * a reset (unless the RST bit is set, if so drop
5688 * the segment and return)"
5690 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5691 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5692 goto reset_and_undo
;
5694 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5695 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5697 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5698 goto reset_and_undo
;
5701 /* Now ACK is acceptable.
5703 * "If the RST bit is set
5704 * If the ACK was acceptable then signal the user "error:
5705 * connection reset", drop the segment, enter CLOSED state,
5706 * delete TCB, and return."
5715 * "fifth, if neither of the SYN or RST bits is set then
5716 * drop the segment and return."
5722 goto discard_and_undo
;
5725 * "If the SYN bit is on ...
5726 * are acceptable then ...
5727 * (our SYN has been ACKed), change the connection
5728 * state to ESTABLISHED..."
5731 TCP_ECN_rcv_synack(tp
, th
);
5733 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5734 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5736 /* Ok.. it's good. Set up sequence numbers and
5737 * move to established.
5739 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5740 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5742 /* RFC1323: The window in SYN & SYN/ACK segments is
5745 tp
->snd_wnd
= ntohs(th
->window
);
5747 if (!tp
->rx_opt
.wscale_ok
) {
5748 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5749 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5752 if (tp
->rx_opt
.saw_tstamp
) {
5753 tp
->rx_opt
.tstamp_ok
= 1;
5754 tp
->tcp_header_len
=
5755 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5756 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5757 tcp_store_ts_recent(tp
);
5759 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5762 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5763 tcp_enable_fack(tp
);
5766 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5767 tcp_initialize_rcv_mss(sk
);
5769 /* Remember, tcp_poll() does not lock socket!
5770 * Change state from SYN-SENT only after copied_seq
5771 * is initialized. */
5772 tp
->copied_seq
= tp
->rcv_nxt
;
5775 cvp
->cookie_pair_size
> 0 &&
5776 tp
->rx_opt
.cookie_plus
> 0) {
5777 int cookie_size
= tp
->rx_opt
.cookie_plus
5778 - TCPOLEN_COOKIE_BASE
;
5779 int cookie_pair_size
= cookie_size
5780 + cvp
->cookie_desired
;
5782 /* A cookie extension option was sent and returned.
5783 * Note that each incoming SYNACK replaces the
5784 * Responder cookie. The initial exchange is most
5785 * fragile, as protection against spoofing relies
5786 * entirely upon the sequence and timestamp (above).
5787 * This replacement strategy allows the correct pair to
5788 * pass through, while any others will be filtered via
5789 * Responder verification later.
5791 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5792 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5793 hash_location
, cookie_size
);
5794 cvp
->cookie_pair_size
= cookie_pair_size
;
5800 tcp_finish_connect(sk
, skb
);
5802 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5803 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5806 if (sk
->sk_write_pending
||
5807 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5808 icsk
->icsk_ack
.pingpong
) {
5809 /* Save one ACK. Data will be ready after
5810 * several ticks, if write_pending is set.
5812 * It may be deleted, but with this feature tcpdumps
5813 * look so _wonderfully_ clever, that I was not able
5814 * to stand against the temptation 8) --ANK
5816 inet_csk_schedule_ack(sk
);
5817 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5818 tcp_enter_quickack_mode(sk
);
5819 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5820 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5831 /* No ACK in the segment */
5835 * "If the RST bit is set
5837 * Otherwise (no ACK) drop the segment and return."
5840 goto discard_and_undo
;
5844 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5845 tcp_paws_reject(&tp
->rx_opt
, 0))
5846 goto discard_and_undo
;
5849 /* We see SYN without ACK. It is attempt of
5850 * simultaneous connect with crossed SYNs.
5851 * Particularly, it can be connect to self.
5853 tcp_set_state(sk
, TCP_SYN_RECV
);
5855 if (tp
->rx_opt
.saw_tstamp
) {
5856 tp
->rx_opt
.tstamp_ok
= 1;
5857 tcp_store_ts_recent(tp
);
5858 tp
->tcp_header_len
=
5859 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5861 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5864 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5865 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5867 /* RFC1323: The window in SYN & SYN/ACK segments is
5870 tp
->snd_wnd
= ntohs(th
->window
);
5871 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5872 tp
->max_window
= tp
->snd_wnd
;
5874 TCP_ECN_rcv_syn(tp
, th
);
5877 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5878 tcp_initialize_rcv_mss(sk
);
5880 tcp_send_synack(sk
);
5882 /* Note, we could accept data and URG from this segment.
5883 * There are no obstacles to make this (except that we must
5884 * either change tcp_recvmsg() to prevent it from returning data
5885 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5887 * However, if we ignore data in ACKless segments sometimes,
5888 * we have no reasons to accept it sometimes.
5889 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5890 * is not flawless. So, discard packet for sanity.
5891 * Uncomment this return to process the data.
5898 /* "fifth, if neither of the SYN or RST bits is set then
5899 * drop the segment and return."
5903 tcp_clear_options(&tp
->rx_opt
);
5904 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5908 tcp_clear_options(&tp
->rx_opt
);
5909 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5914 * This function implements the receiving procedure of RFC 793 for
5915 * all states except ESTABLISHED and TIME_WAIT.
5916 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5917 * address independent.
5920 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5921 const struct tcphdr
*th
, unsigned int len
)
5923 struct tcp_sock
*tp
= tcp_sk(sk
);
5924 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5925 struct request_sock
*req
;
5928 tp
->rx_opt
.saw_tstamp
= 0;
5930 switch (sk
->sk_state
) {
5944 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5947 /* Now we have several options: In theory there is
5948 * nothing else in the frame. KA9Q has an option to
5949 * send data with the syn, BSD accepts data with the
5950 * syn up to the [to be] advertised window and
5951 * Solaris 2.1 gives you a protocol error. For now
5952 * we just ignore it, that fits the spec precisely
5953 * and avoids incompatibilities. It would be nice in
5954 * future to drop through and process the data.
5956 * Now that TTCP is starting to be used we ought to
5958 * But, this leaves one open to an easy denial of
5959 * service attack, and SYN cookies can't defend
5960 * against this problem. So, we drop the data
5961 * in the interest of security over speed unless
5962 * it's still in use.
5970 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5974 /* Do step6 onward by hand. */
5975 tcp_urg(sk
, skb
, th
);
5977 tcp_data_snd_check(sk
);
5981 req
= tp
->fastopen_rsk
;
5983 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5984 sk
->sk_state
!= TCP_FIN_WAIT1
);
5986 if (tcp_check_req(sk
, skb
, req
, NULL
, true) == NULL
)
5990 if (!th
->ack
&& !th
->rst
)
5993 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5996 /* step 5: check the ACK field */
5998 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
6000 switch (sk
->sk_state
) {
6003 /* Once we leave TCP_SYN_RECV, we no longer
6004 * need req so release it.
6007 tcp_synack_rtt_meas(sk
, req
);
6008 tp
->total_retrans
= req
->num_retrans
;
6010 reqsk_fastopen_remove(sk
, req
, false);
6012 /* Make sure socket is routed, for
6015 icsk
->icsk_af_ops
->rebuild_header(sk
);
6016 tcp_init_congestion_control(sk
);
6019 tcp_init_buffer_space(sk
);
6020 tp
->copied_seq
= tp
->rcv_nxt
;
6023 tcp_set_state(sk
, TCP_ESTABLISHED
);
6024 sk
->sk_state_change(sk
);
6026 /* Note, that this wakeup is only for marginal
6027 * crossed SYN case. Passively open sockets
6028 * are not waked up, because sk->sk_sleep ==
6029 * NULL and sk->sk_socket == NULL.
6033 SOCK_WAKE_IO
, POLL_OUT
);
6035 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6036 tp
->snd_wnd
= ntohs(th
->window
) <<
6037 tp
->rx_opt
.snd_wscale
;
6038 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6040 if (tp
->rx_opt
.tstamp_ok
)
6041 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6044 /* Re-arm the timer because data may
6045 * have been sent out. This is similar
6046 * to the regular data transmission case
6047 * when new data has just been ack'ed.
6049 * (TFO) - we could try to be more
6050 * aggressive and retranmitting any data
6051 * sooner based on when they were sent
6056 tcp_init_metrics(sk
);
6058 /* Prevent spurious tcp_cwnd_restart() on
6059 * first data packet.
6061 tp
->lsndtime
= tcp_time_stamp
;
6063 tcp_initialize_rcv_mss(sk
);
6064 tcp_fast_path_on(tp
);
6071 /* If we enter the TCP_FIN_WAIT1 state and we are a
6072 * Fast Open socket and this is the first acceptable
6073 * ACK we have received, this would have acknowledged
6074 * our SYNACK so stop the SYNACK timer.
6077 /* Return RST if ack_seq is invalid.
6078 * Note that RFC793 only says to generate a
6079 * DUPACK for it but for TCP Fast Open it seems
6080 * better to treat this case like TCP_SYN_RECV
6085 /* We no longer need the request sock. */
6086 reqsk_fastopen_remove(sk
, req
, false);
6089 if (tp
->snd_una
== tp
->write_seq
) {
6090 struct dst_entry
*dst
;
6092 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6093 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6095 dst
= __sk_dst_get(sk
);
6099 if (!sock_flag(sk
, SOCK_DEAD
))
6100 /* Wake up lingering close() */
6101 sk
->sk_state_change(sk
);
6105 if (tp
->linger2
< 0 ||
6106 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6107 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
6109 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6113 tmo
= tcp_fin_time(sk
);
6114 if (tmo
> TCP_TIMEWAIT_LEN
) {
6115 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6116 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6117 /* Bad case. We could lose such FIN otherwise.
6118 * It is not a big problem, but it looks confusing
6119 * and not so rare event. We still can lose it now,
6120 * if it spins in bh_lock_sock(), but it is really
6123 inet_csk_reset_keepalive_timer(sk
, tmo
);
6125 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6133 if (tp
->snd_una
== tp
->write_seq
) {
6134 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6140 if (tp
->snd_una
== tp
->write_seq
) {
6141 tcp_update_metrics(sk
);
6149 /* ts_recent update must be made after we are sure that the packet
6152 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
6154 /* step 6: check the URG bit */
6155 tcp_urg(sk
, skb
, th
);
6157 /* step 7: process the segment text */
6158 switch (sk
->sk_state
) {
6159 case TCP_CLOSE_WAIT
:
6162 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6166 /* RFC 793 says to queue data in these states,
6167 * RFC 1122 says we MUST send a reset.
6168 * BSD 4.4 also does reset.
6170 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6171 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6172 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6173 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6179 case TCP_ESTABLISHED
:
6180 tcp_data_queue(sk
, skb
);
6185 /* tcp_data could move socket to TIME-WAIT */
6186 if (sk
->sk_state
!= TCP_CLOSE
) {
6187 tcp_data_snd_check(sk
);
6188 tcp_ack_snd_check(sk
);
6197 EXPORT_SYMBOL(tcp_rcv_state_process
);