2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
78 int sysctl_tcp_timestamps __read_mostly
= 1;
79 int sysctl_tcp_window_scaling __read_mostly
= 1;
80 int sysctl_tcp_sack __read_mostly
= 1;
81 int sysctl_tcp_fack __read_mostly
= 1;
82 int sysctl_tcp_reordering __read_mostly
= TCP_FASTRETRANS_THRESH
;
83 EXPORT_SYMBOL(sysctl_tcp_reordering
);
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit
= 100;
92 int sysctl_tcp_stdurg __read_mostly
;
93 int sysctl_tcp_rfc1337 __read_mostly
;
94 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
95 int sysctl_tcp_frto __read_mostly
= 2;
96 int sysctl_tcp_frto_response __read_mostly
;
98 int sysctl_tcp_thin_dupack __read_mostly
;
100 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
101 int sysctl_tcp_early_retrans __read_mostly
= 2;
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 /* Adapt the MSS value used to make delayed ack decision to the
129 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
131 struct inet_connection_sock
*icsk
= inet_csk(sk
);
132 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
135 icsk
->icsk_ack
.last_seg_size
= 0;
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
140 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
141 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
142 icsk
->icsk_ack
.rcv_mss
= len
;
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
147 * "len" is invariant segment length, including TCP header.
149 len
+= skb
->data
- skb_transport_header(skb
);
150 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
156 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
157 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
162 len
-= tcp_sk(sk
)->tcp_header_len
;
163 icsk
->icsk_ack
.last_seg_size
= len
;
165 icsk
->icsk_ack
.rcv_mss
= len
;
169 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
170 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
171 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
175 static void tcp_incr_quickack(struct sock
*sk
)
177 struct inet_connection_sock
*icsk
= inet_csk(sk
);
178 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
182 if (quickacks
> icsk
->icsk_ack
.quick
)
183 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
186 static void tcp_enter_quickack_mode(struct sock
*sk
)
188 struct inet_connection_sock
*icsk
= inet_csk(sk
);
189 tcp_incr_quickack(sk
);
190 icsk
->icsk_ack
.pingpong
= 0;
191 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
194 /* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
198 static inline bool tcp_in_quickack_mode(const struct sock
*sk
)
200 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
202 return icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
;
205 static inline void TCP_ECN_queue_cwr(struct tcp_sock
*tp
)
207 if (tp
->ecn_flags
& TCP_ECN_OK
)
208 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
211 static inline void TCP_ECN_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
213 if (tcp_hdr(skb
)->cwr
)
214 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock
*tp
)
219 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
222 static inline void TCP_ECN_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
224 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
227 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
228 case INET_ECN_NOT_ECT
:
229 /* Funny extension: if ECT is not set on a segment,
230 * and we already seen ECT on a previous segment,
231 * it is probably a retransmit.
233 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
234 tcp_enter_quickack_mode((struct sock
*)tp
);
237 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
238 /* Better not delay acks, sender can have a very low cwnd */
239 tcp_enter_quickack_mode((struct sock
*)tp
);
240 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
244 tp
->ecn_flags
|= TCP_ECN_SEEN
;
248 static inline void TCP_ECN_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
250 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
251 tp
->ecn_flags
&= ~TCP_ECN_OK
;
254 static inline void TCP_ECN_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
256 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
257 tp
->ecn_flags
&= ~TCP_ECN_OK
;
260 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
262 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
267 /* Buffer size and advertised window tuning.
269 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
272 static void tcp_fixup_sndbuf(struct sock
*sk
)
274 int sndmem
= SKB_TRUESIZE(tcp_sk(sk
)->rx_opt
.mss_clamp
+ MAX_TCP_HEADER
);
276 sndmem
*= TCP_INIT_CWND
;
277 if (sk
->sk_sndbuf
< sndmem
)
278 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
281 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
283 * All tcp_full_space() is split to two parts: "network" buffer, allocated
284 * forward and advertised in receiver window (tp->rcv_wnd) and
285 * "application buffer", required to isolate scheduling/application
286 * latencies from network.
287 * window_clamp is maximal advertised window. It can be less than
288 * tcp_full_space(), in this case tcp_full_space() - window_clamp
289 * is reserved for "application" buffer. The less window_clamp is
290 * the smoother our behaviour from viewpoint of network, but the lower
291 * throughput and the higher sensitivity of the connection to losses. 8)
293 * rcv_ssthresh is more strict window_clamp used at "slow start"
294 * phase to predict further behaviour of this connection.
295 * It is used for two goals:
296 * - to enforce header prediction at sender, even when application
297 * requires some significant "application buffer". It is check #1.
298 * - to prevent pruning of receive queue because of misprediction
299 * of receiver window. Check #2.
301 * The scheme does not work when sender sends good segments opening
302 * window and then starts to feed us spaghetti. But it should work
303 * in common situations. Otherwise, we have to rely on queue collapsing.
306 /* Slow part of check#2. */
307 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
309 struct tcp_sock
*tp
= tcp_sk(sk
);
311 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
312 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
314 while (tp
->rcv_ssthresh
<= window
) {
315 if (truesize
<= skb
->len
)
316 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
324 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
326 struct tcp_sock
*tp
= tcp_sk(sk
);
329 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
330 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
331 !sk_under_memory_pressure(sk
)) {
334 /* Check #2. Increase window, if skb with such overhead
335 * will fit to rcvbuf in future.
337 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
338 incr
= 2 * tp
->advmss
;
340 incr
= __tcp_grow_window(sk
, skb
);
343 incr
= max_t(int, incr
, 2 * skb
->len
);
344 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
346 inet_csk(sk
)->icsk_ack
.quick
|= 1;
351 /* 3. Tuning rcvbuf, when connection enters established state. */
353 static void tcp_fixup_rcvbuf(struct sock
*sk
)
355 u32 mss
= tcp_sk(sk
)->advmss
;
356 u32 icwnd
= TCP_DEFAULT_INIT_RCVWND
;
359 /* Limit to 10 segments if mss <= 1460,
360 * or 14600/mss segments, with a minimum of two segments.
363 icwnd
= max_t(u32
, (1460 * TCP_DEFAULT_INIT_RCVWND
) / mss
, 2);
365 rcvmem
= SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
);
366 while (tcp_win_from_space(rcvmem
) < mss
)
371 if (sk
->sk_rcvbuf
< rcvmem
)
372 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
375 /* 4. Try to fixup all. It is made immediately after connection enters
378 void tcp_init_buffer_space(struct sock
*sk
)
380 struct tcp_sock
*tp
= tcp_sk(sk
);
383 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
384 tcp_fixup_rcvbuf(sk
);
385 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
386 tcp_fixup_sndbuf(sk
);
388 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
390 maxwin
= tcp_full_space(sk
);
392 if (tp
->window_clamp
>= maxwin
) {
393 tp
->window_clamp
= maxwin
;
395 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
396 tp
->window_clamp
= max(maxwin
-
397 (maxwin
>> sysctl_tcp_app_win
),
401 /* Force reservation of one segment. */
402 if (sysctl_tcp_app_win
&&
403 tp
->window_clamp
> 2 * tp
->advmss
&&
404 tp
->window_clamp
+ tp
->advmss
> maxwin
)
405 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
407 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
408 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
411 /* 5. Recalculate window clamp after socket hit its memory bounds. */
412 static void tcp_clamp_window(struct sock
*sk
)
414 struct tcp_sock
*tp
= tcp_sk(sk
);
415 struct inet_connection_sock
*icsk
= inet_csk(sk
);
417 icsk
->icsk_ack
.quick
= 0;
419 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
420 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
421 !sk_under_memory_pressure(sk
) &&
422 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
423 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
426 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
427 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
430 /* Initialize RCV_MSS value.
431 * RCV_MSS is an our guess about MSS used by the peer.
432 * We haven't any direct information about the MSS.
433 * It's better to underestimate the RCV_MSS rather than overestimate.
434 * Overestimations make us ACKing less frequently than needed.
435 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
437 void tcp_initialize_rcv_mss(struct sock
*sk
)
439 const struct tcp_sock
*tp
= tcp_sk(sk
);
440 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
442 hint
= min(hint
, tp
->rcv_wnd
/ 2);
443 hint
= min(hint
, TCP_MSS_DEFAULT
);
444 hint
= max(hint
, TCP_MIN_MSS
);
446 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
448 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
450 /* Receiver "autotuning" code.
452 * The algorithm for RTT estimation w/o timestamps is based on
453 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
454 * <http://public.lanl.gov/radiant/pubs.html#DRS>
456 * More detail on this code can be found at
457 * <http://staff.psc.edu/jheffner/>,
458 * though this reference is out of date. A new paper
461 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
463 u32 new_sample
= tp
->rcv_rtt_est
.rtt
;
469 if (new_sample
!= 0) {
470 /* If we sample in larger samples in the non-timestamp
471 * case, we could grossly overestimate the RTT especially
472 * with chatty applications or bulk transfer apps which
473 * are stalled on filesystem I/O.
475 * Also, since we are only going for a minimum in the
476 * non-timestamp case, we do not smooth things out
477 * else with timestamps disabled convergence takes too
481 m
-= (new_sample
>> 3);
489 /* No previous measure. */
493 if (tp
->rcv_rtt_est
.rtt
!= new_sample
)
494 tp
->rcv_rtt_est
.rtt
= new_sample
;
497 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
499 if (tp
->rcv_rtt_est
.time
== 0)
501 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
503 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rcv_rtt_est
.time
, 1);
506 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
507 tp
->rcv_rtt_est
.time
= tcp_time_stamp
;
510 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
511 const struct sk_buff
*skb
)
513 struct tcp_sock
*tp
= tcp_sk(sk
);
514 if (tp
->rx_opt
.rcv_tsecr
&&
515 (TCP_SKB_CB(skb
)->end_seq
-
516 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
517 tcp_rcv_rtt_update(tp
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
, 0);
521 * This function should be called every time data is copied to user space.
522 * It calculates the appropriate TCP receive buffer space.
524 void tcp_rcv_space_adjust(struct sock
*sk
)
526 struct tcp_sock
*tp
= tcp_sk(sk
);
530 if (tp
->rcvq_space
.time
== 0)
533 time
= tcp_time_stamp
- tp
->rcvq_space
.time
;
534 if (time
< (tp
->rcv_rtt_est
.rtt
>> 3) || tp
->rcv_rtt_est
.rtt
== 0)
537 space
= 2 * (tp
->copied_seq
- tp
->rcvq_space
.seq
);
539 space
= max(tp
->rcvq_space
.space
, space
);
541 if (tp
->rcvq_space
.space
!= space
) {
544 tp
->rcvq_space
.space
= space
;
546 if (sysctl_tcp_moderate_rcvbuf
&&
547 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
548 int new_clamp
= space
;
550 /* Receive space grows, normalize in order to
551 * take into account packet headers and sk_buff
552 * structure overhead.
557 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
558 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
561 space
= min(space
, sysctl_tcp_rmem
[2]);
562 if (space
> sk
->sk_rcvbuf
) {
563 sk
->sk_rcvbuf
= space
;
565 /* Make the window clamp follow along. */
566 tp
->window_clamp
= new_clamp
;
572 tp
->rcvq_space
.seq
= tp
->copied_seq
;
573 tp
->rcvq_space
.time
= tcp_time_stamp
;
576 /* There is something which you must keep in mind when you analyze the
577 * behavior of the tp->ato delayed ack timeout interval. When a
578 * connection starts up, we want to ack as quickly as possible. The
579 * problem is that "good" TCP's do slow start at the beginning of data
580 * transmission. The means that until we send the first few ACK's the
581 * sender will sit on his end and only queue most of his data, because
582 * he can only send snd_cwnd unacked packets at any given time. For
583 * each ACK we send, he increments snd_cwnd and transmits more of his
586 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
588 struct tcp_sock
*tp
= tcp_sk(sk
);
589 struct inet_connection_sock
*icsk
= inet_csk(sk
);
592 inet_csk_schedule_ack(sk
);
594 tcp_measure_rcv_mss(sk
, skb
);
596 tcp_rcv_rtt_measure(tp
);
598 now
= tcp_time_stamp
;
600 if (!icsk
->icsk_ack
.ato
) {
601 /* The _first_ data packet received, initialize
602 * delayed ACK engine.
604 tcp_incr_quickack(sk
);
605 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
607 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
609 if (m
<= TCP_ATO_MIN
/ 2) {
610 /* The fastest case is the first. */
611 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
612 } else if (m
< icsk
->icsk_ack
.ato
) {
613 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
614 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
615 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
616 } else if (m
> icsk
->icsk_rto
) {
617 /* Too long gap. Apparently sender failed to
618 * restart window, so that we send ACKs quickly.
620 tcp_incr_quickack(sk
);
624 icsk
->icsk_ack
.lrcvtime
= now
;
626 TCP_ECN_check_ce(tp
, skb
);
629 tcp_grow_window(sk
, skb
);
632 /* Called to compute a smoothed rtt estimate. The data fed to this
633 * routine either comes from timestamps, or from segments that were
634 * known _not_ to have been retransmitted [see Karn/Partridge
635 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
636 * piece by Van Jacobson.
637 * NOTE: the next three routines used to be one big routine.
638 * To save cycles in the RFC 1323 implementation it was better to break
639 * it up into three procedures. -- erics
641 static void tcp_rtt_estimator(struct sock
*sk
, const __u32 mrtt
)
643 struct tcp_sock
*tp
= tcp_sk(sk
);
644 long m
= mrtt
; /* RTT */
646 /* The following amusing code comes from Jacobson's
647 * article in SIGCOMM '88. Note that rtt and mdev
648 * are scaled versions of rtt and mean deviation.
649 * This is designed to be as fast as possible
650 * m stands for "measurement".
652 * On a 1990 paper the rto value is changed to:
653 * RTO = rtt + 4 * mdev
655 * Funny. This algorithm seems to be very broken.
656 * These formulae increase RTO, when it should be decreased, increase
657 * too slowly, when it should be increased quickly, decrease too quickly
658 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
659 * does not matter how to _calculate_ it. Seems, it was trap
660 * that VJ failed to avoid. 8)
665 m
-= (tp
->srtt
>> 3); /* m is now error in rtt est */
666 tp
->srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
668 m
= -m
; /* m is now abs(error) */
669 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
670 /* This is similar to one of Eifel findings.
671 * Eifel blocks mdev updates when rtt decreases.
672 * This solution is a bit different: we use finer gain
673 * for mdev in this case (alpha*beta).
674 * Like Eifel it also prevents growth of rto,
675 * but also it limits too fast rto decreases,
676 * happening in pure Eifel.
681 m
-= (tp
->mdev
>> 2); /* similar update on mdev */
683 tp
->mdev
+= m
; /* mdev = 3/4 mdev + 1/4 new */
684 if (tp
->mdev
> tp
->mdev_max
) {
685 tp
->mdev_max
= tp
->mdev
;
686 if (tp
->mdev_max
> tp
->rttvar
)
687 tp
->rttvar
= tp
->mdev_max
;
689 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
690 if (tp
->mdev_max
< tp
->rttvar
)
691 tp
->rttvar
-= (tp
->rttvar
- tp
->mdev_max
) >> 2;
692 tp
->rtt_seq
= tp
->snd_nxt
;
693 tp
->mdev_max
= tcp_rto_min(sk
);
696 /* no previous measure. */
697 tp
->srtt
= m
<< 3; /* take the measured time to be rtt */
698 tp
->mdev
= m
<< 1; /* make sure rto = 3*rtt */
699 tp
->mdev_max
= tp
->rttvar
= max(tp
->mdev
, tcp_rto_min(sk
));
700 tp
->rtt_seq
= tp
->snd_nxt
;
704 /* Calculate rto without backoff. This is the second half of Van Jacobson's
705 * routine referred to above.
707 void tcp_set_rto(struct sock
*sk
)
709 const struct tcp_sock
*tp
= tcp_sk(sk
);
710 /* Old crap is replaced with new one. 8)
713 * 1. If rtt variance happened to be less 50msec, it is hallucination.
714 * It cannot be less due to utterly erratic ACK generation made
715 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
716 * to do with delayed acks, because at cwnd>2 true delack timeout
717 * is invisible. Actually, Linux-2.4 also generates erratic
718 * ACKs in some circumstances.
720 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
722 /* 2. Fixups made earlier cannot be right.
723 * If we do not estimate RTO correctly without them,
724 * all the algo is pure shit and should be replaced
725 * with correct one. It is exactly, which we pretend to do.
728 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
729 * guarantees that rto is higher.
734 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
736 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
739 cwnd
= TCP_INIT_CWND
;
740 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
744 * Packet counting of FACK is based on in-order assumptions, therefore TCP
745 * disables it when reordering is detected
747 void tcp_disable_fack(struct tcp_sock
*tp
)
749 /* RFC3517 uses different metric in lost marker => reset on change */
751 tp
->lost_skb_hint
= NULL
;
752 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
755 /* Take a notice that peer is sending D-SACKs */
756 static void tcp_dsack_seen(struct tcp_sock
*tp
)
758 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
761 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
764 struct tcp_sock
*tp
= tcp_sk(sk
);
765 if (metric
> tp
->reordering
) {
768 tp
->reordering
= min(TCP_MAX_REORDERING
, metric
);
770 /* This exciting event is worth to be remembered. 8) */
772 mib_idx
= LINUX_MIB_TCPTSREORDER
;
773 else if (tcp_is_reno(tp
))
774 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
775 else if (tcp_is_fack(tp
))
776 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
778 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
780 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
781 #if FASTRETRANS_DEBUG > 1
782 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
783 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
787 tp
->undo_marker
? tp
->undo_retrans
: 0);
789 tcp_disable_fack(tp
);
793 tcp_disable_early_retrans(tp
);
796 /* This must be called before lost_out is incremented */
797 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
799 if ((tp
->retransmit_skb_hint
== NULL
) ||
800 before(TCP_SKB_CB(skb
)->seq
,
801 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
802 tp
->retransmit_skb_hint
= skb
;
805 after(TCP_SKB_CB(skb
)->end_seq
, tp
->retransmit_high
))
806 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
809 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
811 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
812 tcp_verify_retransmit_hint(tp
, skb
);
814 tp
->lost_out
+= tcp_skb_pcount(skb
);
815 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
819 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
,
822 tcp_verify_retransmit_hint(tp
, skb
);
824 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
825 tp
->lost_out
+= tcp_skb_pcount(skb
);
826 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
830 /* This procedure tags the retransmission queue when SACKs arrive.
832 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
833 * Packets in queue with these bits set are counted in variables
834 * sacked_out, retrans_out and lost_out, correspondingly.
836 * Valid combinations are:
837 * Tag InFlight Description
838 * 0 1 - orig segment is in flight.
839 * S 0 - nothing flies, orig reached receiver.
840 * L 0 - nothing flies, orig lost by net.
841 * R 2 - both orig and retransmit are in flight.
842 * L|R 1 - orig is lost, retransmit is in flight.
843 * S|R 1 - orig reached receiver, retrans is still in flight.
844 * (L|S|R is logically valid, it could occur when L|R is sacked,
845 * but it is equivalent to plain S and code short-curcuits it to S.
846 * L|S is logically invalid, it would mean -1 packet in flight 8))
848 * These 6 states form finite state machine, controlled by the following events:
849 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
850 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
851 * 3. Loss detection event of two flavors:
852 * A. Scoreboard estimator decided the packet is lost.
853 * A'. Reno "three dupacks" marks head of queue lost.
854 * A''. Its FACK modification, head until snd.fack is lost.
855 * B. SACK arrives sacking SND.NXT at the moment, when the
856 * segment was retransmitted.
857 * 4. D-SACK added new rule: D-SACK changes any tag to S.
859 * It is pleasant to note, that state diagram turns out to be commutative,
860 * so that we are allowed not to be bothered by order of our actions,
861 * when multiple events arrive simultaneously. (see the function below).
863 * Reordering detection.
864 * --------------------
865 * Reordering metric is maximal distance, which a packet can be displaced
866 * in packet stream. With SACKs we can estimate it:
868 * 1. SACK fills old hole and the corresponding segment was not
869 * ever retransmitted -> reordering. Alas, we cannot use it
870 * when segment was retransmitted.
871 * 2. The last flaw is solved with D-SACK. D-SACK arrives
872 * for retransmitted and already SACKed segment -> reordering..
873 * Both of these heuristics are not used in Loss state, when we cannot
874 * account for retransmits accurately.
876 * SACK block validation.
877 * ----------------------
879 * SACK block range validation checks that the received SACK block fits to
880 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
881 * Note that SND.UNA is not included to the range though being valid because
882 * it means that the receiver is rather inconsistent with itself reporting
883 * SACK reneging when it should advance SND.UNA. Such SACK block this is
884 * perfectly valid, however, in light of RFC2018 which explicitly states
885 * that "SACK block MUST reflect the newest segment. Even if the newest
886 * segment is going to be discarded ...", not that it looks very clever
887 * in case of head skb. Due to potentional receiver driven attacks, we
888 * choose to avoid immediate execution of a walk in write queue due to
889 * reneging and defer head skb's loss recovery to standard loss recovery
890 * procedure that will eventually trigger (nothing forbids us doing this).
892 * Implements also blockage to start_seq wrap-around. Problem lies in the
893 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
894 * there's no guarantee that it will be before snd_nxt (n). The problem
895 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
898 * <- outs wnd -> <- wrapzone ->
899 * u e n u_w e_w s n_w
901 * |<------------+------+----- TCP seqno space --------------+---------->|
902 * ...-- <2^31 ->| |<--------...
903 * ...---- >2^31 ------>| |<--------...
905 * Current code wouldn't be vulnerable but it's better still to discard such
906 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
907 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
908 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
909 * equal to the ideal case (infinite seqno space without wrap caused issues).
911 * With D-SACK the lower bound is extended to cover sequence space below
912 * SND.UNA down to undo_marker, which is the last point of interest. Yet
913 * again, D-SACK block must not to go across snd_una (for the same reason as
914 * for the normal SACK blocks, explained above). But there all simplicity
915 * ends, TCP might receive valid D-SACKs below that. As long as they reside
916 * fully below undo_marker they do not affect behavior in anyway and can
917 * therefore be safely ignored. In rare cases (which are more or less
918 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
919 * fragmentation and packet reordering past skb's retransmission. To consider
920 * them correctly, the acceptable range must be extended even more though
921 * the exact amount is rather hard to quantify. However, tp->max_window can
922 * be used as an exaggerated estimate.
924 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
925 u32 start_seq
, u32 end_seq
)
927 /* Too far in future, or reversed (interpretation is ambiguous) */
928 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
931 /* Nasty start_seq wrap-around check (see comments above) */
932 if (!before(start_seq
, tp
->snd_nxt
))
935 /* In outstanding window? ...This is valid exit for D-SACKs too.
936 * start_seq == snd_una is non-sensical (see comments above)
938 if (after(start_seq
, tp
->snd_una
))
941 if (!is_dsack
|| !tp
->undo_marker
)
944 /* ...Then it's D-SACK, and must reside below snd_una completely */
945 if (after(end_seq
, tp
->snd_una
))
948 if (!before(start_seq
, tp
->undo_marker
))
952 if (!after(end_seq
, tp
->undo_marker
))
955 /* Undo_marker boundary crossing (overestimates a lot). Known already:
956 * start_seq < undo_marker and end_seq >= undo_marker.
958 return !before(start_seq
, end_seq
- tp
->max_window
);
961 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
962 * Event "B". Later note: FACK people cheated me again 8), we have to account
963 * for reordering! Ugly, but should help.
965 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
966 * less than what is now known to be received by the other end (derived from
967 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
968 * retransmitted skbs to avoid some costly processing per ACKs.
970 static void tcp_mark_lost_retrans(struct sock
*sk
)
972 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
973 struct tcp_sock
*tp
= tcp_sk(sk
);
976 u32 new_low_seq
= tp
->snd_nxt
;
977 u32 received_upto
= tcp_highest_sack_seq(tp
);
979 if (!tcp_is_fack(tp
) || !tp
->retrans_out
||
980 !after(received_upto
, tp
->lost_retrans_low
) ||
981 icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
984 tcp_for_write_queue(skb
, sk
) {
985 u32 ack_seq
= TCP_SKB_CB(skb
)->ack_seq
;
987 if (skb
== tcp_send_head(sk
))
989 if (cnt
== tp
->retrans_out
)
991 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
994 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
))
997 /* TODO: We would like to get rid of tcp_is_fack(tp) only
998 * constraint here (see above) but figuring out that at
999 * least tp->reordering SACK blocks reside between ack_seq
1000 * and received_upto is not easy task to do cheaply with
1001 * the available datastructures.
1003 * Whether FACK should check here for tp->reordering segs
1004 * in-between one could argue for either way (it would be
1005 * rather simple to implement as we could count fack_count
1006 * during the walk and do tp->fackets_out - fack_count).
1008 if (after(received_upto
, ack_seq
)) {
1009 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1010 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1012 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1013 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
);
1015 if (before(ack_seq
, new_low_seq
))
1016 new_low_seq
= ack_seq
;
1017 cnt
+= tcp_skb_pcount(skb
);
1021 if (tp
->retrans_out
)
1022 tp
->lost_retrans_low
= new_low_seq
;
1025 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1026 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1029 struct tcp_sock
*tp
= tcp_sk(sk
);
1030 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1031 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1032 bool dup_sack
= false;
1034 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1037 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1038 } else if (num_sacks
> 1) {
1039 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1040 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1042 if (!after(end_seq_0
, end_seq_1
) &&
1043 !before(start_seq_0
, start_seq_1
)) {
1046 NET_INC_STATS_BH(sock_net(sk
),
1047 LINUX_MIB_TCPDSACKOFORECV
);
1051 /* D-SACK for already forgotten data... Do dumb counting. */
1052 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
&&
1053 !after(end_seq_0
, prior_snd_una
) &&
1054 after(end_seq_0
, tp
->undo_marker
))
1060 struct tcp_sacktag_state
{
1066 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1067 * the incoming SACK may not exactly match but we can find smaller MSS
1068 * aligned portion of it that matches. Therefore we might need to fragment
1069 * which may fail and creates some hassle (caller must handle error case
1072 * FIXME: this could be merged to shift decision code
1074 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1075 u32 start_seq
, u32 end_seq
)
1079 unsigned int pkt_len
;
1082 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1083 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1085 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1086 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1087 mss
= tcp_skb_mss(skb
);
1088 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1091 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1095 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1100 /* Round if necessary so that SACKs cover only full MSSes
1101 * and/or the remaining small portion (if present)
1103 if (pkt_len
> mss
) {
1104 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1105 if (!in_sack
&& new_len
< pkt_len
) {
1107 if (new_len
> skb
->len
)
1112 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
);
1120 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1121 static u8
tcp_sacktag_one(struct sock
*sk
,
1122 struct tcp_sacktag_state
*state
, u8 sacked
,
1123 u32 start_seq
, u32 end_seq
,
1124 bool dup_sack
, int pcount
)
1126 struct tcp_sock
*tp
= tcp_sk(sk
);
1127 int fack_count
= state
->fack_count
;
1129 /* Account D-SACK for retransmitted packet. */
1130 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1131 if (tp
->undo_marker
&& tp
->undo_retrans
&&
1132 after(end_seq
, tp
->undo_marker
))
1134 if (sacked
& TCPCB_SACKED_ACKED
)
1135 state
->reord
= min(fack_count
, state
->reord
);
1138 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1139 if (!after(end_seq
, tp
->snd_una
))
1142 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1143 if (sacked
& TCPCB_SACKED_RETRANS
) {
1144 /* If the segment is not tagged as lost,
1145 * we do not clear RETRANS, believing
1146 * that retransmission is still in flight.
1148 if (sacked
& TCPCB_LOST
) {
1149 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1150 tp
->lost_out
-= pcount
;
1151 tp
->retrans_out
-= pcount
;
1154 if (!(sacked
& TCPCB_RETRANS
)) {
1155 /* New sack for not retransmitted frame,
1156 * which was in hole. It is reordering.
1158 if (before(start_seq
,
1159 tcp_highest_sack_seq(tp
)))
1160 state
->reord
= min(fack_count
,
1163 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1164 if (!after(end_seq
, tp
->frto_highmark
))
1165 state
->flag
|= FLAG_ONLY_ORIG_SACKED
;
1168 if (sacked
& TCPCB_LOST
) {
1169 sacked
&= ~TCPCB_LOST
;
1170 tp
->lost_out
-= pcount
;
1174 sacked
|= TCPCB_SACKED_ACKED
;
1175 state
->flag
|= FLAG_DATA_SACKED
;
1176 tp
->sacked_out
+= pcount
;
1178 fack_count
+= pcount
;
1180 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1181 if (!tcp_is_fack(tp
) && (tp
->lost_skb_hint
!= NULL
) &&
1182 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1183 tp
->lost_cnt_hint
+= pcount
;
1185 if (fack_count
> tp
->fackets_out
)
1186 tp
->fackets_out
= fack_count
;
1189 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1190 * frames and clear it. undo_retrans is decreased above, L|R frames
1191 * are accounted above as well.
1193 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1194 sacked
&= ~TCPCB_SACKED_RETRANS
;
1195 tp
->retrans_out
-= pcount
;
1201 /* Shift newly-SACKed bytes from this skb to the immediately previous
1202 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1204 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1205 struct tcp_sacktag_state
*state
,
1206 unsigned int pcount
, int shifted
, int mss
,
1209 struct tcp_sock
*tp
= tcp_sk(sk
);
1210 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1211 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1212 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1216 /* Adjust counters and hints for the newly sacked sequence
1217 * range but discard the return value since prev is already
1218 * marked. We must tag the range first because the seq
1219 * advancement below implicitly advances
1220 * tcp_highest_sack_seq() when skb is highest_sack.
1222 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1223 start_seq
, end_seq
, dup_sack
, pcount
);
1225 if (skb
== tp
->lost_skb_hint
)
1226 tp
->lost_cnt_hint
+= pcount
;
1228 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1229 TCP_SKB_CB(skb
)->seq
+= shifted
;
1231 skb_shinfo(prev
)->gso_segs
+= pcount
;
1232 BUG_ON(skb_shinfo(skb
)->gso_segs
< pcount
);
1233 skb_shinfo(skb
)->gso_segs
-= pcount
;
1235 /* When we're adding to gso_segs == 1, gso_size will be zero,
1236 * in theory this shouldn't be necessary but as long as DSACK
1237 * code can come after this skb later on it's better to keep
1238 * setting gso_size to something.
1240 if (!skb_shinfo(prev
)->gso_size
) {
1241 skb_shinfo(prev
)->gso_size
= mss
;
1242 skb_shinfo(prev
)->gso_type
|= sk
->sk_gso_type
;
1245 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1246 if (skb_shinfo(skb
)->gso_segs
<= 1) {
1247 skb_shinfo(skb
)->gso_size
= 0;
1248 skb_shinfo(skb
)->gso_type
&= SKB_GSO_SHARED_FRAG
;
1251 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1252 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1255 BUG_ON(!tcp_skb_pcount(skb
));
1256 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1260 /* Whole SKB was eaten :-) */
1262 if (skb
== tp
->retransmit_skb_hint
)
1263 tp
->retransmit_skb_hint
= prev
;
1264 if (skb
== tp
->scoreboard_skb_hint
)
1265 tp
->scoreboard_skb_hint
= prev
;
1266 if (skb
== tp
->lost_skb_hint
) {
1267 tp
->lost_skb_hint
= prev
;
1268 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1271 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(prev
)->tcp_flags
;
1272 if (skb
== tcp_highest_sack(sk
))
1273 tcp_advance_highest_sack(sk
, skb
);
1275 tcp_unlink_write_queue(skb
, sk
);
1276 sk_wmem_free_skb(sk
, skb
);
1278 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1283 /* I wish gso_size would have a bit more sane initialization than
1284 * something-or-zero which complicates things
1286 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1288 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1291 /* Shifting pages past head area doesn't work */
1292 static int skb_can_shift(const struct sk_buff
*skb
)
1294 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1297 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1300 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1301 struct tcp_sacktag_state
*state
,
1302 u32 start_seq
, u32 end_seq
,
1305 struct tcp_sock
*tp
= tcp_sk(sk
);
1306 struct sk_buff
*prev
;
1312 if (!sk_can_gso(sk
))
1315 /* Normally R but no L won't result in plain S */
1317 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1319 if (!skb_can_shift(skb
))
1321 /* This frame is about to be dropped (was ACKed). */
1322 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1325 /* Can only happen with delayed DSACK + discard craziness */
1326 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1328 prev
= tcp_write_queue_prev(sk
, skb
);
1330 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1333 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1334 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1338 pcount
= tcp_skb_pcount(skb
);
1339 mss
= tcp_skb_seglen(skb
);
1341 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1342 * drop this restriction as unnecessary
1344 if (mss
!= tcp_skb_seglen(prev
))
1347 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1349 /* CHECKME: This is non-MSS split case only?, this will
1350 * cause skipped skbs due to advancing loop btw, original
1351 * has that feature too
1353 if (tcp_skb_pcount(skb
) <= 1)
1356 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1358 /* TODO: head merge to next could be attempted here
1359 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1360 * though it might not be worth of the additional hassle
1362 * ...we can probably just fallback to what was done
1363 * previously. We could try merging non-SACKed ones
1364 * as well but it probably isn't going to buy off
1365 * because later SACKs might again split them, and
1366 * it would make skb timestamp tracking considerably
1372 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1374 BUG_ON(len
> skb
->len
);
1376 /* MSS boundaries should be honoured or else pcount will
1377 * severely break even though it makes things bit trickier.
1378 * Optimize common case to avoid most of the divides
1380 mss
= tcp_skb_mss(skb
);
1382 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1383 * drop this restriction as unnecessary
1385 if (mss
!= tcp_skb_seglen(prev
))
1390 } else if (len
< mss
) {
1398 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1399 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1402 if (!skb_shift(prev
, skb
, len
))
1404 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1407 /* Hole filled allows collapsing with the next as well, this is very
1408 * useful when hole on every nth skb pattern happens
1410 if (prev
== tcp_write_queue_tail(sk
))
1412 skb
= tcp_write_queue_next(sk
, prev
);
1414 if (!skb_can_shift(skb
) ||
1415 (skb
== tcp_send_head(sk
)) ||
1416 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1417 (mss
!= tcp_skb_seglen(skb
)))
1421 if (skb_shift(prev
, skb
, len
)) {
1422 pcount
+= tcp_skb_pcount(skb
);
1423 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1427 state
->fack_count
+= pcount
;
1434 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1438 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1439 struct tcp_sack_block
*next_dup
,
1440 struct tcp_sacktag_state
*state
,
1441 u32 start_seq
, u32 end_seq
,
1444 struct tcp_sock
*tp
= tcp_sk(sk
);
1445 struct sk_buff
*tmp
;
1447 tcp_for_write_queue_from(skb
, sk
) {
1449 bool dup_sack
= dup_sack_in
;
1451 if (skb
== tcp_send_head(sk
))
1454 /* queue is in-order => we can short-circuit the walk early */
1455 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1458 if ((next_dup
!= NULL
) &&
1459 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1460 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1461 next_dup
->start_seq
,
1467 /* skb reference here is a bit tricky to get right, since
1468 * shifting can eat and free both this skb and the next,
1469 * so not even _safe variant of the loop is enough.
1472 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1473 start_seq
, end_seq
, dup_sack
);
1482 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1488 if (unlikely(in_sack
< 0))
1492 TCP_SKB_CB(skb
)->sacked
=
1495 TCP_SKB_CB(skb
)->sacked
,
1496 TCP_SKB_CB(skb
)->seq
,
1497 TCP_SKB_CB(skb
)->end_seq
,
1499 tcp_skb_pcount(skb
));
1501 if (!before(TCP_SKB_CB(skb
)->seq
,
1502 tcp_highest_sack_seq(tp
)))
1503 tcp_advance_highest_sack(sk
, skb
);
1506 state
->fack_count
+= tcp_skb_pcount(skb
);
1511 /* Avoid all extra work that is being done by sacktag while walking in
1514 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1515 struct tcp_sacktag_state
*state
,
1518 tcp_for_write_queue_from(skb
, sk
) {
1519 if (skb
== tcp_send_head(sk
))
1522 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1525 state
->fack_count
+= tcp_skb_pcount(skb
);
1530 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1532 struct tcp_sack_block
*next_dup
,
1533 struct tcp_sacktag_state
*state
,
1536 if (next_dup
== NULL
)
1539 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1540 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1541 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1542 next_dup
->start_seq
, next_dup
->end_seq
,
1549 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1551 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1555 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1558 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1559 struct tcp_sock
*tp
= tcp_sk(sk
);
1560 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1561 TCP_SKB_CB(ack_skb
)->sacked
);
1562 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1563 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1564 struct tcp_sack_block
*cache
;
1565 struct tcp_sacktag_state state
;
1566 struct sk_buff
*skb
;
1567 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1569 bool found_dup_sack
= false;
1571 int first_sack_index
;
1574 state
.reord
= tp
->packets_out
;
1576 if (!tp
->sacked_out
) {
1577 if (WARN_ON(tp
->fackets_out
))
1578 tp
->fackets_out
= 0;
1579 tcp_highest_sack_reset(sk
);
1582 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1583 num_sacks
, prior_snd_una
);
1585 state
.flag
|= FLAG_DSACKING_ACK
;
1587 /* Eliminate too old ACKs, but take into
1588 * account more or less fresh ones, they can
1589 * contain valid SACK info.
1591 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1594 if (!tp
->packets_out
)
1598 first_sack_index
= 0;
1599 for (i
= 0; i
< num_sacks
; i
++) {
1600 bool dup_sack
= !i
&& found_dup_sack
;
1602 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1603 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1605 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1606 sp
[used_sacks
].start_seq
,
1607 sp
[used_sacks
].end_seq
)) {
1611 if (!tp
->undo_marker
)
1612 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1614 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1616 /* Don't count olds caused by ACK reordering */
1617 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1618 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1620 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1623 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
1625 first_sack_index
= -1;
1629 /* Ignore very old stuff early */
1630 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1636 /* order SACK blocks to allow in order walk of the retrans queue */
1637 for (i
= used_sacks
- 1; i
> 0; i
--) {
1638 for (j
= 0; j
< i
; j
++) {
1639 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1640 swap(sp
[j
], sp
[j
+ 1]);
1642 /* Track where the first SACK block goes to */
1643 if (j
== first_sack_index
)
1644 first_sack_index
= j
+ 1;
1649 skb
= tcp_write_queue_head(sk
);
1650 state
.fack_count
= 0;
1653 if (!tp
->sacked_out
) {
1654 /* It's already past, so skip checking against it */
1655 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1657 cache
= tp
->recv_sack_cache
;
1658 /* Skip empty blocks in at head of the cache */
1659 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1664 while (i
< used_sacks
) {
1665 u32 start_seq
= sp
[i
].start_seq
;
1666 u32 end_seq
= sp
[i
].end_seq
;
1667 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1668 struct tcp_sack_block
*next_dup
= NULL
;
1670 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1671 next_dup
= &sp
[i
+ 1];
1673 /* Skip too early cached blocks */
1674 while (tcp_sack_cache_ok(tp
, cache
) &&
1675 !before(start_seq
, cache
->end_seq
))
1678 /* Can skip some work by looking recv_sack_cache? */
1679 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1680 after(end_seq
, cache
->start_seq
)) {
1683 if (before(start_seq
, cache
->start_seq
)) {
1684 skb
= tcp_sacktag_skip(skb
, sk
, &state
,
1686 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1693 /* Rest of the block already fully processed? */
1694 if (!after(end_seq
, cache
->end_seq
))
1697 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1701 /* ...tail remains todo... */
1702 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1703 /* ...but better entrypoint exists! */
1704 skb
= tcp_highest_sack(sk
);
1707 state
.fack_count
= tp
->fackets_out
;
1712 skb
= tcp_sacktag_skip(skb
, sk
, &state
, cache
->end_seq
);
1713 /* Check overlap against next cached too (past this one already) */
1718 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1719 skb
= tcp_highest_sack(sk
);
1722 state
.fack_count
= tp
->fackets_out
;
1724 skb
= tcp_sacktag_skip(skb
, sk
, &state
, start_seq
);
1727 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, &state
,
1728 start_seq
, end_seq
, dup_sack
);
1731 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1732 * due to in-order walk
1734 if (after(end_seq
, tp
->frto_highmark
))
1735 state
.flag
&= ~FLAG_ONLY_ORIG_SACKED
;
1740 /* Clear the head of the cache sack blocks so we can skip it next time */
1741 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1742 tp
->recv_sack_cache
[i
].start_seq
= 0;
1743 tp
->recv_sack_cache
[i
].end_seq
= 0;
1745 for (j
= 0; j
< used_sacks
; j
++)
1746 tp
->recv_sack_cache
[i
++] = sp
[j
];
1748 tcp_mark_lost_retrans(sk
);
1750 tcp_verify_left_out(tp
);
1752 if ((state
.reord
< tp
->fackets_out
) &&
1753 ((icsk
->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
) &&
1754 (!tp
->frto_highmark
|| after(tp
->snd_una
, tp
->frto_highmark
)))
1755 tcp_update_reordering(sk
, tp
->fackets_out
- state
.reord
, 0);
1759 #if FASTRETRANS_DEBUG > 0
1760 WARN_ON((int)tp
->sacked_out
< 0);
1761 WARN_ON((int)tp
->lost_out
< 0);
1762 WARN_ON((int)tp
->retrans_out
< 0);
1763 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1768 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1769 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1771 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1775 holes
= max(tp
->lost_out
, 1U);
1776 holes
= min(holes
, tp
->packets_out
);
1778 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1779 tp
->sacked_out
= tp
->packets_out
- holes
;
1785 /* If we receive more dupacks than we expected counting segments
1786 * in assumption of absent reordering, interpret this as reordering.
1787 * The only another reason could be bug in receiver TCP.
1789 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1791 struct tcp_sock
*tp
= tcp_sk(sk
);
1792 if (tcp_limit_reno_sacked(tp
))
1793 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1796 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1798 static void tcp_add_reno_sack(struct sock
*sk
)
1800 struct tcp_sock
*tp
= tcp_sk(sk
);
1802 tcp_check_reno_reordering(sk
, 0);
1803 tcp_verify_left_out(tp
);
1806 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1808 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1810 struct tcp_sock
*tp
= tcp_sk(sk
);
1813 /* One ACK acked hole. The rest eat duplicate ACKs. */
1814 if (acked
- 1 >= tp
->sacked_out
)
1817 tp
->sacked_out
-= acked
- 1;
1819 tcp_check_reno_reordering(sk
, acked
);
1820 tcp_verify_left_out(tp
);
1823 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1828 static int tcp_is_sackfrto(const struct tcp_sock
*tp
)
1830 return (sysctl_tcp_frto
== 0x2) && !tcp_is_reno(tp
);
1833 /* F-RTO can only be used if TCP has never retransmitted anything other than
1834 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1836 bool tcp_use_frto(struct sock
*sk
)
1838 const struct tcp_sock
*tp
= tcp_sk(sk
);
1839 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1840 struct sk_buff
*skb
;
1842 if (!sysctl_tcp_frto
)
1845 /* MTU probe and F-RTO won't really play nicely along currently */
1846 if (icsk
->icsk_mtup
.probe_size
)
1849 if (tcp_is_sackfrto(tp
))
1852 /* Avoid expensive walking of rexmit queue if possible */
1853 if (tp
->retrans_out
> 1)
1856 skb
= tcp_write_queue_head(sk
);
1857 if (tcp_skb_is_last(sk
, skb
))
1859 skb
= tcp_write_queue_next(sk
, skb
); /* Skips head */
1860 tcp_for_write_queue_from(skb
, sk
) {
1861 if (skb
== tcp_send_head(sk
))
1863 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1865 /* Short-circuit when first non-SACKed skb has been checked */
1866 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
1872 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1873 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1874 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1875 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1876 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1877 * bits are handled if the Loss state is really to be entered (in
1878 * tcp_enter_frto_loss).
1880 * Do like tcp_enter_loss() would; when RTO expires the second time it
1882 * "Reduce ssthresh if it has not yet been made inside this window."
1884 void tcp_enter_frto(struct sock
*sk
)
1886 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1887 struct tcp_sock
*tp
= tcp_sk(sk
);
1888 struct sk_buff
*skb
;
1890 if ((!tp
->frto_counter
&& icsk
->icsk_ca_state
<= TCP_CA_Disorder
) ||
1891 tp
->snd_una
== tp
->high_seq
||
1892 ((icsk
->icsk_ca_state
== TCP_CA_Loss
|| tp
->frto_counter
) &&
1893 !icsk
->icsk_retransmits
)) {
1894 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1895 /* Our state is too optimistic in ssthresh() call because cwnd
1896 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1897 * recovery has not yet completed. Pattern would be this: RTO,
1898 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1900 * RFC4138 should be more specific on what to do, even though
1901 * RTO is quite unlikely to occur after the first Cumulative ACK
1902 * due to back-off and complexity of triggering events ...
1904 if (tp
->frto_counter
) {
1906 stored_cwnd
= tp
->snd_cwnd
;
1908 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1909 tp
->snd_cwnd
= stored_cwnd
;
1911 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1913 /* ... in theory, cong.control module could do "any tricks" in
1914 * ssthresh(), which means that ca_state, lost bits and lost_out
1915 * counter would have to be faked before the call occurs. We
1916 * consider that too expensive, unlikely and hacky, so modules
1917 * using these in ssthresh() must deal these incompatibility
1918 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1920 tcp_ca_event(sk
, CA_EVENT_FRTO
);
1923 tp
->undo_marker
= tp
->snd_una
;
1924 tp
->undo_retrans
= 0;
1926 skb
= tcp_write_queue_head(sk
);
1927 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1928 tp
->undo_marker
= 0;
1929 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1930 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1931 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1933 tcp_verify_left_out(tp
);
1935 /* Too bad if TCP was application limited */
1936 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tcp_packets_in_flight(tp
) + 1);
1938 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1939 * The last condition is necessary at least in tp->frto_counter case.
1941 if (tcp_is_sackfrto(tp
) && (tp
->frto_counter
||
1942 ((1 << icsk
->icsk_ca_state
) & (TCPF_CA_Recovery
|TCPF_CA_Loss
))) &&
1943 after(tp
->high_seq
, tp
->snd_una
)) {
1944 tp
->frto_highmark
= tp
->high_seq
;
1946 tp
->frto_highmark
= tp
->snd_nxt
;
1948 tcp_set_ca_state(sk
, TCP_CA_Disorder
);
1949 tp
->high_seq
= tp
->snd_nxt
;
1950 tp
->frto_counter
= 1;
1953 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1954 * which indicates that we should follow the traditional RTO recovery,
1955 * i.e. mark everything lost and do go-back-N retransmission.
1957 static void tcp_enter_frto_loss(struct sock
*sk
, int allowed_segments
, int flag
)
1959 struct tcp_sock
*tp
= tcp_sk(sk
);
1960 struct sk_buff
*skb
;
1963 tp
->retrans_out
= 0;
1964 if (tcp_is_reno(tp
))
1965 tcp_reset_reno_sack(tp
);
1967 tcp_for_write_queue(skb
, sk
) {
1968 if (skb
== tcp_send_head(sk
))
1971 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
1973 * Count the retransmission made on RTO correctly (only when
1974 * waiting for the first ACK and did not get it)...
1976 if ((tp
->frto_counter
== 1) && !(flag
& FLAG_DATA_ACKED
)) {
1977 /* For some reason this R-bit might get cleared? */
1978 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1979 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1980 /* ...enter this if branch just for the first segment */
1981 flag
|= FLAG_DATA_ACKED
;
1983 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
1984 tp
->undo_marker
= 0;
1985 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1988 /* Marking forward transmissions that were made after RTO lost
1989 * can cause unnecessary retransmissions in some scenarios,
1990 * SACK blocks will mitigate that in some but not in all cases.
1991 * We used to not mark them but it was causing break-ups with
1992 * receivers that do only in-order receival.
1994 * TODO: we could detect presence of such receiver and select
1995 * different behavior per flow.
1997 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1998 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1999 tp
->lost_out
+= tcp_skb_pcount(skb
);
2000 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2003 tcp_verify_left_out(tp
);
2005 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + allowed_segments
;
2006 tp
->snd_cwnd_cnt
= 0;
2007 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2008 tp
->frto_counter
= 0;
2010 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2011 sysctl_tcp_reordering
);
2012 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2013 tp
->high_seq
= tp
->snd_nxt
;
2014 TCP_ECN_queue_cwr(tp
);
2016 tcp_clear_all_retrans_hints(tp
);
2019 static void tcp_clear_retrans_partial(struct tcp_sock
*tp
)
2021 tp
->retrans_out
= 0;
2024 tp
->undo_marker
= 0;
2025 tp
->undo_retrans
= 0;
2028 void tcp_clear_retrans(struct tcp_sock
*tp
)
2030 tcp_clear_retrans_partial(tp
);
2032 tp
->fackets_out
= 0;
2036 /* Enter Loss state. If "how" is not zero, forget all SACK information
2037 * and reset tags completely, otherwise preserve SACKs. If receiver
2038 * dropped its ofo queue, we will know this due to reneging detection.
2040 void tcp_enter_loss(struct sock
*sk
, int how
)
2042 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2043 struct tcp_sock
*tp
= tcp_sk(sk
);
2044 struct sk_buff
*skb
;
2046 /* Reduce ssthresh if it has not yet been made inside this window. */
2047 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
|| tp
->snd_una
== tp
->high_seq
||
2048 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2049 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2050 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2051 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2054 tp
->snd_cwnd_cnt
= 0;
2055 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2057 tcp_clear_retrans_partial(tp
);
2059 if (tcp_is_reno(tp
))
2060 tcp_reset_reno_sack(tp
);
2063 /* Push undo marker, if it was plain RTO and nothing
2064 * was retransmitted. */
2065 tp
->undo_marker
= tp
->snd_una
;
2068 tp
->fackets_out
= 0;
2070 tcp_clear_all_retrans_hints(tp
);
2072 tcp_for_write_queue(skb
, sk
) {
2073 if (skb
== tcp_send_head(sk
))
2076 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
)
2077 tp
->undo_marker
= 0;
2078 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
2079 if (!(TCP_SKB_CB(skb
)->sacked
&TCPCB_SACKED_ACKED
) || how
) {
2080 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2081 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
2082 tp
->lost_out
+= tcp_skb_pcount(skb
);
2083 tp
->retransmit_high
= TCP_SKB_CB(skb
)->end_seq
;
2086 tcp_verify_left_out(tp
);
2088 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2089 sysctl_tcp_reordering
);
2090 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2091 tp
->high_seq
= tp
->snd_nxt
;
2092 TCP_ECN_queue_cwr(tp
);
2093 /* Abort F-RTO algorithm if one is in progress */
2094 tp
->frto_counter
= 0;
2097 /* If ACK arrived pointing to a remembered SACK, it means that our
2098 * remembered SACKs do not reflect real state of receiver i.e.
2099 * receiver _host_ is heavily congested (or buggy).
2101 * Do processing similar to RTO timeout.
2103 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2105 if (flag
& FLAG_SACK_RENEGING
) {
2106 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2107 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2109 tcp_enter_loss(sk
, 1);
2110 icsk
->icsk_retransmits
++;
2111 tcp_retransmit_skb(sk
, tcp_write_queue_head(sk
));
2112 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2113 icsk
->icsk_rto
, TCP_RTO_MAX
);
2119 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2121 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2124 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2125 * counter when SACK is enabled (without SACK, sacked_out is used for
2128 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2129 * segments up to the highest received SACK block so far and holes in
2132 * With reordering, holes may still be in flight, so RFC3517 recovery
2133 * uses pure sacked_out (total number of SACKed segments) even though
2134 * it violates the RFC that uses duplicate ACKs, often these are equal
2135 * but when e.g. out-of-window ACKs or packet duplication occurs,
2136 * they differ. Since neither occurs due to loss, TCP should really
2139 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2141 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2144 static bool tcp_pause_early_retransmit(struct sock
*sk
, int flag
)
2146 struct tcp_sock
*tp
= tcp_sk(sk
);
2147 unsigned long delay
;
2149 /* Delay early retransmit and entering fast recovery for
2150 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2151 * available, or RTO is scheduled to fire first.
2153 if (sysctl_tcp_early_retrans
< 2 || (flag
& FLAG_ECE
) || !tp
->srtt
)
2156 delay
= max_t(unsigned long, (tp
->srtt
>> 5), msecs_to_jiffies(2));
2157 if (!time_after(inet_csk(sk
)->icsk_timeout
, (jiffies
+ delay
)))
2160 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, delay
, TCP_RTO_MAX
);
2161 tp
->early_retrans_delayed
= 1;
2165 static inline int tcp_skb_timedout(const struct sock
*sk
,
2166 const struct sk_buff
*skb
)
2168 return tcp_time_stamp
- TCP_SKB_CB(skb
)->when
> inet_csk(sk
)->icsk_rto
;
2171 static inline int tcp_head_timedout(const struct sock
*sk
)
2173 const struct tcp_sock
*tp
= tcp_sk(sk
);
2175 return tp
->packets_out
&&
2176 tcp_skb_timedout(sk
, tcp_write_queue_head(sk
));
2179 /* Linux NewReno/SACK/FACK/ECN state machine.
2180 * --------------------------------------
2182 * "Open" Normal state, no dubious events, fast path.
2183 * "Disorder" In all the respects it is "Open",
2184 * but requires a bit more attention. It is entered when
2185 * we see some SACKs or dupacks. It is split of "Open"
2186 * mainly to move some processing from fast path to slow one.
2187 * "CWR" CWND was reduced due to some Congestion Notification event.
2188 * It can be ECN, ICMP source quench, local device congestion.
2189 * "Recovery" CWND was reduced, we are fast-retransmitting.
2190 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2192 * tcp_fastretrans_alert() is entered:
2193 * - each incoming ACK, if state is not "Open"
2194 * - when arrived ACK is unusual, namely:
2199 * Counting packets in flight is pretty simple.
2201 * in_flight = packets_out - left_out + retrans_out
2203 * packets_out is SND.NXT-SND.UNA counted in packets.
2205 * retrans_out is number of retransmitted segments.
2207 * left_out is number of segments left network, but not ACKed yet.
2209 * left_out = sacked_out + lost_out
2211 * sacked_out: Packets, which arrived to receiver out of order
2212 * and hence not ACKed. With SACKs this number is simply
2213 * amount of SACKed data. Even without SACKs
2214 * it is easy to give pretty reliable estimate of this number,
2215 * counting duplicate ACKs.
2217 * lost_out: Packets lost by network. TCP has no explicit
2218 * "loss notification" feedback from network (for now).
2219 * It means that this number can be only _guessed_.
2220 * Actually, it is the heuristics to predict lossage that
2221 * distinguishes different algorithms.
2223 * F.e. after RTO, when all the queue is considered as lost,
2224 * lost_out = packets_out and in_flight = retrans_out.
2226 * Essentially, we have now two algorithms counting
2229 * FACK: It is the simplest heuristics. As soon as we decided
2230 * that something is lost, we decide that _all_ not SACKed
2231 * packets until the most forward SACK are lost. I.e.
2232 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2233 * It is absolutely correct estimate, if network does not reorder
2234 * packets. And it loses any connection to reality when reordering
2235 * takes place. We use FACK by default until reordering
2236 * is suspected on the path to this destination.
2238 * NewReno: when Recovery is entered, we assume that one segment
2239 * is lost (classic Reno). While we are in Recovery and
2240 * a partial ACK arrives, we assume that one more packet
2241 * is lost (NewReno). This heuristics are the same in NewReno
2244 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2245 * deflation etc. CWND is real congestion window, never inflated, changes
2246 * only according to classic VJ rules.
2248 * Really tricky (and requiring careful tuning) part of algorithm
2249 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2250 * The first determines the moment _when_ we should reduce CWND and,
2251 * hence, slow down forward transmission. In fact, it determines the moment
2252 * when we decide that hole is caused by loss, rather than by a reorder.
2254 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2255 * holes, caused by lost packets.
2257 * And the most logically complicated part of algorithm is undo
2258 * heuristics. We detect false retransmits due to both too early
2259 * fast retransmit (reordering) and underestimated RTO, analyzing
2260 * timestamps and D-SACKs. When we detect that some segments were
2261 * retransmitted by mistake and CWND reduction was wrong, we undo
2262 * window reduction and abort recovery phase. This logic is hidden
2263 * inside several functions named tcp_try_undo_<something>.
2266 /* This function decides, when we should leave Disordered state
2267 * and enter Recovery phase, reducing congestion window.
2269 * Main question: may we further continue forward transmission
2270 * with the same cwnd?
2272 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2274 struct tcp_sock
*tp
= tcp_sk(sk
);
2277 /* Do not perform any recovery during F-RTO algorithm */
2278 if (tp
->frto_counter
)
2281 /* Trick#1: The loss is proven. */
2285 /* Not-A-Trick#2 : Classic rule... */
2286 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2289 /* Trick#3 : when we use RFC2988 timer restart, fast
2290 * retransmit can be triggered by timeout of queue head.
2292 if (tcp_is_fack(tp
) && tcp_head_timedout(sk
))
2295 /* Trick#4: It is still not OK... But will it be useful to delay
2298 packets_out
= tp
->packets_out
;
2299 if (packets_out
<= tp
->reordering
&&
2300 tp
->sacked_out
>= max_t(__u32
, packets_out
/2, sysctl_tcp_reordering
) &&
2301 !tcp_may_send_now(sk
)) {
2302 /* We have nothing to send. This connection is limited
2303 * either by receiver window or by application.
2308 /* If a thin stream is detected, retransmit after first
2309 * received dupack. Employ only if SACK is supported in order
2310 * to avoid possible corner-case series of spurious retransmissions
2311 * Use only if there are no unsent data.
2313 if ((tp
->thin_dupack
|| sysctl_tcp_thin_dupack
) &&
2314 tcp_stream_is_thin(tp
) && tcp_dupack_heuristics(tp
) > 1 &&
2315 tcp_is_sack(tp
) && !tcp_send_head(sk
))
2318 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2319 * retransmissions due to small network reorderings, we implement
2320 * Mitigation A.3 in the RFC and delay the retransmission for a short
2321 * interval if appropriate.
2323 if (tp
->do_early_retrans
&& !tp
->retrans_out
&& tp
->sacked_out
&&
2324 (tp
->packets_out
== (tp
->sacked_out
+ 1) && tp
->packets_out
< 4) &&
2325 !tcp_may_send_now(sk
))
2326 return !tcp_pause_early_retransmit(sk
, flag
);
2331 /* New heuristics: it is possible only after we switched to restart timer
2332 * each time when something is ACKed. Hence, we can detect timed out packets
2333 * during fast retransmit without falling to slow start.
2335 * Usefulness of this as is very questionable, since we should know which of
2336 * the segments is the next to timeout which is relatively expensive to find
2337 * in general case unless we add some data structure just for that. The
2338 * current approach certainly won't find the right one too often and when it
2339 * finally does find _something_ it usually marks large part of the window
2340 * right away (because a retransmission with a larger timestamp blocks the
2341 * loop from advancing). -ij
2343 static void tcp_timeout_skbs(struct sock
*sk
)
2345 struct tcp_sock
*tp
= tcp_sk(sk
);
2346 struct sk_buff
*skb
;
2348 if (!tcp_is_fack(tp
) || !tcp_head_timedout(sk
))
2351 skb
= tp
->scoreboard_skb_hint
;
2352 if (tp
->scoreboard_skb_hint
== NULL
)
2353 skb
= tcp_write_queue_head(sk
);
2355 tcp_for_write_queue_from(skb
, sk
) {
2356 if (skb
== tcp_send_head(sk
))
2358 if (!tcp_skb_timedout(sk
, skb
))
2361 tcp_skb_mark_lost(tp
, skb
);
2364 tp
->scoreboard_skb_hint
= skb
;
2366 tcp_verify_left_out(tp
);
2369 /* Detect loss in event "A" above by marking head of queue up as lost.
2370 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2371 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2372 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2373 * the maximum SACKed segments to pass before reaching this limit.
2375 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2377 struct tcp_sock
*tp
= tcp_sk(sk
);
2378 struct sk_buff
*skb
;
2382 /* Use SACK to deduce losses of new sequences sent during recovery */
2383 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2385 WARN_ON(packets
> tp
->packets_out
);
2386 if (tp
->lost_skb_hint
) {
2387 skb
= tp
->lost_skb_hint
;
2388 cnt
= tp
->lost_cnt_hint
;
2389 /* Head already handled? */
2390 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2393 skb
= tcp_write_queue_head(sk
);
2397 tcp_for_write_queue_from(skb
, sk
) {
2398 if (skb
== tcp_send_head(sk
))
2400 /* TODO: do this better */
2401 /* this is not the most efficient way to do this... */
2402 tp
->lost_skb_hint
= skb
;
2403 tp
->lost_cnt_hint
= cnt
;
2405 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2409 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2410 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2411 cnt
+= tcp_skb_pcount(skb
);
2413 if (cnt
> packets
) {
2414 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2415 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2416 (oldcnt
>= packets
))
2419 mss
= skb_shinfo(skb
)->gso_size
;
2420 err
= tcp_fragment(sk
, skb
, (packets
- oldcnt
) * mss
, mss
);
2426 tcp_skb_mark_lost(tp
, skb
);
2431 tcp_verify_left_out(tp
);
2434 /* Account newly detected lost packet(s) */
2436 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2438 struct tcp_sock
*tp
= tcp_sk(sk
);
2440 if (tcp_is_reno(tp
)) {
2441 tcp_mark_head_lost(sk
, 1, 1);
2442 } else if (tcp_is_fack(tp
)) {
2443 int lost
= tp
->fackets_out
- tp
->reordering
;
2446 tcp_mark_head_lost(sk
, lost
, 0);
2448 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2449 if (sacked_upto
>= 0)
2450 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2451 else if (fast_rexmit
)
2452 tcp_mark_head_lost(sk
, 1, 1);
2455 tcp_timeout_skbs(sk
);
2458 /* CWND moderation, preventing bursts due to too big ACKs
2459 * in dubious situations.
2461 static inline void tcp_moderate_cwnd(struct tcp_sock
*tp
)
2463 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
2464 tcp_packets_in_flight(tp
) + tcp_max_burst(tp
));
2465 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2468 /* Nothing was retransmitted or returned timestamp is less
2469 * than timestamp of the first retransmission.
2471 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2473 return !tp
->retrans_stamp
||
2474 (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2475 before(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
));
2478 /* Undo procedures. */
2480 #if FASTRETRANS_DEBUG > 1
2481 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2483 struct tcp_sock
*tp
= tcp_sk(sk
);
2484 struct inet_sock
*inet
= inet_sk(sk
);
2486 if (sk
->sk_family
== AF_INET
) {
2487 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2489 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2490 tp
->snd_cwnd
, tcp_left_out(tp
),
2491 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2494 #if IS_ENABLED(CONFIG_IPV6)
2495 else if (sk
->sk_family
== AF_INET6
) {
2496 struct ipv6_pinfo
*np
= inet6_sk(sk
);
2497 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2499 &np
->daddr
, ntohs(inet
->inet_dport
),
2500 tp
->snd_cwnd
, tcp_left_out(tp
),
2501 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2507 #define DBGUNDO(x...) do { } while (0)
2510 static void tcp_undo_cwr(struct sock
*sk
, const bool undo_ssthresh
)
2512 struct tcp_sock
*tp
= tcp_sk(sk
);
2514 if (tp
->prior_ssthresh
) {
2515 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2517 if (icsk
->icsk_ca_ops
->undo_cwnd
)
2518 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2520 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
<< 1);
2522 if (undo_ssthresh
&& tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2523 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2524 TCP_ECN_withdraw_cwr(tp
);
2527 tp
->snd_cwnd
= max(tp
->snd_cwnd
, tp
->snd_ssthresh
);
2529 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2532 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2534 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2537 /* People celebrate: "We love our President!" */
2538 static bool tcp_try_undo_recovery(struct sock
*sk
)
2540 struct tcp_sock
*tp
= tcp_sk(sk
);
2542 if (tcp_may_undo(tp
)) {
2545 /* Happy end! We did not retransmit anything
2546 * or our original transmission succeeded.
2548 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2549 tcp_undo_cwr(sk
, true);
2550 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2551 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2553 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2555 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2556 tp
->undo_marker
= 0;
2558 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2559 /* Hold old state until something *above* high_seq
2560 * is ACKed. For Reno it is MUST to prevent false
2561 * fast retransmits (RFC2582). SACK TCP is safe. */
2562 tcp_moderate_cwnd(tp
);
2565 tcp_set_ca_state(sk
, TCP_CA_Open
);
2569 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2570 static void tcp_try_undo_dsack(struct sock
*sk
)
2572 struct tcp_sock
*tp
= tcp_sk(sk
);
2574 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2575 DBGUNDO(sk
, "D-SACK");
2576 tcp_undo_cwr(sk
, true);
2577 tp
->undo_marker
= 0;
2578 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2582 /* We can clear retrans_stamp when there are no retransmissions in the
2583 * window. It would seem that it is trivially available for us in
2584 * tp->retrans_out, however, that kind of assumptions doesn't consider
2585 * what will happen if errors occur when sending retransmission for the
2586 * second time. ...It could the that such segment has only
2587 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2588 * the head skb is enough except for some reneging corner cases that
2589 * are not worth the effort.
2591 * Main reason for all this complexity is the fact that connection dying
2592 * time now depends on the validity of the retrans_stamp, in particular,
2593 * that successive retransmissions of a segment must not advance
2594 * retrans_stamp under any conditions.
2596 static bool tcp_any_retrans_done(const struct sock
*sk
)
2598 const struct tcp_sock
*tp
= tcp_sk(sk
);
2599 struct sk_buff
*skb
;
2601 if (tp
->retrans_out
)
2604 skb
= tcp_write_queue_head(sk
);
2605 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2611 /* Undo during fast recovery after partial ACK. */
2613 static int tcp_try_undo_partial(struct sock
*sk
, int acked
)
2615 struct tcp_sock
*tp
= tcp_sk(sk
);
2616 /* Partial ACK arrived. Force Hoe's retransmit. */
2617 int failed
= tcp_is_reno(tp
) || (tcp_fackets_out(tp
) > tp
->reordering
);
2619 if (tcp_may_undo(tp
)) {
2620 /* Plain luck! Hole if filled with delayed
2621 * packet, rather than with a retransmit.
2623 if (!tcp_any_retrans_done(sk
))
2624 tp
->retrans_stamp
= 0;
2626 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2629 tcp_undo_cwr(sk
, false);
2630 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2632 /* So... Do not make Hoe's retransmit yet.
2633 * If the first packet was delayed, the rest
2634 * ones are most probably delayed as well.
2641 /* Undo during loss recovery after partial ACK. */
2642 static bool tcp_try_undo_loss(struct sock
*sk
)
2644 struct tcp_sock
*tp
= tcp_sk(sk
);
2646 if (tcp_may_undo(tp
)) {
2647 struct sk_buff
*skb
;
2648 tcp_for_write_queue(skb
, sk
) {
2649 if (skb
== tcp_send_head(sk
))
2651 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2654 tcp_clear_all_retrans_hints(tp
);
2656 DBGUNDO(sk
, "partial loss");
2658 tcp_undo_cwr(sk
, true);
2659 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2660 inet_csk(sk
)->icsk_retransmits
= 0;
2661 tp
->undo_marker
= 0;
2662 if (tcp_is_sack(tp
))
2663 tcp_set_ca_state(sk
, TCP_CA_Open
);
2669 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2670 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2671 * It computes the number of packets to send (sndcnt) based on packets newly
2673 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2674 * cwnd reductions across a full RTT.
2675 * 2) If packets in flight is lower than ssthresh (such as due to excess
2676 * losses and/or application stalls), do not perform any further cwnd
2677 * reductions, but instead slow start up to ssthresh.
2679 static void tcp_init_cwnd_reduction(struct sock
*sk
, const bool set_ssthresh
)
2681 struct tcp_sock
*tp
= tcp_sk(sk
);
2683 tp
->high_seq
= tp
->snd_nxt
;
2684 tp
->snd_cwnd_cnt
= 0;
2685 tp
->prior_cwnd
= tp
->snd_cwnd
;
2686 tp
->prr_delivered
= 0;
2689 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2690 TCP_ECN_queue_cwr(tp
);
2693 static void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
,
2696 struct tcp_sock
*tp
= tcp_sk(sk
);
2698 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2700 tp
->prr_delivered
+= newly_acked_sacked
;
2701 if (tcp_packets_in_flight(tp
) > tp
->snd_ssthresh
) {
2702 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2704 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2706 sndcnt
= min_t(int, delta
,
2707 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2708 newly_acked_sacked
) + 1);
2711 sndcnt
= max(sndcnt
, (fast_rexmit
? 1 : 0));
2712 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2715 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2717 struct tcp_sock
*tp
= tcp_sk(sk
);
2719 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2720 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2721 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2722 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2723 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2725 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2728 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2729 void tcp_enter_cwr(struct sock
*sk
, const int set_ssthresh
)
2731 struct tcp_sock
*tp
= tcp_sk(sk
);
2733 tp
->prior_ssthresh
= 0;
2734 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2735 tp
->undo_marker
= 0;
2736 tcp_init_cwnd_reduction(sk
, set_ssthresh
);
2737 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2741 static void tcp_try_keep_open(struct sock
*sk
)
2743 struct tcp_sock
*tp
= tcp_sk(sk
);
2744 int state
= TCP_CA_Open
;
2746 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2747 state
= TCP_CA_Disorder
;
2749 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2750 tcp_set_ca_state(sk
, state
);
2751 tp
->high_seq
= tp
->snd_nxt
;
2755 static void tcp_try_to_open(struct sock
*sk
, int flag
, int newly_acked_sacked
)
2757 struct tcp_sock
*tp
= tcp_sk(sk
);
2759 tcp_verify_left_out(tp
);
2761 if (!tp
->frto_counter
&& !tcp_any_retrans_done(sk
))
2762 tp
->retrans_stamp
= 0;
2764 if (flag
& FLAG_ECE
)
2765 tcp_enter_cwr(sk
, 1);
2767 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2768 tcp_try_keep_open(sk
);
2769 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2770 tcp_moderate_cwnd(tp
);
2772 tcp_cwnd_reduction(sk
, newly_acked_sacked
, 0);
2776 static void tcp_mtup_probe_failed(struct sock
*sk
)
2778 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2780 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2781 icsk
->icsk_mtup
.probe_size
= 0;
2784 static void tcp_mtup_probe_success(struct sock
*sk
)
2786 struct tcp_sock
*tp
= tcp_sk(sk
);
2787 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2789 /* FIXME: breaks with very large cwnd */
2790 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2791 tp
->snd_cwnd
= tp
->snd_cwnd
*
2792 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2793 icsk
->icsk_mtup
.probe_size
;
2794 tp
->snd_cwnd_cnt
= 0;
2795 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2796 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2798 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2799 icsk
->icsk_mtup
.probe_size
= 0;
2800 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2803 /* Do a simple retransmit without using the backoff mechanisms in
2804 * tcp_timer. This is used for path mtu discovery.
2805 * The socket is already locked here.
2807 void tcp_simple_retransmit(struct sock
*sk
)
2809 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2810 struct tcp_sock
*tp
= tcp_sk(sk
);
2811 struct sk_buff
*skb
;
2812 unsigned int mss
= tcp_current_mss(sk
);
2813 u32 prior_lost
= tp
->lost_out
;
2815 tcp_for_write_queue(skb
, sk
) {
2816 if (skb
== tcp_send_head(sk
))
2818 if (tcp_skb_seglen(skb
) > mss
&&
2819 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2820 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2821 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2822 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2824 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2828 tcp_clear_retrans_hints_partial(tp
);
2830 if (prior_lost
== tp
->lost_out
)
2833 if (tcp_is_reno(tp
))
2834 tcp_limit_reno_sacked(tp
);
2836 tcp_verify_left_out(tp
);
2838 /* Don't muck with the congestion window here.
2839 * Reason is that we do not increase amount of _data_
2840 * in network, but units changed and effective
2841 * cwnd/ssthresh really reduced now.
2843 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2844 tp
->high_seq
= tp
->snd_nxt
;
2845 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2846 tp
->prior_ssthresh
= 0;
2847 tp
->undo_marker
= 0;
2848 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2850 tcp_xmit_retransmit_queue(sk
);
2852 EXPORT_SYMBOL(tcp_simple_retransmit
);
2854 static void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2856 struct tcp_sock
*tp
= tcp_sk(sk
);
2859 if (tcp_is_reno(tp
))
2860 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2862 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2864 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2866 tp
->prior_ssthresh
= 0;
2867 tp
->undo_marker
= tp
->snd_una
;
2868 tp
->undo_retrans
= tp
->retrans_out
;
2870 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2872 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2873 tcp_init_cwnd_reduction(sk
, true);
2875 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2878 /* Process an event, which can update packets-in-flight not trivially.
2879 * Main goal of this function is to calculate new estimate for left_out,
2880 * taking into account both packets sitting in receiver's buffer and
2881 * packets lost by network.
2883 * Besides that it does CWND reduction, when packet loss is detected
2884 * and changes state of machine.
2886 * It does _not_ decide what to send, it is made in function
2887 * tcp_xmit_retransmit_queue().
2889 static void tcp_fastretrans_alert(struct sock
*sk
, int pkts_acked
,
2890 int prior_sacked
, bool is_dupack
,
2893 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2894 struct tcp_sock
*tp
= tcp_sk(sk
);
2895 int do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2896 (tcp_fackets_out(tp
) > tp
->reordering
));
2897 int newly_acked_sacked
= 0;
2898 int fast_rexmit
= 0;
2900 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2902 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2903 tp
->fackets_out
= 0;
2905 /* Now state machine starts.
2906 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2907 if (flag
& FLAG_ECE
)
2908 tp
->prior_ssthresh
= 0;
2910 /* B. In all the states check for reneging SACKs. */
2911 if (tcp_check_sack_reneging(sk
, flag
))
2914 /* C. Check consistency of the current state. */
2915 tcp_verify_left_out(tp
);
2917 /* D. Check state exit conditions. State can be terminated
2918 * when high_seq is ACKed. */
2919 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2920 WARN_ON(tp
->retrans_out
!= 0);
2921 tp
->retrans_stamp
= 0;
2922 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2923 switch (icsk
->icsk_ca_state
) {
2925 icsk
->icsk_retransmits
= 0;
2926 if (tcp_try_undo_recovery(sk
))
2931 /* CWR is to be held something *above* high_seq
2932 * is ACKed for CWR bit to reach receiver. */
2933 if (tp
->snd_una
!= tp
->high_seq
) {
2934 tcp_end_cwnd_reduction(sk
);
2935 tcp_set_ca_state(sk
, TCP_CA_Open
);
2939 case TCP_CA_Recovery
:
2940 if (tcp_is_reno(tp
))
2941 tcp_reset_reno_sack(tp
);
2942 if (tcp_try_undo_recovery(sk
))
2944 tcp_end_cwnd_reduction(sk
);
2949 /* E. Process state. */
2950 switch (icsk
->icsk_ca_state
) {
2951 case TCP_CA_Recovery
:
2952 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2953 if (tcp_is_reno(tp
) && is_dupack
)
2954 tcp_add_reno_sack(sk
);
2956 do_lost
= tcp_try_undo_partial(sk
, pkts_acked
);
2957 newly_acked_sacked
= pkts_acked
+ tp
->sacked_out
- prior_sacked
;
2960 if (flag
& FLAG_DATA_ACKED
)
2961 icsk
->icsk_retransmits
= 0;
2962 if (tcp_is_reno(tp
) && flag
& FLAG_SND_UNA_ADVANCED
)
2963 tcp_reset_reno_sack(tp
);
2964 if (!tcp_try_undo_loss(sk
)) {
2965 tcp_moderate_cwnd(tp
);
2966 tcp_xmit_retransmit_queue(sk
);
2969 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
2971 /* Loss is undone; fall through to processing in Open state. */
2973 if (tcp_is_reno(tp
)) {
2974 if (flag
& FLAG_SND_UNA_ADVANCED
)
2975 tcp_reset_reno_sack(tp
);
2977 tcp_add_reno_sack(sk
);
2979 newly_acked_sacked
= pkts_acked
+ tp
->sacked_out
- prior_sacked
;
2981 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2982 tcp_try_undo_dsack(sk
);
2984 if (!tcp_time_to_recover(sk
, flag
)) {
2985 tcp_try_to_open(sk
, flag
, newly_acked_sacked
);
2989 /* MTU probe failure: don't reduce cwnd */
2990 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2991 icsk
->icsk_mtup
.probe_size
&&
2992 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2993 tcp_mtup_probe_failed(sk
);
2994 /* Restores the reduction we did in tcp_mtup_probe() */
2996 tcp_simple_retransmit(sk
);
3000 /* Otherwise enter Recovery state */
3001 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
3005 if (do_lost
|| (tcp_is_fack(tp
) && tcp_head_timedout(sk
)))
3006 tcp_update_scoreboard(sk
, fast_rexmit
);
3007 tcp_cwnd_reduction(sk
, newly_acked_sacked
, fast_rexmit
);
3008 tcp_xmit_retransmit_queue(sk
);
3011 void tcp_valid_rtt_meas(struct sock
*sk
, u32 seq_rtt
)
3013 tcp_rtt_estimator(sk
, seq_rtt
);
3015 inet_csk(sk
)->icsk_backoff
= 0;
3017 EXPORT_SYMBOL(tcp_valid_rtt_meas
);
3019 /* Read draft-ietf-tcplw-high-performance before mucking
3020 * with this code. (Supersedes RFC1323)
3022 static void tcp_ack_saw_tstamp(struct sock
*sk
, int flag
)
3024 /* RTTM Rule: A TSecr value received in a segment is used to
3025 * update the averaged RTT measurement only if the segment
3026 * acknowledges some new data, i.e., only if it advances the
3027 * left edge of the send window.
3029 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3030 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3032 * Changed: reset backoff as soon as we see the first valid sample.
3033 * If we do not, we get strongly overestimated rto. With timestamps
3034 * samples are accepted even from very old segments: f.e., when rtt=1
3035 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3036 * answer arrives rto becomes 120 seconds! If at least one of segments
3037 * in window is lost... Voila. --ANK (010210)
3039 struct tcp_sock
*tp
= tcp_sk(sk
);
3041 tcp_valid_rtt_meas(sk
, tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
);
3044 static void tcp_ack_no_tstamp(struct sock
*sk
, u32 seq_rtt
, int flag
)
3046 /* We don't have a timestamp. Can only use
3047 * packets that are not retransmitted to determine
3048 * rtt estimates. Also, we must not reset the
3049 * backoff for rto until we get a non-retransmitted
3050 * packet. This allows us to deal with a situation
3051 * where the network delay has increased suddenly.
3052 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3055 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3058 tcp_valid_rtt_meas(sk
, seq_rtt
);
3061 static inline void tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3064 const struct tcp_sock
*tp
= tcp_sk(sk
);
3065 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3066 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3067 tcp_ack_saw_tstamp(sk
, flag
);
3068 else if (seq_rtt
>= 0)
3069 tcp_ack_no_tstamp(sk
, seq_rtt
, flag
);
3072 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 in_flight
)
3074 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3075 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, in_flight
);
3076 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
3079 /* Restart timer after forward progress on connection.
3080 * RFC2988 recommends to restart timer to now+rto.
3082 void tcp_rearm_rto(struct sock
*sk
)
3084 struct tcp_sock
*tp
= tcp_sk(sk
);
3086 /* If the retrans timer is currently being used by Fast Open
3087 * for SYN-ACK retrans purpose, stay put.
3089 if (tp
->fastopen_rsk
)
3092 if (!tp
->packets_out
) {
3093 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3095 u32 rto
= inet_csk(sk
)->icsk_rto
;
3096 /* Offset the time elapsed after installing regular RTO */
3097 if (tp
->early_retrans_delayed
) {
3098 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3099 const u32 rto_time_stamp
= TCP_SKB_CB(skb
)->when
+ rto
;
3100 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3101 /* delta may not be positive if the socket is locked
3102 * when the delayed ER timer fires and is rescheduled.
3107 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3110 tp
->early_retrans_delayed
= 0;
3113 /* This function is called when the delayed ER timer fires. TCP enters
3114 * fast recovery and performs fast-retransmit.
3116 void tcp_resume_early_retransmit(struct sock
*sk
)
3118 struct tcp_sock
*tp
= tcp_sk(sk
);
3122 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3123 if (!tp
->do_early_retrans
)
3126 tcp_enter_recovery(sk
, false);
3127 tcp_update_scoreboard(sk
, 1);
3128 tcp_xmit_retransmit_queue(sk
);
3131 /* If we get here, the whole TSO packet has not been acked. */
3132 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3134 struct tcp_sock
*tp
= tcp_sk(sk
);
3137 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3139 packets_acked
= tcp_skb_pcount(skb
);
3140 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3142 packets_acked
-= tcp_skb_pcount(skb
);
3144 if (packets_acked
) {
3145 BUG_ON(tcp_skb_pcount(skb
) == 0);
3146 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3149 return packets_acked
;
3152 /* Remove acknowledged frames from the retransmission queue. If our packet
3153 * is before the ack sequence we can discard it as it's confirmed to have
3154 * arrived at the other end.
3156 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3159 struct tcp_sock
*tp
= tcp_sk(sk
);
3160 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3161 struct sk_buff
*skb
;
3162 u32 now
= tcp_time_stamp
;
3163 int fully_acked
= true;
3166 u32 reord
= tp
->packets_out
;
3167 u32 prior_sacked
= tp
->sacked_out
;
3169 s32 ca_seq_rtt
= -1;
3170 ktime_t last_ackt
= net_invalid_timestamp();
3172 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3173 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3175 u8 sacked
= scb
->sacked
;
3177 /* Determine how many packets and what bytes were acked, tso and else */
3178 if (after(scb
->end_seq
, tp
->snd_una
)) {
3179 if (tcp_skb_pcount(skb
) == 1 ||
3180 !after(tp
->snd_una
, scb
->seq
))
3183 acked_pcount
= tcp_tso_acked(sk
, skb
);
3187 fully_acked
= false;
3189 acked_pcount
= tcp_skb_pcount(skb
);
3192 if (sacked
& TCPCB_RETRANS
) {
3193 if (sacked
& TCPCB_SACKED_RETRANS
)
3194 tp
->retrans_out
-= acked_pcount
;
3195 flag
|= FLAG_RETRANS_DATA_ACKED
;
3198 if ((flag
& FLAG_DATA_ACKED
) || (acked_pcount
> 1))
3199 flag
|= FLAG_NONHEAD_RETRANS_ACKED
;
3201 ca_seq_rtt
= now
- scb
->when
;
3202 last_ackt
= skb
->tstamp
;
3204 seq_rtt
= ca_seq_rtt
;
3206 if (!(sacked
& TCPCB_SACKED_ACKED
))
3207 reord
= min(pkts_acked
, reord
);
3210 if (sacked
& TCPCB_SACKED_ACKED
)
3211 tp
->sacked_out
-= acked_pcount
;
3212 if (sacked
& TCPCB_LOST
)
3213 tp
->lost_out
-= acked_pcount
;
3215 tp
->packets_out
-= acked_pcount
;
3216 pkts_acked
+= acked_pcount
;
3218 /* Initial outgoing SYN's get put onto the write_queue
3219 * just like anything else we transmit. It is not
3220 * true data, and if we misinform our callers that
3221 * this ACK acks real data, we will erroneously exit
3222 * connection startup slow start one packet too
3223 * quickly. This is severely frowned upon behavior.
3225 if (!(scb
->tcp_flags
& TCPHDR_SYN
)) {
3226 flag
|= FLAG_DATA_ACKED
;
3228 flag
|= FLAG_SYN_ACKED
;
3229 tp
->retrans_stamp
= 0;
3235 tcp_unlink_write_queue(skb
, sk
);
3236 sk_wmem_free_skb(sk
, skb
);
3237 tp
->scoreboard_skb_hint
= NULL
;
3238 if (skb
== tp
->retransmit_skb_hint
)
3239 tp
->retransmit_skb_hint
= NULL
;
3240 if (skb
== tp
->lost_skb_hint
)
3241 tp
->lost_skb_hint
= NULL
;
3244 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3245 tp
->snd_up
= tp
->snd_una
;
3247 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3248 flag
|= FLAG_SACK_RENEGING
;
3250 if (flag
& FLAG_ACKED
) {
3251 const struct tcp_congestion_ops
*ca_ops
3252 = inet_csk(sk
)->icsk_ca_ops
;
3254 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3255 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3256 tcp_mtup_probe_success(sk
);
3259 tcp_ack_update_rtt(sk
, flag
, seq_rtt
);
3262 if (tcp_is_reno(tp
)) {
3263 tcp_remove_reno_sacks(sk
, pkts_acked
);
3267 /* Non-retransmitted hole got filled? That's reordering */
3268 if (reord
< prior_fackets
)
3269 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3271 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3272 prior_sacked
- tp
->sacked_out
;
3273 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3276 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3278 if (ca_ops
->pkts_acked
) {
3281 /* Is the ACK triggering packet unambiguous? */
3282 if (!(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3283 /* High resolution needed and available? */
3284 if (ca_ops
->flags
& TCP_CONG_RTT_STAMP
&&
3285 !ktime_equal(last_ackt
,
3286 net_invalid_timestamp()))
3287 rtt_us
= ktime_us_delta(ktime_get_real(),
3289 else if (ca_seq_rtt
>= 0)
3290 rtt_us
= jiffies_to_usecs(ca_seq_rtt
);
3293 ca_ops
->pkts_acked(sk
, pkts_acked
, rtt_us
);
3297 #if FASTRETRANS_DEBUG > 0
3298 WARN_ON((int)tp
->sacked_out
< 0);
3299 WARN_ON((int)tp
->lost_out
< 0);
3300 WARN_ON((int)tp
->retrans_out
< 0);
3301 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3302 icsk
= inet_csk(sk
);
3304 pr_debug("Leak l=%u %d\n",
3305 tp
->lost_out
, icsk
->icsk_ca_state
);
3308 if (tp
->sacked_out
) {
3309 pr_debug("Leak s=%u %d\n",
3310 tp
->sacked_out
, icsk
->icsk_ca_state
);
3313 if (tp
->retrans_out
) {
3314 pr_debug("Leak r=%u %d\n",
3315 tp
->retrans_out
, icsk
->icsk_ca_state
);
3316 tp
->retrans_out
= 0;
3323 static void tcp_ack_probe(struct sock
*sk
)
3325 const struct tcp_sock
*tp
= tcp_sk(sk
);
3326 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3328 /* Was it a usable window open? */
3330 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3331 icsk
->icsk_backoff
= 0;
3332 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3333 /* Socket must be waked up by subsequent tcp_data_snd_check().
3334 * This function is not for random using!
3337 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3338 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
3343 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3345 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3346 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3349 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3351 const struct tcp_sock
*tp
= tcp_sk(sk
);
3352 return (!(flag
& FLAG_ECE
) || tp
->snd_cwnd
< tp
->snd_ssthresh
) &&
3353 !tcp_in_cwnd_reduction(sk
);
3356 /* Check that window update is acceptable.
3357 * The function assumes that snd_una<=ack<=snd_next.
3359 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3360 const u32 ack
, const u32 ack_seq
,
3363 return after(ack
, tp
->snd_una
) ||
3364 after(ack_seq
, tp
->snd_wl1
) ||
3365 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3368 /* Update our send window.
3370 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3371 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3373 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3376 struct tcp_sock
*tp
= tcp_sk(sk
);
3378 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3380 if (likely(!tcp_hdr(skb
)->syn
))
3381 nwin
<<= tp
->rx_opt
.snd_wscale
;
3383 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3384 flag
|= FLAG_WIN_UPDATE
;
3385 tcp_update_wl(tp
, ack_seq
);
3387 if (tp
->snd_wnd
!= nwin
) {
3390 /* Note, it is the only place, where
3391 * fast path is recovered for sending TCP.
3394 tcp_fast_path_check(sk
);
3396 if (nwin
> tp
->max_window
) {
3397 tp
->max_window
= nwin
;
3398 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3408 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3409 * continue in congestion avoidance.
3411 static void tcp_conservative_spur_to_response(struct tcp_sock
*tp
)
3413 tp
->snd_cwnd
= min(tp
->snd_cwnd
, tp
->snd_ssthresh
);
3414 tp
->snd_cwnd_cnt
= 0;
3415 TCP_ECN_queue_cwr(tp
);
3416 tcp_moderate_cwnd(tp
);
3419 /* A conservative spurious RTO response algorithm: reduce cwnd using
3420 * PRR and continue in congestion avoidance.
3422 static void tcp_cwr_spur_to_response(struct sock
*sk
)
3424 tcp_enter_cwr(sk
, 0);
3427 static void tcp_undo_spur_to_response(struct sock
*sk
, int flag
)
3429 if (flag
& FLAG_ECE
)
3430 tcp_cwr_spur_to_response(sk
);
3432 tcp_undo_cwr(sk
, true);
3435 /* F-RTO spurious RTO detection algorithm (RFC4138)
3437 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3438 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3439 * window (but not to or beyond highest sequence sent before RTO):
3440 * On First ACK, send two new segments out.
3441 * On Second ACK, RTO was likely spurious. Do spurious response (response
3442 * algorithm is not part of the F-RTO detection algorithm
3443 * given in RFC4138 but can be selected separately).
3444 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3445 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3446 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3447 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3449 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3450 * original window even after we transmit two new data segments.
3453 * on first step, wait until first cumulative ACK arrives, then move to
3454 * the second step. In second step, the next ACK decides.
3456 * F-RTO is implemented (mainly) in four functions:
3457 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3458 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3459 * called when tcp_use_frto() showed green light
3460 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3461 * - tcp_enter_frto_loss() is called if there is not enough evidence
3462 * to prove that the RTO is indeed spurious. It transfers the control
3463 * from F-RTO to the conventional RTO recovery
3465 static bool tcp_process_frto(struct sock
*sk
, int flag
)
3467 struct tcp_sock
*tp
= tcp_sk(sk
);
3469 tcp_verify_left_out(tp
);
3471 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3472 if (flag
& FLAG_DATA_ACKED
)
3473 inet_csk(sk
)->icsk_retransmits
= 0;
3475 if ((flag
& FLAG_NONHEAD_RETRANS_ACKED
) ||
3476 ((tp
->frto_counter
>= 2) && (flag
& FLAG_RETRANS_DATA_ACKED
)))
3477 tp
->undo_marker
= 0;
3479 if (!before(tp
->snd_una
, tp
->frto_highmark
) ||
3480 !tcp_packets_in_flight(tp
)) {
3481 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 2 : 3), flag
);
3485 if (!tcp_is_sackfrto(tp
)) {
3486 /* RFC4138 shortcoming in step 2; should also have case c):
3487 * ACK isn't duplicate nor advances window, e.g., opposite dir
3490 if (!(flag
& FLAG_ANY_PROGRESS
) && (flag
& FLAG_NOT_DUP
))
3493 if (!(flag
& FLAG_DATA_ACKED
)) {
3494 tcp_enter_frto_loss(sk
, (tp
->frto_counter
== 1 ? 0 : 3),
3499 if (!(flag
& FLAG_DATA_ACKED
) && (tp
->frto_counter
== 1)) {
3500 /* Prevent sending of new data. */
3501 tp
->snd_cwnd
= min(tp
->snd_cwnd
,
3502 tcp_packets_in_flight(tp
));
3506 if ((tp
->frto_counter
>= 2) &&
3507 (!(flag
& FLAG_FORWARD_PROGRESS
) ||
3508 ((flag
& FLAG_DATA_SACKED
) &&
3509 !(flag
& FLAG_ONLY_ORIG_SACKED
)))) {
3510 /* RFC4138 shortcoming (see comment above) */
3511 if (!(flag
& FLAG_FORWARD_PROGRESS
) &&
3512 (flag
& FLAG_NOT_DUP
))
3515 tcp_enter_frto_loss(sk
, 3, flag
);
3520 if (tp
->frto_counter
== 1) {
3521 /* tcp_may_send_now needs to see updated state */
3522 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + 2;
3523 tp
->frto_counter
= 2;
3525 if (!tcp_may_send_now(sk
))
3526 tcp_enter_frto_loss(sk
, 2, flag
);
3530 switch (sysctl_tcp_frto_response
) {
3532 tcp_undo_spur_to_response(sk
, flag
);
3535 tcp_conservative_spur_to_response(tp
);
3538 tcp_cwr_spur_to_response(sk
);
3541 tp
->frto_counter
= 0;
3542 tp
->undo_marker
= 0;
3543 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSPURIOUSRTOS
);
3548 /* RFC 5961 7 [ACK Throttling] */
3549 static void tcp_send_challenge_ack(struct sock
*sk
)
3551 /* unprotected vars, we dont care of overwrites */
3552 static u32 challenge_timestamp
;
3553 static unsigned int challenge_count
;
3554 u32 now
= jiffies
/ HZ
;
3556 if (now
!= challenge_timestamp
) {
3557 challenge_timestamp
= now
;
3558 challenge_count
= 0;
3560 if (++challenge_count
<= sysctl_tcp_challenge_ack_limit
) {
3561 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3566 /* This routine deals with incoming acks, but not outgoing ones. */
3567 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3569 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3570 struct tcp_sock
*tp
= tcp_sk(sk
);
3571 u32 prior_snd_una
= tp
->snd_una
;
3572 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3573 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3574 bool is_dupack
= false;
3575 u32 prior_in_flight
;
3578 int prior_sacked
= tp
->sacked_out
;
3580 bool frto_cwnd
= false;
3582 /* If the ack is older than previous acks
3583 * then we can probably ignore it.
3585 if (before(ack
, prior_snd_una
)) {
3586 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3587 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3588 tcp_send_challenge_ack(sk
);
3594 /* If the ack includes data we haven't sent yet, discard
3595 * this segment (RFC793 Section 3.9).
3597 if (after(ack
, tp
->snd_nxt
))
3600 if (tp
->early_retrans_delayed
)
3603 if (after(ack
, prior_snd_una
))
3604 flag
|= FLAG_SND_UNA_ADVANCED
;
3606 prior_fackets
= tp
->fackets_out
;
3607 prior_in_flight
= tcp_packets_in_flight(tp
);
3609 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3610 /* Window is constant, pure forward advance.
3611 * No more checks are required.
3612 * Note, we use the fact that SND.UNA>=SND.WL2.
3614 tcp_update_wl(tp
, ack_seq
);
3616 flag
|= FLAG_WIN_UPDATE
;
3618 tcp_ca_event(sk
, CA_EVENT_FAST_ACK
);
3620 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3622 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3625 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3627 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3629 if (TCP_SKB_CB(skb
)->sacked
)
3630 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3632 if (TCP_ECN_rcv_ecn_echo(tp
, tcp_hdr(skb
)))
3635 tcp_ca_event(sk
, CA_EVENT_SLOW_ACK
);
3638 /* We passed data and got it acked, remove any soft error
3639 * log. Something worked...
3641 sk
->sk_err_soft
= 0;
3642 icsk
->icsk_probes_out
= 0;
3643 tp
->rcv_tstamp
= tcp_time_stamp
;
3644 prior_packets
= tp
->packets_out
;
3648 /* See if we can take anything off of the retransmit queue. */
3649 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
);
3651 pkts_acked
= prior_packets
- tp
->packets_out
;
3653 if (tp
->frto_counter
)
3654 frto_cwnd
= tcp_process_frto(sk
, flag
);
3655 /* Guarantee sacktag reordering detection against wrap-arounds */
3656 if (before(tp
->frto_highmark
, tp
->snd_una
))
3657 tp
->frto_highmark
= 0;
3659 if (tcp_ack_is_dubious(sk
, flag
)) {
3660 /* Advance CWND, if state allows this. */
3661 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
&&
3662 tcp_may_raise_cwnd(sk
, flag
))
3663 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3664 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3665 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3668 if ((flag
& FLAG_DATA_ACKED
) && !frto_cwnd
)
3669 tcp_cong_avoid(sk
, ack
, prior_in_flight
);
3672 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
)) {
3673 struct dst_entry
*dst
= __sk_dst_get(sk
);
3680 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3681 if (flag
& FLAG_DSACKING_ACK
)
3682 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3684 /* If this ack opens up a zero window, clear backoff. It was
3685 * being used to time the probes, and is probably far higher than
3686 * it needs to be for normal retransmission.
3688 if (tcp_send_head(sk
))
3693 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3697 /* If data was SACKed, tag it and see if we should send more data.
3698 * If data was DSACKed, see if we can undo a cwnd reduction.
3700 if (TCP_SKB_CB(skb
)->sacked
) {
3701 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
);
3702 tcp_fastretrans_alert(sk
, pkts_acked
, prior_sacked
,
3706 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3710 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3711 * But, this can also be called on packets in the established flow when
3712 * the fast version below fails.
3714 void tcp_parse_options(const struct sk_buff
*skb
, struct tcp_options_received
*opt_rx
,
3715 const u8
**hvpp
, int estab
,
3716 struct tcp_fastopen_cookie
*foc
)
3718 const unsigned char *ptr
;
3719 const struct tcphdr
*th
= tcp_hdr(skb
);
3720 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3722 ptr
= (const unsigned char *)(th
+ 1);
3723 opt_rx
->saw_tstamp
= 0;
3725 while (length
> 0) {
3726 int opcode
= *ptr
++;
3732 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3737 if (opsize
< 2) /* "silly options" */
3739 if (opsize
> length
)
3740 return; /* don't parse partial options */
3743 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3744 u16 in_mss
= get_unaligned_be16(ptr
);
3746 if (opt_rx
->user_mss
&&
3747 opt_rx
->user_mss
< in_mss
)
3748 in_mss
= opt_rx
->user_mss
;
3749 opt_rx
->mss_clamp
= in_mss
;
3754 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3755 !estab
&& sysctl_tcp_window_scaling
) {
3756 __u8 snd_wscale
= *(__u8
*)ptr
;
3757 opt_rx
->wscale_ok
= 1;
3758 if (snd_wscale
> 14) {
3759 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3764 opt_rx
->snd_wscale
= snd_wscale
;
3767 case TCPOPT_TIMESTAMP
:
3768 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3769 ((estab
&& opt_rx
->tstamp_ok
) ||
3770 (!estab
&& sysctl_tcp_timestamps
))) {
3771 opt_rx
->saw_tstamp
= 1;
3772 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3773 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3776 case TCPOPT_SACK_PERM
:
3777 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3778 !estab
&& sysctl_tcp_sack
) {
3779 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3780 tcp_sack_reset(opt_rx
);
3785 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3786 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3788 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3791 #ifdef CONFIG_TCP_MD5SIG
3794 * The MD5 Hash has already been
3795 * checked (see tcp_v{4,6}_do_rcv()).
3800 /* This option is variable length.
3803 case TCPOLEN_COOKIE_BASE
:
3804 /* not yet implemented */
3806 case TCPOLEN_COOKIE_PAIR
:
3807 /* not yet implemented */
3809 case TCPOLEN_COOKIE_MIN
+0:
3810 case TCPOLEN_COOKIE_MIN
+2:
3811 case TCPOLEN_COOKIE_MIN
+4:
3812 case TCPOLEN_COOKIE_MIN
+6:
3813 case TCPOLEN_COOKIE_MAX
:
3814 /* 16-bit multiple */
3815 opt_rx
->cookie_plus
= opsize
;
3825 /* Fast Open option shares code 254 using a
3826 * 16 bits magic number. It's valid only in
3827 * SYN or SYN-ACK with an even size.
3829 if (opsize
< TCPOLEN_EXP_FASTOPEN_BASE
||
3830 get_unaligned_be16(ptr
) != TCPOPT_FASTOPEN_MAGIC
||
3831 foc
== NULL
|| !th
->syn
|| (opsize
& 1))
3833 foc
->len
= opsize
- TCPOLEN_EXP_FASTOPEN_BASE
;
3834 if (foc
->len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3835 foc
->len
<= TCP_FASTOPEN_COOKIE_MAX
)
3836 memcpy(foc
->val
, ptr
+ 2, foc
->len
);
3837 else if (foc
->len
!= 0)
3847 EXPORT_SYMBOL(tcp_parse_options
);
3849 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3851 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3853 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3854 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3855 tp
->rx_opt
.saw_tstamp
= 1;
3857 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3859 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
);
3865 /* Fast parse options. This hopes to only see timestamps.
3866 * If it is wrong it falls back on tcp_parse_options().
3868 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3869 const struct tcphdr
*th
,
3870 struct tcp_sock
*tp
, const u8
**hvpp
)
3872 /* In the spirit of fast parsing, compare doff directly to constant
3873 * values. Because equality is used, short doff can be ignored here.
3875 if (th
->doff
== (sizeof(*th
) / 4)) {
3876 tp
->rx_opt
.saw_tstamp
= 0;
3878 } else if (tp
->rx_opt
.tstamp_ok
&&
3879 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3880 if (tcp_parse_aligned_timestamp(tp
, th
))
3883 tcp_parse_options(skb
, &tp
->rx_opt
, hvpp
, 1, NULL
);
3887 #ifdef CONFIG_TCP_MD5SIG
3889 * Parse MD5 Signature option
3891 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3893 int length
= (th
->doff
<< 2) - sizeof(*th
);
3894 const u8
*ptr
= (const u8
*)(th
+ 1);
3896 /* If the TCP option is too short, we can short cut */
3897 if (length
< TCPOLEN_MD5SIG
)
3900 while (length
> 0) {
3901 int opcode
= *ptr
++;
3912 if (opsize
< 2 || opsize
> length
)
3914 if (opcode
== TCPOPT_MD5SIG
)
3915 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3922 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3925 static inline void tcp_store_ts_recent(struct tcp_sock
*tp
)
3927 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3928 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3931 static inline void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3933 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3934 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3935 * extra check below makes sure this can only happen
3936 * for pure ACK frames. -DaveM
3938 * Not only, also it occurs for expired timestamps.
3941 if (tcp_paws_check(&tp
->rx_opt
, 0))
3942 tcp_store_ts_recent(tp
);
3946 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3948 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3949 * it can pass through stack. So, the following predicate verifies that
3950 * this segment is not used for anything but congestion avoidance or
3951 * fast retransmit. Moreover, we even are able to eliminate most of such
3952 * second order effects, if we apply some small "replay" window (~RTO)
3953 * to timestamp space.
3955 * All these measures still do not guarantee that we reject wrapped ACKs
3956 * on networks with high bandwidth, when sequence space is recycled fastly,
3957 * but it guarantees that such events will be very rare and do not affect
3958 * connection seriously. This doesn't look nice, but alas, PAWS is really
3961 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3962 * states that events when retransmit arrives after original data are rare.
3963 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3964 * the biggest problem on large power networks even with minor reordering.
3965 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3966 * up to bandwidth of 18Gigabit/sec. 8) ]
3969 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3971 const struct tcp_sock
*tp
= tcp_sk(sk
);
3972 const struct tcphdr
*th
= tcp_hdr(skb
);
3973 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3974 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3976 return (/* 1. Pure ACK with correct sequence number. */
3977 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3979 /* 2. ... and duplicate ACK. */
3980 ack
== tp
->snd_una
&&
3982 /* 3. ... and does not update window. */
3983 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3985 /* 4. ... and sits in replay window. */
3986 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3989 static inline bool tcp_paws_discard(const struct sock
*sk
,
3990 const struct sk_buff
*skb
)
3992 const struct tcp_sock
*tp
= tcp_sk(sk
);
3994 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3995 !tcp_disordered_ack(sk
, skb
);
3998 /* Check segment sequence number for validity.
4000 * Segment controls are considered valid, if the segment
4001 * fits to the window after truncation to the window. Acceptability
4002 * of data (and SYN, FIN, of course) is checked separately.
4003 * See tcp_data_queue(), for example.
4005 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4006 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4007 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4008 * (borrowed from freebsd)
4011 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
4013 return !before(end_seq
, tp
->rcv_wup
) &&
4014 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
4017 /* When we get a reset we do this. */
4018 void tcp_reset(struct sock
*sk
)
4020 /* We want the right error as BSD sees it (and indeed as we do). */
4021 switch (sk
->sk_state
) {
4023 sk
->sk_err
= ECONNREFUSED
;
4025 case TCP_CLOSE_WAIT
:
4031 sk
->sk_err
= ECONNRESET
;
4033 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4036 if (!sock_flag(sk
, SOCK_DEAD
))
4037 sk
->sk_error_report(sk
);
4043 * Process the FIN bit. This now behaves as it is supposed to work
4044 * and the FIN takes effect when it is validly part of sequence
4045 * space. Not before when we get holes.
4047 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4048 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4051 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4052 * close and we go into CLOSING (and later onto TIME-WAIT)
4054 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4056 static void tcp_fin(struct sock
*sk
)
4058 struct tcp_sock
*tp
= tcp_sk(sk
);
4060 inet_csk_schedule_ack(sk
);
4062 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4063 sock_set_flag(sk
, SOCK_DONE
);
4065 switch (sk
->sk_state
) {
4067 case TCP_ESTABLISHED
:
4068 /* Move to CLOSE_WAIT */
4069 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4070 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4073 case TCP_CLOSE_WAIT
:
4075 /* Received a retransmission of the FIN, do
4080 /* RFC793: Remain in the LAST-ACK state. */
4084 /* This case occurs when a simultaneous close
4085 * happens, we must ack the received FIN and
4086 * enter the CLOSING state.
4089 tcp_set_state(sk
, TCP_CLOSING
);
4092 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4094 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4097 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4098 * cases we should never reach this piece of code.
4100 pr_err("%s: Impossible, sk->sk_state=%d\n",
4101 __func__
, sk
->sk_state
);
4105 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4106 * Probably, we should reset in this case. For now drop them.
4108 __skb_queue_purge(&tp
->out_of_order_queue
);
4109 if (tcp_is_sack(tp
))
4110 tcp_sack_reset(&tp
->rx_opt
);
4113 if (!sock_flag(sk
, SOCK_DEAD
)) {
4114 sk
->sk_state_change(sk
);
4116 /* Do not send POLL_HUP for half duplex close. */
4117 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4118 sk
->sk_state
== TCP_CLOSE
)
4119 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4121 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4125 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4128 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4129 if (before(seq
, sp
->start_seq
))
4130 sp
->start_seq
= seq
;
4131 if (after(end_seq
, sp
->end_seq
))
4132 sp
->end_seq
= end_seq
;
4138 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4140 struct tcp_sock
*tp
= tcp_sk(sk
);
4142 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4145 if (before(seq
, tp
->rcv_nxt
))
4146 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4148 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4150 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
4152 tp
->rx_opt
.dsack
= 1;
4153 tp
->duplicate_sack
[0].start_seq
= seq
;
4154 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4158 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4160 struct tcp_sock
*tp
= tcp_sk(sk
);
4162 if (!tp
->rx_opt
.dsack
)
4163 tcp_dsack_set(sk
, seq
, end_seq
);
4165 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4168 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4170 struct tcp_sock
*tp
= tcp_sk(sk
);
4172 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4173 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4174 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4175 tcp_enter_quickack_mode(sk
);
4177 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4178 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4180 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4181 end_seq
= tp
->rcv_nxt
;
4182 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4189 /* These routines update the SACK block as out-of-order packets arrive or
4190 * in-order packets close up the sequence space.
4192 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4195 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4196 struct tcp_sack_block
*swalk
= sp
+ 1;
4198 /* See if the recent change to the first SACK eats into
4199 * or hits the sequence space of other SACK blocks, if so coalesce.
4201 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4202 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4205 /* Zap SWALK, by moving every further SACK up by one slot.
4206 * Decrease num_sacks.
4208 tp
->rx_opt
.num_sacks
--;
4209 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4213 this_sack
++, swalk
++;
4217 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4219 struct tcp_sock
*tp
= tcp_sk(sk
);
4220 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4221 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4227 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4228 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4229 /* Rotate this_sack to the first one. */
4230 for (; this_sack
> 0; this_sack
--, sp
--)
4231 swap(*sp
, *(sp
- 1));
4233 tcp_sack_maybe_coalesce(tp
);
4238 /* Could not find an adjacent existing SACK, build a new one,
4239 * put it at the front, and shift everyone else down. We
4240 * always know there is at least one SACK present already here.
4242 * If the sack array is full, forget about the last one.
4244 if (this_sack
>= TCP_NUM_SACKS
) {
4246 tp
->rx_opt
.num_sacks
--;
4249 for (; this_sack
> 0; this_sack
--, sp
--)
4253 /* Build the new head SACK, and we're done. */
4254 sp
->start_seq
= seq
;
4255 sp
->end_seq
= end_seq
;
4256 tp
->rx_opt
.num_sacks
++;
4259 /* RCV.NXT advances, some SACKs should be eaten. */
4261 static void tcp_sack_remove(struct tcp_sock
*tp
)
4263 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4264 int num_sacks
= tp
->rx_opt
.num_sacks
;
4267 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4268 if (skb_queue_empty(&tp
->out_of_order_queue
)) {
4269 tp
->rx_opt
.num_sacks
= 0;
4273 for (this_sack
= 0; this_sack
< num_sacks
;) {
4274 /* Check if the start of the sack is covered by RCV.NXT. */
4275 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4278 /* RCV.NXT must cover all the block! */
4279 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4281 /* Zap this SACK, by moving forward any other SACKS. */
4282 for (i
=this_sack
+1; i
< num_sacks
; i
++)
4283 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4290 tp
->rx_opt
.num_sacks
= num_sacks
;
4293 /* This one checks to see if we can put data from the
4294 * out_of_order queue into the receive_queue.
4296 static void tcp_ofo_queue(struct sock
*sk
)
4298 struct tcp_sock
*tp
= tcp_sk(sk
);
4299 __u32 dsack_high
= tp
->rcv_nxt
;
4300 struct sk_buff
*skb
;
4302 while ((skb
= skb_peek(&tp
->out_of_order_queue
)) != NULL
) {
4303 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4306 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4307 __u32 dsack
= dsack_high
;
4308 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4309 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4310 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4313 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4314 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4315 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4319 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4320 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4321 TCP_SKB_CB(skb
)->end_seq
);
4323 __skb_unlink(skb
, &tp
->out_of_order_queue
);
4324 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4325 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4326 if (tcp_hdr(skb
)->fin
)
4331 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4332 static int tcp_prune_queue(struct sock
*sk
);
4334 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4337 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4338 !sk_rmem_schedule(sk
, skb
, size
)) {
4340 if (tcp_prune_queue(sk
) < 0)
4343 if (!sk_rmem_schedule(sk
, skb
, size
)) {
4344 if (!tcp_prune_ofo_queue(sk
))
4347 if (!sk_rmem_schedule(sk
, skb
, size
))
4355 * tcp_try_coalesce - try to merge skb to prior one
4358 * @from: buffer to add in queue
4359 * @fragstolen: pointer to boolean
4361 * Before queueing skb @from after @to, try to merge them
4362 * to reduce overall memory use and queue lengths, if cost is small.
4363 * Packets in ofo or receive queues can stay a long time.
4364 * Better try to coalesce them right now to avoid future collapses.
4365 * Returns true if caller should free @from instead of queueing it
4367 static bool tcp_try_coalesce(struct sock
*sk
,
4369 struct sk_buff
*from
,
4374 *fragstolen
= false;
4376 if (tcp_hdr(from
)->fin
)
4379 /* Its possible this segment overlaps with prior segment in queue */
4380 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4383 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4386 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4387 sk_mem_charge(sk
, delta
);
4388 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4389 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4390 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4394 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4396 struct tcp_sock
*tp
= tcp_sk(sk
);
4397 struct sk_buff
*skb1
;
4400 TCP_ECN_check_ce(tp
, skb
);
4402 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4403 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4408 /* Disable header prediction. */
4410 inet_csk_schedule_ack(sk
);
4412 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4413 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4414 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4416 skb1
= skb_peek_tail(&tp
->out_of_order_queue
);
4418 /* Initial out of order segment, build 1 SACK. */
4419 if (tcp_is_sack(tp
)) {
4420 tp
->rx_opt
.num_sacks
= 1;
4421 tp
->selective_acks
[0].start_seq
= TCP_SKB_CB(skb
)->seq
;
4422 tp
->selective_acks
[0].end_seq
=
4423 TCP_SKB_CB(skb
)->end_seq
;
4425 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4429 seq
= TCP_SKB_CB(skb
)->seq
;
4430 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4432 if (seq
== TCP_SKB_CB(skb1
)->end_seq
) {
4435 if (!tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4436 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4438 kfree_skb_partial(skb
, fragstolen
);
4442 if (!tp
->rx_opt
.num_sacks
||
4443 tp
->selective_acks
[0].end_seq
!= seq
)
4446 /* Common case: data arrive in order after hole. */
4447 tp
->selective_acks
[0].end_seq
= end_seq
;
4451 /* Find place to insert this segment. */
4453 if (!after(TCP_SKB_CB(skb1
)->seq
, seq
))
4455 if (skb_queue_is_first(&tp
->out_of_order_queue
, skb1
)) {
4459 skb1
= skb_queue_prev(&tp
->out_of_order_queue
, skb1
);
4462 /* Do skb overlap to previous one? */
4463 if (skb1
&& before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4464 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4465 /* All the bits are present. Drop. */
4466 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4469 tcp_dsack_set(sk
, seq
, end_seq
);
4472 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4473 /* Partial overlap. */
4474 tcp_dsack_set(sk
, seq
,
4475 TCP_SKB_CB(skb1
)->end_seq
);
4477 if (skb_queue_is_first(&tp
->out_of_order_queue
,
4481 skb1
= skb_queue_prev(
4482 &tp
->out_of_order_queue
,
4487 __skb_queue_head(&tp
->out_of_order_queue
, skb
);
4489 __skb_queue_after(&tp
->out_of_order_queue
, skb1
, skb
);
4491 /* And clean segments covered by new one as whole. */
4492 while (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
)) {
4493 skb1
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4495 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4497 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4498 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4502 __skb_unlink(skb1
, &tp
->out_of_order_queue
);
4503 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4504 TCP_SKB_CB(skb1
)->end_seq
);
4505 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4510 if (tcp_is_sack(tp
))
4511 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4514 skb_set_owner_r(skb
, sk
);
4517 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4521 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4523 __skb_pull(skb
, hdrlen
);
4525 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4526 tcp_sk(sk
)->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4528 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4529 skb_set_owner_r(skb
, sk
);
4534 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4536 struct sk_buff
*skb
= NULL
;
4543 skb
= alloc_skb(size
+ sizeof(*th
), sk
->sk_allocation
);
4547 if (tcp_try_rmem_schedule(sk
, skb
, size
+ sizeof(*th
)))
4550 th
= (struct tcphdr
*)skb_put(skb
, sizeof(*th
));
4551 skb_reset_transport_header(skb
);
4552 memset(th
, 0, sizeof(*th
));
4554 if (memcpy_fromiovec(skb_put(skb
, size
), msg
->msg_iov
, size
))
4557 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4558 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4559 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4561 if (tcp_queue_rcv(sk
, skb
, sizeof(*th
), &fragstolen
)) {
4562 WARN_ON_ONCE(fragstolen
); /* should not happen */
4573 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4575 const struct tcphdr
*th
= tcp_hdr(skb
);
4576 struct tcp_sock
*tp
= tcp_sk(sk
);
4578 bool fragstolen
= false;
4580 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
)
4584 __skb_pull(skb
, th
->doff
* 4);
4586 TCP_ECN_accept_cwr(tp
, skb
);
4588 tp
->rx_opt
.dsack
= 0;
4590 /* Queue data for delivery to the user.
4591 * Packets in sequence go to the receive queue.
4592 * Out of sequence packets to the out_of_order_queue.
4594 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4595 if (tcp_receive_window(tp
) == 0)
4598 /* Ok. In sequence. In window. */
4599 if (tp
->ucopy
.task
== current
&&
4600 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4601 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4602 int chunk
= min_t(unsigned int, skb
->len
,
4605 __set_current_state(TASK_RUNNING
);
4608 if (!skb_copy_datagram_iovec(skb
, 0, tp
->ucopy
.iov
, chunk
)) {
4609 tp
->ucopy
.len
-= chunk
;
4610 tp
->copied_seq
+= chunk
;
4611 eaten
= (chunk
== skb
->len
);
4612 tcp_rcv_space_adjust(sk
);
4620 tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4623 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4625 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
4627 tcp_event_data_recv(sk
, skb
);
4631 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4634 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4635 * gap in queue is filled.
4637 if (skb_queue_empty(&tp
->out_of_order_queue
))
4638 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4641 if (tp
->rx_opt
.num_sacks
)
4642 tcp_sack_remove(tp
);
4644 tcp_fast_path_check(sk
);
4647 kfree_skb_partial(skb
, fragstolen
);
4648 if (!sock_flag(sk
, SOCK_DEAD
))
4649 sk
->sk_data_ready(sk
, 0);
4653 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4654 /* A retransmit, 2nd most common case. Force an immediate ack. */
4655 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4656 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4659 tcp_enter_quickack_mode(sk
);
4660 inet_csk_schedule_ack(sk
);
4666 /* Out of window. F.e. zero window probe. */
4667 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4670 tcp_enter_quickack_mode(sk
);
4672 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4673 /* Partial packet, seq < rcv_next < end_seq */
4674 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4675 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4676 TCP_SKB_CB(skb
)->end_seq
);
4678 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4680 /* If window is closed, drop tail of packet. But after
4681 * remembering D-SACK for its head made in previous line.
4683 if (!tcp_receive_window(tp
))
4688 tcp_data_queue_ofo(sk
, skb
);
4691 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4692 struct sk_buff_head
*list
)
4694 struct sk_buff
*next
= NULL
;
4696 if (!skb_queue_is_last(list
, skb
))
4697 next
= skb_queue_next(list
, skb
);
4699 __skb_unlink(skb
, list
);
4701 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4706 /* Collapse contiguous sequence of skbs head..tail with
4707 * sequence numbers start..end.
4709 * If tail is NULL, this means until the end of the list.
4711 * Segments with FIN/SYN are not collapsed (only because this
4715 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
,
4716 struct sk_buff
*head
, struct sk_buff
*tail
,
4719 struct sk_buff
*skb
, *n
;
4722 /* First, check that queue is collapsible and find
4723 * the point where collapsing can be useful. */
4727 skb_queue_walk_from_safe(list
, skb
, n
) {
4730 /* No new bits? It is possible on ofo queue. */
4731 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4732 skb
= tcp_collapse_one(sk
, skb
, list
);
4738 /* The first skb to collapse is:
4740 * - bloated or contains data before "start" or
4741 * overlaps to the next one.
4743 if (!tcp_hdr(skb
)->syn
&& !tcp_hdr(skb
)->fin
&&
4744 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4745 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4746 end_of_skbs
= false;
4750 if (!skb_queue_is_last(list
, skb
)) {
4751 struct sk_buff
*next
= skb_queue_next(list
, skb
);
4753 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(next
)->seq
) {
4754 end_of_skbs
= false;
4759 /* Decided to skip this, advance start seq. */
4760 start
= TCP_SKB_CB(skb
)->end_seq
;
4762 if (end_of_skbs
|| tcp_hdr(skb
)->syn
|| tcp_hdr(skb
)->fin
)
4765 while (before(start
, end
)) {
4766 struct sk_buff
*nskb
;
4767 unsigned int header
= skb_headroom(skb
);
4768 int copy
= SKB_MAX_ORDER(header
, 0);
4770 /* Too big header? This can happen with IPv6. */
4773 if (end
- start
< copy
)
4775 nskb
= alloc_skb(copy
+ header
, GFP_ATOMIC
);
4779 skb_set_mac_header(nskb
, skb_mac_header(skb
) - skb
->head
);
4780 skb_set_network_header(nskb
, (skb_network_header(skb
) -
4782 skb_set_transport_header(nskb
, (skb_transport_header(skb
) -
4784 skb_reserve(nskb
, header
);
4785 memcpy(nskb
->head
, skb
->head
, header
);
4786 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4787 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4788 __skb_queue_before(list
, skb
, nskb
);
4789 skb_set_owner_r(nskb
, sk
);
4791 /* Copy data, releasing collapsed skbs. */
4793 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4794 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4798 size
= min(copy
, size
);
4799 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4801 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4805 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4806 skb
= tcp_collapse_one(sk
, skb
, list
);
4809 tcp_hdr(skb
)->syn
||
4817 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4818 * and tcp_collapse() them until all the queue is collapsed.
4820 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4822 struct tcp_sock
*tp
= tcp_sk(sk
);
4823 struct sk_buff
*skb
= skb_peek(&tp
->out_of_order_queue
);
4824 struct sk_buff
*head
;
4830 start
= TCP_SKB_CB(skb
)->seq
;
4831 end
= TCP_SKB_CB(skb
)->end_seq
;
4835 struct sk_buff
*next
= NULL
;
4837 if (!skb_queue_is_last(&tp
->out_of_order_queue
, skb
))
4838 next
= skb_queue_next(&tp
->out_of_order_queue
, skb
);
4841 /* Segment is terminated when we see gap or when
4842 * we are at the end of all the queue. */
4844 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4845 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4846 tcp_collapse(sk
, &tp
->out_of_order_queue
,
4847 head
, skb
, start
, end
);
4851 /* Start new segment */
4852 start
= TCP_SKB_CB(skb
)->seq
;
4853 end
= TCP_SKB_CB(skb
)->end_seq
;
4855 if (before(TCP_SKB_CB(skb
)->seq
, start
))
4856 start
= TCP_SKB_CB(skb
)->seq
;
4857 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4858 end
= TCP_SKB_CB(skb
)->end_seq
;
4864 * Purge the out-of-order queue.
4865 * Return true if queue was pruned.
4867 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4869 struct tcp_sock
*tp
= tcp_sk(sk
);
4872 if (!skb_queue_empty(&tp
->out_of_order_queue
)) {
4873 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4874 __skb_queue_purge(&tp
->out_of_order_queue
);
4876 /* Reset SACK state. A conforming SACK implementation will
4877 * do the same at a timeout based retransmit. When a connection
4878 * is in a sad state like this, we care only about integrity
4879 * of the connection not performance.
4881 if (tp
->rx_opt
.sack_ok
)
4882 tcp_sack_reset(&tp
->rx_opt
);
4889 /* Reduce allocated memory if we can, trying to get
4890 * the socket within its memory limits again.
4892 * Return less than zero if we should start dropping frames
4893 * until the socket owning process reads some of the data
4894 * to stabilize the situation.
4896 static int tcp_prune_queue(struct sock
*sk
)
4898 struct tcp_sock
*tp
= tcp_sk(sk
);
4900 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4902 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4904 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4905 tcp_clamp_window(sk
);
4906 else if (sk_under_memory_pressure(sk
))
4907 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4909 tcp_collapse_ofo_queue(sk
);
4910 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4911 tcp_collapse(sk
, &sk
->sk_receive_queue
,
4912 skb_peek(&sk
->sk_receive_queue
),
4914 tp
->copied_seq
, tp
->rcv_nxt
);
4917 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4920 /* Collapsing did not help, destructive actions follow.
4921 * This must not ever occur. */
4923 tcp_prune_ofo_queue(sk
);
4925 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4928 /* If we are really being abused, tell the caller to silently
4929 * drop receive data on the floor. It will get retransmitted
4930 * and hopefully then we'll have sufficient space.
4932 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4934 /* Massive buffer overcommit. */
4939 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4940 * As additional protections, we do not touch cwnd in retransmission phases,
4941 * and if application hit its sndbuf limit recently.
4943 void tcp_cwnd_application_limited(struct sock
*sk
)
4945 struct tcp_sock
*tp
= tcp_sk(sk
);
4947 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
4948 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
4949 /* Limited by application or receiver window. */
4950 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
4951 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
4952 if (win_used
< tp
->snd_cwnd
) {
4953 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
4954 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
4956 tp
->snd_cwnd_used
= 0;
4958 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
4961 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4963 const struct tcp_sock
*tp
= tcp_sk(sk
);
4965 /* If the user specified a specific send buffer setting, do
4968 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4971 /* If we are under global TCP memory pressure, do not expand. */
4972 if (sk_under_memory_pressure(sk
))
4975 /* If we are under soft global TCP memory pressure, do not expand. */
4976 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4979 /* If we filled the congestion window, do not expand. */
4980 if (tp
->packets_out
>= tp
->snd_cwnd
)
4986 /* When incoming ACK allowed to free some skb from write_queue,
4987 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4988 * on the exit from tcp input handler.
4990 * PROBLEM: sndbuf expansion does not work well with largesend.
4992 static void tcp_new_space(struct sock
*sk
)
4994 struct tcp_sock
*tp
= tcp_sk(sk
);
4996 if (tcp_should_expand_sndbuf(sk
)) {
4997 int sndmem
= SKB_TRUESIZE(max_t(u32
,
4998 tp
->rx_opt
.mss_clamp
,
5001 int demanded
= max_t(unsigned int, tp
->snd_cwnd
,
5002 tp
->reordering
+ 1);
5003 sndmem
*= 2 * demanded
;
5004 if (sndmem
> sk
->sk_sndbuf
)
5005 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
5006 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5009 sk
->sk_write_space(sk
);
5012 static void tcp_check_space(struct sock
*sk
)
5014 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5015 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5016 if (sk
->sk_socket
&&
5017 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5022 static inline void tcp_data_snd_check(struct sock
*sk
)
5024 tcp_push_pending_frames(sk
);
5025 tcp_check_space(sk
);
5029 * Check if sending an ack is needed.
5031 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5033 struct tcp_sock
*tp
= tcp_sk(sk
);
5035 /* More than one full frame received... */
5036 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5037 /* ... and right edge of window advances far enough.
5038 * (tcp_recvmsg() will send ACK otherwise). Or...
5040 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5041 /* We ACK each frame or... */
5042 tcp_in_quickack_mode(sk
) ||
5043 /* We have out of order data. */
5044 (ofo_possible
&& skb_peek(&tp
->out_of_order_queue
))) {
5045 /* Then ack it now */
5048 /* Else, send delayed ack. */
5049 tcp_send_delayed_ack(sk
);
5053 static inline void tcp_ack_snd_check(struct sock
*sk
)
5055 if (!inet_csk_ack_scheduled(sk
)) {
5056 /* We sent a data segment already. */
5059 __tcp_ack_snd_check(sk
, 1);
5063 * This routine is only called when we have urgent data
5064 * signaled. Its the 'slow' part of tcp_urg. It could be
5065 * moved inline now as tcp_urg is only called from one
5066 * place. We handle URGent data wrong. We have to - as
5067 * BSD still doesn't use the correction from RFC961.
5068 * For 1003.1g we should support a new option TCP_STDURG to permit
5069 * either form (or just set the sysctl tcp_stdurg).
5072 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5074 struct tcp_sock
*tp
= tcp_sk(sk
);
5075 u32 ptr
= ntohs(th
->urg_ptr
);
5077 if (ptr
&& !sysctl_tcp_stdurg
)
5079 ptr
+= ntohl(th
->seq
);
5081 /* Ignore urgent data that we've already seen and read. */
5082 if (after(tp
->copied_seq
, ptr
))
5085 /* Do not replay urg ptr.
5087 * NOTE: interesting situation not covered by specs.
5088 * Misbehaving sender may send urg ptr, pointing to segment,
5089 * which we already have in ofo queue. We are not able to fetch
5090 * such data and will stay in TCP_URG_NOTYET until will be eaten
5091 * by recvmsg(). Seems, we are not obliged to handle such wicked
5092 * situations. But it is worth to think about possibility of some
5093 * DoSes using some hypothetical application level deadlock.
5095 if (before(ptr
, tp
->rcv_nxt
))
5098 /* Do we already have a newer (or duplicate) urgent pointer? */
5099 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5102 /* Tell the world about our new urgent pointer. */
5105 /* We may be adding urgent data when the last byte read was
5106 * urgent. To do this requires some care. We cannot just ignore
5107 * tp->copied_seq since we would read the last urgent byte again
5108 * as data, nor can we alter copied_seq until this data arrives
5109 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5111 * NOTE. Double Dutch. Rendering to plain English: author of comment
5112 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5113 * and expect that both A and B disappear from stream. This is _wrong_.
5114 * Though this happens in BSD with high probability, this is occasional.
5115 * Any application relying on this is buggy. Note also, that fix "works"
5116 * only in this artificial test. Insert some normal data between A and B and we will
5117 * decline of BSD again. Verdict: it is better to remove to trap
5120 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5121 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5122 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5124 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5125 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5130 tp
->urg_data
= TCP_URG_NOTYET
;
5133 /* Disable header prediction. */
5137 /* This is the 'fast' part of urgent handling. */
5138 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5140 struct tcp_sock
*tp
= tcp_sk(sk
);
5142 /* Check if we get a new urgent pointer - normally not. */
5144 tcp_check_urg(sk
, th
);
5146 /* Do we wait for any urgent data? - normally not... */
5147 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5148 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5151 /* Is the urgent pointer pointing into this packet? */
5152 if (ptr
< skb
->len
) {
5154 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5156 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5157 if (!sock_flag(sk
, SOCK_DEAD
))
5158 sk
->sk_data_ready(sk
, 0);
5163 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5165 struct tcp_sock
*tp
= tcp_sk(sk
);
5166 int chunk
= skb
->len
- hlen
;
5170 if (skb_csum_unnecessary(skb
))
5171 err
= skb_copy_datagram_iovec(skb
, hlen
, tp
->ucopy
.iov
, chunk
);
5173 err
= skb_copy_and_csum_datagram_iovec(skb
, hlen
,
5177 tp
->ucopy
.len
-= chunk
;
5178 tp
->copied_seq
+= chunk
;
5179 tcp_rcv_space_adjust(sk
);
5186 static __sum16
__tcp_checksum_complete_user(struct sock
*sk
,
5187 struct sk_buff
*skb
)
5191 if (sock_owned_by_user(sk
)) {
5193 result
= __tcp_checksum_complete(skb
);
5196 result
= __tcp_checksum_complete(skb
);
5201 static inline bool tcp_checksum_complete_user(struct sock
*sk
,
5202 struct sk_buff
*skb
)
5204 return !skb_csum_unnecessary(skb
) &&
5205 __tcp_checksum_complete_user(sk
, skb
);
5208 #ifdef CONFIG_NET_DMA
5209 static bool tcp_dma_try_early_copy(struct sock
*sk
, struct sk_buff
*skb
,
5212 struct tcp_sock
*tp
= tcp_sk(sk
);
5213 int chunk
= skb
->len
- hlen
;
5215 bool copied_early
= false;
5217 if (tp
->ucopy
.wakeup
)
5220 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
5221 tp
->ucopy
.dma_chan
= net_dma_find_channel();
5223 if (tp
->ucopy
.dma_chan
&& skb_csum_unnecessary(skb
)) {
5225 dma_cookie
= dma_skb_copy_datagram_iovec(tp
->ucopy
.dma_chan
,
5227 tp
->ucopy
.iov
, chunk
,
5228 tp
->ucopy
.pinned_list
);
5233 tp
->ucopy
.dma_cookie
= dma_cookie
;
5234 copied_early
= true;
5236 tp
->ucopy
.len
-= chunk
;
5237 tp
->copied_seq
+= chunk
;
5238 tcp_rcv_space_adjust(sk
);
5240 if ((tp
->ucopy
.len
== 0) ||
5241 (tcp_flag_word(tcp_hdr(skb
)) & TCP_FLAG_PSH
) ||
5242 (atomic_read(&sk
->sk_rmem_alloc
) > (sk
->sk_rcvbuf
>> 1))) {
5243 tp
->ucopy
.wakeup
= 1;
5244 sk
->sk_data_ready(sk
, 0);
5246 } else if (chunk
> 0) {
5247 tp
->ucopy
.wakeup
= 1;
5248 sk
->sk_data_ready(sk
, 0);
5251 return copied_early
;
5253 #endif /* CONFIG_NET_DMA */
5255 /* Does PAWS and seqno based validation of an incoming segment, flags will
5256 * play significant role here.
5258 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5259 const struct tcphdr
*th
, int syn_inerr
)
5261 const u8
*hash_location
;
5262 struct tcp_sock
*tp
= tcp_sk(sk
);
5264 /* RFC1323: H1. Apply PAWS check first. */
5265 if (tcp_fast_parse_options(skb
, th
, tp
, &hash_location
) &&
5266 tp
->rx_opt
.saw_tstamp
&&
5267 tcp_paws_discard(sk
, skb
)) {
5269 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5270 tcp_send_dupack(sk
, skb
);
5273 /* Reset is accepted even if it did not pass PAWS. */
5276 /* Step 1: check sequence number */
5277 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5278 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5279 * (RST) segments are validated by checking their SEQ-fields."
5280 * And page 69: "If an incoming segment is not acceptable,
5281 * an acknowledgment should be sent in reply (unless the RST
5282 * bit is set, if so drop the segment and return)".
5287 tcp_send_dupack(sk
, skb
);
5292 /* Step 2: check RST bit */
5295 * If sequence number exactly matches RCV.NXT, then
5296 * RESET the connection
5298 * Send a challenge ACK
5300 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
)
5303 tcp_send_challenge_ack(sk
);
5307 /* step 3: check security and precedence [ignored] */
5309 /* step 4: Check for a SYN
5310 * RFC 5691 4.2 : Send a challenge ack
5315 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5316 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5317 tcp_send_challenge_ack(sk
);
5329 * TCP receive function for the ESTABLISHED state.
5331 * It is split into a fast path and a slow path. The fast path is
5333 * - A zero window was announced from us - zero window probing
5334 * is only handled properly in the slow path.
5335 * - Out of order segments arrived.
5336 * - Urgent data is expected.
5337 * - There is no buffer space left
5338 * - Unexpected TCP flags/window values/header lengths are received
5339 * (detected by checking the TCP header against pred_flags)
5340 * - Data is sent in both directions. Fast path only supports pure senders
5341 * or pure receivers (this means either the sequence number or the ack
5342 * value must stay constant)
5343 * - Unexpected TCP option.
5345 * When these conditions are not satisfied it drops into a standard
5346 * receive procedure patterned after RFC793 to handle all cases.
5347 * The first three cases are guaranteed by proper pred_flags setting,
5348 * the rest is checked inline. Fast processing is turned on in
5349 * tcp_data_queue when everything is OK.
5351 int tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5352 const struct tcphdr
*th
, unsigned int len
)
5354 struct tcp_sock
*tp
= tcp_sk(sk
);
5356 if (unlikely(sk
->sk_rx_dst
== NULL
))
5357 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5359 * Header prediction.
5360 * The code loosely follows the one in the famous
5361 * "30 instruction TCP receive" Van Jacobson mail.
5363 * Van's trick is to deposit buffers into socket queue
5364 * on a device interrupt, to call tcp_recv function
5365 * on the receive process context and checksum and copy
5366 * the buffer to user space. smart...
5368 * Our current scheme is not silly either but we take the
5369 * extra cost of the net_bh soft interrupt processing...
5370 * We do checksum and copy also but from device to kernel.
5373 tp
->rx_opt
.saw_tstamp
= 0;
5375 /* pred_flags is 0xS?10 << 16 + snd_wnd
5376 * if header_prediction is to be made
5377 * 'S' will always be tp->tcp_header_len >> 2
5378 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5379 * turn it off (when there are holes in the receive
5380 * space for instance)
5381 * PSH flag is ignored.
5384 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5385 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5386 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5387 int tcp_header_len
= tp
->tcp_header_len
;
5389 /* Timestamp header prediction: tcp_header_len
5390 * is automatically equal to th->doff*4 due to pred_flags
5394 /* Check timestamp */
5395 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5396 /* No? Slow path! */
5397 if (!tcp_parse_aligned_timestamp(tp
, th
))
5400 /* If PAWS failed, check it more carefully in slow path */
5401 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5404 /* DO NOT update ts_recent here, if checksum fails
5405 * and timestamp was corrupted part, it will result
5406 * in a hung connection since we will drop all
5407 * future packets due to the PAWS test.
5411 if (len
<= tcp_header_len
) {
5412 /* Bulk data transfer: sender */
5413 if (len
== tcp_header_len
) {
5414 /* Predicted packet is in window by definition.
5415 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5416 * Hence, check seq<=rcv_wup reduces to:
5418 if (tcp_header_len
==
5419 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5420 tp
->rcv_nxt
== tp
->rcv_wup
)
5421 tcp_store_ts_recent(tp
);
5423 /* We know that such packets are checksummed
5426 tcp_ack(sk
, skb
, 0);
5428 tcp_data_snd_check(sk
);
5430 } else { /* Header too small */
5431 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5436 int copied_early
= 0;
5437 bool fragstolen
= false;
5439 if (tp
->copied_seq
== tp
->rcv_nxt
&&
5440 len
- tcp_header_len
<= tp
->ucopy
.len
) {
5441 #ifdef CONFIG_NET_DMA
5442 if (tp
->ucopy
.task
== current
&&
5443 sock_owned_by_user(sk
) &&
5444 tcp_dma_try_early_copy(sk
, skb
, tcp_header_len
)) {
5449 if (tp
->ucopy
.task
== current
&&
5450 sock_owned_by_user(sk
) && !copied_early
) {
5451 __set_current_state(TASK_RUNNING
);
5453 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
))
5457 /* Predicted packet is in window by definition.
5458 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5459 * Hence, check seq<=rcv_wup reduces to:
5461 if (tcp_header_len
==
5462 (sizeof(struct tcphdr
) +
5463 TCPOLEN_TSTAMP_ALIGNED
) &&
5464 tp
->rcv_nxt
== tp
->rcv_wup
)
5465 tcp_store_ts_recent(tp
);
5467 tcp_rcv_rtt_measure_ts(sk
, skb
);
5469 __skb_pull(skb
, tcp_header_len
);
5470 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
5471 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITSTOUSER
);
5474 tcp_cleanup_rbuf(sk
, skb
->len
);
5477 if (tcp_checksum_complete_user(sk
, skb
))
5480 /* Predicted packet is in window by definition.
5481 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5482 * Hence, check seq<=rcv_wup reduces to:
5484 if (tcp_header_len
==
5485 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5486 tp
->rcv_nxt
== tp
->rcv_wup
)
5487 tcp_store_ts_recent(tp
);
5489 tcp_rcv_rtt_measure_ts(sk
, skb
);
5491 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5494 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5496 /* Bulk data transfer: receiver */
5497 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5501 tcp_event_data_recv(sk
, skb
);
5503 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5504 /* Well, only one small jumplet in fast path... */
5505 tcp_ack(sk
, skb
, FLAG_DATA
);
5506 tcp_data_snd_check(sk
);
5507 if (!inet_csk_ack_scheduled(sk
))
5511 if (!copied_early
|| tp
->rcv_nxt
!= tp
->rcv_wup
)
5512 __tcp_ack_snd_check(sk
, 0);
5514 #ifdef CONFIG_NET_DMA
5516 __skb_queue_tail(&sk
->sk_async_wait_queue
, skb
);
5520 kfree_skb_partial(skb
, fragstolen
);
5521 sk
->sk_data_ready(sk
, 0);
5527 if (len
< (th
->doff
<< 2) || tcp_checksum_complete_user(sk
, skb
))
5530 if (!th
->ack
&& !th
->rst
)
5534 * Standard slow path.
5537 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5541 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
) < 0)
5544 /* ts_recent update must be made after we are sure that the packet
5547 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
5549 tcp_rcv_rtt_measure_ts(sk
, skb
);
5551 /* Process urgent data. */
5552 tcp_urg(sk
, skb
, th
);
5554 /* step 7: process the segment text */
5555 tcp_data_queue(sk
, skb
);
5557 tcp_data_snd_check(sk
);
5558 tcp_ack_snd_check(sk
);
5562 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
5568 EXPORT_SYMBOL(tcp_rcv_established
);
5570 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5572 struct tcp_sock
*tp
= tcp_sk(sk
);
5573 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5575 tcp_set_state(sk
, TCP_ESTABLISHED
);
5578 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5579 security_inet_conn_established(sk
, skb
);
5582 /* Make sure socket is routed, for correct metrics. */
5583 icsk
->icsk_af_ops
->rebuild_header(sk
);
5585 tcp_init_metrics(sk
);
5587 tcp_init_congestion_control(sk
);
5589 /* Prevent spurious tcp_cwnd_restart() on first data
5592 tp
->lsndtime
= tcp_time_stamp
;
5594 tcp_init_buffer_space(sk
);
5596 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5597 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5599 if (!tp
->rx_opt
.snd_wscale
)
5600 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5604 if (!sock_flag(sk
, SOCK_DEAD
)) {
5605 sk
->sk_state_change(sk
);
5606 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5610 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5611 struct tcp_fastopen_cookie
*cookie
)
5613 struct tcp_sock
*tp
= tcp_sk(sk
);
5614 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5615 u16 mss
= tp
->rx_opt
.mss_clamp
;
5618 if (mss
== tp
->rx_opt
.user_mss
) {
5619 struct tcp_options_received opt
;
5620 const u8
*hash_location
;
5622 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5623 tcp_clear_options(&opt
);
5624 opt
.user_mss
= opt
.mss_clamp
= 0;
5625 tcp_parse_options(synack
, &opt
, &hash_location
, 0, NULL
);
5626 mss
= opt
.mss_clamp
;
5629 if (!tp
->syn_fastopen
) /* Ignore an unsolicited cookie */
5632 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5633 * the remote receives only the retransmitted (regular) SYNs: either
5634 * the original SYN-data or the corresponding SYN-ACK is lost.
5636 syn_drop
= (cookie
->len
<= 0 && data
&& tp
->total_retrans
);
5638 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
);
5640 if (data
) { /* Retransmit unacked data in SYN */
5641 tcp_for_write_queue_from(data
, sk
) {
5642 if (data
== tcp_send_head(sk
) ||
5643 __tcp_retransmit_skb(sk
, data
))
5649 tp
->syn_data_acked
= tp
->syn_data
;
5653 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5654 const struct tcphdr
*th
, unsigned int len
)
5656 const u8
*hash_location
;
5657 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5658 struct tcp_sock
*tp
= tcp_sk(sk
);
5659 struct tcp_cookie_values
*cvp
= tp
->cookie_values
;
5660 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5661 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5663 tcp_parse_options(skb
, &tp
->rx_opt
, &hash_location
, 0, &foc
);
5667 * "If the state is SYN-SENT then
5668 * first check the ACK bit
5669 * If the ACK bit is set
5670 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5671 * a reset (unless the RST bit is set, if so drop
5672 * the segment and return)"
5674 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5675 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5676 goto reset_and_undo
;
5678 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5679 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5681 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSACTIVEREJECTED
);
5682 goto reset_and_undo
;
5685 /* Now ACK is acceptable.
5687 * "If the RST bit is set
5688 * If the ACK was acceptable then signal the user "error:
5689 * connection reset", drop the segment, enter CLOSED state,
5690 * delete TCB, and return."
5699 * "fifth, if neither of the SYN or RST bits is set then
5700 * drop the segment and return."
5706 goto discard_and_undo
;
5709 * "If the SYN bit is on ...
5710 * are acceptable then ...
5711 * (our SYN has been ACKed), change the connection
5712 * state to ESTABLISHED..."
5715 TCP_ECN_rcv_synack(tp
, th
);
5717 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5718 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5720 /* Ok.. it's good. Set up sequence numbers and
5721 * move to established.
5723 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5724 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5726 /* RFC1323: The window in SYN & SYN/ACK segments is
5729 tp
->snd_wnd
= ntohs(th
->window
);
5731 if (!tp
->rx_opt
.wscale_ok
) {
5732 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5733 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5736 if (tp
->rx_opt
.saw_tstamp
) {
5737 tp
->rx_opt
.tstamp_ok
= 1;
5738 tp
->tcp_header_len
=
5739 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5740 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5741 tcp_store_ts_recent(tp
);
5743 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5746 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5747 tcp_enable_fack(tp
);
5750 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5751 tcp_initialize_rcv_mss(sk
);
5753 /* Remember, tcp_poll() does not lock socket!
5754 * Change state from SYN-SENT only after copied_seq
5755 * is initialized. */
5756 tp
->copied_seq
= tp
->rcv_nxt
;
5759 cvp
->cookie_pair_size
> 0 &&
5760 tp
->rx_opt
.cookie_plus
> 0) {
5761 int cookie_size
= tp
->rx_opt
.cookie_plus
5762 - TCPOLEN_COOKIE_BASE
;
5763 int cookie_pair_size
= cookie_size
5764 + cvp
->cookie_desired
;
5766 /* A cookie extension option was sent and returned.
5767 * Note that each incoming SYNACK replaces the
5768 * Responder cookie. The initial exchange is most
5769 * fragile, as protection against spoofing relies
5770 * entirely upon the sequence and timestamp (above).
5771 * This replacement strategy allows the correct pair to
5772 * pass through, while any others will be filtered via
5773 * Responder verification later.
5775 if (sizeof(cvp
->cookie_pair
) >= cookie_pair_size
) {
5776 memcpy(&cvp
->cookie_pair
[cvp
->cookie_desired
],
5777 hash_location
, cookie_size
);
5778 cvp
->cookie_pair_size
= cookie_pair_size
;
5784 tcp_finish_connect(sk
, skb
);
5786 if ((tp
->syn_fastopen
|| tp
->syn_data
) &&
5787 tcp_rcv_fastopen_synack(sk
, skb
, &foc
))
5790 if (sk
->sk_write_pending
||
5791 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5792 icsk
->icsk_ack
.pingpong
) {
5793 /* Save one ACK. Data will be ready after
5794 * several ticks, if write_pending is set.
5796 * It may be deleted, but with this feature tcpdumps
5797 * look so _wonderfully_ clever, that I was not able
5798 * to stand against the temptation 8) --ANK
5800 inet_csk_schedule_ack(sk
);
5801 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5802 tcp_enter_quickack_mode(sk
);
5803 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5804 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5815 /* No ACK in the segment */
5819 * "If the RST bit is set
5821 * Otherwise (no ACK) drop the segment and return."
5824 goto discard_and_undo
;
5828 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5829 tcp_paws_reject(&tp
->rx_opt
, 0))
5830 goto discard_and_undo
;
5833 /* We see SYN without ACK. It is attempt of
5834 * simultaneous connect with crossed SYNs.
5835 * Particularly, it can be connect to self.
5837 tcp_set_state(sk
, TCP_SYN_RECV
);
5839 if (tp
->rx_opt
.saw_tstamp
) {
5840 tp
->rx_opt
.tstamp_ok
= 1;
5841 tcp_store_ts_recent(tp
);
5842 tp
->tcp_header_len
=
5843 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5845 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5848 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5849 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5851 /* RFC1323: The window in SYN & SYN/ACK segments is
5854 tp
->snd_wnd
= ntohs(th
->window
);
5855 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5856 tp
->max_window
= tp
->snd_wnd
;
5858 TCP_ECN_rcv_syn(tp
, th
);
5861 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5862 tcp_initialize_rcv_mss(sk
);
5864 tcp_send_synack(sk
);
5866 /* Note, we could accept data and URG from this segment.
5867 * There are no obstacles to make this (except that we must
5868 * either change tcp_recvmsg() to prevent it from returning data
5869 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5871 * However, if we ignore data in ACKless segments sometimes,
5872 * we have no reasons to accept it sometimes.
5873 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5874 * is not flawless. So, discard packet for sanity.
5875 * Uncomment this return to process the data.
5882 /* "fifth, if neither of the SYN or RST bits is set then
5883 * drop the segment and return."
5887 tcp_clear_options(&tp
->rx_opt
);
5888 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5892 tcp_clear_options(&tp
->rx_opt
);
5893 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5898 * This function implements the receiving procedure of RFC 793 for
5899 * all states except ESTABLISHED and TIME_WAIT.
5900 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5901 * address independent.
5904 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5905 const struct tcphdr
*th
, unsigned int len
)
5907 struct tcp_sock
*tp
= tcp_sk(sk
);
5908 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5909 struct request_sock
*req
;
5912 tp
->rx_opt
.saw_tstamp
= 0;
5914 switch (sk
->sk_state
) {
5928 if (icsk
->icsk_af_ops
->conn_request(sk
, skb
) < 0)
5931 /* Now we have several options: In theory there is
5932 * nothing else in the frame. KA9Q has an option to
5933 * send data with the syn, BSD accepts data with the
5934 * syn up to the [to be] advertised window and
5935 * Solaris 2.1 gives you a protocol error. For now
5936 * we just ignore it, that fits the spec precisely
5937 * and avoids incompatibilities. It would be nice in
5938 * future to drop through and process the data.
5940 * Now that TTCP is starting to be used we ought to
5942 * But, this leaves one open to an easy denial of
5943 * service attack, and SYN cookies can't defend
5944 * against this problem. So, we drop the data
5945 * in the interest of security over speed unless
5946 * it's still in use.
5954 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
, len
);
5958 /* Do step6 onward by hand. */
5959 tcp_urg(sk
, skb
, th
);
5961 tcp_data_snd_check(sk
);
5965 req
= tp
->fastopen_rsk
;
5967 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5968 sk
->sk_state
!= TCP_FIN_WAIT1
);
5970 if (tcp_check_req(sk
, skb
, req
, NULL
, true) == NULL
)
5974 if (!th
->ack
&& !th
->rst
)
5977 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5980 /* step 5: check the ACK field */
5982 int acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
) > 0;
5984 switch (sk
->sk_state
) {
5987 /* Once we leave TCP_SYN_RECV, we no longer
5988 * need req so release it.
5991 tcp_synack_rtt_meas(sk
, req
);
5992 tp
->total_retrans
= req
->num_retrans
;
5994 reqsk_fastopen_remove(sk
, req
, false);
5996 /* Make sure socket is routed, for
5999 icsk
->icsk_af_ops
->rebuild_header(sk
);
6000 tcp_init_congestion_control(sk
);
6003 tcp_init_buffer_space(sk
);
6004 tp
->copied_seq
= tp
->rcv_nxt
;
6007 tcp_set_state(sk
, TCP_ESTABLISHED
);
6008 sk
->sk_state_change(sk
);
6010 /* Note, that this wakeup is only for marginal
6011 * crossed SYN case. Passively open sockets
6012 * are not waked up, because sk->sk_sleep ==
6013 * NULL and sk->sk_socket == NULL.
6017 SOCK_WAKE_IO
, POLL_OUT
);
6019 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6020 tp
->snd_wnd
= ntohs(th
->window
) <<
6021 tp
->rx_opt
.snd_wscale
;
6022 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6024 if (tp
->rx_opt
.tstamp_ok
)
6025 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6028 /* Re-arm the timer because data may
6029 * have been sent out. This is similar
6030 * to the regular data transmission case
6031 * when new data has just been ack'ed.
6033 * (TFO) - we could try to be more
6034 * aggressive and retranmitting any data
6035 * sooner based on when they were sent
6040 tcp_init_metrics(sk
);
6042 /* Prevent spurious tcp_cwnd_restart() on
6043 * first data packet.
6045 tp
->lsndtime
= tcp_time_stamp
;
6047 tcp_initialize_rcv_mss(sk
);
6048 tcp_fast_path_on(tp
);
6055 /* If we enter the TCP_FIN_WAIT1 state and we are a
6056 * Fast Open socket and this is the first acceptable
6057 * ACK we have received, this would have acknowledged
6058 * our SYNACK so stop the SYNACK timer.
6061 /* Return RST if ack_seq is invalid.
6062 * Note that RFC793 only says to generate a
6063 * DUPACK for it but for TCP Fast Open it seems
6064 * better to treat this case like TCP_SYN_RECV
6069 /* We no longer need the request sock. */
6070 reqsk_fastopen_remove(sk
, req
, false);
6073 if (tp
->snd_una
== tp
->write_seq
) {
6074 struct dst_entry
*dst
;
6076 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6077 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6079 dst
= __sk_dst_get(sk
);
6083 if (!sock_flag(sk
, SOCK_DEAD
))
6084 /* Wake up lingering close() */
6085 sk
->sk_state_change(sk
);
6089 if (tp
->linger2
< 0 ||
6090 (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6091 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
))) {
6093 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6097 tmo
= tcp_fin_time(sk
);
6098 if (tmo
> TCP_TIMEWAIT_LEN
) {
6099 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6100 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6101 /* Bad case. We could lose such FIN otherwise.
6102 * It is not a big problem, but it looks confusing
6103 * and not so rare event. We still can lose it now,
6104 * if it spins in bh_lock_sock(), but it is really
6107 inet_csk_reset_keepalive_timer(sk
, tmo
);
6109 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6117 if (tp
->snd_una
== tp
->write_seq
) {
6118 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6124 if (tp
->snd_una
== tp
->write_seq
) {
6125 tcp_update_metrics(sk
);
6133 /* ts_recent update must be made after we are sure that the packet
6136 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
6138 /* step 6: check the URG bit */
6139 tcp_urg(sk
, skb
, th
);
6141 /* step 7: process the segment text */
6142 switch (sk
->sk_state
) {
6143 case TCP_CLOSE_WAIT
:
6146 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6150 /* RFC 793 says to queue data in these states,
6151 * RFC 1122 says we MUST send a reset.
6152 * BSD 4.4 also does reset.
6154 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6155 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6156 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6157 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6163 case TCP_ESTABLISHED
:
6164 tcp_data_queue(sk
, skb
);
6169 /* tcp_data could move socket to TIME-WAIT */
6170 if (sk
->sk_state
!= TCP_CLOSE
) {
6171 tcp_data_snd_check(sk
);
6172 tcp_ack_snd_check(sk
);
6181 EXPORT_SYMBOL(tcp_rcv_state_process
);