Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_frto_response __read_mostly;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 2;
102
103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
109 #define FLAG_ECE 0x40 /* ECE in this ACK */
110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116
117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125
126 /* Adapt the MSS value used to make delayed ack decision to the
127 * real world.
128 */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 struct inet_connection_sock *icsk = inet_csk(sk);
132 const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 unsigned int len;
134
135 icsk->icsk_ack.last_seg_size = 0;
136
137 /* skb->len may jitter because of SACKs, even if peer
138 * sends good full-sized frames.
139 */
140 len = skb_shinfo(skb)->gso_size ? : skb->len;
141 if (len >= icsk->icsk_ack.rcv_mss) {
142 icsk->icsk_ack.rcv_mss = len;
143 } else {
144 /* Otherwise, we make more careful check taking into account,
145 * that SACKs block is variable.
146 *
147 * "len" is invariant segment length, including TCP header.
148 */
149 len += skb->data - skb_transport_header(skb);
150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 /* If PSH is not set, packet should be
152 * full sized, provided peer TCP is not badly broken.
153 * This observation (if it is correct 8)) allows
154 * to handle super-low mtu links fairly.
155 */
156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 /* Subtract also invariant (if peer is RFC compliant),
159 * tcp header plus fixed timestamp option length.
160 * Resulting "len" is MSS free of SACK jitter.
161 */
162 len -= tcp_sk(sk)->tcp_header_len;
163 icsk->icsk_ack.last_seg_size = len;
164 if (len == lss) {
165 icsk->icsk_ack.rcv_mss = len;
166 return;
167 }
168 }
169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 }
173 }
174
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 struct inet_connection_sock *icsk = inet_csk(sk);
178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179
180 if (quickacks == 0)
181 quickacks = 2;
182 if (quickacks > icsk->icsk_ack.quick)
183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 struct inet_connection_sock *icsk = inet_csk(sk);
189 tcp_incr_quickack(sk);
190 icsk->icsk_ack.pingpong = 0;
191 icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193
194 /* Send ACKs quickly, if "quick" count is not exhausted
195 * and the session is not interactive.
196 */
197
198 static inline bool tcp_in_quickack_mode(const struct sock *sk)
199 {
200 const struct inet_connection_sock *icsk = inet_csk(sk);
201
202 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 }
204
205 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
206 {
207 if (tp->ecn_flags & TCP_ECN_OK)
208 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 }
210
211 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
212 {
213 if (tcp_hdr(skb)->cwr)
214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216
217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
218 {
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221
222 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
223 {
224 if (!(tp->ecn_flags & TCP_ECN_OK))
225 return;
226
227 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
228 case INET_ECN_NOT_ECT:
229 /* Funny extension: if ECT is not set on a segment,
230 * and we already seen ECT on a previous segment,
231 * it is probably a retransmit.
232 */
233 if (tp->ecn_flags & TCP_ECN_SEEN)
234 tcp_enter_quickack_mode((struct sock *)tp);
235 break;
236 case INET_ECN_CE:
237 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
238 /* Better not delay acks, sender can have a very low cwnd */
239 tcp_enter_quickack_mode((struct sock *)tp);
240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 }
242 /* fallinto */
243 default:
244 tp->ecn_flags |= TCP_ECN_SEEN;
245 }
246 }
247
248 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
249 {
250 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
251 tp->ecn_flags &= ~TCP_ECN_OK;
252 }
253
254 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
255 {
256 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
257 tp->ecn_flags &= ~TCP_ECN_OK;
258 }
259
260 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
261 {
262 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
263 return true;
264 return false;
265 }
266
267 /* Buffer size and advertised window tuning.
268 *
269 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
270 */
271
272 static void tcp_fixup_sndbuf(struct sock *sk)
273 {
274 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
275
276 sndmem *= TCP_INIT_CWND;
277 if (sk->sk_sndbuf < sndmem)
278 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
279 }
280
281 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
282 *
283 * All tcp_full_space() is split to two parts: "network" buffer, allocated
284 * forward and advertised in receiver window (tp->rcv_wnd) and
285 * "application buffer", required to isolate scheduling/application
286 * latencies from network.
287 * window_clamp is maximal advertised window. It can be less than
288 * tcp_full_space(), in this case tcp_full_space() - window_clamp
289 * is reserved for "application" buffer. The less window_clamp is
290 * the smoother our behaviour from viewpoint of network, but the lower
291 * throughput and the higher sensitivity of the connection to losses. 8)
292 *
293 * rcv_ssthresh is more strict window_clamp used at "slow start"
294 * phase to predict further behaviour of this connection.
295 * It is used for two goals:
296 * - to enforce header prediction at sender, even when application
297 * requires some significant "application buffer". It is check #1.
298 * - to prevent pruning of receive queue because of misprediction
299 * of receiver window. Check #2.
300 *
301 * The scheme does not work when sender sends good segments opening
302 * window and then starts to feed us spaghetti. But it should work
303 * in common situations. Otherwise, we have to rely on queue collapsing.
304 */
305
306 /* Slow part of check#2. */
307 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
308 {
309 struct tcp_sock *tp = tcp_sk(sk);
310 /* Optimize this! */
311 int truesize = tcp_win_from_space(skb->truesize) >> 1;
312 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
313
314 while (tp->rcv_ssthresh <= window) {
315 if (truesize <= skb->len)
316 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
317
318 truesize >>= 1;
319 window >>= 1;
320 }
321 return 0;
322 }
323
324 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
325 {
326 struct tcp_sock *tp = tcp_sk(sk);
327
328 /* Check #1 */
329 if (tp->rcv_ssthresh < tp->window_clamp &&
330 (int)tp->rcv_ssthresh < tcp_space(sk) &&
331 !sk_under_memory_pressure(sk)) {
332 int incr;
333
334 /* Check #2. Increase window, if skb with such overhead
335 * will fit to rcvbuf in future.
336 */
337 if (tcp_win_from_space(skb->truesize) <= skb->len)
338 incr = 2 * tp->advmss;
339 else
340 incr = __tcp_grow_window(sk, skb);
341
342 if (incr) {
343 incr = max_t(int, incr, 2 * skb->len);
344 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
345 tp->window_clamp);
346 inet_csk(sk)->icsk_ack.quick |= 1;
347 }
348 }
349 }
350
351 /* 3. Tuning rcvbuf, when connection enters established state. */
352
353 static void tcp_fixup_rcvbuf(struct sock *sk)
354 {
355 u32 mss = tcp_sk(sk)->advmss;
356 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
357 int rcvmem;
358
359 /* Limit to 10 segments if mss <= 1460,
360 * or 14600/mss segments, with a minimum of two segments.
361 */
362 if (mss > 1460)
363 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
364
365 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
366 while (tcp_win_from_space(rcvmem) < mss)
367 rcvmem += 128;
368
369 rcvmem *= icwnd;
370
371 if (sk->sk_rcvbuf < rcvmem)
372 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
373 }
374
375 /* 4. Try to fixup all. It is made immediately after connection enters
376 * established state.
377 */
378 void tcp_init_buffer_space(struct sock *sk)
379 {
380 struct tcp_sock *tp = tcp_sk(sk);
381 int maxwin;
382
383 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
384 tcp_fixup_rcvbuf(sk);
385 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
386 tcp_fixup_sndbuf(sk);
387
388 tp->rcvq_space.space = tp->rcv_wnd;
389
390 maxwin = tcp_full_space(sk);
391
392 if (tp->window_clamp >= maxwin) {
393 tp->window_clamp = maxwin;
394
395 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
396 tp->window_clamp = max(maxwin -
397 (maxwin >> sysctl_tcp_app_win),
398 4 * tp->advmss);
399 }
400
401 /* Force reservation of one segment. */
402 if (sysctl_tcp_app_win &&
403 tp->window_clamp > 2 * tp->advmss &&
404 tp->window_clamp + tp->advmss > maxwin)
405 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
406
407 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
408 tp->snd_cwnd_stamp = tcp_time_stamp;
409 }
410
411 /* 5. Recalculate window clamp after socket hit its memory bounds. */
412 static void tcp_clamp_window(struct sock *sk)
413 {
414 struct tcp_sock *tp = tcp_sk(sk);
415 struct inet_connection_sock *icsk = inet_csk(sk);
416
417 icsk->icsk_ack.quick = 0;
418
419 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
420 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
421 !sk_under_memory_pressure(sk) &&
422 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
423 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
424 sysctl_tcp_rmem[2]);
425 }
426 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
427 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
428 }
429
430 /* Initialize RCV_MSS value.
431 * RCV_MSS is an our guess about MSS used by the peer.
432 * We haven't any direct information about the MSS.
433 * It's better to underestimate the RCV_MSS rather than overestimate.
434 * Overestimations make us ACKing less frequently than needed.
435 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
436 */
437 void tcp_initialize_rcv_mss(struct sock *sk)
438 {
439 const struct tcp_sock *tp = tcp_sk(sk);
440 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
441
442 hint = min(hint, tp->rcv_wnd / 2);
443 hint = min(hint, TCP_MSS_DEFAULT);
444 hint = max(hint, TCP_MIN_MSS);
445
446 inet_csk(sk)->icsk_ack.rcv_mss = hint;
447 }
448 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
449
450 /* Receiver "autotuning" code.
451 *
452 * The algorithm for RTT estimation w/o timestamps is based on
453 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
454 * <http://public.lanl.gov/radiant/pubs.html#DRS>
455 *
456 * More detail on this code can be found at
457 * <http://staff.psc.edu/jheffner/>,
458 * though this reference is out of date. A new paper
459 * is pending.
460 */
461 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
462 {
463 u32 new_sample = tp->rcv_rtt_est.rtt;
464 long m = sample;
465
466 if (m == 0)
467 m = 1;
468
469 if (new_sample != 0) {
470 /* If we sample in larger samples in the non-timestamp
471 * case, we could grossly overestimate the RTT especially
472 * with chatty applications or bulk transfer apps which
473 * are stalled on filesystem I/O.
474 *
475 * Also, since we are only going for a minimum in the
476 * non-timestamp case, we do not smooth things out
477 * else with timestamps disabled convergence takes too
478 * long.
479 */
480 if (!win_dep) {
481 m -= (new_sample >> 3);
482 new_sample += m;
483 } else {
484 m <<= 3;
485 if (m < new_sample)
486 new_sample = m;
487 }
488 } else {
489 /* No previous measure. */
490 new_sample = m << 3;
491 }
492
493 if (tp->rcv_rtt_est.rtt != new_sample)
494 tp->rcv_rtt_est.rtt = new_sample;
495 }
496
497 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
498 {
499 if (tp->rcv_rtt_est.time == 0)
500 goto new_measure;
501 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
502 return;
503 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
504
505 new_measure:
506 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
507 tp->rcv_rtt_est.time = tcp_time_stamp;
508 }
509
510 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
511 const struct sk_buff *skb)
512 {
513 struct tcp_sock *tp = tcp_sk(sk);
514 if (tp->rx_opt.rcv_tsecr &&
515 (TCP_SKB_CB(skb)->end_seq -
516 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
517 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
518 }
519
520 /*
521 * This function should be called every time data is copied to user space.
522 * It calculates the appropriate TCP receive buffer space.
523 */
524 void tcp_rcv_space_adjust(struct sock *sk)
525 {
526 struct tcp_sock *tp = tcp_sk(sk);
527 int time;
528 int space;
529
530 if (tp->rcvq_space.time == 0)
531 goto new_measure;
532
533 time = tcp_time_stamp - tp->rcvq_space.time;
534 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
535 return;
536
537 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
538
539 space = max(tp->rcvq_space.space, space);
540
541 if (tp->rcvq_space.space != space) {
542 int rcvmem;
543
544 tp->rcvq_space.space = space;
545
546 if (sysctl_tcp_moderate_rcvbuf &&
547 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
548 int new_clamp = space;
549
550 /* Receive space grows, normalize in order to
551 * take into account packet headers and sk_buff
552 * structure overhead.
553 */
554 space /= tp->advmss;
555 if (!space)
556 space = 1;
557 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
558 while (tcp_win_from_space(rcvmem) < tp->advmss)
559 rcvmem += 128;
560 space *= rcvmem;
561 space = min(space, sysctl_tcp_rmem[2]);
562 if (space > sk->sk_rcvbuf) {
563 sk->sk_rcvbuf = space;
564
565 /* Make the window clamp follow along. */
566 tp->window_clamp = new_clamp;
567 }
568 }
569 }
570
571 new_measure:
572 tp->rcvq_space.seq = tp->copied_seq;
573 tp->rcvq_space.time = tcp_time_stamp;
574 }
575
576 /* There is something which you must keep in mind when you analyze the
577 * behavior of the tp->ato delayed ack timeout interval. When a
578 * connection starts up, we want to ack as quickly as possible. The
579 * problem is that "good" TCP's do slow start at the beginning of data
580 * transmission. The means that until we send the first few ACK's the
581 * sender will sit on his end and only queue most of his data, because
582 * he can only send snd_cwnd unacked packets at any given time. For
583 * each ACK we send, he increments snd_cwnd and transmits more of his
584 * queue. -DaveM
585 */
586 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
587 {
588 struct tcp_sock *tp = tcp_sk(sk);
589 struct inet_connection_sock *icsk = inet_csk(sk);
590 u32 now;
591
592 inet_csk_schedule_ack(sk);
593
594 tcp_measure_rcv_mss(sk, skb);
595
596 tcp_rcv_rtt_measure(tp);
597
598 now = tcp_time_stamp;
599
600 if (!icsk->icsk_ack.ato) {
601 /* The _first_ data packet received, initialize
602 * delayed ACK engine.
603 */
604 tcp_incr_quickack(sk);
605 icsk->icsk_ack.ato = TCP_ATO_MIN;
606 } else {
607 int m = now - icsk->icsk_ack.lrcvtime;
608
609 if (m <= TCP_ATO_MIN / 2) {
610 /* The fastest case is the first. */
611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
612 } else if (m < icsk->icsk_ack.ato) {
613 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
614 if (icsk->icsk_ack.ato > icsk->icsk_rto)
615 icsk->icsk_ack.ato = icsk->icsk_rto;
616 } else if (m > icsk->icsk_rto) {
617 /* Too long gap. Apparently sender failed to
618 * restart window, so that we send ACKs quickly.
619 */
620 tcp_incr_quickack(sk);
621 sk_mem_reclaim(sk);
622 }
623 }
624 icsk->icsk_ack.lrcvtime = now;
625
626 TCP_ECN_check_ce(tp, skb);
627
628 if (skb->len >= 128)
629 tcp_grow_window(sk, skb);
630 }
631
632 /* Called to compute a smoothed rtt estimate. The data fed to this
633 * routine either comes from timestamps, or from segments that were
634 * known _not_ to have been retransmitted [see Karn/Partridge
635 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
636 * piece by Van Jacobson.
637 * NOTE: the next three routines used to be one big routine.
638 * To save cycles in the RFC 1323 implementation it was better to break
639 * it up into three procedures. -- erics
640 */
641 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
642 {
643 struct tcp_sock *tp = tcp_sk(sk);
644 long m = mrtt; /* RTT */
645
646 /* The following amusing code comes from Jacobson's
647 * article in SIGCOMM '88. Note that rtt and mdev
648 * are scaled versions of rtt and mean deviation.
649 * This is designed to be as fast as possible
650 * m stands for "measurement".
651 *
652 * On a 1990 paper the rto value is changed to:
653 * RTO = rtt + 4 * mdev
654 *
655 * Funny. This algorithm seems to be very broken.
656 * These formulae increase RTO, when it should be decreased, increase
657 * too slowly, when it should be increased quickly, decrease too quickly
658 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
659 * does not matter how to _calculate_ it. Seems, it was trap
660 * that VJ failed to avoid. 8)
661 */
662 if (m == 0)
663 m = 1;
664 if (tp->srtt != 0) {
665 m -= (tp->srtt >> 3); /* m is now error in rtt est */
666 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
667 if (m < 0) {
668 m = -m; /* m is now abs(error) */
669 m -= (tp->mdev >> 2); /* similar update on mdev */
670 /* This is similar to one of Eifel findings.
671 * Eifel blocks mdev updates when rtt decreases.
672 * This solution is a bit different: we use finer gain
673 * for mdev in this case (alpha*beta).
674 * Like Eifel it also prevents growth of rto,
675 * but also it limits too fast rto decreases,
676 * happening in pure Eifel.
677 */
678 if (m > 0)
679 m >>= 3;
680 } else {
681 m -= (tp->mdev >> 2); /* similar update on mdev */
682 }
683 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
684 if (tp->mdev > tp->mdev_max) {
685 tp->mdev_max = tp->mdev;
686 if (tp->mdev_max > tp->rttvar)
687 tp->rttvar = tp->mdev_max;
688 }
689 if (after(tp->snd_una, tp->rtt_seq)) {
690 if (tp->mdev_max < tp->rttvar)
691 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
692 tp->rtt_seq = tp->snd_nxt;
693 tp->mdev_max = tcp_rto_min(sk);
694 }
695 } else {
696 /* no previous measure. */
697 tp->srtt = m << 3; /* take the measured time to be rtt */
698 tp->mdev = m << 1; /* make sure rto = 3*rtt */
699 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
700 tp->rtt_seq = tp->snd_nxt;
701 }
702 }
703
704 /* Calculate rto without backoff. This is the second half of Van Jacobson's
705 * routine referred to above.
706 */
707 void tcp_set_rto(struct sock *sk)
708 {
709 const struct tcp_sock *tp = tcp_sk(sk);
710 /* Old crap is replaced with new one. 8)
711 *
712 * More seriously:
713 * 1. If rtt variance happened to be less 50msec, it is hallucination.
714 * It cannot be less due to utterly erratic ACK generation made
715 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
716 * to do with delayed acks, because at cwnd>2 true delack timeout
717 * is invisible. Actually, Linux-2.4 also generates erratic
718 * ACKs in some circumstances.
719 */
720 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
721
722 /* 2. Fixups made earlier cannot be right.
723 * If we do not estimate RTO correctly without them,
724 * all the algo is pure shit and should be replaced
725 * with correct one. It is exactly, which we pretend to do.
726 */
727
728 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
729 * guarantees that rto is higher.
730 */
731 tcp_bound_rto(sk);
732 }
733
734 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
735 {
736 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
737
738 if (!cwnd)
739 cwnd = TCP_INIT_CWND;
740 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
741 }
742
743 /*
744 * Packet counting of FACK is based on in-order assumptions, therefore TCP
745 * disables it when reordering is detected
746 */
747 void tcp_disable_fack(struct tcp_sock *tp)
748 {
749 /* RFC3517 uses different metric in lost marker => reset on change */
750 if (tcp_is_fack(tp))
751 tp->lost_skb_hint = NULL;
752 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
753 }
754
755 /* Take a notice that peer is sending D-SACKs */
756 static void tcp_dsack_seen(struct tcp_sock *tp)
757 {
758 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
759 }
760
761 static void tcp_update_reordering(struct sock *sk, const int metric,
762 const int ts)
763 {
764 struct tcp_sock *tp = tcp_sk(sk);
765 if (metric > tp->reordering) {
766 int mib_idx;
767
768 tp->reordering = min(TCP_MAX_REORDERING, metric);
769
770 /* This exciting event is worth to be remembered. 8) */
771 if (ts)
772 mib_idx = LINUX_MIB_TCPTSREORDER;
773 else if (tcp_is_reno(tp))
774 mib_idx = LINUX_MIB_TCPRENOREORDER;
775 else if (tcp_is_fack(tp))
776 mib_idx = LINUX_MIB_TCPFACKREORDER;
777 else
778 mib_idx = LINUX_MIB_TCPSACKREORDER;
779
780 NET_INC_STATS_BH(sock_net(sk), mib_idx);
781 #if FASTRETRANS_DEBUG > 1
782 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
783 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
784 tp->reordering,
785 tp->fackets_out,
786 tp->sacked_out,
787 tp->undo_marker ? tp->undo_retrans : 0);
788 #endif
789 tcp_disable_fack(tp);
790 }
791
792 if (metric > 0)
793 tcp_disable_early_retrans(tp);
794 }
795
796 /* This must be called before lost_out is incremented */
797 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
798 {
799 if ((tp->retransmit_skb_hint == NULL) ||
800 before(TCP_SKB_CB(skb)->seq,
801 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
802 tp->retransmit_skb_hint = skb;
803
804 if (!tp->lost_out ||
805 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
806 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
807 }
808
809 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
810 {
811 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
812 tcp_verify_retransmit_hint(tp, skb);
813
814 tp->lost_out += tcp_skb_pcount(skb);
815 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
816 }
817 }
818
819 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
820 struct sk_buff *skb)
821 {
822 tcp_verify_retransmit_hint(tp, skb);
823
824 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
825 tp->lost_out += tcp_skb_pcount(skb);
826 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
827 }
828 }
829
830 /* This procedure tags the retransmission queue when SACKs arrive.
831 *
832 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
833 * Packets in queue with these bits set are counted in variables
834 * sacked_out, retrans_out and lost_out, correspondingly.
835 *
836 * Valid combinations are:
837 * Tag InFlight Description
838 * 0 1 - orig segment is in flight.
839 * S 0 - nothing flies, orig reached receiver.
840 * L 0 - nothing flies, orig lost by net.
841 * R 2 - both orig and retransmit are in flight.
842 * L|R 1 - orig is lost, retransmit is in flight.
843 * S|R 1 - orig reached receiver, retrans is still in flight.
844 * (L|S|R is logically valid, it could occur when L|R is sacked,
845 * but it is equivalent to plain S and code short-curcuits it to S.
846 * L|S is logically invalid, it would mean -1 packet in flight 8))
847 *
848 * These 6 states form finite state machine, controlled by the following events:
849 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
850 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
851 * 3. Loss detection event of two flavors:
852 * A. Scoreboard estimator decided the packet is lost.
853 * A'. Reno "three dupacks" marks head of queue lost.
854 * A''. Its FACK modification, head until snd.fack is lost.
855 * B. SACK arrives sacking SND.NXT at the moment, when the
856 * segment was retransmitted.
857 * 4. D-SACK added new rule: D-SACK changes any tag to S.
858 *
859 * It is pleasant to note, that state diagram turns out to be commutative,
860 * so that we are allowed not to be bothered by order of our actions,
861 * when multiple events arrive simultaneously. (see the function below).
862 *
863 * Reordering detection.
864 * --------------------
865 * Reordering metric is maximal distance, which a packet can be displaced
866 * in packet stream. With SACKs we can estimate it:
867 *
868 * 1. SACK fills old hole and the corresponding segment was not
869 * ever retransmitted -> reordering. Alas, we cannot use it
870 * when segment was retransmitted.
871 * 2. The last flaw is solved with D-SACK. D-SACK arrives
872 * for retransmitted and already SACKed segment -> reordering..
873 * Both of these heuristics are not used in Loss state, when we cannot
874 * account for retransmits accurately.
875 *
876 * SACK block validation.
877 * ----------------------
878 *
879 * SACK block range validation checks that the received SACK block fits to
880 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
881 * Note that SND.UNA is not included to the range though being valid because
882 * it means that the receiver is rather inconsistent with itself reporting
883 * SACK reneging when it should advance SND.UNA. Such SACK block this is
884 * perfectly valid, however, in light of RFC2018 which explicitly states
885 * that "SACK block MUST reflect the newest segment. Even if the newest
886 * segment is going to be discarded ...", not that it looks very clever
887 * in case of head skb. Due to potentional receiver driven attacks, we
888 * choose to avoid immediate execution of a walk in write queue due to
889 * reneging and defer head skb's loss recovery to standard loss recovery
890 * procedure that will eventually trigger (nothing forbids us doing this).
891 *
892 * Implements also blockage to start_seq wrap-around. Problem lies in the
893 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
894 * there's no guarantee that it will be before snd_nxt (n). The problem
895 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
896 * wrap (s_w):
897 *
898 * <- outs wnd -> <- wrapzone ->
899 * u e n u_w e_w s n_w
900 * | | | | | | |
901 * |<------------+------+----- TCP seqno space --------------+---------->|
902 * ...-- <2^31 ->| |<--------...
903 * ...---- >2^31 ------>| |<--------...
904 *
905 * Current code wouldn't be vulnerable but it's better still to discard such
906 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
907 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
908 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
909 * equal to the ideal case (infinite seqno space without wrap caused issues).
910 *
911 * With D-SACK the lower bound is extended to cover sequence space below
912 * SND.UNA down to undo_marker, which is the last point of interest. Yet
913 * again, D-SACK block must not to go across snd_una (for the same reason as
914 * for the normal SACK blocks, explained above). But there all simplicity
915 * ends, TCP might receive valid D-SACKs below that. As long as they reside
916 * fully below undo_marker they do not affect behavior in anyway and can
917 * therefore be safely ignored. In rare cases (which are more or less
918 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
919 * fragmentation and packet reordering past skb's retransmission. To consider
920 * them correctly, the acceptable range must be extended even more though
921 * the exact amount is rather hard to quantify. However, tp->max_window can
922 * be used as an exaggerated estimate.
923 */
924 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
925 u32 start_seq, u32 end_seq)
926 {
927 /* Too far in future, or reversed (interpretation is ambiguous) */
928 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
929 return false;
930
931 /* Nasty start_seq wrap-around check (see comments above) */
932 if (!before(start_seq, tp->snd_nxt))
933 return false;
934
935 /* In outstanding window? ...This is valid exit for D-SACKs too.
936 * start_seq == snd_una is non-sensical (see comments above)
937 */
938 if (after(start_seq, tp->snd_una))
939 return true;
940
941 if (!is_dsack || !tp->undo_marker)
942 return false;
943
944 /* ...Then it's D-SACK, and must reside below snd_una completely */
945 if (after(end_seq, tp->snd_una))
946 return false;
947
948 if (!before(start_seq, tp->undo_marker))
949 return true;
950
951 /* Too old */
952 if (!after(end_seq, tp->undo_marker))
953 return false;
954
955 /* Undo_marker boundary crossing (overestimates a lot). Known already:
956 * start_seq < undo_marker and end_seq >= undo_marker.
957 */
958 return !before(start_seq, end_seq - tp->max_window);
959 }
960
961 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
962 * Event "B". Later note: FACK people cheated me again 8), we have to account
963 * for reordering! Ugly, but should help.
964 *
965 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
966 * less than what is now known to be received by the other end (derived from
967 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
968 * retransmitted skbs to avoid some costly processing per ACKs.
969 */
970 static void tcp_mark_lost_retrans(struct sock *sk)
971 {
972 const struct inet_connection_sock *icsk = inet_csk(sk);
973 struct tcp_sock *tp = tcp_sk(sk);
974 struct sk_buff *skb;
975 int cnt = 0;
976 u32 new_low_seq = tp->snd_nxt;
977 u32 received_upto = tcp_highest_sack_seq(tp);
978
979 if (!tcp_is_fack(tp) || !tp->retrans_out ||
980 !after(received_upto, tp->lost_retrans_low) ||
981 icsk->icsk_ca_state != TCP_CA_Recovery)
982 return;
983
984 tcp_for_write_queue(skb, sk) {
985 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
986
987 if (skb == tcp_send_head(sk))
988 break;
989 if (cnt == tp->retrans_out)
990 break;
991 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
992 continue;
993
994 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
995 continue;
996
997 /* TODO: We would like to get rid of tcp_is_fack(tp) only
998 * constraint here (see above) but figuring out that at
999 * least tp->reordering SACK blocks reside between ack_seq
1000 * and received_upto is not easy task to do cheaply with
1001 * the available datastructures.
1002 *
1003 * Whether FACK should check here for tp->reordering segs
1004 * in-between one could argue for either way (it would be
1005 * rather simple to implement as we could count fack_count
1006 * during the walk and do tp->fackets_out - fack_count).
1007 */
1008 if (after(received_upto, ack_seq)) {
1009 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1010 tp->retrans_out -= tcp_skb_pcount(skb);
1011
1012 tcp_skb_mark_lost_uncond_verify(tp, skb);
1013 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1014 } else {
1015 if (before(ack_seq, new_low_seq))
1016 new_low_seq = ack_seq;
1017 cnt += tcp_skb_pcount(skb);
1018 }
1019 }
1020
1021 if (tp->retrans_out)
1022 tp->lost_retrans_low = new_low_seq;
1023 }
1024
1025 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1026 struct tcp_sack_block_wire *sp, int num_sacks,
1027 u32 prior_snd_una)
1028 {
1029 struct tcp_sock *tp = tcp_sk(sk);
1030 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1031 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1032 bool dup_sack = false;
1033
1034 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1035 dup_sack = true;
1036 tcp_dsack_seen(tp);
1037 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1038 } else if (num_sacks > 1) {
1039 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1040 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1041
1042 if (!after(end_seq_0, end_seq_1) &&
1043 !before(start_seq_0, start_seq_1)) {
1044 dup_sack = true;
1045 tcp_dsack_seen(tp);
1046 NET_INC_STATS_BH(sock_net(sk),
1047 LINUX_MIB_TCPDSACKOFORECV);
1048 }
1049 }
1050
1051 /* D-SACK for already forgotten data... Do dumb counting. */
1052 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1053 !after(end_seq_0, prior_snd_una) &&
1054 after(end_seq_0, tp->undo_marker))
1055 tp->undo_retrans--;
1056
1057 return dup_sack;
1058 }
1059
1060 struct tcp_sacktag_state {
1061 int reord;
1062 int fack_count;
1063 int flag;
1064 };
1065
1066 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1067 * the incoming SACK may not exactly match but we can find smaller MSS
1068 * aligned portion of it that matches. Therefore we might need to fragment
1069 * which may fail and creates some hassle (caller must handle error case
1070 * returns).
1071 *
1072 * FIXME: this could be merged to shift decision code
1073 */
1074 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1075 u32 start_seq, u32 end_seq)
1076 {
1077 int err;
1078 bool in_sack;
1079 unsigned int pkt_len;
1080 unsigned int mss;
1081
1082 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1083 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1084
1085 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1086 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1087 mss = tcp_skb_mss(skb);
1088 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1089
1090 if (!in_sack) {
1091 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1092 if (pkt_len < mss)
1093 pkt_len = mss;
1094 } else {
1095 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1096 if (pkt_len < mss)
1097 return -EINVAL;
1098 }
1099
1100 /* Round if necessary so that SACKs cover only full MSSes
1101 * and/or the remaining small portion (if present)
1102 */
1103 if (pkt_len > mss) {
1104 unsigned int new_len = (pkt_len / mss) * mss;
1105 if (!in_sack && new_len < pkt_len) {
1106 new_len += mss;
1107 if (new_len > skb->len)
1108 return 0;
1109 }
1110 pkt_len = new_len;
1111 }
1112 err = tcp_fragment(sk, skb, pkt_len, mss);
1113 if (err < 0)
1114 return err;
1115 }
1116
1117 return in_sack;
1118 }
1119
1120 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1121 static u8 tcp_sacktag_one(struct sock *sk,
1122 struct tcp_sacktag_state *state, u8 sacked,
1123 u32 start_seq, u32 end_seq,
1124 bool dup_sack, int pcount)
1125 {
1126 struct tcp_sock *tp = tcp_sk(sk);
1127 int fack_count = state->fack_count;
1128
1129 /* Account D-SACK for retransmitted packet. */
1130 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1131 if (tp->undo_marker && tp->undo_retrans &&
1132 after(end_seq, tp->undo_marker))
1133 tp->undo_retrans--;
1134 if (sacked & TCPCB_SACKED_ACKED)
1135 state->reord = min(fack_count, state->reord);
1136 }
1137
1138 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1139 if (!after(end_seq, tp->snd_una))
1140 return sacked;
1141
1142 if (!(sacked & TCPCB_SACKED_ACKED)) {
1143 if (sacked & TCPCB_SACKED_RETRANS) {
1144 /* If the segment is not tagged as lost,
1145 * we do not clear RETRANS, believing
1146 * that retransmission is still in flight.
1147 */
1148 if (sacked & TCPCB_LOST) {
1149 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1150 tp->lost_out -= pcount;
1151 tp->retrans_out -= pcount;
1152 }
1153 } else {
1154 if (!(sacked & TCPCB_RETRANS)) {
1155 /* New sack for not retransmitted frame,
1156 * which was in hole. It is reordering.
1157 */
1158 if (before(start_seq,
1159 tcp_highest_sack_seq(tp)))
1160 state->reord = min(fack_count,
1161 state->reord);
1162
1163 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1164 if (!after(end_seq, tp->frto_highmark))
1165 state->flag |= FLAG_ONLY_ORIG_SACKED;
1166 }
1167
1168 if (sacked & TCPCB_LOST) {
1169 sacked &= ~TCPCB_LOST;
1170 tp->lost_out -= pcount;
1171 }
1172 }
1173
1174 sacked |= TCPCB_SACKED_ACKED;
1175 state->flag |= FLAG_DATA_SACKED;
1176 tp->sacked_out += pcount;
1177
1178 fack_count += pcount;
1179
1180 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1181 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1182 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1183 tp->lost_cnt_hint += pcount;
1184
1185 if (fack_count > tp->fackets_out)
1186 tp->fackets_out = fack_count;
1187 }
1188
1189 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1190 * frames and clear it. undo_retrans is decreased above, L|R frames
1191 * are accounted above as well.
1192 */
1193 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1194 sacked &= ~TCPCB_SACKED_RETRANS;
1195 tp->retrans_out -= pcount;
1196 }
1197
1198 return sacked;
1199 }
1200
1201 /* Shift newly-SACKed bytes from this skb to the immediately previous
1202 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1203 */
1204 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1205 struct tcp_sacktag_state *state,
1206 unsigned int pcount, int shifted, int mss,
1207 bool dup_sack)
1208 {
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1211 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1212 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1213
1214 BUG_ON(!pcount);
1215
1216 /* Adjust counters and hints for the newly sacked sequence
1217 * range but discard the return value since prev is already
1218 * marked. We must tag the range first because the seq
1219 * advancement below implicitly advances
1220 * tcp_highest_sack_seq() when skb is highest_sack.
1221 */
1222 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1223 start_seq, end_seq, dup_sack, pcount);
1224
1225 if (skb == tp->lost_skb_hint)
1226 tp->lost_cnt_hint += pcount;
1227
1228 TCP_SKB_CB(prev)->end_seq += shifted;
1229 TCP_SKB_CB(skb)->seq += shifted;
1230
1231 skb_shinfo(prev)->gso_segs += pcount;
1232 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1233 skb_shinfo(skb)->gso_segs -= pcount;
1234
1235 /* When we're adding to gso_segs == 1, gso_size will be zero,
1236 * in theory this shouldn't be necessary but as long as DSACK
1237 * code can come after this skb later on it's better to keep
1238 * setting gso_size to something.
1239 */
1240 if (!skb_shinfo(prev)->gso_size) {
1241 skb_shinfo(prev)->gso_size = mss;
1242 skb_shinfo(prev)->gso_type |= sk->sk_gso_type;
1243 }
1244
1245 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1246 if (skb_shinfo(skb)->gso_segs <= 1) {
1247 skb_shinfo(skb)->gso_size = 0;
1248 skb_shinfo(skb)->gso_type &= SKB_GSO_SHARED_FRAG;
1249 }
1250
1251 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1252 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1253
1254 if (skb->len > 0) {
1255 BUG_ON(!tcp_skb_pcount(skb));
1256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1257 return false;
1258 }
1259
1260 /* Whole SKB was eaten :-) */
1261
1262 if (skb == tp->retransmit_skb_hint)
1263 tp->retransmit_skb_hint = prev;
1264 if (skb == tp->scoreboard_skb_hint)
1265 tp->scoreboard_skb_hint = prev;
1266 if (skb == tp->lost_skb_hint) {
1267 tp->lost_skb_hint = prev;
1268 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1269 }
1270
1271 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1272 if (skb == tcp_highest_sack(sk))
1273 tcp_advance_highest_sack(sk, skb);
1274
1275 tcp_unlink_write_queue(skb, sk);
1276 sk_wmem_free_skb(sk, skb);
1277
1278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1279
1280 return true;
1281 }
1282
1283 /* I wish gso_size would have a bit more sane initialization than
1284 * something-or-zero which complicates things
1285 */
1286 static int tcp_skb_seglen(const struct sk_buff *skb)
1287 {
1288 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1289 }
1290
1291 /* Shifting pages past head area doesn't work */
1292 static int skb_can_shift(const struct sk_buff *skb)
1293 {
1294 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1295 }
1296
1297 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1298 * skb.
1299 */
1300 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1301 struct tcp_sacktag_state *state,
1302 u32 start_seq, u32 end_seq,
1303 bool dup_sack)
1304 {
1305 struct tcp_sock *tp = tcp_sk(sk);
1306 struct sk_buff *prev;
1307 int mss;
1308 int pcount = 0;
1309 int len;
1310 int in_sack;
1311
1312 if (!sk_can_gso(sk))
1313 goto fallback;
1314
1315 /* Normally R but no L won't result in plain S */
1316 if (!dup_sack &&
1317 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1318 goto fallback;
1319 if (!skb_can_shift(skb))
1320 goto fallback;
1321 /* This frame is about to be dropped (was ACKed). */
1322 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1323 goto fallback;
1324
1325 /* Can only happen with delayed DSACK + discard craziness */
1326 if (unlikely(skb == tcp_write_queue_head(sk)))
1327 goto fallback;
1328 prev = tcp_write_queue_prev(sk, skb);
1329
1330 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1331 goto fallback;
1332
1333 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1334 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1335
1336 if (in_sack) {
1337 len = skb->len;
1338 pcount = tcp_skb_pcount(skb);
1339 mss = tcp_skb_seglen(skb);
1340
1341 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1342 * drop this restriction as unnecessary
1343 */
1344 if (mss != tcp_skb_seglen(prev))
1345 goto fallback;
1346 } else {
1347 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1348 goto noop;
1349 /* CHECKME: This is non-MSS split case only?, this will
1350 * cause skipped skbs due to advancing loop btw, original
1351 * has that feature too
1352 */
1353 if (tcp_skb_pcount(skb) <= 1)
1354 goto noop;
1355
1356 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1357 if (!in_sack) {
1358 /* TODO: head merge to next could be attempted here
1359 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1360 * though it might not be worth of the additional hassle
1361 *
1362 * ...we can probably just fallback to what was done
1363 * previously. We could try merging non-SACKed ones
1364 * as well but it probably isn't going to buy off
1365 * because later SACKs might again split them, and
1366 * it would make skb timestamp tracking considerably
1367 * harder problem.
1368 */
1369 goto fallback;
1370 }
1371
1372 len = end_seq - TCP_SKB_CB(skb)->seq;
1373 BUG_ON(len < 0);
1374 BUG_ON(len > skb->len);
1375
1376 /* MSS boundaries should be honoured or else pcount will
1377 * severely break even though it makes things bit trickier.
1378 * Optimize common case to avoid most of the divides
1379 */
1380 mss = tcp_skb_mss(skb);
1381
1382 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1383 * drop this restriction as unnecessary
1384 */
1385 if (mss != tcp_skb_seglen(prev))
1386 goto fallback;
1387
1388 if (len == mss) {
1389 pcount = 1;
1390 } else if (len < mss) {
1391 goto noop;
1392 } else {
1393 pcount = len / mss;
1394 len = pcount * mss;
1395 }
1396 }
1397
1398 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1399 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1400 goto fallback;
1401
1402 if (!skb_shift(prev, skb, len))
1403 goto fallback;
1404 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1405 goto out;
1406
1407 /* Hole filled allows collapsing with the next as well, this is very
1408 * useful when hole on every nth skb pattern happens
1409 */
1410 if (prev == tcp_write_queue_tail(sk))
1411 goto out;
1412 skb = tcp_write_queue_next(sk, prev);
1413
1414 if (!skb_can_shift(skb) ||
1415 (skb == tcp_send_head(sk)) ||
1416 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1417 (mss != tcp_skb_seglen(skb)))
1418 goto out;
1419
1420 len = skb->len;
1421 if (skb_shift(prev, skb, len)) {
1422 pcount += tcp_skb_pcount(skb);
1423 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1424 }
1425
1426 out:
1427 state->fack_count += pcount;
1428 return prev;
1429
1430 noop:
1431 return skb;
1432
1433 fallback:
1434 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1435 return NULL;
1436 }
1437
1438 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1439 struct tcp_sack_block *next_dup,
1440 struct tcp_sacktag_state *state,
1441 u32 start_seq, u32 end_seq,
1442 bool dup_sack_in)
1443 {
1444 struct tcp_sock *tp = tcp_sk(sk);
1445 struct sk_buff *tmp;
1446
1447 tcp_for_write_queue_from(skb, sk) {
1448 int in_sack = 0;
1449 bool dup_sack = dup_sack_in;
1450
1451 if (skb == tcp_send_head(sk))
1452 break;
1453
1454 /* queue is in-order => we can short-circuit the walk early */
1455 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1456 break;
1457
1458 if ((next_dup != NULL) &&
1459 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1460 in_sack = tcp_match_skb_to_sack(sk, skb,
1461 next_dup->start_seq,
1462 next_dup->end_seq);
1463 if (in_sack > 0)
1464 dup_sack = true;
1465 }
1466
1467 /* skb reference here is a bit tricky to get right, since
1468 * shifting can eat and free both this skb and the next,
1469 * so not even _safe variant of the loop is enough.
1470 */
1471 if (in_sack <= 0) {
1472 tmp = tcp_shift_skb_data(sk, skb, state,
1473 start_seq, end_seq, dup_sack);
1474 if (tmp != NULL) {
1475 if (tmp != skb) {
1476 skb = tmp;
1477 continue;
1478 }
1479
1480 in_sack = 0;
1481 } else {
1482 in_sack = tcp_match_skb_to_sack(sk, skb,
1483 start_seq,
1484 end_seq);
1485 }
1486 }
1487
1488 if (unlikely(in_sack < 0))
1489 break;
1490
1491 if (in_sack) {
1492 TCP_SKB_CB(skb)->sacked =
1493 tcp_sacktag_one(sk,
1494 state,
1495 TCP_SKB_CB(skb)->sacked,
1496 TCP_SKB_CB(skb)->seq,
1497 TCP_SKB_CB(skb)->end_seq,
1498 dup_sack,
1499 tcp_skb_pcount(skb));
1500
1501 if (!before(TCP_SKB_CB(skb)->seq,
1502 tcp_highest_sack_seq(tp)))
1503 tcp_advance_highest_sack(sk, skb);
1504 }
1505
1506 state->fack_count += tcp_skb_pcount(skb);
1507 }
1508 return skb;
1509 }
1510
1511 /* Avoid all extra work that is being done by sacktag while walking in
1512 * a normal way
1513 */
1514 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1515 struct tcp_sacktag_state *state,
1516 u32 skip_to_seq)
1517 {
1518 tcp_for_write_queue_from(skb, sk) {
1519 if (skb == tcp_send_head(sk))
1520 break;
1521
1522 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1523 break;
1524
1525 state->fack_count += tcp_skb_pcount(skb);
1526 }
1527 return skb;
1528 }
1529
1530 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1531 struct sock *sk,
1532 struct tcp_sack_block *next_dup,
1533 struct tcp_sacktag_state *state,
1534 u32 skip_to_seq)
1535 {
1536 if (next_dup == NULL)
1537 return skb;
1538
1539 if (before(next_dup->start_seq, skip_to_seq)) {
1540 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1541 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1542 next_dup->start_seq, next_dup->end_seq,
1543 1);
1544 }
1545
1546 return skb;
1547 }
1548
1549 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1550 {
1551 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1552 }
1553
1554 static int
1555 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1556 u32 prior_snd_una)
1557 {
1558 const struct inet_connection_sock *icsk = inet_csk(sk);
1559 struct tcp_sock *tp = tcp_sk(sk);
1560 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1561 TCP_SKB_CB(ack_skb)->sacked);
1562 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1563 struct tcp_sack_block sp[TCP_NUM_SACKS];
1564 struct tcp_sack_block *cache;
1565 struct tcp_sacktag_state state;
1566 struct sk_buff *skb;
1567 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1568 int used_sacks;
1569 bool found_dup_sack = false;
1570 int i, j;
1571 int first_sack_index;
1572
1573 state.flag = 0;
1574 state.reord = tp->packets_out;
1575
1576 if (!tp->sacked_out) {
1577 if (WARN_ON(tp->fackets_out))
1578 tp->fackets_out = 0;
1579 tcp_highest_sack_reset(sk);
1580 }
1581
1582 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1583 num_sacks, prior_snd_una);
1584 if (found_dup_sack)
1585 state.flag |= FLAG_DSACKING_ACK;
1586
1587 /* Eliminate too old ACKs, but take into
1588 * account more or less fresh ones, they can
1589 * contain valid SACK info.
1590 */
1591 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1592 return 0;
1593
1594 if (!tp->packets_out)
1595 goto out;
1596
1597 used_sacks = 0;
1598 first_sack_index = 0;
1599 for (i = 0; i < num_sacks; i++) {
1600 bool dup_sack = !i && found_dup_sack;
1601
1602 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1603 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1604
1605 if (!tcp_is_sackblock_valid(tp, dup_sack,
1606 sp[used_sacks].start_seq,
1607 sp[used_sacks].end_seq)) {
1608 int mib_idx;
1609
1610 if (dup_sack) {
1611 if (!tp->undo_marker)
1612 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1613 else
1614 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1615 } else {
1616 /* Don't count olds caused by ACK reordering */
1617 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1618 !after(sp[used_sacks].end_seq, tp->snd_una))
1619 continue;
1620 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1621 }
1622
1623 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1624 if (i == 0)
1625 first_sack_index = -1;
1626 continue;
1627 }
1628
1629 /* Ignore very old stuff early */
1630 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1631 continue;
1632
1633 used_sacks++;
1634 }
1635
1636 /* order SACK blocks to allow in order walk of the retrans queue */
1637 for (i = used_sacks - 1; i > 0; i--) {
1638 for (j = 0; j < i; j++) {
1639 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1640 swap(sp[j], sp[j + 1]);
1641
1642 /* Track where the first SACK block goes to */
1643 if (j == first_sack_index)
1644 first_sack_index = j + 1;
1645 }
1646 }
1647 }
1648
1649 skb = tcp_write_queue_head(sk);
1650 state.fack_count = 0;
1651 i = 0;
1652
1653 if (!tp->sacked_out) {
1654 /* It's already past, so skip checking against it */
1655 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1656 } else {
1657 cache = tp->recv_sack_cache;
1658 /* Skip empty blocks in at head of the cache */
1659 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1660 !cache->end_seq)
1661 cache++;
1662 }
1663
1664 while (i < used_sacks) {
1665 u32 start_seq = sp[i].start_seq;
1666 u32 end_seq = sp[i].end_seq;
1667 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1668 struct tcp_sack_block *next_dup = NULL;
1669
1670 if (found_dup_sack && ((i + 1) == first_sack_index))
1671 next_dup = &sp[i + 1];
1672
1673 /* Skip too early cached blocks */
1674 while (tcp_sack_cache_ok(tp, cache) &&
1675 !before(start_seq, cache->end_seq))
1676 cache++;
1677
1678 /* Can skip some work by looking recv_sack_cache? */
1679 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1680 after(end_seq, cache->start_seq)) {
1681
1682 /* Head todo? */
1683 if (before(start_seq, cache->start_seq)) {
1684 skb = tcp_sacktag_skip(skb, sk, &state,
1685 start_seq);
1686 skb = tcp_sacktag_walk(skb, sk, next_dup,
1687 &state,
1688 start_seq,
1689 cache->start_seq,
1690 dup_sack);
1691 }
1692
1693 /* Rest of the block already fully processed? */
1694 if (!after(end_seq, cache->end_seq))
1695 goto advance_sp;
1696
1697 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1698 &state,
1699 cache->end_seq);
1700
1701 /* ...tail remains todo... */
1702 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1703 /* ...but better entrypoint exists! */
1704 skb = tcp_highest_sack(sk);
1705 if (skb == NULL)
1706 break;
1707 state.fack_count = tp->fackets_out;
1708 cache++;
1709 goto walk;
1710 }
1711
1712 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1713 /* Check overlap against next cached too (past this one already) */
1714 cache++;
1715 continue;
1716 }
1717
1718 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1719 skb = tcp_highest_sack(sk);
1720 if (skb == NULL)
1721 break;
1722 state.fack_count = tp->fackets_out;
1723 }
1724 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1725
1726 walk:
1727 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1728 start_seq, end_seq, dup_sack);
1729
1730 advance_sp:
1731 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1732 * due to in-order walk
1733 */
1734 if (after(end_seq, tp->frto_highmark))
1735 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1736
1737 i++;
1738 }
1739
1740 /* Clear the head of the cache sack blocks so we can skip it next time */
1741 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1742 tp->recv_sack_cache[i].start_seq = 0;
1743 tp->recv_sack_cache[i].end_seq = 0;
1744 }
1745 for (j = 0; j < used_sacks; j++)
1746 tp->recv_sack_cache[i++] = sp[j];
1747
1748 tcp_mark_lost_retrans(sk);
1749
1750 tcp_verify_left_out(tp);
1751
1752 if ((state.reord < tp->fackets_out) &&
1753 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1754 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1755 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1756
1757 out:
1758
1759 #if FASTRETRANS_DEBUG > 0
1760 WARN_ON((int)tp->sacked_out < 0);
1761 WARN_ON((int)tp->lost_out < 0);
1762 WARN_ON((int)tp->retrans_out < 0);
1763 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1764 #endif
1765 return state.flag;
1766 }
1767
1768 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1769 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1770 */
1771 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1772 {
1773 u32 holes;
1774
1775 holes = max(tp->lost_out, 1U);
1776 holes = min(holes, tp->packets_out);
1777
1778 if ((tp->sacked_out + holes) > tp->packets_out) {
1779 tp->sacked_out = tp->packets_out - holes;
1780 return true;
1781 }
1782 return false;
1783 }
1784
1785 /* If we receive more dupacks than we expected counting segments
1786 * in assumption of absent reordering, interpret this as reordering.
1787 * The only another reason could be bug in receiver TCP.
1788 */
1789 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1790 {
1791 struct tcp_sock *tp = tcp_sk(sk);
1792 if (tcp_limit_reno_sacked(tp))
1793 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1794 }
1795
1796 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1797
1798 static void tcp_add_reno_sack(struct sock *sk)
1799 {
1800 struct tcp_sock *tp = tcp_sk(sk);
1801 tp->sacked_out++;
1802 tcp_check_reno_reordering(sk, 0);
1803 tcp_verify_left_out(tp);
1804 }
1805
1806 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1807
1808 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1809 {
1810 struct tcp_sock *tp = tcp_sk(sk);
1811
1812 if (acked > 0) {
1813 /* One ACK acked hole. The rest eat duplicate ACKs. */
1814 if (acked - 1 >= tp->sacked_out)
1815 tp->sacked_out = 0;
1816 else
1817 tp->sacked_out -= acked - 1;
1818 }
1819 tcp_check_reno_reordering(sk, acked);
1820 tcp_verify_left_out(tp);
1821 }
1822
1823 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1824 {
1825 tp->sacked_out = 0;
1826 }
1827
1828 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1829 {
1830 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1831 }
1832
1833 /* F-RTO can only be used if TCP has never retransmitted anything other than
1834 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1835 */
1836 bool tcp_use_frto(struct sock *sk)
1837 {
1838 const struct tcp_sock *tp = tcp_sk(sk);
1839 const struct inet_connection_sock *icsk = inet_csk(sk);
1840 struct sk_buff *skb;
1841
1842 if (!sysctl_tcp_frto)
1843 return false;
1844
1845 /* MTU probe and F-RTO won't really play nicely along currently */
1846 if (icsk->icsk_mtup.probe_size)
1847 return false;
1848
1849 if (tcp_is_sackfrto(tp))
1850 return true;
1851
1852 /* Avoid expensive walking of rexmit queue if possible */
1853 if (tp->retrans_out > 1)
1854 return false;
1855
1856 skb = tcp_write_queue_head(sk);
1857 if (tcp_skb_is_last(sk, skb))
1858 return true;
1859 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1860 tcp_for_write_queue_from(skb, sk) {
1861 if (skb == tcp_send_head(sk))
1862 break;
1863 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1864 return false;
1865 /* Short-circuit when first non-SACKed skb has been checked */
1866 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1867 break;
1868 }
1869 return true;
1870 }
1871
1872 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1873 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1874 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1875 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1876 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1877 * bits are handled if the Loss state is really to be entered (in
1878 * tcp_enter_frto_loss).
1879 *
1880 * Do like tcp_enter_loss() would; when RTO expires the second time it
1881 * does:
1882 * "Reduce ssthresh if it has not yet been made inside this window."
1883 */
1884 void tcp_enter_frto(struct sock *sk)
1885 {
1886 const struct inet_connection_sock *icsk = inet_csk(sk);
1887 struct tcp_sock *tp = tcp_sk(sk);
1888 struct sk_buff *skb;
1889
1890 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1891 tp->snd_una == tp->high_seq ||
1892 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1893 !icsk->icsk_retransmits)) {
1894 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895 /* Our state is too optimistic in ssthresh() call because cwnd
1896 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1897 * recovery has not yet completed. Pattern would be this: RTO,
1898 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1899 * up here twice).
1900 * RFC4138 should be more specific on what to do, even though
1901 * RTO is quite unlikely to occur after the first Cumulative ACK
1902 * due to back-off and complexity of triggering events ...
1903 */
1904 if (tp->frto_counter) {
1905 u32 stored_cwnd;
1906 stored_cwnd = tp->snd_cwnd;
1907 tp->snd_cwnd = 2;
1908 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1909 tp->snd_cwnd = stored_cwnd;
1910 } else {
1911 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1912 }
1913 /* ... in theory, cong.control module could do "any tricks" in
1914 * ssthresh(), which means that ca_state, lost bits and lost_out
1915 * counter would have to be faked before the call occurs. We
1916 * consider that too expensive, unlikely and hacky, so modules
1917 * using these in ssthresh() must deal these incompatibility
1918 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1919 */
1920 tcp_ca_event(sk, CA_EVENT_FRTO);
1921 }
1922
1923 tp->undo_marker = tp->snd_una;
1924 tp->undo_retrans = 0;
1925
1926 skb = tcp_write_queue_head(sk);
1927 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1928 tp->undo_marker = 0;
1929 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1930 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1931 tp->retrans_out -= tcp_skb_pcount(skb);
1932 }
1933 tcp_verify_left_out(tp);
1934
1935 /* Too bad if TCP was application limited */
1936 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1937
1938 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1939 * The last condition is necessary at least in tp->frto_counter case.
1940 */
1941 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1942 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1943 after(tp->high_seq, tp->snd_una)) {
1944 tp->frto_highmark = tp->high_seq;
1945 } else {
1946 tp->frto_highmark = tp->snd_nxt;
1947 }
1948 tcp_set_ca_state(sk, TCP_CA_Disorder);
1949 tp->high_seq = tp->snd_nxt;
1950 tp->frto_counter = 1;
1951 }
1952
1953 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1954 * which indicates that we should follow the traditional RTO recovery,
1955 * i.e. mark everything lost and do go-back-N retransmission.
1956 */
1957 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1958 {
1959 struct tcp_sock *tp = tcp_sk(sk);
1960 struct sk_buff *skb;
1961
1962 tp->lost_out = 0;
1963 tp->retrans_out = 0;
1964 if (tcp_is_reno(tp))
1965 tcp_reset_reno_sack(tp);
1966
1967 tcp_for_write_queue(skb, sk) {
1968 if (skb == tcp_send_head(sk))
1969 break;
1970
1971 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1972 /*
1973 * Count the retransmission made on RTO correctly (only when
1974 * waiting for the first ACK and did not get it)...
1975 */
1976 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1977 /* For some reason this R-bit might get cleared? */
1978 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1979 tp->retrans_out += tcp_skb_pcount(skb);
1980 /* ...enter this if branch just for the first segment */
1981 flag |= FLAG_DATA_ACKED;
1982 } else {
1983 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1984 tp->undo_marker = 0;
1985 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1986 }
1987
1988 /* Marking forward transmissions that were made after RTO lost
1989 * can cause unnecessary retransmissions in some scenarios,
1990 * SACK blocks will mitigate that in some but not in all cases.
1991 * We used to not mark them but it was causing break-ups with
1992 * receivers that do only in-order receival.
1993 *
1994 * TODO: we could detect presence of such receiver and select
1995 * different behavior per flow.
1996 */
1997 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1998 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1999 tp->lost_out += tcp_skb_pcount(skb);
2000 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2001 }
2002 }
2003 tcp_verify_left_out(tp);
2004
2005 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2006 tp->snd_cwnd_cnt = 0;
2007 tp->snd_cwnd_stamp = tcp_time_stamp;
2008 tp->frto_counter = 0;
2009
2010 tp->reordering = min_t(unsigned int, tp->reordering,
2011 sysctl_tcp_reordering);
2012 tcp_set_ca_state(sk, TCP_CA_Loss);
2013 tp->high_seq = tp->snd_nxt;
2014 TCP_ECN_queue_cwr(tp);
2015
2016 tcp_clear_all_retrans_hints(tp);
2017 }
2018
2019 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2020 {
2021 tp->retrans_out = 0;
2022 tp->lost_out = 0;
2023
2024 tp->undo_marker = 0;
2025 tp->undo_retrans = 0;
2026 }
2027
2028 void tcp_clear_retrans(struct tcp_sock *tp)
2029 {
2030 tcp_clear_retrans_partial(tp);
2031
2032 tp->fackets_out = 0;
2033 tp->sacked_out = 0;
2034 }
2035
2036 /* Enter Loss state. If "how" is not zero, forget all SACK information
2037 * and reset tags completely, otherwise preserve SACKs. If receiver
2038 * dropped its ofo queue, we will know this due to reneging detection.
2039 */
2040 void tcp_enter_loss(struct sock *sk, int how)
2041 {
2042 const struct inet_connection_sock *icsk = inet_csk(sk);
2043 struct tcp_sock *tp = tcp_sk(sk);
2044 struct sk_buff *skb;
2045
2046 /* Reduce ssthresh if it has not yet been made inside this window. */
2047 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2048 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2049 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2050 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2051 tcp_ca_event(sk, CA_EVENT_LOSS);
2052 }
2053 tp->snd_cwnd = 1;
2054 tp->snd_cwnd_cnt = 0;
2055 tp->snd_cwnd_stamp = tcp_time_stamp;
2056
2057 tcp_clear_retrans_partial(tp);
2058
2059 if (tcp_is_reno(tp))
2060 tcp_reset_reno_sack(tp);
2061
2062 if (!how) {
2063 /* Push undo marker, if it was plain RTO and nothing
2064 * was retransmitted. */
2065 tp->undo_marker = tp->snd_una;
2066 } else {
2067 tp->sacked_out = 0;
2068 tp->fackets_out = 0;
2069 }
2070 tcp_clear_all_retrans_hints(tp);
2071
2072 tcp_for_write_queue(skb, sk) {
2073 if (skb == tcp_send_head(sk))
2074 break;
2075
2076 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2077 tp->undo_marker = 0;
2078 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2079 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2080 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2081 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2082 tp->lost_out += tcp_skb_pcount(skb);
2083 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2084 }
2085 }
2086 tcp_verify_left_out(tp);
2087
2088 tp->reordering = min_t(unsigned int, tp->reordering,
2089 sysctl_tcp_reordering);
2090 tcp_set_ca_state(sk, TCP_CA_Loss);
2091 tp->high_seq = tp->snd_nxt;
2092 TCP_ECN_queue_cwr(tp);
2093 /* Abort F-RTO algorithm if one is in progress */
2094 tp->frto_counter = 0;
2095 }
2096
2097 /* If ACK arrived pointing to a remembered SACK, it means that our
2098 * remembered SACKs do not reflect real state of receiver i.e.
2099 * receiver _host_ is heavily congested (or buggy).
2100 *
2101 * Do processing similar to RTO timeout.
2102 */
2103 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2104 {
2105 if (flag & FLAG_SACK_RENEGING) {
2106 struct inet_connection_sock *icsk = inet_csk(sk);
2107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2108
2109 tcp_enter_loss(sk, 1);
2110 icsk->icsk_retransmits++;
2111 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2112 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2113 icsk->icsk_rto, TCP_RTO_MAX);
2114 return true;
2115 }
2116 return false;
2117 }
2118
2119 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2120 {
2121 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2122 }
2123
2124 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2125 * counter when SACK is enabled (without SACK, sacked_out is used for
2126 * that purpose).
2127 *
2128 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2129 * segments up to the highest received SACK block so far and holes in
2130 * between them.
2131 *
2132 * With reordering, holes may still be in flight, so RFC3517 recovery
2133 * uses pure sacked_out (total number of SACKed segments) even though
2134 * it violates the RFC that uses duplicate ACKs, often these are equal
2135 * but when e.g. out-of-window ACKs or packet duplication occurs,
2136 * they differ. Since neither occurs due to loss, TCP should really
2137 * ignore them.
2138 */
2139 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2140 {
2141 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2142 }
2143
2144 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2145 {
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 unsigned long delay;
2148
2149 /* Delay early retransmit and entering fast recovery for
2150 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2151 * available, or RTO is scheduled to fire first.
2152 */
2153 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2154 return false;
2155
2156 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2157 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2158 return false;
2159
2160 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2161 tp->early_retrans_delayed = 1;
2162 return true;
2163 }
2164
2165 static inline int tcp_skb_timedout(const struct sock *sk,
2166 const struct sk_buff *skb)
2167 {
2168 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2169 }
2170
2171 static inline int tcp_head_timedout(const struct sock *sk)
2172 {
2173 const struct tcp_sock *tp = tcp_sk(sk);
2174
2175 return tp->packets_out &&
2176 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2177 }
2178
2179 /* Linux NewReno/SACK/FACK/ECN state machine.
2180 * --------------------------------------
2181 *
2182 * "Open" Normal state, no dubious events, fast path.
2183 * "Disorder" In all the respects it is "Open",
2184 * but requires a bit more attention. It is entered when
2185 * we see some SACKs or dupacks. It is split of "Open"
2186 * mainly to move some processing from fast path to slow one.
2187 * "CWR" CWND was reduced due to some Congestion Notification event.
2188 * It can be ECN, ICMP source quench, local device congestion.
2189 * "Recovery" CWND was reduced, we are fast-retransmitting.
2190 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2191 *
2192 * tcp_fastretrans_alert() is entered:
2193 * - each incoming ACK, if state is not "Open"
2194 * - when arrived ACK is unusual, namely:
2195 * * SACK
2196 * * Duplicate ACK.
2197 * * ECN ECE.
2198 *
2199 * Counting packets in flight is pretty simple.
2200 *
2201 * in_flight = packets_out - left_out + retrans_out
2202 *
2203 * packets_out is SND.NXT-SND.UNA counted in packets.
2204 *
2205 * retrans_out is number of retransmitted segments.
2206 *
2207 * left_out is number of segments left network, but not ACKed yet.
2208 *
2209 * left_out = sacked_out + lost_out
2210 *
2211 * sacked_out: Packets, which arrived to receiver out of order
2212 * and hence not ACKed. With SACKs this number is simply
2213 * amount of SACKed data. Even without SACKs
2214 * it is easy to give pretty reliable estimate of this number,
2215 * counting duplicate ACKs.
2216 *
2217 * lost_out: Packets lost by network. TCP has no explicit
2218 * "loss notification" feedback from network (for now).
2219 * It means that this number can be only _guessed_.
2220 * Actually, it is the heuristics to predict lossage that
2221 * distinguishes different algorithms.
2222 *
2223 * F.e. after RTO, when all the queue is considered as lost,
2224 * lost_out = packets_out and in_flight = retrans_out.
2225 *
2226 * Essentially, we have now two algorithms counting
2227 * lost packets.
2228 *
2229 * FACK: It is the simplest heuristics. As soon as we decided
2230 * that something is lost, we decide that _all_ not SACKed
2231 * packets until the most forward SACK are lost. I.e.
2232 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2233 * It is absolutely correct estimate, if network does not reorder
2234 * packets. And it loses any connection to reality when reordering
2235 * takes place. We use FACK by default until reordering
2236 * is suspected on the path to this destination.
2237 *
2238 * NewReno: when Recovery is entered, we assume that one segment
2239 * is lost (classic Reno). While we are in Recovery and
2240 * a partial ACK arrives, we assume that one more packet
2241 * is lost (NewReno). This heuristics are the same in NewReno
2242 * and SACK.
2243 *
2244 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2245 * deflation etc. CWND is real congestion window, never inflated, changes
2246 * only according to classic VJ rules.
2247 *
2248 * Really tricky (and requiring careful tuning) part of algorithm
2249 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2250 * The first determines the moment _when_ we should reduce CWND and,
2251 * hence, slow down forward transmission. In fact, it determines the moment
2252 * when we decide that hole is caused by loss, rather than by a reorder.
2253 *
2254 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2255 * holes, caused by lost packets.
2256 *
2257 * And the most logically complicated part of algorithm is undo
2258 * heuristics. We detect false retransmits due to both too early
2259 * fast retransmit (reordering) and underestimated RTO, analyzing
2260 * timestamps and D-SACKs. When we detect that some segments were
2261 * retransmitted by mistake and CWND reduction was wrong, we undo
2262 * window reduction and abort recovery phase. This logic is hidden
2263 * inside several functions named tcp_try_undo_<something>.
2264 */
2265
2266 /* This function decides, when we should leave Disordered state
2267 * and enter Recovery phase, reducing congestion window.
2268 *
2269 * Main question: may we further continue forward transmission
2270 * with the same cwnd?
2271 */
2272 static bool tcp_time_to_recover(struct sock *sk, int flag)
2273 {
2274 struct tcp_sock *tp = tcp_sk(sk);
2275 __u32 packets_out;
2276
2277 /* Do not perform any recovery during F-RTO algorithm */
2278 if (tp->frto_counter)
2279 return false;
2280
2281 /* Trick#1: The loss is proven. */
2282 if (tp->lost_out)
2283 return true;
2284
2285 /* Not-A-Trick#2 : Classic rule... */
2286 if (tcp_dupack_heuristics(tp) > tp->reordering)
2287 return true;
2288
2289 /* Trick#3 : when we use RFC2988 timer restart, fast
2290 * retransmit can be triggered by timeout of queue head.
2291 */
2292 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2293 return true;
2294
2295 /* Trick#4: It is still not OK... But will it be useful to delay
2296 * recovery more?
2297 */
2298 packets_out = tp->packets_out;
2299 if (packets_out <= tp->reordering &&
2300 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2301 !tcp_may_send_now(sk)) {
2302 /* We have nothing to send. This connection is limited
2303 * either by receiver window or by application.
2304 */
2305 return true;
2306 }
2307
2308 /* If a thin stream is detected, retransmit after first
2309 * received dupack. Employ only if SACK is supported in order
2310 * to avoid possible corner-case series of spurious retransmissions
2311 * Use only if there are no unsent data.
2312 */
2313 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2314 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2315 tcp_is_sack(tp) && !tcp_send_head(sk))
2316 return true;
2317
2318 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2319 * retransmissions due to small network reorderings, we implement
2320 * Mitigation A.3 in the RFC and delay the retransmission for a short
2321 * interval if appropriate.
2322 */
2323 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2324 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2325 !tcp_may_send_now(sk))
2326 return !tcp_pause_early_retransmit(sk, flag);
2327
2328 return false;
2329 }
2330
2331 /* New heuristics: it is possible only after we switched to restart timer
2332 * each time when something is ACKed. Hence, we can detect timed out packets
2333 * during fast retransmit without falling to slow start.
2334 *
2335 * Usefulness of this as is very questionable, since we should know which of
2336 * the segments is the next to timeout which is relatively expensive to find
2337 * in general case unless we add some data structure just for that. The
2338 * current approach certainly won't find the right one too often and when it
2339 * finally does find _something_ it usually marks large part of the window
2340 * right away (because a retransmission with a larger timestamp blocks the
2341 * loop from advancing). -ij
2342 */
2343 static void tcp_timeout_skbs(struct sock *sk)
2344 {
2345 struct tcp_sock *tp = tcp_sk(sk);
2346 struct sk_buff *skb;
2347
2348 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2349 return;
2350
2351 skb = tp->scoreboard_skb_hint;
2352 if (tp->scoreboard_skb_hint == NULL)
2353 skb = tcp_write_queue_head(sk);
2354
2355 tcp_for_write_queue_from(skb, sk) {
2356 if (skb == tcp_send_head(sk))
2357 break;
2358 if (!tcp_skb_timedout(sk, skb))
2359 break;
2360
2361 tcp_skb_mark_lost(tp, skb);
2362 }
2363
2364 tp->scoreboard_skb_hint = skb;
2365
2366 tcp_verify_left_out(tp);
2367 }
2368
2369 /* Detect loss in event "A" above by marking head of queue up as lost.
2370 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2371 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2372 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2373 * the maximum SACKed segments to pass before reaching this limit.
2374 */
2375 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2376 {
2377 struct tcp_sock *tp = tcp_sk(sk);
2378 struct sk_buff *skb;
2379 int cnt, oldcnt;
2380 int err;
2381 unsigned int mss;
2382 /* Use SACK to deduce losses of new sequences sent during recovery */
2383 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2384
2385 WARN_ON(packets > tp->packets_out);
2386 if (tp->lost_skb_hint) {
2387 skb = tp->lost_skb_hint;
2388 cnt = tp->lost_cnt_hint;
2389 /* Head already handled? */
2390 if (mark_head && skb != tcp_write_queue_head(sk))
2391 return;
2392 } else {
2393 skb = tcp_write_queue_head(sk);
2394 cnt = 0;
2395 }
2396
2397 tcp_for_write_queue_from(skb, sk) {
2398 if (skb == tcp_send_head(sk))
2399 break;
2400 /* TODO: do this better */
2401 /* this is not the most efficient way to do this... */
2402 tp->lost_skb_hint = skb;
2403 tp->lost_cnt_hint = cnt;
2404
2405 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2406 break;
2407
2408 oldcnt = cnt;
2409 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2410 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2411 cnt += tcp_skb_pcount(skb);
2412
2413 if (cnt > packets) {
2414 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2415 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2416 (oldcnt >= packets))
2417 break;
2418
2419 mss = skb_shinfo(skb)->gso_size;
2420 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2421 if (err < 0)
2422 break;
2423 cnt = packets;
2424 }
2425
2426 tcp_skb_mark_lost(tp, skb);
2427
2428 if (mark_head)
2429 break;
2430 }
2431 tcp_verify_left_out(tp);
2432 }
2433
2434 /* Account newly detected lost packet(s) */
2435
2436 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2437 {
2438 struct tcp_sock *tp = tcp_sk(sk);
2439
2440 if (tcp_is_reno(tp)) {
2441 tcp_mark_head_lost(sk, 1, 1);
2442 } else if (tcp_is_fack(tp)) {
2443 int lost = tp->fackets_out - tp->reordering;
2444 if (lost <= 0)
2445 lost = 1;
2446 tcp_mark_head_lost(sk, lost, 0);
2447 } else {
2448 int sacked_upto = tp->sacked_out - tp->reordering;
2449 if (sacked_upto >= 0)
2450 tcp_mark_head_lost(sk, sacked_upto, 0);
2451 else if (fast_rexmit)
2452 tcp_mark_head_lost(sk, 1, 1);
2453 }
2454
2455 tcp_timeout_skbs(sk);
2456 }
2457
2458 /* CWND moderation, preventing bursts due to too big ACKs
2459 * in dubious situations.
2460 */
2461 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2462 {
2463 tp->snd_cwnd = min(tp->snd_cwnd,
2464 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2465 tp->snd_cwnd_stamp = tcp_time_stamp;
2466 }
2467
2468 /* Nothing was retransmitted or returned timestamp is less
2469 * than timestamp of the first retransmission.
2470 */
2471 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2472 {
2473 return !tp->retrans_stamp ||
2474 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2475 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2476 }
2477
2478 /* Undo procedures. */
2479
2480 #if FASTRETRANS_DEBUG > 1
2481 static void DBGUNDO(struct sock *sk, const char *msg)
2482 {
2483 struct tcp_sock *tp = tcp_sk(sk);
2484 struct inet_sock *inet = inet_sk(sk);
2485
2486 if (sk->sk_family == AF_INET) {
2487 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2488 msg,
2489 &inet->inet_daddr, ntohs(inet->inet_dport),
2490 tp->snd_cwnd, tcp_left_out(tp),
2491 tp->snd_ssthresh, tp->prior_ssthresh,
2492 tp->packets_out);
2493 }
2494 #if IS_ENABLED(CONFIG_IPV6)
2495 else if (sk->sk_family == AF_INET6) {
2496 struct ipv6_pinfo *np = inet6_sk(sk);
2497 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2498 msg,
2499 &np->daddr, ntohs(inet->inet_dport),
2500 tp->snd_cwnd, tcp_left_out(tp),
2501 tp->snd_ssthresh, tp->prior_ssthresh,
2502 tp->packets_out);
2503 }
2504 #endif
2505 }
2506 #else
2507 #define DBGUNDO(x...) do { } while (0)
2508 #endif
2509
2510 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2511 {
2512 struct tcp_sock *tp = tcp_sk(sk);
2513
2514 if (tp->prior_ssthresh) {
2515 const struct inet_connection_sock *icsk = inet_csk(sk);
2516
2517 if (icsk->icsk_ca_ops->undo_cwnd)
2518 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2519 else
2520 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2521
2522 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2523 tp->snd_ssthresh = tp->prior_ssthresh;
2524 TCP_ECN_withdraw_cwr(tp);
2525 }
2526 } else {
2527 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2528 }
2529 tp->snd_cwnd_stamp = tcp_time_stamp;
2530 }
2531
2532 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2533 {
2534 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2535 }
2536
2537 /* People celebrate: "We love our President!" */
2538 static bool tcp_try_undo_recovery(struct sock *sk)
2539 {
2540 struct tcp_sock *tp = tcp_sk(sk);
2541
2542 if (tcp_may_undo(tp)) {
2543 int mib_idx;
2544
2545 /* Happy end! We did not retransmit anything
2546 * or our original transmission succeeded.
2547 */
2548 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2549 tcp_undo_cwr(sk, true);
2550 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2551 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2552 else
2553 mib_idx = LINUX_MIB_TCPFULLUNDO;
2554
2555 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2556 tp->undo_marker = 0;
2557 }
2558 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2559 /* Hold old state until something *above* high_seq
2560 * is ACKed. For Reno it is MUST to prevent false
2561 * fast retransmits (RFC2582). SACK TCP is safe. */
2562 tcp_moderate_cwnd(tp);
2563 return true;
2564 }
2565 tcp_set_ca_state(sk, TCP_CA_Open);
2566 return false;
2567 }
2568
2569 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2570 static void tcp_try_undo_dsack(struct sock *sk)
2571 {
2572 struct tcp_sock *tp = tcp_sk(sk);
2573
2574 if (tp->undo_marker && !tp->undo_retrans) {
2575 DBGUNDO(sk, "D-SACK");
2576 tcp_undo_cwr(sk, true);
2577 tp->undo_marker = 0;
2578 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2579 }
2580 }
2581
2582 /* We can clear retrans_stamp when there are no retransmissions in the
2583 * window. It would seem that it is trivially available for us in
2584 * tp->retrans_out, however, that kind of assumptions doesn't consider
2585 * what will happen if errors occur when sending retransmission for the
2586 * second time. ...It could the that such segment has only
2587 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2588 * the head skb is enough except for some reneging corner cases that
2589 * are not worth the effort.
2590 *
2591 * Main reason for all this complexity is the fact that connection dying
2592 * time now depends on the validity of the retrans_stamp, in particular,
2593 * that successive retransmissions of a segment must not advance
2594 * retrans_stamp under any conditions.
2595 */
2596 static bool tcp_any_retrans_done(const struct sock *sk)
2597 {
2598 const struct tcp_sock *tp = tcp_sk(sk);
2599 struct sk_buff *skb;
2600
2601 if (tp->retrans_out)
2602 return true;
2603
2604 skb = tcp_write_queue_head(sk);
2605 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2606 return true;
2607
2608 return false;
2609 }
2610
2611 /* Undo during fast recovery after partial ACK. */
2612
2613 static int tcp_try_undo_partial(struct sock *sk, int acked)
2614 {
2615 struct tcp_sock *tp = tcp_sk(sk);
2616 /* Partial ACK arrived. Force Hoe's retransmit. */
2617 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2618
2619 if (tcp_may_undo(tp)) {
2620 /* Plain luck! Hole if filled with delayed
2621 * packet, rather than with a retransmit.
2622 */
2623 if (!tcp_any_retrans_done(sk))
2624 tp->retrans_stamp = 0;
2625
2626 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2627
2628 DBGUNDO(sk, "Hoe");
2629 tcp_undo_cwr(sk, false);
2630 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2631
2632 /* So... Do not make Hoe's retransmit yet.
2633 * If the first packet was delayed, the rest
2634 * ones are most probably delayed as well.
2635 */
2636 failed = 0;
2637 }
2638 return failed;
2639 }
2640
2641 /* Undo during loss recovery after partial ACK. */
2642 static bool tcp_try_undo_loss(struct sock *sk)
2643 {
2644 struct tcp_sock *tp = tcp_sk(sk);
2645
2646 if (tcp_may_undo(tp)) {
2647 struct sk_buff *skb;
2648 tcp_for_write_queue(skb, sk) {
2649 if (skb == tcp_send_head(sk))
2650 break;
2651 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2652 }
2653
2654 tcp_clear_all_retrans_hints(tp);
2655
2656 DBGUNDO(sk, "partial loss");
2657 tp->lost_out = 0;
2658 tcp_undo_cwr(sk, true);
2659 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2660 inet_csk(sk)->icsk_retransmits = 0;
2661 tp->undo_marker = 0;
2662 if (tcp_is_sack(tp))
2663 tcp_set_ca_state(sk, TCP_CA_Open);
2664 return true;
2665 }
2666 return false;
2667 }
2668
2669 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2670 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2671 * It computes the number of packets to send (sndcnt) based on packets newly
2672 * delivered:
2673 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2674 * cwnd reductions across a full RTT.
2675 * 2) If packets in flight is lower than ssthresh (such as due to excess
2676 * losses and/or application stalls), do not perform any further cwnd
2677 * reductions, but instead slow start up to ssthresh.
2678 */
2679 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2680 {
2681 struct tcp_sock *tp = tcp_sk(sk);
2682
2683 tp->high_seq = tp->snd_nxt;
2684 tp->snd_cwnd_cnt = 0;
2685 tp->prior_cwnd = tp->snd_cwnd;
2686 tp->prr_delivered = 0;
2687 tp->prr_out = 0;
2688 if (set_ssthresh)
2689 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2690 TCP_ECN_queue_cwr(tp);
2691 }
2692
2693 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2694 int fast_rexmit)
2695 {
2696 struct tcp_sock *tp = tcp_sk(sk);
2697 int sndcnt = 0;
2698 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2699
2700 tp->prr_delivered += newly_acked_sacked;
2701 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2702 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2703 tp->prior_cwnd - 1;
2704 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2705 } else {
2706 sndcnt = min_t(int, delta,
2707 max_t(int, tp->prr_delivered - tp->prr_out,
2708 newly_acked_sacked) + 1);
2709 }
2710
2711 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2712 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2713 }
2714
2715 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2716 {
2717 struct tcp_sock *tp = tcp_sk(sk);
2718
2719 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2720 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2721 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2722 tp->snd_cwnd = tp->snd_ssthresh;
2723 tp->snd_cwnd_stamp = tcp_time_stamp;
2724 }
2725 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2726 }
2727
2728 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2729 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2730 {
2731 struct tcp_sock *tp = tcp_sk(sk);
2732
2733 tp->prior_ssthresh = 0;
2734 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2735 tp->undo_marker = 0;
2736 tcp_init_cwnd_reduction(sk, set_ssthresh);
2737 tcp_set_ca_state(sk, TCP_CA_CWR);
2738 }
2739 }
2740
2741 static void tcp_try_keep_open(struct sock *sk)
2742 {
2743 struct tcp_sock *tp = tcp_sk(sk);
2744 int state = TCP_CA_Open;
2745
2746 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2747 state = TCP_CA_Disorder;
2748
2749 if (inet_csk(sk)->icsk_ca_state != state) {
2750 tcp_set_ca_state(sk, state);
2751 tp->high_seq = tp->snd_nxt;
2752 }
2753 }
2754
2755 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2756 {
2757 struct tcp_sock *tp = tcp_sk(sk);
2758
2759 tcp_verify_left_out(tp);
2760
2761 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2762 tp->retrans_stamp = 0;
2763
2764 if (flag & FLAG_ECE)
2765 tcp_enter_cwr(sk, 1);
2766
2767 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2768 tcp_try_keep_open(sk);
2769 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2770 tcp_moderate_cwnd(tp);
2771 } else {
2772 tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2773 }
2774 }
2775
2776 static void tcp_mtup_probe_failed(struct sock *sk)
2777 {
2778 struct inet_connection_sock *icsk = inet_csk(sk);
2779
2780 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2781 icsk->icsk_mtup.probe_size = 0;
2782 }
2783
2784 static void tcp_mtup_probe_success(struct sock *sk)
2785 {
2786 struct tcp_sock *tp = tcp_sk(sk);
2787 struct inet_connection_sock *icsk = inet_csk(sk);
2788
2789 /* FIXME: breaks with very large cwnd */
2790 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2791 tp->snd_cwnd = tp->snd_cwnd *
2792 tcp_mss_to_mtu(sk, tp->mss_cache) /
2793 icsk->icsk_mtup.probe_size;
2794 tp->snd_cwnd_cnt = 0;
2795 tp->snd_cwnd_stamp = tcp_time_stamp;
2796 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2797
2798 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2799 icsk->icsk_mtup.probe_size = 0;
2800 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2801 }
2802
2803 /* Do a simple retransmit without using the backoff mechanisms in
2804 * tcp_timer. This is used for path mtu discovery.
2805 * The socket is already locked here.
2806 */
2807 void tcp_simple_retransmit(struct sock *sk)
2808 {
2809 const struct inet_connection_sock *icsk = inet_csk(sk);
2810 struct tcp_sock *tp = tcp_sk(sk);
2811 struct sk_buff *skb;
2812 unsigned int mss = tcp_current_mss(sk);
2813 u32 prior_lost = tp->lost_out;
2814
2815 tcp_for_write_queue(skb, sk) {
2816 if (skb == tcp_send_head(sk))
2817 break;
2818 if (tcp_skb_seglen(skb) > mss &&
2819 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2820 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2821 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2822 tp->retrans_out -= tcp_skb_pcount(skb);
2823 }
2824 tcp_skb_mark_lost_uncond_verify(tp, skb);
2825 }
2826 }
2827
2828 tcp_clear_retrans_hints_partial(tp);
2829
2830 if (prior_lost == tp->lost_out)
2831 return;
2832
2833 if (tcp_is_reno(tp))
2834 tcp_limit_reno_sacked(tp);
2835
2836 tcp_verify_left_out(tp);
2837
2838 /* Don't muck with the congestion window here.
2839 * Reason is that we do not increase amount of _data_
2840 * in network, but units changed and effective
2841 * cwnd/ssthresh really reduced now.
2842 */
2843 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2844 tp->high_seq = tp->snd_nxt;
2845 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2846 tp->prior_ssthresh = 0;
2847 tp->undo_marker = 0;
2848 tcp_set_ca_state(sk, TCP_CA_Loss);
2849 }
2850 tcp_xmit_retransmit_queue(sk);
2851 }
2852 EXPORT_SYMBOL(tcp_simple_retransmit);
2853
2854 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2855 {
2856 struct tcp_sock *tp = tcp_sk(sk);
2857 int mib_idx;
2858
2859 if (tcp_is_reno(tp))
2860 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2861 else
2862 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2863
2864 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2865
2866 tp->prior_ssthresh = 0;
2867 tp->undo_marker = tp->snd_una;
2868 tp->undo_retrans = tp->retrans_out;
2869
2870 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2871 if (!ece_ack)
2872 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2873 tcp_init_cwnd_reduction(sk, true);
2874 }
2875 tcp_set_ca_state(sk, TCP_CA_Recovery);
2876 }
2877
2878 /* Process an event, which can update packets-in-flight not trivially.
2879 * Main goal of this function is to calculate new estimate for left_out,
2880 * taking into account both packets sitting in receiver's buffer and
2881 * packets lost by network.
2882 *
2883 * Besides that it does CWND reduction, when packet loss is detected
2884 * and changes state of machine.
2885 *
2886 * It does _not_ decide what to send, it is made in function
2887 * tcp_xmit_retransmit_queue().
2888 */
2889 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2890 int prior_sacked, bool is_dupack,
2891 int flag)
2892 {
2893 struct inet_connection_sock *icsk = inet_csk(sk);
2894 struct tcp_sock *tp = tcp_sk(sk);
2895 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2896 (tcp_fackets_out(tp) > tp->reordering));
2897 int newly_acked_sacked = 0;
2898 int fast_rexmit = 0;
2899
2900 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2901 tp->sacked_out = 0;
2902 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2903 tp->fackets_out = 0;
2904
2905 /* Now state machine starts.
2906 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2907 if (flag & FLAG_ECE)
2908 tp->prior_ssthresh = 0;
2909
2910 /* B. In all the states check for reneging SACKs. */
2911 if (tcp_check_sack_reneging(sk, flag))
2912 return;
2913
2914 /* C. Check consistency of the current state. */
2915 tcp_verify_left_out(tp);
2916
2917 /* D. Check state exit conditions. State can be terminated
2918 * when high_seq is ACKed. */
2919 if (icsk->icsk_ca_state == TCP_CA_Open) {
2920 WARN_ON(tp->retrans_out != 0);
2921 tp->retrans_stamp = 0;
2922 } else if (!before(tp->snd_una, tp->high_seq)) {
2923 switch (icsk->icsk_ca_state) {
2924 case TCP_CA_Loss:
2925 icsk->icsk_retransmits = 0;
2926 if (tcp_try_undo_recovery(sk))
2927 return;
2928 break;
2929
2930 case TCP_CA_CWR:
2931 /* CWR is to be held something *above* high_seq
2932 * is ACKed for CWR bit to reach receiver. */
2933 if (tp->snd_una != tp->high_seq) {
2934 tcp_end_cwnd_reduction(sk);
2935 tcp_set_ca_state(sk, TCP_CA_Open);
2936 }
2937 break;
2938
2939 case TCP_CA_Recovery:
2940 if (tcp_is_reno(tp))
2941 tcp_reset_reno_sack(tp);
2942 if (tcp_try_undo_recovery(sk))
2943 return;
2944 tcp_end_cwnd_reduction(sk);
2945 break;
2946 }
2947 }
2948
2949 /* E. Process state. */
2950 switch (icsk->icsk_ca_state) {
2951 case TCP_CA_Recovery:
2952 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2953 if (tcp_is_reno(tp) && is_dupack)
2954 tcp_add_reno_sack(sk);
2955 } else
2956 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2957 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2958 break;
2959 case TCP_CA_Loss:
2960 if (flag & FLAG_DATA_ACKED)
2961 icsk->icsk_retransmits = 0;
2962 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2963 tcp_reset_reno_sack(tp);
2964 if (!tcp_try_undo_loss(sk)) {
2965 tcp_moderate_cwnd(tp);
2966 tcp_xmit_retransmit_queue(sk);
2967 return;
2968 }
2969 if (icsk->icsk_ca_state != TCP_CA_Open)
2970 return;
2971 /* Loss is undone; fall through to processing in Open state. */
2972 default:
2973 if (tcp_is_reno(tp)) {
2974 if (flag & FLAG_SND_UNA_ADVANCED)
2975 tcp_reset_reno_sack(tp);
2976 if (is_dupack)
2977 tcp_add_reno_sack(sk);
2978 }
2979 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2980
2981 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2982 tcp_try_undo_dsack(sk);
2983
2984 if (!tcp_time_to_recover(sk, flag)) {
2985 tcp_try_to_open(sk, flag, newly_acked_sacked);
2986 return;
2987 }
2988
2989 /* MTU probe failure: don't reduce cwnd */
2990 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2991 icsk->icsk_mtup.probe_size &&
2992 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2993 tcp_mtup_probe_failed(sk);
2994 /* Restores the reduction we did in tcp_mtup_probe() */
2995 tp->snd_cwnd++;
2996 tcp_simple_retransmit(sk);
2997 return;
2998 }
2999
3000 /* Otherwise enter Recovery state */
3001 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3002 fast_rexmit = 1;
3003 }
3004
3005 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3006 tcp_update_scoreboard(sk, fast_rexmit);
3007 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3008 tcp_xmit_retransmit_queue(sk);
3009 }
3010
3011 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3012 {
3013 tcp_rtt_estimator(sk, seq_rtt);
3014 tcp_set_rto(sk);
3015 inet_csk(sk)->icsk_backoff = 0;
3016 }
3017 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3018
3019 /* Read draft-ietf-tcplw-high-performance before mucking
3020 * with this code. (Supersedes RFC1323)
3021 */
3022 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3023 {
3024 /* RTTM Rule: A TSecr value received in a segment is used to
3025 * update the averaged RTT measurement only if the segment
3026 * acknowledges some new data, i.e., only if it advances the
3027 * left edge of the send window.
3028 *
3029 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3030 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3031 *
3032 * Changed: reset backoff as soon as we see the first valid sample.
3033 * If we do not, we get strongly overestimated rto. With timestamps
3034 * samples are accepted even from very old segments: f.e., when rtt=1
3035 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3036 * answer arrives rto becomes 120 seconds! If at least one of segments
3037 * in window is lost... Voila. --ANK (010210)
3038 */
3039 struct tcp_sock *tp = tcp_sk(sk);
3040
3041 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3042 }
3043
3044 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3045 {
3046 /* We don't have a timestamp. Can only use
3047 * packets that are not retransmitted to determine
3048 * rtt estimates. Also, we must not reset the
3049 * backoff for rto until we get a non-retransmitted
3050 * packet. This allows us to deal with a situation
3051 * where the network delay has increased suddenly.
3052 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3053 */
3054
3055 if (flag & FLAG_RETRANS_DATA_ACKED)
3056 return;
3057
3058 tcp_valid_rtt_meas(sk, seq_rtt);
3059 }
3060
3061 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3062 const s32 seq_rtt)
3063 {
3064 const struct tcp_sock *tp = tcp_sk(sk);
3065 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3066 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3067 tcp_ack_saw_tstamp(sk, flag);
3068 else if (seq_rtt >= 0)
3069 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3070 }
3071
3072 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3073 {
3074 const struct inet_connection_sock *icsk = inet_csk(sk);
3075 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3076 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3077 }
3078
3079 /* Restart timer after forward progress on connection.
3080 * RFC2988 recommends to restart timer to now+rto.
3081 */
3082 void tcp_rearm_rto(struct sock *sk)
3083 {
3084 struct tcp_sock *tp = tcp_sk(sk);
3085
3086 /* If the retrans timer is currently being used by Fast Open
3087 * for SYN-ACK retrans purpose, stay put.
3088 */
3089 if (tp->fastopen_rsk)
3090 return;
3091
3092 if (!tp->packets_out) {
3093 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3094 } else {
3095 u32 rto = inet_csk(sk)->icsk_rto;
3096 /* Offset the time elapsed after installing regular RTO */
3097 if (tp->early_retrans_delayed) {
3098 struct sk_buff *skb = tcp_write_queue_head(sk);
3099 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3100 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3101 /* delta may not be positive if the socket is locked
3102 * when the delayed ER timer fires and is rescheduled.
3103 */
3104 if (delta > 0)
3105 rto = delta;
3106 }
3107 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3108 TCP_RTO_MAX);
3109 }
3110 tp->early_retrans_delayed = 0;
3111 }
3112
3113 /* This function is called when the delayed ER timer fires. TCP enters
3114 * fast recovery and performs fast-retransmit.
3115 */
3116 void tcp_resume_early_retransmit(struct sock *sk)
3117 {
3118 struct tcp_sock *tp = tcp_sk(sk);
3119
3120 tcp_rearm_rto(sk);
3121
3122 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3123 if (!tp->do_early_retrans)
3124 return;
3125
3126 tcp_enter_recovery(sk, false);
3127 tcp_update_scoreboard(sk, 1);
3128 tcp_xmit_retransmit_queue(sk);
3129 }
3130
3131 /* If we get here, the whole TSO packet has not been acked. */
3132 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3133 {
3134 struct tcp_sock *tp = tcp_sk(sk);
3135 u32 packets_acked;
3136
3137 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3138
3139 packets_acked = tcp_skb_pcount(skb);
3140 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3141 return 0;
3142 packets_acked -= tcp_skb_pcount(skb);
3143
3144 if (packets_acked) {
3145 BUG_ON(tcp_skb_pcount(skb) == 0);
3146 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3147 }
3148
3149 return packets_acked;
3150 }
3151
3152 /* Remove acknowledged frames from the retransmission queue. If our packet
3153 * is before the ack sequence we can discard it as it's confirmed to have
3154 * arrived at the other end.
3155 */
3156 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3157 u32 prior_snd_una)
3158 {
3159 struct tcp_sock *tp = tcp_sk(sk);
3160 const struct inet_connection_sock *icsk = inet_csk(sk);
3161 struct sk_buff *skb;
3162 u32 now = tcp_time_stamp;
3163 int fully_acked = true;
3164 int flag = 0;
3165 u32 pkts_acked = 0;
3166 u32 reord = tp->packets_out;
3167 u32 prior_sacked = tp->sacked_out;
3168 s32 seq_rtt = -1;
3169 s32 ca_seq_rtt = -1;
3170 ktime_t last_ackt = net_invalid_timestamp();
3171
3172 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3173 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3174 u32 acked_pcount;
3175 u8 sacked = scb->sacked;
3176
3177 /* Determine how many packets and what bytes were acked, tso and else */
3178 if (after(scb->end_seq, tp->snd_una)) {
3179 if (tcp_skb_pcount(skb) == 1 ||
3180 !after(tp->snd_una, scb->seq))
3181 break;
3182
3183 acked_pcount = tcp_tso_acked(sk, skb);
3184 if (!acked_pcount)
3185 break;
3186
3187 fully_acked = false;
3188 } else {
3189 acked_pcount = tcp_skb_pcount(skb);
3190 }
3191
3192 if (sacked & TCPCB_RETRANS) {
3193 if (sacked & TCPCB_SACKED_RETRANS)
3194 tp->retrans_out -= acked_pcount;
3195 flag |= FLAG_RETRANS_DATA_ACKED;
3196 ca_seq_rtt = -1;
3197 seq_rtt = -1;
3198 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3199 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3200 } else {
3201 ca_seq_rtt = now - scb->when;
3202 last_ackt = skb->tstamp;
3203 if (seq_rtt < 0) {
3204 seq_rtt = ca_seq_rtt;
3205 }
3206 if (!(sacked & TCPCB_SACKED_ACKED))
3207 reord = min(pkts_acked, reord);
3208 }
3209
3210 if (sacked & TCPCB_SACKED_ACKED)
3211 tp->sacked_out -= acked_pcount;
3212 if (sacked & TCPCB_LOST)
3213 tp->lost_out -= acked_pcount;
3214
3215 tp->packets_out -= acked_pcount;
3216 pkts_acked += acked_pcount;
3217
3218 /* Initial outgoing SYN's get put onto the write_queue
3219 * just like anything else we transmit. It is not
3220 * true data, and if we misinform our callers that
3221 * this ACK acks real data, we will erroneously exit
3222 * connection startup slow start one packet too
3223 * quickly. This is severely frowned upon behavior.
3224 */
3225 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3226 flag |= FLAG_DATA_ACKED;
3227 } else {
3228 flag |= FLAG_SYN_ACKED;
3229 tp->retrans_stamp = 0;
3230 }
3231
3232 if (!fully_acked)
3233 break;
3234
3235 tcp_unlink_write_queue(skb, sk);
3236 sk_wmem_free_skb(sk, skb);
3237 tp->scoreboard_skb_hint = NULL;
3238 if (skb == tp->retransmit_skb_hint)
3239 tp->retransmit_skb_hint = NULL;
3240 if (skb == tp->lost_skb_hint)
3241 tp->lost_skb_hint = NULL;
3242 }
3243
3244 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3245 tp->snd_up = tp->snd_una;
3246
3247 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3248 flag |= FLAG_SACK_RENEGING;
3249
3250 if (flag & FLAG_ACKED) {
3251 const struct tcp_congestion_ops *ca_ops
3252 = inet_csk(sk)->icsk_ca_ops;
3253
3254 if (unlikely(icsk->icsk_mtup.probe_size &&
3255 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3256 tcp_mtup_probe_success(sk);
3257 }
3258
3259 tcp_ack_update_rtt(sk, flag, seq_rtt);
3260 tcp_rearm_rto(sk);
3261
3262 if (tcp_is_reno(tp)) {
3263 tcp_remove_reno_sacks(sk, pkts_acked);
3264 } else {
3265 int delta;
3266
3267 /* Non-retransmitted hole got filled? That's reordering */
3268 if (reord < prior_fackets)
3269 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3270
3271 delta = tcp_is_fack(tp) ? pkts_acked :
3272 prior_sacked - tp->sacked_out;
3273 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3274 }
3275
3276 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3277
3278 if (ca_ops->pkts_acked) {
3279 s32 rtt_us = -1;
3280
3281 /* Is the ACK triggering packet unambiguous? */
3282 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3283 /* High resolution needed and available? */
3284 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3285 !ktime_equal(last_ackt,
3286 net_invalid_timestamp()))
3287 rtt_us = ktime_us_delta(ktime_get_real(),
3288 last_ackt);
3289 else if (ca_seq_rtt >= 0)
3290 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3291 }
3292
3293 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3294 }
3295 }
3296
3297 #if FASTRETRANS_DEBUG > 0
3298 WARN_ON((int)tp->sacked_out < 0);
3299 WARN_ON((int)tp->lost_out < 0);
3300 WARN_ON((int)tp->retrans_out < 0);
3301 if (!tp->packets_out && tcp_is_sack(tp)) {
3302 icsk = inet_csk(sk);
3303 if (tp->lost_out) {
3304 pr_debug("Leak l=%u %d\n",
3305 tp->lost_out, icsk->icsk_ca_state);
3306 tp->lost_out = 0;
3307 }
3308 if (tp->sacked_out) {
3309 pr_debug("Leak s=%u %d\n",
3310 tp->sacked_out, icsk->icsk_ca_state);
3311 tp->sacked_out = 0;
3312 }
3313 if (tp->retrans_out) {
3314 pr_debug("Leak r=%u %d\n",
3315 tp->retrans_out, icsk->icsk_ca_state);
3316 tp->retrans_out = 0;
3317 }
3318 }
3319 #endif
3320 return flag;
3321 }
3322
3323 static void tcp_ack_probe(struct sock *sk)
3324 {
3325 const struct tcp_sock *tp = tcp_sk(sk);
3326 struct inet_connection_sock *icsk = inet_csk(sk);
3327
3328 /* Was it a usable window open? */
3329
3330 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3331 icsk->icsk_backoff = 0;
3332 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3333 /* Socket must be waked up by subsequent tcp_data_snd_check().
3334 * This function is not for random using!
3335 */
3336 } else {
3337 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3338 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3339 TCP_RTO_MAX);
3340 }
3341 }
3342
3343 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3344 {
3345 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3346 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3347 }
3348
3349 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3350 {
3351 const struct tcp_sock *tp = tcp_sk(sk);
3352 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3353 !tcp_in_cwnd_reduction(sk);
3354 }
3355
3356 /* Check that window update is acceptable.
3357 * The function assumes that snd_una<=ack<=snd_next.
3358 */
3359 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3360 const u32 ack, const u32 ack_seq,
3361 const u32 nwin)
3362 {
3363 return after(ack, tp->snd_una) ||
3364 after(ack_seq, tp->snd_wl1) ||
3365 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3366 }
3367
3368 /* Update our send window.
3369 *
3370 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3371 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3372 */
3373 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3374 u32 ack_seq)
3375 {
3376 struct tcp_sock *tp = tcp_sk(sk);
3377 int flag = 0;
3378 u32 nwin = ntohs(tcp_hdr(skb)->window);
3379
3380 if (likely(!tcp_hdr(skb)->syn))
3381 nwin <<= tp->rx_opt.snd_wscale;
3382
3383 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3384 flag |= FLAG_WIN_UPDATE;
3385 tcp_update_wl(tp, ack_seq);
3386
3387 if (tp->snd_wnd != nwin) {
3388 tp->snd_wnd = nwin;
3389
3390 /* Note, it is the only place, where
3391 * fast path is recovered for sending TCP.
3392 */
3393 tp->pred_flags = 0;
3394 tcp_fast_path_check(sk);
3395
3396 if (nwin > tp->max_window) {
3397 tp->max_window = nwin;
3398 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3399 }
3400 }
3401 }
3402
3403 tp->snd_una = ack;
3404
3405 return flag;
3406 }
3407
3408 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3409 * continue in congestion avoidance.
3410 */
3411 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3412 {
3413 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3414 tp->snd_cwnd_cnt = 0;
3415 TCP_ECN_queue_cwr(tp);
3416 tcp_moderate_cwnd(tp);
3417 }
3418
3419 /* A conservative spurious RTO response algorithm: reduce cwnd using
3420 * PRR and continue in congestion avoidance.
3421 */
3422 static void tcp_cwr_spur_to_response(struct sock *sk)
3423 {
3424 tcp_enter_cwr(sk, 0);
3425 }
3426
3427 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3428 {
3429 if (flag & FLAG_ECE)
3430 tcp_cwr_spur_to_response(sk);
3431 else
3432 tcp_undo_cwr(sk, true);
3433 }
3434
3435 /* F-RTO spurious RTO detection algorithm (RFC4138)
3436 *
3437 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3438 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3439 * window (but not to or beyond highest sequence sent before RTO):
3440 * On First ACK, send two new segments out.
3441 * On Second ACK, RTO was likely spurious. Do spurious response (response
3442 * algorithm is not part of the F-RTO detection algorithm
3443 * given in RFC4138 but can be selected separately).
3444 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3445 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3446 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3447 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3448 *
3449 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3450 * original window even after we transmit two new data segments.
3451 *
3452 * SACK version:
3453 * on first step, wait until first cumulative ACK arrives, then move to
3454 * the second step. In second step, the next ACK decides.
3455 *
3456 * F-RTO is implemented (mainly) in four functions:
3457 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3458 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3459 * called when tcp_use_frto() showed green light
3460 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3461 * - tcp_enter_frto_loss() is called if there is not enough evidence
3462 * to prove that the RTO is indeed spurious. It transfers the control
3463 * from F-RTO to the conventional RTO recovery
3464 */
3465 static bool tcp_process_frto(struct sock *sk, int flag)
3466 {
3467 struct tcp_sock *tp = tcp_sk(sk);
3468
3469 tcp_verify_left_out(tp);
3470
3471 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3472 if (flag & FLAG_DATA_ACKED)
3473 inet_csk(sk)->icsk_retransmits = 0;
3474
3475 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3476 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3477 tp->undo_marker = 0;
3478
3479 if (!before(tp->snd_una, tp->frto_highmark) ||
3480 !tcp_packets_in_flight(tp)) {
3481 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3482 return true;
3483 }
3484
3485 if (!tcp_is_sackfrto(tp)) {
3486 /* RFC4138 shortcoming in step 2; should also have case c):
3487 * ACK isn't duplicate nor advances window, e.g., opposite dir
3488 * data, winupdate
3489 */
3490 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3491 return true;
3492
3493 if (!(flag & FLAG_DATA_ACKED)) {
3494 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3495 flag);
3496 return true;
3497 }
3498 } else {
3499 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3500 /* Prevent sending of new data. */
3501 tp->snd_cwnd = min(tp->snd_cwnd,
3502 tcp_packets_in_flight(tp));
3503 return true;
3504 }
3505
3506 if ((tp->frto_counter >= 2) &&
3507 (!(flag & FLAG_FORWARD_PROGRESS) ||
3508 ((flag & FLAG_DATA_SACKED) &&
3509 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3510 /* RFC4138 shortcoming (see comment above) */
3511 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3512 (flag & FLAG_NOT_DUP))
3513 return true;
3514
3515 tcp_enter_frto_loss(sk, 3, flag);
3516 return true;
3517 }
3518 }
3519
3520 if (tp->frto_counter == 1) {
3521 /* tcp_may_send_now needs to see updated state */
3522 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3523 tp->frto_counter = 2;
3524
3525 if (!tcp_may_send_now(sk))
3526 tcp_enter_frto_loss(sk, 2, flag);
3527
3528 return true;
3529 } else {
3530 switch (sysctl_tcp_frto_response) {
3531 case 2:
3532 tcp_undo_spur_to_response(sk, flag);
3533 break;
3534 case 1:
3535 tcp_conservative_spur_to_response(tp);
3536 break;
3537 default:
3538 tcp_cwr_spur_to_response(sk);
3539 break;
3540 }
3541 tp->frto_counter = 0;
3542 tp->undo_marker = 0;
3543 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3544 }
3545 return false;
3546 }
3547
3548 /* RFC 5961 7 [ACK Throttling] */
3549 static void tcp_send_challenge_ack(struct sock *sk)
3550 {
3551 /* unprotected vars, we dont care of overwrites */
3552 static u32 challenge_timestamp;
3553 static unsigned int challenge_count;
3554 u32 now = jiffies / HZ;
3555
3556 if (now != challenge_timestamp) {
3557 challenge_timestamp = now;
3558 challenge_count = 0;
3559 }
3560 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3561 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3562 tcp_send_ack(sk);
3563 }
3564 }
3565
3566 /* This routine deals with incoming acks, but not outgoing ones. */
3567 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3568 {
3569 struct inet_connection_sock *icsk = inet_csk(sk);
3570 struct tcp_sock *tp = tcp_sk(sk);
3571 u32 prior_snd_una = tp->snd_una;
3572 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574 bool is_dupack = false;
3575 u32 prior_in_flight;
3576 u32 prior_fackets;
3577 int prior_packets;
3578 int prior_sacked = tp->sacked_out;
3579 int pkts_acked = 0;
3580 bool frto_cwnd = false;
3581
3582 /* If the ack is older than previous acks
3583 * then we can probably ignore it.
3584 */
3585 if (before(ack, prior_snd_una)) {
3586 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3587 if (before(ack, prior_snd_una - tp->max_window)) {
3588 tcp_send_challenge_ack(sk);
3589 return -1;
3590 }
3591 goto old_ack;
3592 }
3593
3594 /* If the ack includes data we haven't sent yet, discard
3595 * this segment (RFC793 Section 3.9).
3596 */
3597 if (after(ack, tp->snd_nxt))
3598 goto invalid_ack;
3599
3600 if (tp->early_retrans_delayed)
3601 tcp_rearm_rto(sk);
3602
3603 if (after(ack, prior_snd_una))
3604 flag |= FLAG_SND_UNA_ADVANCED;
3605
3606 prior_fackets = tp->fackets_out;
3607 prior_in_flight = tcp_packets_in_flight(tp);
3608
3609 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3610 /* Window is constant, pure forward advance.
3611 * No more checks are required.
3612 * Note, we use the fact that SND.UNA>=SND.WL2.
3613 */
3614 tcp_update_wl(tp, ack_seq);
3615 tp->snd_una = ack;
3616 flag |= FLAG_WIN_UPDATE;
3617
3618 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3619
3620 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3621 } else {
3622 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3623 flag |= FLAG_DATA;
3624 else
3625 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3626
3627 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3628
3629 if (TCP_SKB_CB(skb)->sacked)
3630 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3631
3632 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3633 flag |= FLAG_ECE;
3634
3635 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3636 }
3637
3638 /* We passed data and got it acked, remove any soft error
3639 * log. Something worked...
3640 */
3641 sk->sk_err_soft = 0;
3642 icsk->icsk_probes_out = 0;
3643 tp->rcv_tstamp = tcp_time_stamp;
3644 prior_packets = tp->packets_out;
3645 if (!prior_packets)
3646 goto no_queue;
3647
3648 /* See if we can take anything off of the retransmit queue. */
3649 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3650
3651 pkts_acked = prior_packets - tp->packets_out;
3652
3653 if (tp->frto_counter)
3654 frto_cwnd = tcp_process_frto(sk, flag);
3655 /* Guarantee sacktag reordering detection against wrap-arounds */
3656 if (before(tp->frto_highmark, tp->snd_una))
3657 tp->frto_highmark = 0;
3658
3659 if (tcp_ack_is_dubious(sk, flag)) {
3660 /* Advance CWND, if state allows this. */
3661 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3662 tcp_may_raise_cwnd(sk, flag))
3663 tcp_cong_avoid(sk, ack, prior_in_flight);
3664 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3665 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3666 is_dupack, flag);
3667 } else {
3668 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3669 tcp_cong_avoid(sk, ack, prior_in_flight);
3670 }
3671
3672 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3673 struct dst_entry *dst = __sk_dst_get(sk);
3674 if (dst)
3675 dst_confirm(dst);
3676 }
3677 return 1;
3678
3679 no_queue:
3680 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3681 if (flag & FLAG_DSACKING_ACK)
3682 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3683 is_dupack, flag);
3684 /* If this ack opens up a zero window, clear backoff. It was
3685 * being used to time the probes, and is probably far higher than
3686 * it needs to be for normal retransmission.
3687 */
3688 if (tcp_send_head(sk))
3689 tcp_ack_probe(sk);
3690 return 1;
3691
3692 invalid_ack:
3693 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3694 return -1;
3695
3696 old_ack:
3697 /* If data was SACKed, tag it and see if we should send more data.
3698 * If data was DSACKed, see if we can undo a cwnd reduction.
3699 */
3700 if (TCP_SKB_CB(skb)->sacked) {
3701 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3702 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3703 is_dupack, flag);
3704 }
3705
3706 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3707 return 0;
3708 }
3709
3710 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3711 * But, this can also be called on packets in the established flow when
3712 * the fast version below fails.
3713 */
3714 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3715 const u8 **hvpp, int estab,
3716 struct tcp_fastopen_cookie *foc)
3717 {
3718 const unsigned char *ptr;
3719 const struct tcphdr *th = tcp_hdr(skb);
3720 int length = (th->doff * 4) - sizeof(struct tcphdr);
3721
3722 ptr = (const unsigned char *)(th + 1);
3723 opt_rx->saw_tstamp = 0;
3724
3725 while (length > 0) {
3726 int opcode = *ptr++;
3727 int opsize;
3728
3729 switch (opcode) {
3730 case TCPOPT_EOL:
3731 return;
3732 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3733 length--;
3734 continue;
3735 default:
3736 opsize = *ptr++;
3737 if (opsize < 2) /* "silly options" */
3738 return;
3739 if (opsize > length)
3740 return; /* don't parse partial options */
3741 switch (opcode) {
3742 case TCPOPT_MSS:
3743 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3744 u16 in_mss = get_unaligned_be16(ptr);
3745 if (in_mss) {
3746 if (opt_rx->user_mss &&
3747 opt_rx->user_mss < in_mss)
3748 in_mss = opt_rx->user_mss;
3749 opt_rx->mss_clamp = in_mss;
3750 }
3751 }
3752 break;
3753 case TCPOPT_WINDOW:
3754 if (opsize == TCPOLEN_WINDOW && th->syn &&
3755 !estab && sysctl_tcp_window_scaling) {
3756 __u8 snd_wscale = *(__u8 *)ptr;
3757 opt_rx->wscale_ok = 1;
3758 if (snd_wscale > 14) {
3759 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3760 __func__,
3761 snd_wscale);
3762 snd_wscale = 14;
3763 }
3764 opt_rx->snd_wscale = snd_wscale;
3765 }
3766 break;
3767 case TCPOPT_TIMESTAMP:
3768 if ((opsize == TCPOLEN_TIMESTAMP) &&
3769 ((estab && opt_rx->tstamp_ok) ||
3770 (!estab && sysctl_tcp_timestamps))) {
3771 opt_rx->saw_tstamp = 1;
3772 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3773 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3774 }
3775 break;
3776 case TCPOPT_SACK_PERM:
3777 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3778 !estab && sysctl_tcp_sack) {
3779 opt_rx->sack_ok = TCP_SACK_SEEN;
3780 tcp_sack_reset(opt_rx);
3781 }
3782 break;
3783
3784 case TCPOPT_SACK:
3785 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3786 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3787 opt_rx->sack_ok) {
3788 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3789 }
3790 break;
3791 #ifdef CONFIG_TCP_MD5SIG
3792 case TCPOPT_MD5SIG:
3793 /*
3794 * The MD5 Hash has already been
3795 * checked (see tcp_v{4,6}_do_rcv()).
3796 */
3797 break;
3798 #endif
3799 case TCPOPT_COOKIE:
3800 /* This option is variable length.
3801 */
3802 switch (opsize) {
3803 case TCPOLEN_COOKIE_BASE:
3804 /* not yet implemented */
3805 break;
3806 case TCPOLEN_COOKIE_PAIR:
3807 /* not yet implemented */
3808 break;
3809 case TCPOLEN_COOKIE_MIN+0:
3810 case TCPOLEN_COOKIE_MIN+2:
3811 case TCPOLEN_COOKIE_MIN+4:
3812 case TCPOLEN_COOKIE_MIN+6:
3813 case TCPOLEN_COOKIE_MAX:
3814 /* 16-bit multiple */
3815 opt_rx->cookie_plus = opsize;
3816 *hvpp = ptr;
3817 break;
3818 default:
3819 /* ignore option */
3820 break;
3821 }
3822 break;
3823
3824 case TCPOPT_EXP:
3825 /* Fast Open option shares code 254 using a
3826 * 16 bits magic number. It's valid only in
3827 * SYN or SYN-ACK with an even size.
3828 */
3829 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3830 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3831 foc == NULL || !th->syn || (opsize & 1))
3832 break;
3833 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3834 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3835 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3836 memcpy(foc->val, ptr + 2, foc->len);
3837 else if (foc->len != 0)
3838 foc->len = -1;
3839 break;
3840
3841 }
3842 ptr += opsize-2;
3843 length -= opsize;
3844 }
3845 }
3846 }
3847 EXPORT_SYMBOL(tcp_parse_options);
3848
3849 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3850 {
3851 const __be32 *ptr = (const __be32 *)(th + 1);
3852
3853 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3854 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3855 tp->rx_opt.saw_tstamp = 1;
3856 ++ptr;
3857 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3858 ++ptr;
3859 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3860 return true;
3861 }
3862 return false;
3863 }
3864
3865 /* Fast parse options. This hopes to only see timestamps.
3866 * If it is wrong it falls back on tcp_parse_options().
3867 */
3868 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3869 const struct tcphdr *th,
3870 struct tcp_sock *tp, const u8 **hvpp)
3871 {
3872 /* In the spirit of fast parsing, compare doff directly to constant
3873 * values. Because equality is used, short doff can be ignored here.
3874 */
3875 if (th->doff == (sizeof(*th) / 4)) {
3876 tp->rx_opt.saw_tstamp = 0;
3877 return false;
3878 } else if (tp->rx_opt.tstamp_ok &&
3879 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3880 if (tcp_parse_aligned_timestamp(tp, th))
3881 return true;
3882 }
3883 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3884 return true;
3885 }
3886
3887 #ifdef CONFIG_TCP_MD5SIG
3888 /*
3889 * Parse MD5 Signature option
3890 */
3891 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3892 {
3893 int length = (th->doff << 2) - sizeof(*th);
3894 const u8 *ptr = (const u8 *)(th + 1);
3895
3896 /* If the TCP option is too short, we can short cut */
3897 if (length < TCPOLEN_MD5SIG)
3898 return NULL;
3899
3900 while (length > 0) {
3901 int opcode = *ptr++;
3902 int opsize;
3903
3904 switch(opcode) {
3905 case TCPOPT_EOL:
3906 return NULL;
3907 case TCPOPT_NOP:
3908 length--;
3909 continue;
3910 default:
3911 opsize = *ptr++;
3912 if (opsize < 2 || opsize > length)
3913 return NULL;
3914 if (opcode == TCPOPT_MD5SIG)
3915 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3916 }
3917 ptr += opsize - 2;
3918 length -= opsize;
3919 }
3920 return NULL;
3921 }
3922 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3923 #endif
3924
3925 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3926 {
3927 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3928 tp->rx_opt.ts_recent_stamp = get_seconds();
3929 }
3930
3931 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3932 {
3933 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3934 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3935 * extra check below makes sure this can only happen
3936 * for pure ACK frames. -DaveM
3937 *
3938 * Not only, also it occurs for expired timestamps.
3939 */
3940
3941 if (tcp_paws_check(&tp->rx_opt, 0))
3942 tcp_store_ts_recent(tp);
3943 }
3944 }
3945
3946 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3947 *
3948 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3949 * it can pass through stack. So, the following predicate verifies that
3950 * this segment is not used for anything but congestion avoidance or
3951 * fast retransmit. Moreover, we even are able to eliminate most of such
3952 * second order effects, if we apply some small "replay" window (~RTO)
3953 * to timestamp space.
3954 *
3955 * All these measures still do not guarantee that we reject wrapped ACKs
3956 * on networks with high bandwidth, when sequence space is recycled fastly,
3957 * but it guarantees that such events will be very rare and do not affect
3958 * connection seriously. This doesn't look nice, but alas, PAWS is really
3959 * buggy extension.
3960 *
3961 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3962 * states that events when retransmit arrives after original data are rare.
3963 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3964 * the biggest problem on large power networks even with minor reordering.
3965 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3966 * up to bandwidth of 18Gigabit/sec. 8) ]
3967 */
3968
3969 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3970 {
3971 const struct tcp_sock *tp = tcp_sk(sk);
3972 const struct tcphdr *th = tcp_hdr(skb);
3973 u32 seq = TCP_SKB_CB(skb)->seq;
3974 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3975
3976 return (/* 1. Pure ACK with correct sequence number. */
3977 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3978
3979 /* 2. ... and duplicate ACK. */
3980 ack == tp->snd_una &&
3981
3982 /* 3. ... and does not update window. */
3983 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3984
3985 /* 4. ... and sits in replay window. */
3986 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3987 }
3988
3989 static inline bool tcp_paws_discard(const struct sock *sk,
3990 const struct sk_buff *skb)
3991 {
3992 const struct tcp_sock *tp = tcp_sk(sk);
3993
3994 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3995 !tcp_disordered_ack(sk, skb);
3996 }
3997
3998 /* Check segment sequence number for validity.
3999 *
4000 * Segment controls are considered valid, if the segment
4001 * fits to the window after truncation to the window. Acceptability
4002 * of data (and SYN, FIN, of course) is checked separately.
4003 * See tcp_data_queue(), for example.
4004 *
4005 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4006 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4007 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4008 * (borrowed from freebsd)
4009 */
4010
4011 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4012 {
4013 return !before(end_seq, tp->rcv_wup) &&
4014 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4015 }
4016
4017 /* When we get a reset we do this. */
4018 void tcp_reset(struct sock *sk)
4019 {
4020 /* We want the right error as BSD sees it (and indeed as we do). */
4021 switch (sk->sk_state) {
4022 case TCP_SYN_SENT:
4023 sk->sk_err = ECONNREFUSED;
4024 break;
4025 case TCP_CLOSE_WAIT:
4026 sk->sk_err = EPIPE;
4027 break;
4028 case TCP_CLOSE:
4029 return;
4030 default:
4031 sk->sk_err = ECONNRESET;
4032 }
4033 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4034 smp_wmb();
4035
4036 if (!sock_flag(sk, SOCK_DEAD))
4037 sk->sk_error_report(sk);
4038
4039 tcp_done(sk);
4040 }
4041
4042 /*
4043 * Process the FIN bit. This now behaves as it is supposed to work
4044 * and the FIN takes effect when it is validly part of sequence
4045 * space. Not before when we get holes.
4046 *
4047 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4048 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4049 * TIME-WAIT)
4050 *
4051 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4052 * close and we go into CLOSING (and later onto TIME-WAIT)
4053 *
4054 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4055 */
4056 static void tcp_fin(struct sock *sk)
4057 {
4058 struct tcp_sock *tp = tcp_sk(sk);
4059
4060 inet_csk_schedule_ack(sk);
4061
4062 sk->sk_shutdown |= RCV_SHUTDOWN;
4063 sock_set_flag(sk, SOCK_DONE);
4064
4065 switch (sk->sk_state) {
4066 case TCP_SYN_RECV:
4067 case TCP_ESTABLISHED:
4068 /* Move to CLOSE_WAIT */
4069 tcp_set_state(sk, TCP_CLOSE_WAIT);
4070 inet_csk(sk)->icsk_ack.pingpong = 1;
4071 break;
4072
4073 case TCP_CLOSE_WAIT:
4074 case TCP_CLOSING:
4075 /* Received a retransmission of the FIN, do
4076 * nothing.
4077 */
4078 break;
4079 case TCP_LAST_ACK:
4080 /* RFC793: Remain in the LAST-ACK state. */
4081 break;
4082
4083 case TCP_FIN_WAIT1:
4084 /* This case occurs when a simultaneous close
4085 * happens, we must ack the received FIN and
4086 * enter the CLOSING state.
4087 */
4088 tcp_send_ack(sk);
4089 tcp_set_state(sk, TCP_CLOSING);
4090 break;
4091 case TCP_FIN_WAIT2:
4092 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4093 tcp_send_ack(sk);
4094 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4095 break;
4096 default:
4097 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4098 * cases we should never reach this piece of code.
4099 */
4100 pr_err("%s: Impossible, sk->sk_state=%d\n",
4101 __func__, sk->sk_state);
4102 break;
4103 }
4104
4105 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4106 * Probably, we should reset in this case. For now drop them.
4107 */
4108 __skb_queue_purge(&tp->out_of_order_queue);
4109 if (tcp_is_sack(tp))
4110 tcp_sack_reset(&tp->rx_opt);
4111 sk_mem_reclaim(sk);
4112
4113 if (!sock_flag(sk, SOCK_DEAD)) {
4114 sk->sk_state_change(sk);
4115
4116 /* Do not send POLL_HUP for half duplex close. */
4117 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4118 sk->sk_state == TCP_CLOSE)
4119 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4120 else
4121 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4122 }
4123 }
4124
4125 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4126 u32 end_seq)
4127 {
4128 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4129 if (before(seq, sp->start_seq))
4130 sp->start_seq = seq;
4131 if (after(end_seq, sp->end_seq))
4132 sp->end_seq = end_seq;
4133 return true;
4134 }
4135 return false;
4136 }
4137
4138 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4139 {
4140 struct tcp_sock *tp = tcp_sk(sk);
4141
4142 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4143 int mib_idx;
4144
4145 if (before(seq, tp->rcv_nxt))
4146 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4147 else
4148 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4149
4150 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4151
4152 tp->rx_opt.dsack = 1;
4153 tp->duplicate_sack[0].start_seq = seq;
4154 tp->duplicate_sack[0].end_seq = end_seq;
4155 }
4156 }
4157
4158 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4159 {
4160 struct tcp_sock *tp = tcp_sk(sk);
4161
4162 if (!tp->rx_opt.dsack)
4163 tcp_dsack_set(sk, seq, end_seq);
4164 else
4165 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4166 }
4167
4168 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4169 {
4170 struct tcp_sock *tp = tcp_sk(sk);
4171
4172 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4173 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4174 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4175 tcp_enter_quickack_mode(sk);
4176
4177 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4178 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4179
4180 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4181 end_seq = tp->rcv_nxt;
4182 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4183 }
4184 }
4185
4186 tcp_send_ack(sk);
4187 }
4188
4189 /* These routines update the SACK block as out-of-order packets arrive or
4190 * in-order packets close up the sequence space.
4191 */
4192 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4193 {
4194 int this_sack;
4195 struct tcp_sack_block *sp = &tp->selective_acks[0];
4196 struct tcp_sack_block *swalk = sp + 1;
4197
4198 /* See if the recent change to the first SACK eats into
4199 * or hits the sequence space of other SACK blocks, if so coalesce.
4200 */
4201 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4202 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4203 int i;
4204
4205 /* Zap SWALK, by moving every further SACK up by one slot.
4206 * Decrease num_sacks.
4207 */
4208 tp->rx_opt.num_sacks--;
4209 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4210 sp[i] = sp[i + 1];
4211 continue;
4212 }
4213 this_sack++, swalk++;
4214 }
4215 }
4216
4217 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4218 {
4219 struct tcp_sock *tp = tcp_sk(sk);
4220 struct tcp_sack_block *sp = &tp->selective_acks[0];
4221 int cur_sacks = tp->rx_opt.num_sacks;
4222 int this_sack;
4223
4224 if (!cur_sacks)
4225 goto new_sack;
4226
4227 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4228 if (tcp_sack_extend(sp, seq, end_seq)) {
4229 /* Rotate this_sack to the first one. */
4230 for (; this_sack > 0; this_sack--, sp--)
4231 swap(*sp, *(sp - 1));
4232 if (cur_sacks > 1)
4233 tcp_sack_maybe_coalesce(tp);
4234 return;
4235 }
4236 }
4237
4238 /* Could not find an adjacent existing SACK, build a new one,
4239 * put it at the front, and shift everyone else down. We
4240 * always know there is at least one SACK present already here.
4241 *
4242 * If the sack array is full, forget about the last one.
4243 */
4244 if (this_sack >= TCP_NUM_SACKS) {
4245 this_sack--;
4246 tp->rx_opt.num_sacks--;
4247 sp--;
4248 }
4249 for (; this_sack > 0; this_sack--, sp--)
4250 *sp = *(sp - 1);
4251
4252 new_sack:
4253 /* Build the new head SACK, and we're done. */
4254 sp->start_seq = seq;
4255 sp->end_seq = end_seq;
4256 tp->rx_opt.num_sacks++;
4257 }
4258
4259 /* RCV.NXT advances, some SACKs should be eaten. */
4260
4261 static void tcp_sack_remove(struct tcp_sock *tp)
4262 {
4263 struct tcp_sack_block *sp = &tp->selective_acks[0];
4264 int num_sacks = tp->rx_opt.num_sacks;
4265 int this_sack;
4266
4267 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4268 if (skb_queue_empty(&tp->out_of_order_queue)) {
4269 tp->rx_opt.num_sacks = 0;
4270 return;
4271 }
4272
4273 for (this_sack = 0; this_sack < num_sacks;) {
4274 /* Check if the start of the sack is covered by RCV.NXT. */
4275 if (!before(tp->rcv_nxt, sp->start_seq)) {
4276 int i;
4277
4278 /* RCV.NXT must cover all the block! */
4279 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4280
4281 /* Zap this SACK, by moving forward any other SACKS. */
4282 for (i=this_sack+1; i < num_sacks; i++)
4283 tp->selective_acks[i-1] = tp->selective_acks[i];
4284 num_sacks--;
4285 continue;
4286 }
4287 this_sack++;
4288 sp++;
4289 }
4290 tp->rx_opt.num_sacks = num_sacks;
4291 }
4292
4293 /* This one checks to see if we can put data from the
4294 * out_of_order queue into the receive_queue.
4295 */
4296 static void tcp_ofo_queue(struct sock *sk)
4297 {
4298 struct tcp_sock *tp = tcp_sk(sk);
4299 __u32 dsack_high = tp->rcv_nxt;
4300 struct sk_buff *skb;
4301
4302 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4303 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4304 break;
4305
4306 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4307 __u32 dsack = dsack_high;
4308 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4309 dsack_high = TCP_SKB_CB(skb)->end_seq;
4310 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4311 }
4312
4313 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4314 SOCK_DEBUG(sk, "ofo packet was already received\n");
4315 __skb_unlink(skb, &tp->out_of_order_queue);
4316 __kfree_skb(skb);
4317 continue;
4318 }
4319 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4320 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4321 TCP_SKB_CB(skb)->end_seq);
4322
4323 __skb_unlink(skb, &tp->out_of_order_queue);
4324 __skb_queue_tail(&sk->sk_receive_queue, skb);
4325 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4326 if (tcp_hdr(skb)->fin)
4327 tcp_fin(sk);
4328 }
4329 }
4330
4331 static bool tcp_prune_ofo_queue(struct sock *sk);
4332 static int tcp_prune_queue(struct sock *sk);
4333
4334 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4335 unsigned int size)
4336 {
4337 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4338 !sk_rmem_schedule(sk, skb, size)) {
4339
4340 if (tcp_prune_queue(sk) < 0)
4341 return -1;
4342
4343 if (!sk_rmem_schedule(sk, skb, size)) {
4344 if (!tcp_prune_ofo_queue(sk))
4345 return -1;
4346
4347 if (!sk_rmem_schedule(sk, skb, size))
4348 return -1;
4349 }
4350 }
4351 return 0;
4352 }
4353
4354 /**
4355 * tcp_try_coalesce - try to merge skb to prior one
4356 * @sk: socket
4357 * @to: prior buffer
4358 * @from: buffer to add in queue
4359 * @fragstolen: pointer to boolean
4360 *
4361 * Before queueing skb @from after @to, try to merge them
4362 * to reduce overall memory use and queue lengths, if cost is small.
4363 * Packets in ofo or receive queues can stay a long time.
4364 * Better try to coalesce them right now to avoid future collapses.
4365 * Returns true if caller should free @from instead of queueing it
4366 */
4367 static bool tcp_try_coalesce(struct sock *sk,
4368 struct sk_buff *to,
4369 struct sk_buff *from,
4370 bool *fragstolen)
4371 {
4372 int delta;
4373
4374 *fragstolen = false;
4375
4376 if (tcp_hdr(from)->fin)
4377 return false;
4378
4379 /* Its possible this segment overlaps with prior segment in queue */
4380 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4381 return false;
4382
4383 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4384 return false;
4385
4386 atomic_add(delta, &sk->sk_rmem_alloc);
4387 sk_mem_charge(sk, delta);
4388 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4389 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4390 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4391 return true;
4392 }
4393
4394 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4395 {
4396 struct tcp_sock *tp = tcp_sk(sk);
4397 struct sk_buff *skb1;
4398 u32 seq, end_seq;
4399
4400 TCP_ECN_check_ce(tp, skb);
4401
4402 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4403 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4404 __kfree_skb(skb);
4405 return;
4406 }
4407
4408 /* Disable header prediction. */
4409 tp->pred_flags = 0;
4410 inet_csk_schedule_ack(sk);
4411
4412 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4413 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4414 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4415
4416 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4417 if (!skb1) {
4418 /* Initial out of order segment, build 1 SACK. */
4419 if (tcp_is_sack(tp)) {
4420 tp->rx_opt.num_sacks = 1;
4421 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4422 tp->selective_acks[0].end_seq =
4423 TCP_SKB_CB(skb)->end_seq;
4424 }
4425 __skb_queue_head(&tp->out_of_order_queue, skb);
4426 goto end;
4427 }
4428
4429 seq = TCP_SKB_CB(skb)->seq;
4430 end_seq = TCP_SKB_CB(skb)->end_seq;
4431
4432 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4433 bool fragstolen;
4434
4435 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4436 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4437 } else {
4438 kfree_skb_partial(skb, fragstolen);
4439 skb = NULL;
4440 }
4441
4442 if (!tp->rx_opt.num_sacks ||
4443 tp->selective_acks[0].end_seq != seq)
4444 goto add_sack;
4445
4446 /* Common case: data arrive in order after hole. */
4447 tp->selective_acks[0].end_seq = end_seq;
4448 goto end;
4449 }
4450
4451 /* Find place to insert this segment. */
4452 while (1) {
4453 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4454 break;
4455 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4456 skb1 = NULL;
4457 break;
4458 }
4459 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4460 }
4461
4462 /* Do skb overlap to previous one? */
4463 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4464 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4465 /* All the bits are present. Drop. */
4466 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4467 __kfree_skb(skb);
4468 skb = NULL;
4469 tcp_dsack_set(sk, seq, end_seq);
4470 goto add_sack;
4471 }
4472 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4473 /* Partial overlap. */
4474 tcp_dsack_set(sk, seq,
4475 TCP_SKB_CB(skb1)->end_seq);
4476 } else {
4477 if (skb_queue_is_first(&tp->out_of_order_queue,
4478 skb1))
4479 skb1 = NULL;
4480 else
4481 skb1 = skb_queue_prev(
4482 &tp->out_of_order_queue,
4483 skb1);
4484 }
4485 }
4486 if (!skb1)
4487 __skb_queue_head(&tp->out_of_order_queue, skb);
4488 else
4489 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4490
4491 /* And clean segments covered by new one as whole. */
4492 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4493 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4494
4495 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4496 break;
4497 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4498 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4499 end_seq);
4500 break;
4501 }
4502 __skb_unlink(skb1, &tp->out_of_order_queue);
4503 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4504 TCP_SKB_CB(skb1)->end_seq);
4505 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4506 __kfree_skb(skb1);
4507 }
4508
4509 add_sack:
4510 if (tcp_is_sack(tp))
4511 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4512 end:
4513 if (skb)
4514 skb_set_owner_r(skb, sk);
4515 }
4516
4517 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4518 bool *fragstolen)
4519 {
4520 int eaten;
4521 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4522
4523 __skb_pull(skb, hdrlen);
4524 eaten = (tail &&
4525 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4526 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4527 if (!eaten) {
4528 __skb_queue_tail(&sk->sk_receive_queue, skb);
4529 skb_set_owner_r(skb, sk);
4530 }
4531 return eaten;
4532 }
4533
4534 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4535 {
4536 struct sk_buff *skb = NULL;
4537 struct tcphdr *th;
4538 bool fragstolen;
4539
4540 if (size == 0)
4541 return 0;
4542
4543 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4544 if (!skb)
4545 goto err;
4546
4547 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4548 goto err_free;
4549
4550 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4551 skb_reset_transport_header(skb);
4552 memset(th, 0, sizeof(*th));
4553
4554 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4555 goto err_free;
4556
4557 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4558 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4559 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4560
4561 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4562 WARN_ON_ONCE(fragstolen); /* should not happen */
4563 __kfree_skb(skb);
4564 }
4565 return size;
4566
4567 err_free:
4568 kfree_skb(skb);
4569 err:
4570 return -ENOMEM;
4571 }
4572
4573 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4574 {
4575 const struct tcphdr *th = tcp_hdr(skb);
4576 struct tcp_sock *tp = tcp_sk(sk);
4577 int eaten = -1;
4578 bool fragstolen = false;
4579
4580 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4581 goto drop;
4582
4583 skb_dst_drop(skb);
4584 __skb_pull(skb, th->doff * 4);
4585
4586 TCP_ECN_accept_cwr(tp, skb);
4587
4588 tp->rx_opt.dsack = 0;
4589
4590 /* Queue data for delivery to the user.
4591 * Packets in sequence go to the receive queue.
4592 * Out of sequence packets to the out_of_order_queue.
4593 */
4594 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4595 if (tcp_receive_window(tp) == 0)
4596 goto out_of_window;
4597
4598 /* Ok. In sequence. In window. */
4599 if (tp->ucopy.task == current &&
4600 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4601 sock_owned_by_user(sk) && !tp->urg_data) {
4602 int chunk = min_t(unsigned int, skb->len,
4603 tp->ucopy.len);
4604
4605 __set_current_state(TASK_RUNNING);
4606
4607 local_bh_enable();
4608 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4609 tp->ucopy.len -= chunk;
4610 tp->copied_seq += chunk;
4611 eaten = (chunk == skb->len);
4612 tcp_rcv_space_adjust(sk);
4613 }
4614 local_bh_disable();
4615 }
4616
4617 if (eaten <= 0) {
4618 queue_and_out:
4619 if (eaten < 0 &&
4620 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4621 goto drop;
4622
4623 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4624 }
4625 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4626 if (skb->len)
4627 tcp_event_data_recv(sk, skb);
4628 if (th->fin)
4629 tcp_fin(sk);
4630
4631 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4632 tcp_ofo_queue(sk);
4633
4634 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4635 * gap in queue is filled.
4636 */
4637 if (skb_queue_empty(&tp->out_of_order_queue))
4638 inet_csk(sk)->icsk_ack.pingpong = 0;
4639 }
4640
4641 if (tp->rx_opt.num_sacks)
4642 tcp_sack_remove(tp);
4643
4644 tcp_fast_path_check(sk);
4645
4646 if (eaten > 0)
4647 kfree_skb_partial(skb, fragstolen);
4648 if (!sock_flag(sk, SOCK_DEAD))
4649 sk->sk_data_ready(sk, 0);
4650 return;
4651 }
4652
4653 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4654 /* A retransmit, 2nd most common case. Force an immediate ack. */
4655 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4656 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4657
4658 out_of_window:
4659 tcp_enter_quickack_mode(sk);
4660 inet_csk_schedule_ack(sk);
4661 drop:
4662 __kfree_skb(skb);
4663 return;
4664 }
4665
4666 /* Out of window. F.e. zero window probe. */
4667 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4668 goto out_of_window;
4669
4670 tcp_enter_quickack_mode(sk);
4671
4672 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4673 /* Partial packet, seq < rcv_next < end_seq */
4674 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4675 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4676 TCP_SKB_CB(skb)->end_seq);
4677
4678 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4679
4680 /* If window is closed, drop tail of packet. But after
4681 * remembering D-SACK for its head made in previous line.
4682 */
4683 if (!tcp_receive_window(tp))
4684 goto out_of_window;
4685 goto queue_and_out;
4686 }
4687
4688 tcp_data_queue_ofo(sk, skb);
4689 }
4690
4691 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4692 struct sk_buff_head *list)
4693 {
4694 struct sk_buff *next = NULL;
4695
4696 if (!skb_queue_is_last(list, skb))
4697 next = skb_queue_next(list, skb);
4698
4699 __skb_unlink(skb, list);
4700 __kfree_skb(skb);
4701 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4702
4703 return next;
4704 }
4705
4706 /* Collapse contiguous sequence of skbs head..tail with
4707 * sequence numbers start..end.
4708 *
4709 * If tail is NULL, this means until the end of the list.
4710 *
4711 * Segments with FIN/SYN are not collapsed (only because this
4712 * simplifies code)
4713 */
4714 static void
4715 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4716 struct sk_buff *head, struct sk_buff *tail,
4717 u32 start, u32 end)
4718 {
4719 struct sk_buff *skb, *n;
4720 bool end_of_skbs;
4721
4722 /* First, check that queue is collapsible and find
4723 * the point where collapsing can be useful. */
4724 skb = head;
4725 restart:
4726 end_of_skbs = true;
4727 skb_queue_walk_from_safe(list, skb, n) {
4728 if (skb == tail)
4729 break;
4730 /* No new bits? It is possible on ofo queue. */
4731 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4732 skb = tcp_collapse_one(sk, skb, list);
4733 if (!skb)
4734 break;
4735 goto restart;
4736 }
4737
4738 /* The first skb to collapse is:
4739 * - not SYN/FIN and
4740 * - bloated or contains data before "start" or
4741 * overlaps to the next one.
4742 */
4743 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4744 (tcp_win_from_space(skb->truesize) > skb->len ||
4745 before(TCP_SKB_CB(skb)->seq, start))) {
4746 end_of_skbs = false;
4747 break;
4748 }
4749
4750 if (!skb_queue_is_last(list, skb)) {
4751 struct sk_buff *next = skb_queue_next(list, skb);
4752 if (next != tail &&
4753 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4754 end_of_skbs = false;
4755 break;
4756 }
4757 }
4758
4759 /* Decided to skip this, advance start seq. */
4760 start = TCP_SKB_CB(skb)->end_seq;
4761 }
4762 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4763 return;
4764
4765 while (before(start, end)) {
4766 struct sk_buff *nskb;
4767 unsigned int header = skb_headroom(skb);
4768 int copy = SKB_MAX_ORDER(header, 0);
4769
4770 /* Too big header? This can happen with IPv6. */
4771 if (copy < 0)
4772 return;
4773 if (end - start < copy)
4774 copy = end - start;
4775 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4776 if (!nskb)
4777 return;
4778
4779 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4780 skb_set_network_header(nskb, (skb_network_header(skb) -
4781 skb->head));
4782 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4783 skb->head));
4784 skb_reserve(nskb, header);
4785 memcpy(nskb->head, skb->head, header);
4786 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4787 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4788 __skb_queue_before(list, skb, nskb);
4789 skb_set_owner_r(nskb, sk);
4790
4791 /* Copy data, releasing collapsed skbs. */
4792 while (copy > 0) {
4793 int offset = start - TCP_SKB_CB(skb)->seq;
4794 int size = TCP_SKB_CB(skb)->end_seq - start;
4795
4796 BUG_ON(offset < 0);
4797 if (size > 0) {
4798 size = min(copy, size);
4799 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4800 BUG();
4801 TCP_SKB_CB(nskb)->end_seq += size;
4802 copy -= size;
4803 start += size;
4804 }
4805 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4806 skb = tcp_collapse_one(sk, skb, list);
4807 if (!skb ||
4808 skb == tail ||
4809 tcp_hdr(skb)->syn ||
4810 tcp_hdr(skb)->fin)
4811 return;
4812 }
4813 }
4814 }
4815 }
4816
4817 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4818 * and tcp_collapse() them until all the queue is collapsed.
4819 */
4820 static void tcp_collapse_ofo_queue(struct sock *sk)
4821 {
4822 struct tcp_sock *tp = tcp_sk(sk);
4823 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4824 struct sk_buff *head;
4825 u32 start, end;
4826
4827 if (skb == NULL)
4828 return;
4829
4830 start = TCP_SKB_CB(skb)->seq;
4831 end = TCP_SKB_CB(skb)->end_seq;
4832 head = skb;
4833
4834 for (;;) {
4835 struct sk_buff *next = NULL;
4836
4837 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4838 next = skb_queue_next(&tp->out_of_order_queue, skb);
4839 skb = next;
4840
4841 /* Segment is terminated when we see gap or when
4842 * we are at the end of all the queue. */
4843 if (!skb ||
4844 after(TCP_SKB_CB(skb)->seq, end) ||
4845 before(TCP_SKB_CB(skb)->end_seq, start)) {
4846 tcp_collapse(sk, &tp->out_of_order_queue,
4847 head, skb, start, end);
4848 head = skb;
4849 if (!skb)
4850 break;
4851 /* Start new segment */
4852 start = TCP_SKB_CB(skb)->seq;
4853 end = TCP_SKB_CB(skb)->end_seq;
4854 } else {
4855 if (before(TCP_SKB_CB(skb)->seq, start))
4856 start = TCP_SKB_CB(skb)->seq;
4857 if (after(TCP_SKB_CB(skb)->end_seq, end))
4858 end = TCP_SKB_CB(skb)->end_seq;
4859 }
4860 }
4861 }
4862
4863 /*
4864 * Purge the out-of-order queue.
4865 * Return true if queue was pruned.
4866 */
4867 static bool tcp_prune_ofo_queue(struct sock *sk)
4868 {
4869 struct tcp_sock *tp = tcp_sk(sk);
4870 bool res = false;
4871
4872 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4873 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4874 __skb_queue_purge(&tp->out_of_order_queue);
4875
4876 /* Reset SACK state. A conforming SACK implementation will
4877 * do the same at a timeout based retransmit. When a connection
4878 * is in a sad state like this, we care only about integrity
4879 * of the connection not performance.
4880 */
4881 if (tp->rx_opt.sack_ok)
4882 tcp_sack_reset(&tp->rx_opt);
4883 sk_mem_reclaim(sk);
4884 res = true;
4885 }
4886 return res;
4887 }
4888
4889 /* Reduce allocated memory if we can, trying to get
4890 * the socket within its memory limits again.
4891 *
4892 * Return less than zero if we should start dropping frames
4893 * until the socket owning process reads some of the data
4894 * to stabilize the situation.
4895 */
4896 static int tcp_prune_queue(struct sock *sk)
4897 {
4898 struct tcp_sock *tp = tcp_sk(sk);
4899
4900 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4901
4902 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4903
4904 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4905 tcp_clamp_window(sk);
4906 else if (sk_under_memory_pressure(sk))
4907 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4908
4909 tcp_collapse_ofo_queue(sk);
4910 if (!skb_queue_empty(&sk->sk_receive_queue))
4911 tcp_collapse(sk, &sk->sk_receive_queue,
4912 skb_peek(&sk->sk_receive_queue),
4913 NULL,
4914 tp->copied_seq, tp->rcv_nxt);
4915 sk_mem_reclaim(sk);
4916
4917 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4918 return 0;
4919
4920 /* Collapsing did not help, destructive actions follow.
4921 * This must not ever occur. */
4922
4923 tcp_prune_ofo_queue(sk);
4924
4925 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4926 return 0;
4927
4928 /* If we are really being abused, tell the caller to silently
4929 * drop receive data on the floor. It will get retransmitted
4930 * and hopefully then we'll have sufficient space.
4931 */
4932 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4933
4934 /* Massive buffer overcommit. */
4935 tp->pred_flags = 0;
4936 return -1;
4937 }
4938
4939 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4940 * As additional protections, we do not touch cwnd in retransmission phases,
4941 * and if application hit its sndbuf limit recently.
4942 */
4943 void tcp_cwnd_application_limited(struct sock *sk)
4944 {
4945 struct tcp_sock *tp = tcp_sk(sk);
4946
4947 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4948 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4949 /* Limited by application or receiver window. */
4950 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4951 u32 win_used = max(tp->snd_cwnd_used, init_win);
4952 if (win_used < tp->snd_cwnd) {
4953 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4954 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4955 }
4956 tp->snd_cwnd_used = 0;
4957 }
4958 tp->snd_cwnd_stamp = tcp_time_stamp;
4959 }
4960
4961 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4962 {
4963 const struct tcp_sock *tp = tcp_sk(sk);
4964
4965 /* If the user specified a specific send buffer setting, do
4966 * not modify it.
4967 */
4968 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4969 return false;
4970
4971 /* If we are under global TCP memory pressure, do not expand. */
4972 if (sk_under_memory_pressure(sk))
4973 return false;
4974
4975 /* If we are under soft global TCP memory pressure, do not expand. */
4976 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4977 return false;
4978
4979 /* If we filled the congestion window, do not expand. */
4980 if (tp->packets_out >= tp->snd_cwnd)
4981 return false;
4982
4983 return true;
4984 }
4985
4986 /* When incoming ACK allowed to free some skb from write_queue,
4987 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4988 * on the exit from tcp input handler.
4989 *
4990 * PROBLEM: sndbuf expansion does not work well with largesend.
4991 */
4992 static void tcp_new_space(struct sock *sk)
4993 {
4994 struct tcp_sock *tp = tcp_sk(sk);
4995
4996 if (tcp_should_expand_sndbuf(sk)) {
4997 int sndmem = SKB_TRUESIZE(max_t(u32,
4998 tp->rx_opt.mss_clamp,
4999 tp->mss_cache) +
5000 MAX_TCP_HEADER);
5001 int demanded = max_t(unsigned int, tp->snd_cwnd,
5002 tp->reordering + 1);
5003 sndmem *= 2 * demanded;
5004 if (sndmem > sk->sk_sndbuf)
5005 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5006 tp->snd_cwnd_stamp = tcp_time_stamp;
5007 }
5008
5009 sk->sk_write_space(sk);
5010 }
5011
5012 static void tcp_check_space(struct sock *sk)
5013 {
5014 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5015 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5016 if (sk->sk_socket &&
5017 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5018 tcp_new_space(sk);
5019 }
5020 }
5021
5022 static inline void tcp_data_snd_check(struct sock *sk)
5023 {
5024 tcp_push_pending_frames(sk);
5025 tcp_check_space(sk);
5026 }
5027
5028 /*
5029 * Check if sending an ack is needed.
5030 */
5031 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5032 {
5033 struct tcp_sock *tp = tcp_sk(sk);
5034
5035 /* More than one full frame received... */
5036 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5037 /* ... and right edge of window advances far enough.
5038 * (tcp_recvmsg() will send ACK otherwise). Or...
5039 */
5040 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5041 /* We ACK each frame or... */
5042 tcp_in_quickack_mode(sk) ||
5043 /* We have out of order data. */
5044 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5045 /* Then ack it now */
5046 tcp_send_ack(sk);
5047 } else {
5048 /* Else, send delayed ack. */
5049 tcp_send_delayed_ack(sk);
5050 }
5051 }
5052
5053 static inline void tcp_ack_snd_check(struct sock *sk)
5054 {
5055 if (!inet_csk_ack_scheduled(sk)) {
5056 /* We sent a data segment already. */
5057 return;
5058 }
5059 __tcp_ack_snd_check(sk, 1);
5060 }
5061
5062 /*
5063 * This routine is only called when we have urgent data
5064 * signaled. Its the 'slow' part of tcp_urg. It could be
5065 * moved inline now as tcp_urg is only called from one
5066 * place. We handle URGent data wrong. We have to - as
5067 * BSD still doesn't use the correction from RFC961.
5068 * For 1003.1g we should support a new option TCP_STDURG to permit
5069 * either form (or just set the sysctl tcp_stdurg).
5070 */
5071
5072 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5073 {
5074 struct tcp_sock *tp = tcp_sk(sk);
5075 u32 ptr = ntohs(th->urg_ptr);
5076
5077 if (ptr && !sysctl_tcp_stdurg)
5078 ptr--;
5079 ptr += ntohl(th->seq);
5080
5081 /* Ignore urgent data that we've already seen and read. */
5082 if (after(tp->copied_seq, ptr))
5083 return;
5084
5085 /* Do not replay urg ptr.
5086 *
5087 * NOTE: interesting situation not covered by specs.
5088 * Misbehaving sender may send urg ptr, pointing to segment,
5089 * which we already have in ofo queue. We are not able to fetch
5090 * such data and will stay in TCP_URG_NOTYET until will be eaten
5091 * by recvmsg(). Seems, we are not obliged to handle such wicked
5092 * situations. But it is worth to think about possibility of some
5093 * DoSes using some hypothetical application level deadlock.
5094 */
5095 if (before(ptr, tp->rcv_nxt))
5096 return;
5097
5098 /* Do we already have a newer (or duplicate) urgent pointer? */
5099 if (tp->urg_data && !after(ptr, tp->urg_seq))
5100 return;
5101
5102 /* Tell the world about our new urgent pointer. */
5103 sk_send_sigurg(sk);
5104
5105 /* We may be adding urgent data when the last byte read was
5106 * urgent. To do this requires some care. We cannot just ignore
5107 * tp->copied_seq since we would read the last urgent byte again
5108 * as data, nor can we alter copied_seq until this data arrives
5109 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5110 *
5111 * NOTE. Double Dutch. Rendering to plain English: author of comment
5112 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5113 * and expect that both A and B disappear from stream. This is _wrong_.
5114 * Though this happens in BSD with high probability, this is occasional.
5115 * Any application relying on this is buggy. Note also, that fix "works"
5116 * only in this artificial test. Insert some normal data between A and B and we will
5117 * decline of BSD again. Verdict: it is better to remove to trap
5118 * buggy users.
5119 */
5120 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5121 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5122 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5123 tp->copied_seq++;
5124 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5125 __skb_unlink(skb, &sk->sk_receive_queue);
5126 __kfree_skb(skb);
5127 }
5128 }
5129
5130 tp->urg_data = TCP_URG_NOTYET;
5131 tp->urg_seq = ptr;
5132
5133 /* Disable header prediction. */
5134 tp->pred_flags = 0;
5135 }
5136
5137 /* This is the 'fast' part of urgent handling. */
5138 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5139 {
5140 struct tcp_sock *tp = tcp_sk(sk);
5141
5142 /* Check if we get a new urgent pointer - normally not. */
5143 if (th->urg)
5144 tcp_check_urg(sk, th);
5145
5146 /* Do we wait for any urgent data? - normally not... */
5147 if (tp->urg_data == TCP_URG_NOTYET) {
5148 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5149 th->syn;
5150
5151 /* Is the urgent pointer pointing into this packet? */
5152 if (ptr < skb->len) {
5153 u8 tmp;
5154 if (skb_copy_bits(skb, ptr, &tmp, 1))
5155 BUG();
5156 tp->urg_data = TCP_URG_VALID | tmp;
5157 if (!sock_flag(sk, SOCK_DEAD))
5158 sk->sk_data_ready(sk, 0);
5159 }
5160 }
5161 }
5162
5163 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5164 {
5165 struct tcp_sock *tp = tcp_sk(sk);
5166 int chunk = skb->len - hlen;
5167 int err;
5168
5169 local_bh_enable();
5170 if (skb_csum_unnecessary(skb))
5171 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5172 else
5173 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5174 tp->ucopy.iov);
5175
5176 if (!err) {
5177 tp->ucopy.len -= chunk;
5178 tp->copied_seq += chunk;
5179 tcp_rcv_space_adjust(sk);
5180 }
5181
5182 local_bh_disable();
5183 return err;
5184 }
5185
5186 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5187 struct sk_buff *skb)
5188 {
5189 __sum16 result;
5190
5191 if (sock_owned_by_user(sk)) {
5192 local_bh_enable();
5193 result = __tcp_checksum_complete(skb);
5194 local_bh_disable();
5195 } else {
5196 result = __tcp_checksum_complete(skb);
5197 }
5198 return result;
5199 }
5200
5201 static inline bool tcp_checksum_complete_user(struct sock *sk,
5202 struct sk_buff *skb)
5203 {
5204 return !skb_csum_unnecessary(skb) &&
5205 __tcp_checksum_complete_user(sk, skb);
5206 }
5207
5208 #ifdef CONFIG_NET_DMA
5209 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5210 int hlen)
5211 {
5212 struct tcp_sock *tp = tcp_sk(sk);
5213 int chunk = skb->len - hlen;
5214 int dma_cookie;
5215 bool copied_early = false;
5216
5217 if (tp->ucopy.wakeup)
5218 return false;
5219
5220 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5221 tp->ucopy.dma_chan = net_dma_find_channel();
5222
5223 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5224
5225 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5226 skb, hlen,
5227 tp->ucopy.iov, chunk,
5228 tp->ucopy.pinned_list);
5229
5230 if (dma_cookie < 0)
5231 goto out;
5232
5233 tp->ucopy.dma_cookie = dma_cookie;
5234 copied_early = true;
5235
5236 tp->ucopy.len -= chunk;
5237 tp->copied_seq += chunk;
5238 tcp_rcv_space_adjust(sk);
5239
5240 if ((tp->ucopy.len == 0) ||
5241 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5242 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5243 tp->ucopy.wakeup = 1;
5244 sk->sk_data_ready(sk, 0);
5245 }
5246 } else if (chunk > 0) {
5247 tp->ucopy.wakeup = 1;
5248 sk->sk_data_ready(sk, 0);
5249 }
5250 out:
5251 return copied_early;
5252 }
5253 #endif /* CONFIG_NET_DMA */
5254
5255 /* Does PAWS and seqno based validation of an incoming segment, flags will
5256 * play significant role here.
5257 */
5258 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5259 const struct tcphdr *th, int syn_inerr)
5260 {
5261 const u8 *hash_location;
5262 struct tcp_sock *tp = tcp_sk(sk);
5263
5264 /* RFC1323: H1. Apply PAWS check first. */
5265 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5266 tp->rx_opt.saw_tstamp &&
5267 tcp_paws_discard(sk, skb)) {
5268 if (!th->rst) {
5269 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5270 tcp_send_dupack(sk, skb);
5271 goto discard;
5272 }
5273 /* Reset is accepted even if it did not pass PAWS. */
5274 }
5275
5276 /* Step 1: check sequence number */
5277 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5278 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5279 * (RST) segments are validated by checking their SEQ-fields."
5280 * And page 69: "If an incoming segment is not acceptable,
5281 * an acknowledgment should be sent in reply (unless the RST
5282 * bit is set, if so drop the segment and return)".
5283 */
5284 if (!th->rst) {
5285 if (th->syn)
5286 goto syn_challenge;
5287 tcp_send_dupack(sk, skb);
5288 }
5289 goto discard;
5290 }
5291
5292 /* Step 2: check RST bit */
5293 if (th->rst) {
5294 /* RFC 5961 3.2 :
5295 * If sequence number exactly matches RCV.NXT, then
5296 * RESET the connection
5297 * else
5298 * Send a challenge ACK
5299 */
5300 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5301 tcp_reset(sk);
5302 else
5303 tcp_send_challenge_ack(sk);
5304 goto discard;
5305 }
5306
5307 /* step 3: check security and precedence [ignored] */
5308
5309 /* step 4: Check for a SYN
5310 * RFC 5691 4.2 : Send a challenge ack
5311 */
5312 if (th->syn) {
5313 syn_challenge:
5314 if (syn_inerr)
5315 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5317 tcp_send_challenge_ack(sk);
5318 goto discard;
5319 }
5320
5321 return true;
5322
5323 discard:
5324 __kfree_skb(skb);
5325 return false;
5326 }
5327
5328 /*
5329 * TCP receive function for the ESTABLISHED state.
5330 *
5331 * It is split into a fast path and a slow path. The fast path is
5332 * disabled when:
5333 * - A zero window was announced from us - zero window probing
5334 * is only handled properly in the slow path.
5335 * - Out of order segments arrived.
5336 * - Urgent data is expected.
5337 * - There is no buffer space left
5338 * - Unexpected TCP flags/window values/header lengths are received
5339 * (detected by checking the TCP header against pred_flags)
5340 * - Data is sent in both directions. Fast path only supports pure senders
5341 * or pure receivers (this means either the sequence number or the ack
5342 * value must stay constant)
5343 * - Unexpected TCP option.
5344 *
5345 * When these conditions are not satisfied it drops into a standard
5346 * receive procedure patterned after RFC793 to handle all cases.
5347 * The first three cases are guaranteed by proper pred_flags setting,
5348 * the rest is checked inline. Fast processing is turned on in
5349 * tcp_data_queue when everything is OK.
5350 */
5351 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5352 const struct tcphdr *th, unsigned int len)
5353 {
5354 struct tcp_sock *tp = tcp_sk(sk);
5355
5356 if (unlikely(sk->sk_rx_dst == NULL))
5357 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5358 /*
5359 * Header prediction.
5360 * The code loosely follows the one in the famous
5361 * "30 instruction TCP receive" Van Jacobson mail.
5362 *
5363 * Van's trick is to deposit buffers into socket queue
5364 * on a device interrupt, to call tcp_recv function
5365 * on the receive process context and checksum and copy
5366 * the buffer to user space. smart...
5367 *
5368 * Our current scheme is not silly either but we take the
5369 * extra cost of the net_bh soft interrupt processing...
5370 * We do checksum and copy also but from device to kernel.
5371 */
5372
5373 tp->rx_opt.saw_tstamp = 0;
5374
5375 /* pred_flags is 0xS?10 << 16 + snd_wnd
5376 * if header_prediction is to be made
5377 * 'S' will always be tp->tcp_header_len >> 2
5378 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5379 * turn it off (when there are holes in the receive
5380 * space for instance)
5381 * PSH flag is ignored.
5382 */
5383
5384 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5385 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5386 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5387 int tcp_header_len = tp->tcp_header_len;
5388
5389 /* Timestamp header prediction: tcp_header_len
5390 * is automatically equal to th->doff*4 due to pred_flags
5391 * match.
5392 */
5393
5394 /* Check timestamp */
5395 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5396 /* No? Slow path! */
5397 if (!tcp_parse_aligned_timestamp(tp, th))
5398 goto slow_path;
5399
5400 /* If PAWS failed, check it more carefully in slow path */
5401 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5402 goto slow_path;
5403
5404 /* DO NOT update ts_recent here, if checksum fails
5405 * and timestamp was corrupted part, it will result
5406 * in a hung connection since we will drop all
5407 * future packets due to the PAWS test.
5408 */
5409 }
5410
5411 if (len <= tcp_header_len) {
5412 /* Bulk data transfer: sender */
5413 if (len == tcp_header_len) {
5414 /* Predicted packet is in window by definition.
5415 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5416 * Hence, check seq<=rcv_wup reduces to:
5417 */
5418 if (tcp_header_len ==
5419 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5420 tp->rcv_nxt == tp->rcv_wup)
5421 tcp_store_ts_recent(tp);
5422
5423 /* We know that such packets are checksummed
5424 * on entry.
5425 */
5426 tcp_ack(sk, skb, 0);
5427 __kfree_skb(skb);
5428 tcp_data_snd_check(sk);
5429 return 0;
5430 } else { /* Header too small */
5431 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5432 goto discard;
5433 }
5434 } else {
5435 int eaten = 0;
5436 int copied_early = 0;
5437 bool fragstolen = false;
5438
5439 if (tp->copied_seq == tp->rcv_nxt &&
5440 len - tcp_header_len <= tp->ucopy.len) {
5441 #ifdef CONFIG_NET_DMA
5442 if (tp->ucopy.task == current &&
5443 sock_owned_by_user(sk) &&
5444 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5445 copied_early = 1;
5446 eaten = 1;
5447 }
5448 #endif
5449 if (tp->ucopy.task == current &&
5450 sock_owned_by_user(sk) && !copied_early) {
5451 __set_current_state(TASK_RUNNING);
5452
5453 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5454 eaten = 1;
5455 }
5456 if (eaten) {
5457 /* Predicted packet is in window by definition.
5458 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5459 * Hence, check seq<=rcv_wup reduces to:
5460 */
5461 if (tcp_header_len ==
5462 (sizeof(struct tcphdr) +
5463 TCPOLEN_TSTAMP_ALIGNED) &&
5464 tp->rcv_nxt == tp->rcv_wup)
5465 tcp_store_ts_recent(tp);
5466
5467 tcp_rcv_rtt_measure_ts(sk, skb);
5468
5469 __skb_pull(skb, tcp_header_len);
5470 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5472 }
5473 if (copied_early)
5474 tcp_cleanup_rbuf(sk, skb->len);
5475 }
5476 if (!eaten) {
5477 if (tcp_checksum_complete_user(sk, skb))
5478 goto csum_error;
5479
5480 /* Predicted packet is in window by definition.
5481 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5482 * Hence, check seq<=rcv_wup reduces to:
5483 */
5484 if (tcp_header_len ==
5485 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5486 tp->rcv_nxt == tp->rcv_wup)
5487 tcp_store_ts_recent(tp);
5488
5489 tcp_rcv_rtt_measure_ts(sk, skb);
5490
5491 if ((int)skb->truesize > sk->sk_forward_alloc)
5492 goto step5;
5493
5494 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5495
5496 /* Bulk data transfer: receiver */
5497 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5498 &fragstolen);
5499 }
5500
5501 tcp_event_data_recv(sk, skb);
5502
5503 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5504 /* Well, only one small jumplet in fast path... */
5505 tcp_ack(sk, skb, FLAG_DATA);
5506 tcp_data_snd_check(sk);
5507 if (!inet_csk_ack_scheduled(sk))
5508 goto no_ack;
5509 }
5510
5511 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5512 __tcp_ack_snd_check(sk, 0);
5513 no_ack:
5514 #ifdef CONFIG_NET_DMA
5515 if (copied_early)
5516 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5517 else
5518 #endif
5519 if (eaten)
5520 kfree_skb_partial(skb, fragstolen);
5521 sk->sk_data_ready(sk, 0);
5522 return 0;
5523 }
5524 }
5525
5526 slow_path:
5527 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5528 goto csum_error;
5529
5530 if (!th->ack && !th->rst)
5531 goto discard;
5532
5533 /*
5534 * Standard slow path.
5535 */
5536
5537 if (!tcp_validate_incoming(sk, skb, th, 1))
5538 return 0;
5539
5540 step5:
5541 if (tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5542 goto discard;
5543
5544 /* ts_recent update must be made after we are sure that the packet
5545 * is in window.
5546 */
5547 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5548
5549 tcp_rcv_rtt_measure_ts(sk, skb);
5550
5551 /* Process urgent data. */
5552 tcp_urg(sk, skb, th);
5553
5554 /* step 7: process the segment text */
5555 tcp_data_queue(sk, skb);
5556
5557 tcp_data_snd_check(sk);
5558 tcp_ack_snd_check(sk);
5559 return 0;
5560
5561 csum_error:
5562 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5563
5564 discard:
5565 __kfree_skb(skb);
5566 return 0;
5567 }
5568 EXPORT_SYMBOL(tcp_rcv_established);
5569
5570 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5571 {
5572 struct tcp_sock *tp = tcp_sk(sk);
5573 struct inet_connection_sock *icsk = inet_csk(sk);
5574
5575 tcp_set_state(sk, TCP_ESTABLISHED);
5576
5577 if (skb != NULL) {
5578 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5579 security_inet_conn_established(sk, skb);
5580 }
5581
5582 /* Make sure socket is routed, for correct metrics. */
5583 icsk->icsk_af_ops->rebuild_header(sk);
5584
5585 tcp_init_metrics(sk);
5586
5587 tcp_init_congestion_control(sk);
5588
5589 /* Prevent spurious tcp_cwnd_restart() on first data
5590 * packet.
5591 */
5592 tp->lsndtime = tcp_time_stamp;
5593
5594 tcp_init_buffer_space(sk);
5595
5596 if (sock_flag(sk, SOCK_KEEPOPEN))
5597 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5598
5599 if (!tp->rx_opt.snd_wscale)
5600 __tcp_fast_path_on(tp, tp->snd_wnd);
5601 else
5602 tp->pred_flags = 0;
5603
5604 if (!sock_flag(sk, SOCK_DEAD)) {
5605 sk->sk_state_change(sk);
5606 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5607 }
5608 }
5609
5610 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5611 struct tcp_fastopen_cookie *cookie)
5612 {
5613 struct tcp_sock *tp = tcp_sk(sk);
5614 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5615 u16 mss = tp->rx_opt.mss_clamp;
5616 bool syn_drop;
5617
5618 if (mss == tp->rx_opt.user_mss) {
5619 struct tcp_options_received opt;
5620 const u8 *hash_location;
5621
5622 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5623 tcp_clear_options(&opt);
5624 opt.user_mss = opt.mss_clamp = 0;
5625 tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5626 mss = opt.mss_clamp;
5627 }
5628
5629 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5630 cookie->len = -1;
5631
5632 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5633 * the remote receives only the retransmitted (regular) SYNs: either
5634 * the original SYN-data or the corresponding SYN-ACK is lost.
5635 */
5636 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5637
5638 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5639
5640 if (data) { /* Retransmit unacked data in SYN */
5641 tcp_for_write_queue_from(data, sk) {
5642 if (data == tcp_send_head(sk) ||
5643 __tcp_retransmit_skb(sk, data))
5644 break;
5645 }
5646 tcp_rearm_rto(sk);
5647 return true;
5648 }
5649 tp->syn_data_acked = tp->syn_data;
5650 return false;
5651 }
5652
5653 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5654 const struct tcphdr *th, unsigned int len)
5655 {
5656 const u8 *hash_location;
5657 struct inet_connection_sock *icsk = inet_csk(sk);
5658 struct tcp_sock *tp = tcp_sk(sk);
5659 struct tcp_cookie_values *cvp = tp->cookie_values;
5660 struct tcp_fastopen_cookie foc = { .len = -1 };
5661 int saved_clamp = tp->rx_opt.mss_clamp;
5662
5663 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5664
5665 if (th->ack) {
5666 /* rfc793:
5667 * "If the state is SYN-SENT then
5668 * first check the ACK bit
5669 * If the ACK bit is set
5670 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5671 * a reset (unless the RST bit is set, if so drop
5672 * the segment and return)"
5673 */
5674 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5675 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5676 goto reset_and_undo;
5677
5678 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5679 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5680 tcp_time_stamp)) {
5681 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5682 goto reset_and_undo;
5683 }
5684
5685 /* Now ACK is acceptable.
5686 *
5687 * "If the RST bit is set
5688 * If the ACK was acceptable then signal the user "error:
5689 * connection reset", drop the segment, enter CLOSED state,
5690 * delete TCB, and return."
5691 */
5692
5693 if (th->rst) {
5694 tcp_reset(sk);
5695 goto discard;
5696 }
5697
5698 /* rfc793:
5699 * "fifth, if neither of the SYN or RST bits is set then
5700 * drop the segment and return."
5701 *
5702 * See note below!
5703 * --ANK(990513)
5704 */
5705 if (!th->syn)
5706 goto discard_and_undo;
5707
5708 /* rfc793:
5709 * "If the SYN bit is on ...
5710 * are acceptable then ...
5711 * (our SYN has been ACKed), change the connection
5712 * state to ESTABLISHED..."
5713 */
5714
5715 TCP_ECN_rcv_synack(tp, th);
5716
5717 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5718 tcp_ack(sk, skb, FLAG_SLOWPATH);
5719
5720 /* Ok.. it's good. Set up sequence numbers and
5721 * move to established.
5722 */
5723 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5724 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5725
5726 /* RFC1323: The window in SYN & SYN/ACK segments is
5727 * never scaled.
5728 */
5729 tp->snd_wnd = ntohs(th->window);
5730
5731 if (!tp->rx_opt.wscale_ok) {
5732 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5733 tp->window_clamp = min(tp->window_clamp, 65535U);
5734 }
5735
5736 if (tp->rx_opt.saw_tstamp) {
5737 tp->rx_opt.tstamp_ok = 1;
5738 tp->tcp_header_len =
5739 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5740 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5741 tcp_store_ts_recent(tp);
5742 } else {
5743 tp->tcp_header_len = sizeof(struct tcphdr);
5744 }
5745
5746 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5747 tcp_enable_fack(tp);
5748
5749 tcp_mtup_init(sk);
5750 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5751 tcp_initialize_rcv_mss(sk);
5752
5753 /* Remember, tcp_poll() does not lock socket!
5754 * Change state from SYN-SENT only after copied_seq
5755 * is initialized. */
5756 tp->copied_seq = tp->rcv_nxt;
5757
5758 if (cvp != NULL &&
5759 cvp->cookie_pair_size > 0 &&
5760 tp->rx_opt.cookie_plus > 0) {
5761 int cookie_size = tp->rx_opt.cookie_plus
5762 - TCPOLEN_COOKIE_BASE;
5763 int cookie_pair_size = cookie_size
5764 + cvp->cookie_desired;
5765
5766 /* A cookie extension option was sent and returned.
5767 * Note that each incoming SYNACK replaces the
5768 * Responder cookie. The initial exchange is most
5769 * fragile, as protection against spoofing relies
5770 * entirely upon the sequence and timestamp (above).
5771 * This replacement strategy allows the correct pair to
5772 * pass through, while any others will be filtered via
5773 * Responder verification later.
5774 */
5775 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5776 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5777 hash_location, cookie_size);
5778 cvp->cookie_pair_size = cookie_pair_size;
5779 }
5780 }
5781
5782 smp_mb();
5783
5784 tcp_finish_connect(sk, skb);
5785
5786 if ((tp->syn_fastopen || tp->syn_data) &&
5787 tcp_rcv_fastopen_synack(sk, skb, &foc))
5788 return -1;
5789
5790 if (sk->sk_write_pending ||
5791 icsk->icsk_accept_queue.rskq_defer_accept ||
5792 icsk->icsk_ack.pingpong) {
5793 /* Save one ACK. Data will be ready after
5794 * several ticks, if write_pending is set.
5795 *
5796 * It may be deleted, but with this feature tcpdumps
5797 * look so _wonderfully_ clever, that I was not able
5798 * to stand against the temptation 8) --ANK
5799 */
5800 inet_csk_schedule_ack(sk);
5801 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5802 tcp_enter_quickack_mode(sk);
5803 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5804 TCP_DELACK_MAX, TCP_RTO_MAX);
5805
5806 discard:
5807 __kfree_skb(skb);
5808 return 0;
5809 } else {
5810 tcp_send_ack(sk);
5811 }
5812 return -1;
5813 }
5814
5815 /* No ACK in the segment */
5816
5817 if (th->rst) {
5818 /* rfc793:
5819 * "If the RST bit is set
5820 *
5821 * Otherwise (no ACK) drop the segment and return."
5822 */
5823
5824 goto discard_and_undo;
5825 }
5826
5827 /* PAWS check. */
5828 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5829 tcp_paws_reject(&tp->rx_opt, 0))
5830 goto discard_and_undo;
5831
5832 if (th->syn) {
5833 /* We see SYN without ACK. It is attempt of
5834 * simultaneous connect with crossed SYNs.
5835 * Particularly, it can be connect to self.
5836 */
5837 tcp_set_state(sk, TCP_SYN_RECV);
5838
5839 if (tp->rx_opt.saw_tstamp) {
5840 tp->rx_opt.tstamp_ok = 1;
5841 tcp_store_ts_recent(tp);
5842 tp->tcp_header_len =
5843 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5844 } else {
5845 tp->tcp_header_len = sizeof(struct tcphdr);
5846 }
5847
5848 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5849 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5850
5851 /* RFC1323: The window in SYN & SYN/ACK segments is
5852 * never scaled.
5853 */
5854 tp->snd_wnd = ntohs(th->window);
5855 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5856 tp->max_window = tp->snd_wnd;
5857
5858 TCP_ECN_rcv_syn(tp, th);
5859
5860 tcp_mtup_init(sk);
5861 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5862 tcp_initialize_rcv_mss(sk);
5863
5864 tcp_send_synack(sk);
5865 #if 0
5866 /* Note, we could accept data and URG from this segment.
5867 * There are no obstacles to make this (except that we must
5868 * either change tcp_recvmsg() to prevent it from returning data
5869 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5870 *
5871 * However, if we ignore data in ACKless segments sometimes,
5872 * we have no reasons to accept it sometimes.
5873 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5874 * is not flawless. So, discard packet for sanity.
5875 * Uncomment this return to process the data.
5876 */
5877 return -1;
5878 #else
5879 goto discard;
5880 #endif
5881 }
5882 /* "fifth, if neither of the SYN or RST bits is set then
5883 * drop the segment and return."
5884 */
5885
5886 discard_and_undo:
5887 tcp_clear_options(&tp->rx_opt);
5888 tp->rx_opt.mss_clamp = saved_clamp;
5889 goto discard;
5890
5891 reset_and_undo:
5892 tcp_clear_options(&tp->rx_opt);
5893 tp->rx_opt.mss_clamp = saved_clamp;
5894 return 1;
5895 }
5896
5897 /*
5898 * This function implements the receiving procedure of RFC 793 for
5899 * all states except ESTABLISHED and TIME_WAIT.
5900 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5901 * address independent.
5902 */
5903
5904 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5905 const struct tcphdr *th, unsigned int len)
5906 {
5907 struct tcp_sock *tp = tcp_sk(sk);
5908 struct inet_connection_sock *icsk = inet_csk(sk);
5909 struct request_sock *req;
5910 int queued = 0;
5911
5912 tp->rx_opt.saw_tstamp = 0;
5913
5914 switch (sk->sk_state) {
5915 case TCP_CLOSE:
5916 goto discard;
5917
5918 case TCP_LISTEN:
5919 if (th->ack)
5920 return 1;
5921
5922 if (th->rst)
5923 goto discard;
5924
5925 if (th->syn) {
5926 if (th->fin)
5927 goto discard;
5928 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5929 return 1;
5930
5931 /* Now we have several options: In theory there is
5932 * nothing else in the frame. KA9Q has an option to
5933 * send data with the syn, BSD accepts data with the
5934 * syn up to the [to be] advertised window and
5935 * Solaris 2.1 gives you a protocol error. For now
5936 * we just ignore it, that fits the spec precisely
5937 * and avoids incompatibilities. It would be nice in
5938 * future to drop through and process the data.
5939 *
5940 * Now that TTCP is starting to be used we ought to
5941 * queue this data.
5942 * But, this leaves one open to an easy denial of
5943 * service attack, and SYN cookies can't defend
5944 * against this problem. So, we drop the data
5945 * in the interest of security over speed unless
5946 * it's still in use.
5947 */
5948 kfree_skb(skb);
5949 return 0;
5950 }
5951 goto discard;
5952
5953 case TCP_SYN_SENT:
5954 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5955 if (queued >= 0)
5956 return queued;
5957
5958 /* Do step6 onward by hand. */
5959 tcp_urg(sk, skb, th);
5960 __kfree_skb(skb);
5961 tcp_data_snd_check(sk);
5962 return 0;
5963 }
5964
5965 req = tp->fastopen_rsk;
5966 if (req != NULL) {
5967 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5968 sk->sk_state != TCP_FIN_WAIT1);
5969
5970 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5971 goto discard;
5972 }
5973
5974 if (!th->ack && !th->rst)
5975 goto discard;
5976
5977 if (!tcp_validate_incoming(sk, skb, th, 0))
5978 return 0;
5979
5980 /* step 5: check the ACK field */
5981 if (true) {
5982 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5983
5984 switch (sk->sk_state) {
5985 case TCP_SYN_RECV:
5986 if (acceptable) {
5987 /* Once we leave TCP_SYN_RECV, we no longer
5988 * need req so release it.
5989 */
5990 if (req) {
5991 tcp_synack_rtt_meas(sk, req);
5992 tp->total_retrans = req->num_retrans;
5993
5994 reqsk_fastopen_remove(sk, req, false);
5995 } else {
5996 /* Make sure socket is routed, for
5997 * correct metrics.
5998 */
5999 icsk->icsk_af_ops->rebuild_header(sk);
6000 tcp_init_congestion_control(sk);
6001
6002 tcp_mtup_init(sk);
6003 tcp_init_buffer_space(sk);
6004 tp->copied_seq = tp->rcv_nxt;
6005 }
6006 smp_mb();
6007 tcp_set_state(sk, TCP_ESTABLISHED);
6008 sk->sk_state_change(sk);
6009
6010 /* Note, that this wakeup is only for marginal
6011 * crossed SYN case. Passively open sockets
6012 * are not waked up, because sk->sk_sleep ==
6013 * NULL and sk->sk_socket == NULL.
6014 */
6015 if (sk->sk_socket)
6016 sk_wake_async(sk,
6017 SOCK_WAKE_IO, POLL_OUT);
6018
6019 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6020 tp->snd_wnd = ntohs(th->window) <<
6021 tp->rx_opt.snd_wscale;
6022 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6023
6024 if (tp->rx_opt.tstamp_ok)
6025 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6026
6027 if (req) {
6028 /* Re-arm the timer because data may
6029 * have been sent out. This is similar
6030 * to the regular data transmission case
6031 * when new data has just been ack'ed.
6032 *
6033 * (TFO) - we could try to be more
6034 * aggressive and retranmitting any data
6035 * sooner based on when they were sent
6036 * out.
6037 */
6038 tcp_rearm_rto(sk);
6039 } else
6040 tcp_init_metrics(sk);
6041
6042 /* Prevent spurious tcp_cwnd_restart() on
6043 * first data packet.
6044 */
6045 tp->lsndtime = tcp_time_stamp;
6046
6047 tcp_initialize_rcv_mss(sk);
6048 tcp_fast_path_on(tp);
6049 } else {
6050 return 1;
6051 }
6052 break;
6053
6054 case TCP_FIN_WAIT1:
6055 /* If we enter the TCP_FIN_WAIT1 state and we are a
6056 * Fast Open socket and this is the first acceptable
6057 * ACK we have received, this would have acknowledged
6058 * our SYNACK so stop the SYNACK timer.
6059 */
6060 if (req != NULL) {
6061 /* Return RST if ack_seq is invalid.
6062 * Note that RFC793 only says to generate a
6063 * DUPACK for it but for TCP Fast Open it seems
6064 * better to treat this case like TCP_SYN_RECV
6065 * above.
6066 */
6067 if (!acceptable)
6068 return 1;
6069 /* We no longer need the request sock. */
6070 reqsk_fastopen_remove(sk, req, false);
6071 tcp_rearm_rto(sk);
6072 }
6073 if (tp->snd_una == tp->write_seq) {
6074 struct dst_entry *dst;
6075
6076 tcp_set_state(sk, TCP_FIN_WAIT2);
6077 sk->sk_shutdown |= SEND_SHUTDOWN;
6078
6079 dst = __sk_dst_get(sk);
6080 if (dst)
6081 dst_confirm(dst);
6082
6083 if (!sock_flag(sk, SOCK_DEAD))
6084 /* Wake up lingering close() */
6085 sk->sk_state_change(sk);
6086 else {
6087 int tmo;
6088
6089 if (tp->linger2 < 0 ||
6090 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6091 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6092 tcp_done(sk);
6093 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6094 return 1;
6095 }
6096
6097 tmo = tcp_fin_time(sk);
6098 if (tmo > TCP_TIMEWAIT_LEN) {
6099 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6100 } else if (th->fin || sock_owned_by_user(sk)) {
6101 /* Bad case. We could lose such FIN otherwise.
6102 * It is not a big problem, but it looks confusing
6103 * and not so rare event. We still can lose it now,
6104 * if it spins in bh_lock_sock(), but it is really
6105 * marginal case.
6106 */
6107 inet_csk_reset_keepalive_timer(sk, tmo);
6108 } else {
6109 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6110 goto discard;
6111 }
6112 }
6113 }
6114 break;
6115
6116 case TCP_CLOSING:
6117 if (tp->snd_una == tp->write_seq) {
6118 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6119 goto discard;
6120 }
6121 break;
6122
6123 case TCP_LAST_ACK:
6124 if (tp->snd_una == tp->write_seq) {
6125 tcp_update_metrics(sk);
6126 tcp_done(sk);
6127 goto discard;
6128 }
6129 break;
6130 }
6131 }
6132
6133 /* ts_recent update must be made after we are sure that the packet
6134 * is in window.
6135 */
6136 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
6137
6138 /* step 6: check the URG bit */
6139 tcp_urg(sk, skb, th);
6140
6141 /* step 7: process the segment text */
6142 switch (sk->sk_state) {
6143 case TCP_CLOSE_WAIT:
6144 case TCP_CLOSING:
6145 case TCP_LAST_ACK:
6146 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6147 break;
6148 case TCP_FIN_WAIT1:
6149 case TCP_FIN_WAIT2:
6150 /* RFC 793 says to queue data in these states,
6151 * RFC 1122 says we MUST send a reset.
6152 * BSD 4.4 also does reset.
6153 */
6154 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6155 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6156 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6157 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6158 tcp_reset(sk);
6159 return 1;
6160 }
6161 }
6162 /* Fall through */
6163 case TCP_ESTABLISHED:
6164 tcp_data_queue(sk, skb);
6165 queued = 1;
6166 break;
6167 }
6168
6169 /* tcp_data could move socket to TIME-WAIT */
6170 if (sk->sk_state != TCP_CLOSE) {
6171 tcp_data_snd_check(sk);
6172 tcp_ack_snd_check(sk);
6173 }
6174
6175 if (!queued) {
6176 discard:
6177 __kfree_skb(skb);
6178 }
6179 return 0;
6180 }
6181 EXPORT_SYMBOL(tcp_rcv_state_process);