Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_fack __read_mostly;
80 int sysctl_tcp_max_reordering __read_mostly = 300;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 1;
84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
85
86 /* rfc5961 challenge ack rate limiting */
87 int sysctl_tcp_challenge_ack_limit = 1000;
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
95 int sysctl_tcp_early_retrans __read_mostly = 3;
96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
97
98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
104 #define FLAG_ECE 0x40 /* ECE in this ACK */
105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
107 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
110 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
111 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
112 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
113 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
114
115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
119
120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
121 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
122
123 #define REXMIT_NONE 0 /* no loss recovery to do */
124 #define REXMIT_LOST 1 /* retransmit packets marked lost */
125 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
126
127 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
128 unsigned int len)
129 {
130 static bool __once __read_mostly;
131
132 if (!__once) {
133 struct net_device *dev;
134
135 __once = true;
136
137 rcu_read_lock();
138 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
139 if (!dev || len >= dev->mtu)
140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
141 dev ? dev->name : "Unknown driver");
142 rcu_read_unlock();
143 }
144 }
145
146 /* Adapt the MSS value used to make delayed ack decision to the
147 * real world.
148 */
149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
150 {
151 struct inet_connection_sock *icsk = inet_csk(sk);
152 const unsigned int lss = icsk->icsk_ack.last_seg_size;
153 unsigned int len;
154
155 icsk->icsk_ack.last_seg_size = 0;
156
157 /* skb->len may jitter because of SACKs, even if peer
158 * sends good full-sized frames.
159 */
160 len = skb_shinfo(skb)->gso_size ? : skb->len;
161 if (len >= icsk->icsk_ack.rcv_mss) {
162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
163 tcp_sk(sk)->advmss);
164 /* Account for possibly-removed options */
165 if (unlikely(len > icsk->icsk_ack.rcv_mss +
166 MAX_TCP_OPTION_SPACE))
167 tcp_gro_dev_warn(sk, skb, len);
168 } else {
169 /* Otherwise, we make more careful check taking into account,
170 * that SACKs block is variable.
171 *
172 * "len" is invariant segment length, including TCP header.
173 */
174 len += skb->data - skb_transport_header(skb);
175 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
176 /* If PSH is not set, packet should be
177 * full sized, provided peer TCP is not badly broken.
178 * This observation (if it is correct 8)) allows
179 * to handle super-low mtu links fairly.
180 */
181 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
182 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
183 /* Subtract also invariant (if peer is RFC compliant),
184 * tcp header plus fixed timestamp option length.
185 * Resulting "len" is MSS free of SACK jitter.
186 */
187 len -= tcp_sk(sk)->tcp_header_len;
188 icsk->icsk_ack.last_seg_size = len;
189 if (len == lss) {
190 icsk->icsk_ack.rcv_mss = len;
191 return;
192 }
193 }
194 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
197 }
198 }
199
200 static void tcp_incr_quickack(struct sock *sk)
201 {
202 struct inet_connection_sock *icsk = inet_csk(sk);
203 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
204
205 if (quickacks == 0)
206 quickacks = 2;
207 if (quickacks > icsk->icsk_ack.quick)
208 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
209 }
210
211 static void tcp_enter_quickack_mode(struct sock *sk)
212 {
213 struct inet_connection_sock *icsk = inet_csk(sk);
214 tcp_incr_quickack(sk);
215 icsk->icsk_ack.pingpong = 0;
216 icsk->icsk_ack.ato = TCP_ATO_MIN;
217 }
218
219 /* Send ACKs quickly, if "quick" count is not exhausted
220 * and the session is not interactive.
221 */
222
223 static bool tcp_in_quickack_mode(struct sock *sk)
224 {
225 const struct inet_connection_sock *icsk = inet_csk(sk);
226 const struct dst_entry *dst = __sk_dst_get(sk);
227
228 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
229 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
230 }
231
232 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
233 {
234 if (tp->ecn_flags & TCP_ECN_OK)
235 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
236 }
237
238 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
239 {
240 if (tcp_hdr(skb)->cwr)
241 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
242 }
243
244 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
245 {
246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
247 }
248
249 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
250 {
251 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
252 case INET_ECN_NOT_ECT:
253 /* Funny extension: if ECT is not set on a segment,
254 * and we already seen ECT on a previous segment,
255 * it is probably a retransmit.
256 */
257 if (tp->ecn_flags & TCP_ECN_SEEN)
258 tcp_enter_quickack_mode((struct sock *)tp);
259 break;
260 case INET_ECN_CE:
261 if (tcp_ca_needs_ecn((struct sock *)tp))
262 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
263
264 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
265 /* Better not delay acks, sender can have a very low cwnd */
266 tcp_enter_quickack_mode((struct sock *)tp);
267 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
268 }
269 tp->ecn_flags |= TCP_ECN_SEEN;
270 break;
271 default:
272 if (tcp_ca_needs_ecn((struct sock *)tp))
273 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
274 tp->ecn_flags |= TCP_ECN_SEEN;
275 break;
276 }
277 }
278
279 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
280 {
281 if (tp->ecn_flags & TCP_ECN_OK)
282 __tcp_ecn_check_ce(tp, skb);
283 }
284
285 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
286 {
287 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
288 tp->ecn_flags &= ~TCP_ECN_OK;
289 }
290
291 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
292 {
293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
294 tp->ecn_flags &= ~TCP_ECN_OK;
295 }
296
297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
298 {
299 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
300 return true;
301 return false;
302 }
303
304 /* Buffer size and advertised window tuning.
305 *
306 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
307 */
308
309 static void tcp_sndbuf_expand(struct sock *sk)
310 {
311 const struct tcp_sock *tp = tcp_sk(sk);
312 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
313 int sndmem, per_mss;
314 u32 nr_segs;
315
316 /* Worst case is non GSO/TSO : each frame consumes one skb
317 * and skb->head is kmalloced using power of two area of memory
318 */
319 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
320 MAX_TCP_HEADER +
321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
322
323 per_mss = roundup_pow_of_two(per_mss) +
324 SKB_DATA_ALIGN(sizeof(struct sk_buff));
325
326 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
327 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
328
329 /* Fast Recovery (RFC 5681 3.2) :
330 * Cubic needs 1.7 factor, rounded to 2 to include
331 * extra cushion (application might react slowly to POLLOUT)
332 */
333 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
334 sndmem *= nr_segs * per_mss;
335
336 if (sk->sk_sndbuf < sndmem)
337 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
338 }
339
340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
341 *
342 * All tcp_full_space() is split to two parts: "network" buffer, allocated
343 * forward and advertised in receiver window (tp->rcv_wnd) and
344 * "application buffer", required to isolate scheduling/application
345 * latencies from network.
346 * window_clamp is maximal advertised window. It can be less than
347 * tcp_full_space(), in this case tcp_full_space() - window_clamp
348 * is reserved for "application" buffer. The less window_clamp is
349 * the smoother our behaviour from viewpoint of network, but the lower
350 * throughput and the higher sensitivity of the connection to losses. 8)
351 *
352 * rcv_ssthresh is more strict window_clamp used at "slow start"
353 * phase to predict further behaviour of this connection.
354 * It is used for two goals:
355 * - to enforce header prediction at sender, even when application
356 * requires some significant "application buffer". It is check #1.
357 * - to prevent pruning of receive queue because of misprediction
358 * of receiver window. Check #2.
359 *
360 * The scheme does not work when sender sends good segments opening
361 * window and then starts to feed us spaghetti. But it should work
362 * in common situations. Otherwise, we have to rely on queue collapsing.
363 */
364
365 /* Slow part of check#2. */
366 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
367 {
368 struct tcp_sock *tp = tcp_sk(sk);
369 /* Optimize this! */
370 int truesize = tcp_win_from_space(skb->truesize) >> 1;
371 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
372
373 while (tp->rcv_ssthresh <= window) {
374 if (truesize <= skb->len)
375 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
376
377 truesize >>= 1;
378 window >>= 1;
379 }
380 return 0;
381 }
382
383 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
384 {
385 struct tcp_sock *tp = tcp_sk(sk);
386
387 /* Check #1 */
388 if (tp->rcv_ssthresh < tp->window_clamp &&
389 (int)tp->rcv_ssthresh < tcp_space(sk) &&
390 !tcp_under_memory_pressure(sk)) {
391 int incr;
392
393 /* Check #2. Increase window, if skb with such overhead
394 * will fit to rcvbuf in future.
395 */
396 if (tcp_win_from_space(skb->truesize) <= skb->len)
397 incr = 2 * tp->advmss;
398 else
399 incr = __tcp_grow_window(sk, skb);
400
401 if (incr) {
402 incr = max_t(int, incr, 2 * skb->len);
403 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
404 tp->window_clamp);
405 inet_csk(sk)->icsk_ack.quick |= 1;
406 }
407 }
408 }
409
410 /* 3. Tuning rcvbuf, when connection enters established state. */
411 static void tcp_fixup_rcvbuf(struct sock *sk)
412 {
413 u32 mss = tcp_sk(sk)->advmss;
414 int rcvmem;
415
416 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
417 tcp_default_init_rwnd(mss);
418
419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
420 * Allow enough cushion so that sender is not limited by our window
421 */
422 if (sysctl_tcp_moderate_rcvbuf)
423 rcvmem <<= 2;
424
425 if (sk->sk_rcvbuf < rcvmem)
426 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
427 }
428
429 /* 4. Try to fixup all. It is made immediately after connection enters
430 * established state.
431 */
432 void tcp_init_buffer_space(struct sock *sk)
433 {
434 struct tcp_sock *tp = tcp_sk(sk);
435 int maxwin;
436
437 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
438 tcp_fixup_rcvbuf(sk);
439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
440 tcp_sndbuf_expand(sk);
441
442 tp->rcvq_space.space = tp->rcv_wnd;
443 tcp_mstamp_refresh(tp);
444 tp->rcvq_space.time = tp->tcp_mstamp;
445 tp->rcvq_space.seq = tp->copied_seq;
446
447 maxwin = tcp_full_space(sk);
448
449 if (tp->window_clamp >= maxwin) {
450 tp->window_clamp = maxwin;
451
452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
453 tp->window_clamp = max(maxwin -
454 (maxwin >> sysctl_tcp_app_win),
455 4 * tp->advmss);
456 }
457
458 /* Force reservation of one segment. */
459 if (sysctl_tcp_app_win &&
460 tp->window_clamp > 2 * tp->advmss &&
461 tp->window_clamp + tp->advmss > maxwin)
462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
463
464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
465 tp->snd_cwnd_stamp = tcp_jiffies32;
466 }
467
468 /* 5. Recalculate window clamp after socket hit its memory bounds. */
469 static void tcp_clamp_window(struct sock *sk)
470 {
471 struct tcp_sock *tp = tcp_sk(sk);
472 struct inet_connection_sock *icsk = inet_csk(sk);
473
474 icsk->icsk_ack.quick = 0;
475
476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 !tcp_under_memory_pressure(sk) &&
479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 sysctl_tcp_rmem[2]);
482 }
483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
485 }
486
487 /* Initialize RCV_MSS value.
488 * RCV_MSS is an our guess about MSS used by the peer.
489 * We haven't any direct information about the MSS.
490 * It's better to underestimate the RCV_MSS rather than overestimate.
491 * Overestimations make us ACKing less frequently than needed.
492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493 */
494 void tcp_initialize_rcv_mss(struct sock *sk)
495 {
496 const struct tcp_sock *tp = tcp_sk(sk);
497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498
499 hint = min(hint, tp->rcv_wnd / 2);
500 hint = min(hint, TCP_MSS_DEFAULT);
501 hint = max(hint, TCP_MIN_MSS);
502
503 inet_csk(sk)->icsk_ack.rcv_mss = hint;
504 }
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
506
507 /* Receiver "autotuning" code.
508 *
509 * The algorithm for RTT estimation w/o timestamps is based on
510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
512 *
513 * More detail on this code can be found at
514 * <http://staff.psc.edu/jheffner/>,
515 * though this reference is out of date. A new paper
516 * is pending.
517 */
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519 {
520 u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 long m = sample;
522
523 if (m == 0)
524 m = 1;
525
526 if (new_sample != 0) {
527 /* If we sample in larger samples in the non-timestamp
528 * case, we could grossly overestimate the RTT especially
529 * with chatty applications or bulk transfer apps which
530 * are stalled on filesystem I/O.
531 *
532 * Also, since we are only going for a minimum in the
533 * non-timestamp case, we do not smooth things out
534 * else with timestamps disabled convergence takes too
535 * long.
536 */
537 if (!win_dep) {
538 m -= (new_sample >> 3);
539 new_sample += m;
540 } else {
541 m <<= 3;
542 if (m < new_sample)
543 new_sample = m;
544 }
545 } else {
546 /* No previous measure. */
547 new_sample = m << 3;
548 }
549
550 tp->rcv_rtt_est.rtt_us = new_sample;
551 }
552
553 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
554 {
555 u32 delta_us;
556
557 if (tp->rcv_rtt_est.time == 0)
558 goto new_measure;
559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 return;
561 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
562 tcp_rcv_rtt_update(tp, delta_us, 1);
563
564 new_measure:
565 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
566 tp->rcv_rtt_est.time = tp->tcp_mstamp;
567 }
568
569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
570 const struct sk_buff *skb)
571 {
572 struct tcp_sock *tp = tcp_sk(sk);
573
574 if (tp->rx_opt.rcv_tsecr &&
575 (TCP_SKB_CB(skb)->end_seq -
576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
577 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
578 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
579
580 tcp_rcv_rtt_update(tp, delta_us, 0);
581 }
582 }
583
584 /*
585 * This function should be called every time data is copied to user space.
586 * It calculates the appropriate TCP receive buffer space.
587 */
588 void tcp_rcv_space_adjust(struct sock *sk)
589 {
590 struct tcp_sock *tp = tcp_sk(sk);
591 int time;
592 int copied;
593
594 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
595 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
596 return;
597
598 /* Number of bytes copied to user in last RTT */
599 copied = tp->copied_seq - tp->rcvq_space.seq;
600 if (copied <= tp->rcvq_space.space)
601 goto new_measure;
602
603 /* A bit of theory :
604 * copied = bytes received in previous RTT, our base window
605 * To cope with packet losses, we need a 2x factor
606 * To cope with slow start, and sender growing its cwin by 100 %
607 * every RTT, we need a 4x factor, because the ACK we are sending
608 * now is for the next RTT, not the current one :
609 * <prev RTT . ><current RTT .. ><next RTT .... >
610 */
611
612 if (sysctl_tcp_moderate_rcvbuf &&
613 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
614 int rcvwin, rcvmem, rcvbuf;
615
616 /* minimal window to cope with packet losses, assuming
617 * steady state. Add some cushion because of small variations.
618 */
619 rcvwin = (copied << 1) + 16 * tp->advmss;
620
621 /* If rate increased by 25%,
622 * assume slow start, rcvwin = 3 * copied
623 * If rate increased by 50%,
624 * assume sender can use 2x growth, rcvwin = 4 * copied
625 */
626 if (copied >=
627 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
628 if (copied >=
629 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
630 rcvwin <<= 1;
631 else
632 rcvwin += (rcvwin >> 1);
633 }
634
635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
636 while (tcp_win_from_space(rcvmem) < tp->advmss)
637 rcvmem += 128;
638
639 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
640 if (rcvbuf > sk->sk_rcvbuf) {
641 sk->sk_rcvbuf = rcvbuf;
642
643 /* Make the window clamp follow along. */
644 tp->window_clamp = rcvwin;
645 }
646 }
647 tp->rcvq_space.space = copied;
648
649 new_measure:
650 tp->rcvq_space.seq = tp->copied_seq;
651 tp->rcvq_space.time = tp->tcp_mstamp;
652 }
653
654 /* There is something which you must keep in mind when you analyze the
655 * behavior of the tp->ato delayed ack timeout interval. When a
656 * connection starts up, we want to ack as quickly as possible. The
657 * problem is that "good" TCP's do slow start at the beginning of data
658 * transmission. The means that until we send the first few ACK's the
659 * sender will sit on his end and only queue most of his data, because
660 * he can only send snd_cwnd unacked packets at any given time. For
661 * each ACK we send, he increments snd_cwnd and transmits more of his
662 * queue. -DaveM
663 */
664 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
665 {
666 struct tcp_sock *tp = tcp_sk(sk);
667 struct inet_connection_sock *icsk = inet_csk(sk);
668 u32 now;
669
670 inet_csk_schedule_ack(sk);
671
672 tcp_measure_rcv_mss(sk, skb);
673
674 tcp_rcv_rtt_measure(tp);
675
676 now = tcp_jiffies32;
677
678 if (!icsk->icsk_ack.ato) {
679 /* The _first_ data packet received, initialize
680 * delayed ACK engine.
681 */
682 tcp_incr_quickack(sk);
683 icsk->icsk_ack.ato = TCP_ATO_MIN;
684 } else {
685 int m = now - icsk->icsk_ack.lrcvtime;
686
687 if (m <= TCP_ATO_MIN / 2) {
688 /* The fastest case is the first. */
689 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
690 } else if (m < icsk->icsk_ack.ato) {
691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
692 if (icsk->icsk_ack.ato > icsk->icsk_rto)
693 icsk->icsk_ack.ato = icsk->icsk_rto;
694 } else if (m > icsk->icsk_rto) {
695 /* Too long gap. Apparently sender failed to
696 * restart window, so that we send ACKs quickly.
697 */
698 tcp_incr_quickack(sk);
699 sk_mem_reclaim(sk);
700 }
701 }
702 icsk->icsk_ack.lrcvtime = now;
703
704 tcp_ecn_check_ce(tp, skb);
705
706 if (skb->len >= 128)
707 tcp_grow_window(sk, skb);
708 }
709
710 /* Called to compute a smoothed rtt estimate. The data fed to this
711 * routine either comes from timestamps, or from segments that were
712 * known _not_ to have been retransmitted [see Karn/Partridge
713 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
714 * piece by Van Jacobson.
715 * NOTE: the next three routines used to be one big routine.
716 * To save cycles in the RFC 1323 implementation it was better to break
717 * it up into three procedures. -- erics
718 */
719 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
720 {
721 struct tcp_sock *tp = tcp_sk(sk);
722 long m = mrtt_us; /* RTT */
723 u32 srtt = tp->srtt_us;
724
725 /* The following amusing code comes from Jacobson's
726 * article in SIGCOMM '88. Note that rtt and mdev
727 * are scaled versions of rtt and mean deviation.
728 * This is designed to be as fast as possible
729 * m stands for "measurement".
730 *
731 * On a 1990 paper the rto value is changed to:
732 * RTO = rtt + 4 * mdev
733 *
734 * Funny. This algorithm seems to be very broken.
735 * These formulae increase RTO, when it should be decreased, increase
736 * too slowly, when it should be increased quickly, decrease too quickly
737 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
738 * does not matter how to _calculate_ it. Seems, it was trap
739 * that VJ failed to avoid. 8)
740 */
741 if (srtt != 0) {
742 m -= (srtt >> 3); /* m is now error in rtt est */
743 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
744 if (m < 0) {
745 m = -m; /* m is now abs(error) */
746 m -= (tp->mdev_us >> 2); /* similar update on mdev */
747 /* This is similar to one of Eifel findings.
748 * Eifel blocks mdev updates when rtt decreases.
749 * This solution is a bit different: we use finer gain
750 * for mdev in this case (alpha*beta).
751 * Like Eifel it also prevents growth of rto,
752 * but also it limits too fast rto decreases,
753 * happening in pure Eifel.
754 */
755 if (m > 0)
756 m >>= 3;
757 } else {
758 m -= (tp->mdev_us >> 2); /* similar update on mdev */
759 }
760 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
761 if (tp->mdev_us > tp->mdev_max_us) {
762 tp->mdev_max_us = tp->mdev_us;
763 if (tp->mdev_max_us > tp->rttvar_us)
764 tp->rttvar_us = tp->mdev_max_us;
765 }
766 if (after(tp->snd_una, tp->rtt_seq)) {
767 if (tp->mdev_max_us < tp->rttvar_us)
768 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
769 tp->rtt_seq = tp->snd_nxt;
770 tp->mdev_max_us = tcp_rto_min_us(sk);
771 }
772 } else {
773 /* no previous measure. */
774 srtt = m << 3; /* take the measured time to be rtt */
775 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
776 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
777 tp->mdev_max_us = tp->rttvar_us;
778 tp->rtt_seq = tp->snd_nxt;
779 }
780 tp->srtt_us = max(1U, srtt);
781 }
782
783 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
784 * Note: TCP stack does not yet implement pacing.
785 * FQ packet scheduler can be used to implement cheap but effective
786 * TCP pacing, to smooth the burst on large writes when packets
787 * in flight is significantly lower than cwnd (or rwin)
788 */
789 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
790 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
791
792 static void tcp_update_pacing_rate(struct sock *sk)
793 {
794 const struct tcp_sock *tp = tcp_sk(sk);
795 u64 rate;
796
797 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
798 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
799
800 /* current rate is (cwnd * mss) / srtt
801 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
802 * In Congestion Avoidance phase, set it to 120 % the current rate.
803 *
804 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
805 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
806 * end of slow start and should slow down.
807 */
808 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
809 rate *= sysctl_tcp_pacing_ss_ratio;
810 else
811 rate *= sysctl_tcp_pacing_ca_ratio;
812
813 rate *= max(tp->snd_cwnd, tp->packets_out);
814
815 if (likely(tp->srtt_us))
816 do_div(rate, tp->srtt_us);
817
818 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
819 * without any lock. We want to make sure compiler wont store
820 * intermediate values in this location.
821 */
822 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
823 sk->sk_max_pacing_rate);
824 }
825
826 /* Calculate rto without backoff. This is the second half of Van Jacobson's
827 * routine referred to above.
828 */
829 static void tcp_set_rto(struct sock *sk)
830 {
831 const struct tcp_sock *tp = tcp_sk(sk);
832 /* Old crap is replaced with new one. 8)
833 *
834 * More seriously:
835 * 1. If rtt variance happened to be less 50msec, it is hallucination.
836 * It cannot be less due to utterly erratic ACK generation made
837 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
838 * to do with delayed acks, because at cwnd>2 true delack timeout
839 * is invisible. Actually, Linux-2.4 also generates erratic
840 * ACKs in some circumstances.
841 */
842 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
843
844 /* 2. Fixups made earlier cannot be right.
845 * If we do not estimate RTO correctly without them,
846 * all the algo is pure shit and should be replaced
847 * with correct one. It is exactly, which we pretend to do.
848 */
849
850 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
851 * guarantees that rto is higher.
852 */
853 tcp_bound_rto(sk);
854 }
855
856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
857 {
858 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
859
860 if (!cwnd)
861 cwnd = TCP_INIT_CWND;
862 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
863 }
864
865 /*
866 * Packet counting of FACK is based on in-order assumptions, therefore TCP
867 * disables it when reordering is detected
868 */
869 void tcp_disable_fack(struct tcp_sock *tp)
870 {
871 /* RFC3517 uses different metric in lost marker => reset on change */
872 if (tcp_is_fack(tp))
873 tp->lost_skb_hint = NULL;
874 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
875 }
876
877 /* Take a notice that peer is sending D-SACKs */
878 static void tcp_dsack_seen(struct tcp_sock *tp)
879 {
880 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
881 }
882
883 static void tcp_update_reordering(struct sock *sk, const int metric,
884 const int ts)
885 {
886 struct tcp_sock *tp = tcp_sk(sk);
887 int mib_idx;
888
889 if (WARN_ON_ONCE(metric < 0))
890 return;
891
892 if (metric > tp->reordering) {
893 tp->reordering = min(sysctl_tcp_max_reordering, metric);
894
895 #if FASTRETRANS_DEBUG > 1
896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
898 tp->reordering,
899 tp->fackets_out,
900 tp->sacked_out,
901 tp->undo_marker ? tp->undo_retrans : 0);
902 #endif
903 tcp_disable_fack(tp);
904 }
905
906 tp->rack.reord = 1;
907
908 /* This exciting event is worth to be remembered. 8) */
909 if (ts)
910 mib_idx = LINUX_MIB_TCPTSREORDER;
911 else if (tcp_is_reno(tp))
912 mib_idx = LINUX_MIB_TCPRENOREORDER;
913 else if (tcp_is_fack(tp))
914 mib_idx = LINUX_MIB_TCPFACKREORDER;
915 else
916 mib_idx = LINUX_MIB_TCPSACKREORDER;
917
918 NET_INC_STATS(sock_net(sk), mib_idx);
919 }
920
921 /* This must be called before lost_out is incremented */
922 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
923 {
924 if (!tp->retransmit_skb_hint ||
925 before(TCP_SKB_CB(skb)->seq,
926 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
927 tp->retransmit_skb_hint = skb;
928 }
929
930 /* Sum the number of packets on the wire we have marked as lost.
931 * There are two cases we care about here:
932 * a) Packet hasn't been marked lost (nor retransmitted),
933 * and this is the first loss.
934 * b) Packet has been marked both lost and retransmitted,
935 * and this means we think it was lost again.
936 */
937 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 __u8 sacked = TCP_SKB_CB(skb)->sacked;
940
941 if (!(sacked & TCPCB_LOST) ||
942 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
943 tp->lost += tcp_skb_pcount(skb);
944 }
945
946 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
947 {
948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 tcp_verify_retransmit_hint(tp, skb);
950
951 tp->lost_out += tcp_skb_pcount(skb);
952 tcp_sum_lost(tp, skb);
953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
954 }
955 }
956
957 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
958 {
959 tcp_verify_retransmit_hint(tp, skb);
960
961 tcp_sum_lost(tp, skb);
962 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
963 tp->lost_out += tcp_skb_pcount(skb);
964 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
965 }
966 }
967
968 /* This procedure tags the retransmission queue when SACKs arrive.
969 *
970 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
971 * Packets in queue with these bits set are counted in variables
972 * sacked_out, retrans_out and lost_out, correspondingly.
973 *
974 * Valid combinations are:
975 * Tag InFlight Description
976 * 0 1 - orig segment is in flight.
977 * S 0 - nothing flies, orig reached receiver.
978 * L 0 - nothing flies, orig lost by net.
979 * R 2 - both orig and retransmit are in flight.
980 * L|R 1 - orig is lost, retransmit is in flight.
981 * S|R 1 - orig reached receiver, retrans is still in flight.
982 * (L|S|R is logically valid, it could occur when L|R is sacked,
983 * but it is equivalent to plain S and code short-curcuits it to S.
984 * L|S is logically invalid, it would mean -1 packet in flight 8))
985 *
986 * These 6 states form finite state machine, controlled by the following events:
987 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
988 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
989 * 3. Loss detection event of two flavors:
990 * A. Scoreboard estimator decided the packet is lost.
991 * A'. Reno "three dupacks" marks head of queue lost.
992 * A''. Its FACK modification, head until snd.fack is lost.
993 * B. SACK arrives sacking SND.NXT at the moment, when the
994 * segment was retransmitted.
995 * 4. D-SACK added new rule: D-SACK changes any tag to S.
996 *
997 * It is pleasant to note, that state diagram turns out to be commutative,
998 * so that we are allowed not to be bothered by order of our actions,
999 * when multiple events arrive simultaneously. (see the function below).
1000 *
1001 * Reordering detection.
1002 * --------------------
1003 * Reordering metric is maximal distance, which a packet can be displaced
1004 * in packet stream. With SACKs we can estimate it:
1005 *
1006 * 1. SACK fills old hole and the corresponding segment was not
1007 * ever retransmitted -> reordering. Alas, we cannot use it
1008 * when segment was retransmitted.
1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1010 * for retransmitted and already SACKed segment -> reordering..
1011 * Both of these heuristics are not used in Loss state, when we cannot
1012 * account for retransmits accurately.
1013 *
1014 * SACK block validation.
1015 * ----------------------
1016 *
1017 * SACK block range validation checks that the received SACK block fits to
1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1019 * Note that SND.UNA is not included to the range though being valid because
1020 * it means that the receiver is rather inconsistent with itself reporting
1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1022 * perfectly valid, however, in light of RFC2018 which explicitly states
1023 * that "SACK block MUST reflect the newest segment. Even if the newest
1024 * segment is going to be discarded ...", not that it looks very clever
1025 * in case of head skb. Due to potentional receiver driven attacks, we
1026 * choose to avoid immediate execution of a walk in write queue due to
1027 * reneging and defer head skb's loss recovery to standard loss recovery
1028 * procedure that will eventually trigger (nothing forbids us doing this).
1029 *
1030 * Implements also blockage to start_seq wrap-around. Problem lies in the
1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1032 * there's no guarantee that it will be before snd_nxt (n). The problem
1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1034 * wrap (s_w):
1035 *
1036 * <- outs wnd -> <- wrapzone ->
1037 * u e n u_w e_w s n_w
1038 * | | | | | | |
1039 * |<------------+------+----- TCP seqno space --------------+---------->|
1040 * ...-- <2^31 ->| |<--------...
1041 * ...---- >2^31 ------>| |<--------...
1042 *
1043 * Current code wouldn't be vulnerable but it's better still to discard such
1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1047 * equal to the ideal case (infinite seqno space without wrap caused issues).
1048 *
1049 * With D-SACK the lower bound is extended to cover sequence space below
1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1051 * again, D-SACK block must not to go across snd_una (for the same reason as
1052 * for the normal SACK blocks, explained above). But there all simplicity
1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1054 * fully below undo_marker they do not affect behavior in anyway and can
1055 * therefore be safely ignored. In rare cases (which are more or less
1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1057 * fragmentation and packet reordering past skb's retransmission. To consider
1058 * them correctly, the acceptable range must be extended even more though
1059 * the exact amount is rather hard to quantify. However, tp->max_window can
1060 * be used as an exaggerated estimate.
1061 */
1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1063 u32 start_seq, u32 end_seq)
1064 {
1065 /* Too far in future, or reversed (interpretation is ambiguous) */
1066 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1067 return false;
1068
1069 /* Nasty start_seq wrap-around check (see comments above) */
1070 if (!before(start_seq, tp->snd_nxt))
1071 return false;
1072
1073 /* In outstanding window? ...This is valid exit for D-SACKs too.
1074 * start_seq == snd_una is non-sensical (see comments above)
1075 */
1076 if (after(start_seq, tp->snd_una))
1077 return true;
1078
1079 if (!is_dsack || !tp->undo_marker)
1080 return false;
1081
1082 /* ...Then it's D-SACK, and must reside below snd_una completely */
1083 if (after(end_seq, tp->snd_una))
1084 return false;
1085
1086 if (!before(start_seq, tp->undo_marker))
1087 return true;
1088
1089 /* Too old */
1090 if (!after(end_seq, tp->undo_marker))
1091 return false;
1092
1093 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1094 * start_seq < undo_marker and end_seq >= undo_marker.
1095 */
1096 return !before(start_seq, end_seq - tp->max_window);
1097 }
1098
1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1100 struct tcp_sack_block_wire *sp, int num_sacks,
1101 u32 prior_snd_una)
1102 {
1103 struct tcp_sock *tp = tcp_sk(sk);
1104 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1105 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1106 bool dup_sack = false;
1107
1108 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1109 dup_sack = true;
1110 tcp_dsack_seen(tp);
1111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1112 } else if (num_sacks > 1) {
1113 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1114 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1115
1116 if (!after(end_seq_0, end_seq_1) &&
1117 !before(start_seq_0, start_seq_1)) {
1118 dup_sack = true;
1119 tcp_dsack_seen(tp);
1120 NET_INC_STATS(sock_net(sk),
1121 LINUX_MIB_TCPDSACKOFORECV);
1122 }
1123 }
1124
1125 /* D-SACK for already forgotten data... Do dumb counting. */
1126 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1127 !after(end_seq_0, prior_snd_una) &&
1128 after(end_seq_0, tp->undo_marker))
1129 tp->undo_retrans--;
1130
1131 return dup_sack;
1132 }
1133
1134 struct tcp_sacktag_state {
1135 int reord;
1136 int fack_count;
1137 /* Timestamps for earliest and latest never-retransmitted segment
1138 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1139 * but congestion control should still get an accurate delay signal.
1140 */
1141 u64 first_sackt;
1142 u64 last_sackt;
1143 struct rate_sample *rate;
1144 int flag;
1145 };
1146
1147 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1148 * the incoming SACK may not exactly match but we can find smaller MSS
1149 * aligned portion of it that matches. Therefore we might need to fragment
1150 * which may fail and creates some hassle (caller must handle error case
1151 * returns).
1152 *
1153 * FIXME: this could be merged to shift decision code
1154 */
1155 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1156 u32 start_seq, u32 end_seq)
1157 {
1158 int err;
1159 bool in_sack;
1160 unsigned int pkt_len;
1161 unsigned int mss;
1162
1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1164 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1165
1166 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1167 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1168 mss = tcp_skb_mss(skb);
1169 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1170
1171 if (!in_sack) {
1172 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1173 if (pkt_len < mss)
1174 pkt_len = mss;
1175 } else {
1176 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1177 if (pkt_len < mss)
1178 return -EINVAL;
1179 }
1180
1181 /* Round if necessary so that SACKs cover only full MSSes
1182 * and/or the remaining small portion (if present)
1183 */
1184 if (pkt_len > mss) {
1185 unsigned int new_len = (pkt_len / mss) * mss;
1186 if (!in_sack && new_len < pkt_len)
1187 new_len += mss;
1188 pkt_len = new_len;
1189 }
1190
1191 if (pkt_len >= skb->len && !in_sack)
1192 return 0;
1193
1194 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1195 if (err < 0)
1196 return err;
1197 }
1198
1199 return in_sack;
1200 }
1201
1202 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1203 static u8 tcp_sacktag_one(struct sock *sk,
1204 struct tcp_sacktag_state *state, u8 sacked,
1205 u32 start_seq, u32 end_seq,
1206 int dup_sack, int pcount,
1207 u64 xmit_time)
1208 {
1209 struct tcp_sock *tp = tcp_sk(sk);
1210 int fack_count = state->fack_count;
1211
1212 /* Account D-SACK for retransmitted packet. */
1213 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1214 if (tp->undo_marker && tp->undo_retrans > 0 &&
1215 after(end_seq, tp->undo_marker))
1216 tp->undo_retrans--;
1217 if (sacked & TCPCB_SACKED_ACKED)
1218 state->reord = min(fack_count, state->reord);
1219 }
1220
1221 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1222 if (!after(end_seq, tp->snd_una))
1223 return sacked;
1224
1225 if (!(sacked & TCPCB_SACKED_ACKED)) {
1226 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1227
1228 if (sacked & TCPCB_SACKED_RETRANS) {
1229 /* If the segment is not tagged as lost,
1230 * we do not clear RETRANS, believing
1231 * that retransmission is still in flight.
1232 */
1233 if (sacked & TCPCB_LOST) {
1234 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1235 tp->lost_out -= pcount;
1236 tp->retrans_out -= pcount;
1237 }
1238 } else {
1239 if (!(sacked & TCPCB_RETRANS)) {
1240 /* New sack for not retransmitted frame,
1241 * which was in hole. It is reordering.
1242 */
1243 if (before(start_seq,
1244 tcp_highest_sack_seq(tp)))
1245 state->reord = min(fack_count,
1246 state->reord);
1247 if (!after(end_seq, tp->high_seq))
1248 state->flag |= FLAG_ORIG_SACK_ACKED;
1249 if (state->first_sackt == 0)
1250 state->first_sackt = xmit_time;
1251 state->last_sackt = xmit_time;
1252 }
1253
1254 if (sacked & TCPCB_LOST) {
1255 sacked &= ~TCPCB_LOST;
1256 tp->lost_out -= pcount;
1257 }
1258 }
1259
1260 sacked |= TCPCB_SACKED_ACKED;
1261 state->flag |= FLAG_DATA_SACKED;
1262 tp->sacked_out += pcount;
1263 tp->delivered += pcount; /* Out-of-order packets delivered */
1264
1265 fack_count += pcount;
1266
1267 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1268 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1269 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1270 tp->lost_cnt_hint += pcount;
1271
1272 if (fack_count > tp->fackets_out)
1273 tp->fackets_out = fack_count;
1274 }
1275
1276 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1277 * frames and clear it. undo_retrans is decreased above, L|R frames
1278 * are accounted above as well.
1279 */
1280 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1281 sacked &= ~TCPCB_SACKED_RETRANS;
1282 tp->retrans_out -= pcount;
1283 }
1284
1285 return sacked;
1286 }
1287
1288 /* Shift newly-SACKed bytes from this skb to the immediately previous
1289 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1290 */
1291 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1292 struct tcp_sacktag_state *state,
1293 unsigned int pcount, int shifted, int mss,
1294 bool dup_sack)
1295 {
1296 struct tcp_sock *tp = tcp_sk(sk);
1297 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1298 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1299 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1300
1301 BUG_ON(!pcount);
1302
1303 /* Adjust counters and hints for the newly sacked sequence
1304 * range but discard the return value since prev is already
1305 * marked. We must tag the range first because the seq
1306 * advancement below implicitly advances
1307 * tcp_highest_sack_seq() when skb is highest_sack.
1308 */
1309 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1310 start_seq, end_seq, dup_sack, pcount,
1311 skb->skb_mstamp);
1312 tcp_rate_skb_delivered(sk, skb, state->rate);
1313
1314 if (skb == tp->lost_skb_hint)
1315 tp->lost_cnt_hint += pcount;
1316
1317 TCP_SKB_CB(prev)->end_seq += shifted;
1318 TCP_SKB_CB(skb)->seq += shifted;
1319
1320 tcp_skb_pcount_add(prev, pcount);
1321 BUG_ON(tcp_skb_pcount(skb) < pcount);
1322 tcp_skb_pcount_add(skb, -pcount);
1323
1324 /* When we're adding to gso_segs == 1, gso_size will be zero,
1325 * in theory this shouldn't be necessary but as long as DSACK
1326 * code can come after this skb later on it's better to keep
1327 * setting gso_size to something.
1328 */
1329 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1330 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1331
1332 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1333 if (tcp_skb_pcount(skb) <= 1)
1334 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1335
1336 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1337 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1338
1339 if (skb->len > 0) {
1340 BUG_ON(!tcp_skb_pcount(skb));
1341 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1342 return false;
1343 }
1344
1345 /* Whole SKB was eaten :-) */
1346
1347 if (skb == tp->retransmit_skb_hint)
1348 tp->retransmit_skb_hint = prev;
1349 if (skb == tp->lost_skb_hint) {
1350 tp->lost_skb_hint = prev;
1351 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1352 }
1353
1354 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1355 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1356 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1357 TCP_SKB_CB(prev)->end_seq++;
1358
1359 if (skb == tcp_highest_sack(sk))
1360 tcp_advance_highest_sack(sk, skb);
1361
1362 tcp_skb_collapse_tstamp(prev, skb);
1363 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1364 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1365
1366 tcp_unlink_write_queue(skb, sk);
1367 sk_wmem_free_skb(sk, skb);
1368
1369 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1370
1371 return true;
1372 }
1373
1374 /* I wish gso_size would have a bit more sane initialization than
1375 * something-or-zero which complicates things
1376 */
1377 static int tcp_skb_seglen(const struct sk_buff *skb)
1378 {
1379 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1380 }
1381
1382 /* Shifting pages past head area doesn't work */
1383 static int skb_can_shift(const struct sk_buff *skb)
1384 {
1385 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1386 }
1387
1388 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1389 * skb.
1390 */
1391 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1392 struct tcp_sacktag_state *state,
1393 u32 start_seq, u32 end_seq,
1394 bool dup_sack)
1395 {
1396 struct tcp_sock *tp = tcp_sk(sk);
1397 struct sk_buff *prev;
1398 int mss;
1399 int pcount = 0;
1400 int len;
1401 int in_sack;
1402
1403 if (!sk_can_gso(sk))
1404 goto fallback;
1405
1406 /* Normally R but no L won't result in plain S */
1407 if (!dup_sack &&
1408 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1409 goto fallback;
1410 if (!skb_can_shift(skb))
1411 goto fallback;
1412 /* This frame is about to be dropped (was ACKed). */
1413 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1414 goto fallback;
1415
1416 /* Can only happen with delayed DSACK + discard craziness */
1417 if (unlikely(skb == tcp_write_queue_head(sk)))
1418 goto fallback;
1419 prev = tcp_write_queue_prev(sk, skb);
1420
1421 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1422 goto fallback;
1423
1424 if (!tcp_skb_can_collapse_to(prev))
1425 goto fallback;
1426
1427 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1428 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1429
1430 if (in_sack) {
1431 len = skb->len;
1432 pcount = tcp_skb_pcount(skb);
1433 mss = tcp_skb_seglen(skb);
1434
1435 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1436 * drop this restriction as unnecessary
1437 */
1438 if (mss != tcp_skb_seglen(prev))
1439 goto fallback;
1440 } else {
1441 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1442 goto noop;
1443 /* CHECKME: This is non-MSS split case only?, this will
1444 * cause skipped skbs due to advancing loop btw, original
1445 * has that feature too
1446 */
1447 if (tcp_skb_pcount(skb) <= 1)
1448 goto noop;
1449
1450 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1451 if (!in_sack) {
1452 /* TODO: head merge to next could be attempted here
1453 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1454 * though it might not be worth of the additional hassle
1455 *
1456 * ...we can probably just fallback to what was done
1457 * previously. We could try merging non-SACKed ones
1458 * as well but it probably isn't going to buy off
1459 * because later SACKs might again split them, and
1460 * it would make skb timestamp tracking considerably
1461 * harder problem.
1462 */
1463 goto fallback;
1464 }
1465
1466 len = end_seq - TCP_SKB_CB(skb)->seq;
1467 BUG_ON(len < 0);
1468 BUG_ON(len > skb->len);
1469
1470 /* MSS boundaries should be honoured or else pcount will
1471 * severely break even though it makes things bit trickier.
1472 * Optimize common case to avoid most of the divides
1473 */
1474 mss = tcp_skb_mss(skb);
1475
1476 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1477 * drop this restriction as unnecessary
1478 */
1479 if (mss != tcp_skb_seglen(prev))
1480 goto fallback;
1481
1482 if (len == mss) {
1483 pcount = 1;
1484 } else if (len < mss) {
1485 goto noop;
1486 } else {
1487 pcount = len / mss;
1488 len = pcount * mss;
1489 }
1490 }
1491
1492 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1493 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1494 goto fallback;
1495
1496 if (!skb_shift(prev, skb, len))
1497 goto fallback;
1498 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1499 goto out;
1500
1501 /* Hole filled allows collapsing with the next as well, this is very
1502 * useful when hole on every nth skb pattern happens
1503 */
1504 if (prev == tcp_write_queue_tail(sk))
1505 goto out;
1506 skb = tcp_write_queue_next(sk, prev);
1507
1508 if (!skb_can_shift(skb) ||
1509 (skb == tcp_send_head(sk)) ||
1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1511 (mss != tcp_skb_seglen(skb)))
1512 goto out;
1513
1514 len = skb->len;
1515 if (skb_shift(prev, skb, len)) {
1516 pcount += tcp_skb_pcount(skb);
1517 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1518 }
1519
1520 out:
1521 state->fack_count += pcount;
1522 return prev;
1523
1524 noop:
1525 return skb;
1526
1527 fallback:
1528 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1529 return NULL;
1530 }
1531
1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1533 struct tcp_sack_block *next_dup,
1534 struct tcp_sacktag_state *state,
1535 u32 start_seq, u32 end_seq,
1536 bool dup_sack_in)
1537 {
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 struct sk_buff *tmp;
1540
1541 tcp_for_write_queue_from(skb, sk) {
1542 int in_sack = 0;
1543 bool dup_sack = dup_sack_in;
1544
1545 if (skb == tcp_send_head(sk))
1546 break;
1547
1548 /* queue is in-order => we can short-circuit the walk early */
1549 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1550 break;
1551
1552 if (next_dup &&
1553 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1554 in_sack = tcp_match_skb_to_sack(sk, skb,
1555 next_dup->start_seq,
1556 next_dup->end_seq);
1557 if (in_sack > 0)
1558 dup_sack = true;
1559 }
1560
1561 /* skb reference here is a bit tricky to get right, since
1562 * shifting can eat and free both this skb and the next,
1563 * so not even _safe variant of the loop is enough.
1564 */
1565 if (in_sack <= 0) {
1566 tmp = tcp_shift_skb_data(sk, skb, state,
1567 start_seq, end_seq, dup_sack);
1568 if (tmp) {
1569 if (tmp != skb) {
1570 skb = tmp;
1571 continue;
1572 }
1573
1574 in_sack = 0;
1575 } else {
1576 in_sack = tcp_match_skb_to_sack(sk, skb,
1577 start_seq,
1578 end_seq);
1579 }
1580 }
1581
1582 if (unlikely(in_sack < 0))
1583 break;
1584
1585 if (in_sack) {
1586 TCP_SKB_CB(skb)->sacked =
1587 tcp_sacktag_one(sk,
1588 state,
1589 TCP_SKB_CB(skb)->sacked,
1590 TCP_SKB_CB(skb)->seq,
1591 TCP_SKB_CB(skb)->end_seq,
1592 dup_sack,
1593 tcp_skb_pcount(skb),
1594 skb->skb_mstamp);
1595 tcp_rate_skb_delivered(sk, skb, state->rate);
1596
1597 if (!before(TCP_SKB_CB(skb)->seq,
1598 tcp_highest_sack_seq(tp)))
1599 tcp_advance_highest_sack(sk, skb);
1600 }
1601
1602 state->fack_count += tcp_skb_pcount(skb);
1603 }
1604 return skb;
1605 }
1606
1607 /* Avoid all extra work that is being done by sacktag while walking in
1608 * a normal way
1609 */
1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1611 struct tcp_sacktag_state *state,
1612 u32 skip_to_seq)
1613 {
1614 tcp_for_write_queue_from(skb, sk) {
1615 if (skb == tcp_send_head(sk))
1616 break;
1617
1618 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1619 break;
1620
1621 state->fack_count += tcp_skb_pcount(skb);
1622 }
1623 return skb;
1624 }
1625
1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1627 struct sock *sk,
1628 struct tcp_sack_block *next_dup,
1629 struct tcp_sacktag_state *state,
1630 u32 skip_to_seq)
1631 {
1632 if (!next_dup)
1633 return skb;
1634
1635 if (before(next_dup->start_seq, skip_to_seq)) {
1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1637 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1638 next_dup->start_seq, next_dup->end_seq,
1639 1);
1640 }
1641
1642 return skb;
1643 }
1644
1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1646 {
1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1648 }
1649
1650 static int
1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1652 u32 prior_snd_una, struct tcp_sacktag_state *state)
1653 {
1654 struct tcp_sock *tp = tcp_sk(sk);
1655 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1656 TCP_SKB_CB(ack_skb)->sacked);
1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1658 struct tcp_sack_block sp[TCP_NUM_SACKS];
1659 struct tcp_sack_block *cache;
1660 struct sk_buff *skb;
1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1662 int used_sacks;
1663 bool found_dup_sack = false;
1664 int i, j;
1665 int first_sack_index;
1666
1667 state->flag = 0;
1668 state->reord = tp->packets_out;
1669
1670 if (!tp->sacked_out) {
1671 if (WARN_ON(tp->fackets_out))
1672 tp->fackets_out = 0;
1673 tcp_highest_sack_reset(sk);
1674 }
1675
1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1677 num_sacks, prior_snd_una);
1678 if (found_dup_sack) {
1679 state->flag |= FLAG_DSACKING_ACK;
1680 tp->delivered++; /* A spurious retransmission is delivered */
1681 }
1682
1683 /* Eliminate too old ACKs, but take into
1684 * account more or less fresh ones, they can
1685 * contain valid SACK info.
1686 */
1687 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1688 return 0;
1689
1690 if (!tp->packets_out)
1691 goto out;
1692
1693 used_sacks = 0;
1694 first_sack_index = 0;
1695 for (i = 0; i < num_sacks; i++) {
1696 bool dup_sack = !i && found_dup_sack;
1697
1698 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1699 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1700
1701 if (!tcp_is_sackblock_valid(tp, dup_sack,
1702 sp[used_sacks].start_seq,
1703 sp[used_sacks].end_seq)) {
1704 int mib_idx;
1705
1706 if (dup_sack) {
1707 if (!tp->undo_marker)
1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1709 else
1710 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1711 } else {
1712 /* Don't count olds caused by ACK reordering */
1713 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1714 !after(sp[used_sacks].end_seq, tp->snd_una))
1715 continue;
1716 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1717 }
1718
1719 NET_INC_STATS(sock_net(sk), mib_idx);
1720 if (i == 0)
1721 first_sack_index = -1;
1722 continue;
1723 }
1724
1725 /* Ignore very old stuff early */
1726 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1727 continue;
1728
1729 used_sacks++;
1730 }
1731
1732 /* order SACK blocks to allow in order walk of the retrans queue */
1733 for (i = used_sacks - 1; i > 0; i--) {
1734 for (j = 0; j < i; j++) {
1735 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1736 swap(sp[j], sp[j + 1]);
1737
1738 /* Track where the first SACK block goes to */
1739 if (j == first_sack_index)
1740 first_sack_index = j + 1;
1741 }
1742 }
1743 }
1744
1745 skb = tcp_write_queue_head(sk);
1746 state->fack_count = 0;
1747 i = 0;
1748
1749 if (!tp->sacked_out) {
1750 /* It's already past, so skip checking against it */
1751 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1752 } else {
1753 cache = tp->recv_sack_cache;
1754 /* Skip empty blocks in at head of the cache */
1755 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1756 !cache->end_seq)
1757 cache++;
1758 }
1759
1760 while (i < used_sacks) {
1761 u32 start_seq = sp[i].start_seq;
1762 u32 end_seq = sp[i].end_seq;
1763 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1764 struct tcp_sack_block *next_dup = NULL;
1765
1766 if (found_dup_sack && ((i + 1) == first_sack_index))
1767 next_dup = &sp[i + 1];
1768
1769 /* Skip too early cached blocks */
1770 while (tcp_sack_cache_ok(tp, cache) &&
1771 !before(start_seq, cache->end_seq))
1772 cache++;
1773
1774 /* Can skip some work by looking recv_sack_cache? */
1775 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1776 after(end_seq, cache->start_seq)) {
1777
1778 /* Head todo? */
1779 if (before(start_seq, cache->start_seq)) {
1780 skb = tcp_sacktag_skip(skb, sk, state,
1781 start_seq);
1782 skb = tcp_sacktag_walk(skb, sk, next_dup,
1783 state,
1784 start_seq,
1785 cache->start_seq,
1786 dup_sack);
1787 }
1788
1789 /* Rest of the block already fully processed? */
1790 if (!after(end_seq, cache->end_seq))
1791 goto advance_sp;
1792
1793 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1794 state,
1795 cache->end_seq);
1796
1797 /* ...tail remains todo... */
1798 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1799 /* ...but better entrypoint exists! */
1800 skb = tcp_highest_sack(sk);
1801 if (!skb)
1802 break;
1803 state->fack_count = tp->fackets_out;
1804 cache++;
1805 goto walk;
1806 }
1807
1808 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1809 /* Check overlap against next cached too (past this one already) */
1810 cache++;
1811 continue;
1812 }
1813
1814 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1815 skb = tcp_highest_sack(sk);
1816 if (!skb)
1817 break;
1818 state->fack_count = tp->fackets_out;
1819 }
1820 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1821
1822 walk:
1823 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1824 start_seq, end_seq, dup_sack);
1825
1826 advance_sp:
1827 i++;
1828 }
1829
1830 /* Clear the head of the cache sack blocks so we can skip it next time */
1831 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1832 tp->recv_sack_cache[i].start_seq = 0;
1833 tp->recv_sack_cache[i].end_seq = 0;
1834 }
1835 for (j = 0; j < used_sacks; j++)
1836 tp->recv_sack_cache[i++] = sp[j];
1837
1838 if ((state->reord < tp->fackets_out) &&
1839 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1840 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1841
1842 tcp_verify_left_out(tp);
1843 out:
1844
1845 #if FASTRETRANS_DEBUG > 0
1846 WARN_ON((int)tp->sacked_out < 0);
1847 WARN_ON((int)tp->lost_out < 0);
1848 WARN_ON((int)tp->retrans_out < 0);
1849 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1850 #endif
1851 return state->flag;
1852 }
1853
1854 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1856 */
1857 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1858 {
1859 u32 holes;
1860
1861 holes = max(tp->lost_out, 1U);
1862 holes = min(holes, tp->packets_out);
1863
1864 if ((tp->sacked_out + holes) > tp->packets_out) {
1865 tp->sacked_out = tp->packets_out - holes;
1866 return true;
1867 }
1868 return false;
1869 }
1870
1871 /* If we receive more dupacks than we expected counting segments
1872 * in assumption of absent reordering, interpret this as reordering.
1873 * The only another reason could be bug in receiver TCP.
1874 */
1875 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1876 {
1877 struct tcp_sock *tp = tcp_sk(sk);
1878 if (tcp_limit_reno_sacked(tp))
1879 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1880 }
1881
1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1883
1884 static void tcp_add_reno_sack(struct sock *sk)
1885 {
1886 struct tcp_sock *tp = tcp_sk(sk);
1887 u32 prior_sacked = tp->sacked_out;
1888
1889 tp->sacked_out++;
1890 tcp_check_reno_reordering(sk, 0);
1891 if (tp->sacked_out > prior_sacked)
1892 tp->delivered++; /* Some out-of-order packet is delivered */
1893 tcp_verify_left_out(tp);
1894 }
1895
1896 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1897
1898 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1899 {
1900 struct tcp_sock *tp = tcp_sk(sk);
1901
1902 if (acked > 0) {
1903 /* One ACK acked hole. The rest eat duplicate ACKs. */
1904 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1905 if (acked - 1 >= tp->sacked_out)
1906 tp->sacked_out = 0;
1907 else
1908 tp->sacked_out -= acked - 1;
1909 }
1910 tcp_check_reno_reordering(sk, acked);
1911 tcp_verify_left_out(tp);
1912 }
1913
1914 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1915 {
1916 tp->sacked_out = 0;
1917 }
1918
1919 void tcp_clear_retrans(struct tcp_sock *tp)
1920 {
1921 tp->retrans_out = 0;
1922 tp->lost_out = 0;
1923 tp->undo_marker = 0;
1924 tp->undo_retrans = -1;
1925 tp->fackets_out = 0;
1926 tp->sacked_out = 0;
1927 }
1928
1929 static inline void tcp_init_undo(struct tcp_sock *tp)
1930 {
1931 tp->undo_marker = tp->snd_una;
1932 /* Retransmission still in flight may cause DSACKs later. */
1933 tp->undo_retrans = tp->retrans_out ? : -1;
1934 }
1935
1936 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1937 * and reset tags completely, otherwise preserve SACKs. If receiver
1938 * dropped its ofo queue, we will know this due to reneging detection.
1939 */
1940 void tcp_enter_loss(struct sock *sk)
1941 {
1942 const struct inet_connection_sock *icsk = inet_csk(sk);
1943 struct tcp_sock *tp = tcp_sk(sk);
1944 struct net *net = sock_net(sk);
1945 struct sk_buff *skb;
1946 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1947 bool is_reneg; /* is receiver reneging on SACKs? */
1948 bool mark_lost;
1949
1950 /* Reduce ssthresh if it has not yet been made inside this window. */
1951 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1952 !after(tp->high_seq, tp->snd_una) ||
1953 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1954 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1955 tp->prior_cwnd = tp->snd_cwnd;
1956 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1957 tcp_ca_event(sk, CA_EVENT_LOSS);
1958 tcp_init_undo(tp);
1959 }
1960 tp->snd_cwnd = 1;
1961 tp->snd_cwnd_cnt = 0;
1962 tp->snd_cwnd_stamp = tcp_jiffies32;
1963
1964 tp->retrans_out = 0;
1965 tp->lost_out = 0;
1966
1967 if (tcp_is_reno(tp))
1968 tcp_reset_reno_sack(tp);
1969
1970 skb = tcp_write_queue_head(sk);
1971 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1972 if (is_reneg) {
1973 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1974 tp->sacked_out = 0;
1975 tp->fackets_out = 0;
1976 }
1977 tcp_clear_all_retrans_hints(tp);
1978
1979 tcp_for_write_queue(skb, sk) {
1980 if (skb == tcp_send_head(sk))
1981 break;
1982
1983 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1984 is_reneg);
1985 if (mark_lost)
1986 tcp_sum_lost(tp, skb);
1987 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1988 if (mark_lost) {
1989 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1990 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1991 tp->lost_out += tcp_skb_pcount(skb);
1992 }
1993 }
1994 tcp_verify_left_out(tp);
1995
1996 /* Timeout in disordered state after receiving substantial DUPACKs
1997 * suggests that the degree of reordering is over-estimated.
1998 */
1999 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2000 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2001 tp->reordering = min_t(unsigned int, tp->reordering,
2002 net->ipv4.sysctl_tcp_reordering);
2003 tcp_set_ca_state(sk, TCP_CA_Loss);
2004 tp->high_seq = tp->snd_nxt;
2005 tcp_ecn_queue_cwr(tp);
2006
2007 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2008 * loss recovery is underway except recurring timeout(s) on
2009 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2010 *
2011 * In theory F-RTO can be used repeatedly during loss recovery.
2012 * In practice this interacts badly with broken middle-boxes that
2013 * falsely raise the receive window, which results in repeated
2014 * timeouts and stop-and-go behavior.
2015 */
2016 tp->frto = sysctl_tcp_frto &&
2017 (new_recovery || icsk->icsk_retransmits) &&
2018 !inet_csk(sk)->icsk_mtup.probe_size;
2019 }
2020
2021 /* If ACK arrived pointing to a remembered SACK, it means that our
2022 * remembered SACKs do not reflect real state of receiver i.e.
2023 * receiver _host_ is heavily congested (or buggy).
2024 *
2025 * To avoid big spurious retransmission bursts due to transient SACK
2026 * scoreboard oddities that look like reneging, we give the receiver a
2027 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2028 * restore sanity to the SACK scoreboard. If the apparent reneging
2029 * persists until this RTO then we'll clear the SACK scoreboard.
2030 */
2031 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2032 {
2033 if (flag & FLAG_SACK_RENEGING) {
2034 struct tcp_sock *tp = tcp_sk(sk);
2035 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2036 msecs_to_jiffies(10));
2037
2038 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2039 delay, TCP_RTO_MAX);
2040 return true;
2041 }
2042 return false;
2043 }
2044
2045 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2046 {
2047 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2048 }
2049
2050 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2051 * counter when SACK is enabled (without SACK, sacked_out is used for
2052 * that purpose).
2053 *
2054 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2055 * segments up to the highest received SACK block so far and holes in
2056 * between them.
2057 *
2058 * With reordering, holes may still be in flight, so RFC3517 recovery
2059 * uses pure sacked_out (total number of SACKed segments) even though
2060 * it violates the RFC that uses duplicate ACKs, often these are equal
2061 * but when e.g. out-of-window ACKs or packet duplication occurs,
2062 * they differ. Since neither occurs due to loss, TCP should really
2063 * ignore them.
2064 */
2065 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2066 {
2067 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2068 }
2069
2070 /* Linux NewReno/SACK/FACK/ECN state machine.
2071 * --------------------------------------
2072 *
2073 * "Open" Normal state, no dubious events, fast path.
2074 * "Disorder" In all the respects it is "Open",
2075 * but requires a bit more attention. It is entered when
2076 * we see some SACKs or dupacks. It is split of "Open"
2077 * mainly to move some processing from fast path to slow one.
2078 * "CWR" CWND was reduced due to some Congestion Notification event.
2079 * It can be ECN, ICMP source quench, local device congestion.
2080 * "Recovery" CWND was reduced, we are fast-retransmitting.
2081 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2082 *
2083 * tcp_fastretrans_alert() is entered:
2084 * - each incoming ACK, if state is not "Open"
2085 * - when arrived ACK is unusual, namely:
2086 * * SACK
2087 * * Duplicate ACK.
2088 * * ECN ECE.
2089 *
2090 * Counting packets in flight is pretty simple.
2091 *
2092 * in_flight = packets_out - left_out + retrans_out
2093 *
2094 * packets_out is SND.NXT-SND.UNA counted in packets.
2095 *
2096 * retrans_out is number of retransmitted segments.
2097 *
2098 * left_out is number of segments left network, but not ACKed yet.
2099 *
2100 * left_out = sacked_out + lost_out
2101 *
2102 * sacked_out: Packets, which arrived to receiver out of order
2103 * and hence not ACKed. With SACKs this number is simply
2104 * amount of SACKed data. Even without SACKs
2105 * it is easy to give pretty reliable estimate of this number,
2106 * counting duplicate ACKs.
2107 *
2108 * lost_out: Packets lost by network. TCP has no explicit
2109 * "loss notification" feedback from network (for now).
2110 * It means that this number can be only _guessed_.
2111 * Actually, it is the heuristics to predict lossage that
2112 * distinguishes different algorithms.
2113 *
2114 * F.e. after RTO, when all the queue is considered as lost,
2115 * lost_out = packets_out and in_flight = retrans_out.
2116 *
2117 * Essentially, we have now a few algorithms detecting
2118 * lost packets.
2119 *
2120 * If the receiver supports SACK:
2121 *
2122 * RFC6675/3517: It is the conventional algorithm. A packet is
2123 * considered lost if the number of higher sequence packets
2124 * SACKed is greater than or equal the DUPACK thoreshold
2125 * (reordering). This is implemented in tcp_mark_head_lost and
2126 * tcp_update_scoreboard.
2127 *
2128 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2129 * (2017-) that checks timing instead of counting DUPACKs.
2130 * Essentially a packet is considered lost if it's not S/ACKed
2131 * after RTT + reordering_window, where both metrics are
2132 * dynamically measured and adjusted. This is implemented in
2133 * tcp_rack_mark_lost.
2134 *
2135 * FACK (Disabled by default. Subsumbed by RACK):
2136 * It is the simplest heuristics. As soon as we decided
2137 * that something is lost, we decide that _all_ not SACKed
2138 * packets until the most forward SACK are lost. I.e.
2139 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2140 * It is absolutely correct estimate, if network does not reorder
2141 * packets. And it loses any connection to reality when reordering
2142 * takes place. We use FACK by default until reordering
2143 * is suspected on the path to this destination.
2144 *
2145 * If the receiver does not support SACK:
2146 *
2147 * NewReno (RFC6582): in Recovery we assume that one segment
2148 * is lost (classic Reno). While we are in Recovery and
2149 * a partial ACK arrives, we assume that one more packet
2150 * is lost (NewReno). This heuristics are the same in NewReno
2151 * and SACK.
2152 *
2153 * Really tricky (and requiring careful tuning) part of algorithm
2154 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2155 * The first determines the moment _when_ we should reduce CWND and,
2156 * hence, slow down forward transmission. In fact, it determines the moment
2157 * when we decide that hole is caused by loss, rather than by a reorder.
2158 *
2159 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2160 * holes, caused by lost packets.
2161 *
2162 * And the most logically complicated part of algorithm is undo
2163 * heuristics. We detect false retransmits due to both too early
2164 * fast retransmit (reordering) and underestimated RTO, analyzing
2165 * timestamps and D-SACKs. When we detect that some segments were
2166 * retransmitted by mistake and CWND reduction was wrong, we undo
2167 * window reduction and abort recovery phase. This logic is hidden
2168 * inside several functions named tcp_try_undo_<something>.
2169 */
2170
2171 /* This function decides, when we should leave Disordered state
2172 * and enter Recovery phase, reducing congestion window.
2173 *
2174 * Main question: may we further continue forward transmission
2175 * with the same cwnd?
2176 */
2177 static bool tcp_time_to_recover(struct sock *sk, int flag)
2178 {
2179 struct tcp_sock *tp = tcp_sk(sk);
2180
2181 /* Trick#1: The loss is proven. */
2182 if (tp->lost_out)
2183 return true;
2184
2185 /* Not-A-Trick#2 : Classic rule... */
2186 if (tcp_dupack_heuristics(tp) > tp->reordering)
2187 return true;
2188
2189 return false;
2190 }
2191
2192 /* Detect loss in event "A" above by marking head of queue up as lost.
2193 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2194 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2195 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2196 * the maximum SACKed segments to pass before reaching this limit.
2197 */
2198 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2199 {
2200 struct tcp_sock *tp = tcp_sk(sk);
2201 struct sk_buff *skb;
2202 int cnt, oldcnt, lost;
2203 unsigned int mss;
2204 /* Use SACK to deduce losses of new sequences sent during recovery */
2205 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2206
2207 WARN_ON(packets > tp->packets_out);
2208 if (tp->lost_skb_hint) {
2209 skb = tp->lost_skb_hint;
2210 cnt = tp->lost_cnt_hint;
2211 /* Head already handled? */
2212 if (mark_head && skb != tcp_write_queue_head(sk))
2213 return;
2214 } else {
2215 skb = tcp_write_queue_head(sk);
2216 cnt = 0;
2217 }
2218
2219 tcp_for_write_queue_from(skb, sk) {
2220 if (skb == tcp_send_head(sk))
2221 break;
2222 /* TODO: do this better */
2223 /* this is not the most efficient way to do this... */
2224 tp->lost_skb_hint = skb;
2225 tp->lost_cnt_hint = cnt;
2226
2227 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2228 break;
2229
2230 oldcnt = cnt;
2231 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2233 cnt += tcp_skb_pcount(skb);
2234
2235 if (cnt > packets) {
2236 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2237 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2238 (oldcnt >= packets))
2239 break;
2240
2241 mss = tcp_skb_mss(skb);
2242 /* If needed, chop off the prefix to mark as lost. */
2243 lost = (packets - oldcnt) * mss;
2244 if (lost < skb->len &&
2245 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2246 break;
2247 cnt = packets;
2248 }
2249
2250 tcp_skb_mark_lost(tp, skb);
2251
2252 if (mark_head)
2253 break;
2254 }
2255 tcp_verify_left_out(tp);
2256 }
2257
2258 /* Account newly detected lost packet(s) */
2259
2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2261 {
2262 struct tcp_sock *tp = tcp_sk(sk);
2263
2264 if (tcp_is_reno(tp)) {
2265 tcp_mark_head_lost(sk, 1, 1);
2266 } else if (tcp_is_fack(tp)) {
2267 int lost = tp->fackets_out - tp->reordering;
2268 if (lost <= 0)
2269 lost = 1;
2270 tcp_mark_head_lost(sk, lost, 0);
2271 } else {
2272 int sacked_upto = tp->sacked_out - tp->reordering;
2273 if (sacked_upto >= 0)
2274 tcp_mark_head_lost(sk, sacked_upto, 0);
2275 else if (fast_rexmit)
2276 tcp_mark_head_lost(sk, 1, 1);
2277 }
2278 }
2279
2280 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2281 {
2282 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2283 before(tp->rx_opt.rcv_tsecr, when);
2284 }
2285
2286 /* skb is spurious retransmitted if the returned timestamp echo
2287 * reply is prior to the skb transmission time
2288 */
2289 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2290 const struct sk_buff *skb)
2291 {
2292 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2293 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2294 }
2295
2296 /* Nothing was retransmitted or returned timestamp is less
2297 * than timestamp of the first retransmission.
2298 */
2299 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2300 {
2301 return !tp->retrans_stamp ||
2302 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2303 }
2304
2305 /* Undo procedures. */
2306
2307 /* We can clear retrans_stamp when there are no retransmissions in the
2308 * window. It would seem that it is trivially available for us in
2309 * tp->retrans_out, however, that kind of assumptions doesn't consider
2310 * what will happen if errors occur when sending retransmission for the
2311 * second time. ...It could the that such segment has only
2312 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2313 * the head skb is enough except for some reneging corner cases that
2314 * are not worth the effort.
2315 *
2316 * Main reason for all this complexity is the fact that connection dying
2317 * time now depends on the validity of the retrans_stamp, in particular,
2318 * that successive retransmissions of a segment must not advance
2319 * retrans_stamp under any conditions.
2320 */
2321 static bool tcp_any_retrans_done(const struct sock *sk)
2322 {
2323 const struct tcp_sock *tp = tcp_sk(sk);
2324 struct sk_buff *skb;
2325
2326 if (tp->retrans_out)
2327 return true;
2328
2329 skb = tcp_write_queue_head(sk);
2330 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2331 return true;
2332
2333 return false;
2334 }
2335
2336 #if FASTRETRANS_DEBUG > 1
2337 static void DBGUNDO(struct sock *sk, const char *msg)
2338 {
2339 struct tcp_sock *tp = tcp_sk(sk);
2340 struct inet_sock *inet = inet_sk(sk);
2341
2342 if (sk->sk_family == AF_INET) {
2343 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2344 msg,
2345 &inet->inet_daddr, ntohs(inet->inet_dport),
2346 tp->snd_cwnd, tcp_left_out(tp),
2347 tp->snd_ssthresh, tp->prior_ssthresh,
2348 tp->packets_out);
2349 }
2350 #if IS_ENABLED(CONFIG_IPV6)
2351 else if (sk->sk_family == AF_INET6) {
2352 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2353 msg,
2354 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2355 tp->snd_cwnd, tcp_left_out(tp),
2356 tp->snd_ssthresh, tp->prior_ssthresh,
2357 tp->packets_out);
2358 }
2359 #endif
2360 }
2361 #else
2362 #define DBGUNDO(x...) do { } while (0)
2363 #endif
2364
2365 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2366 {
2367 struct tcp_sock *tp = tcp_sk(sk);
2368
2369 if (unmark_loss) {
2370 struct sk_buff *skb;
2371
2372 tcp_for_write_queue(skb, sk) {
2373 if (skb == tcp_send_head(sk))
2374 break;
2375 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2376 }
2377 tp->lost_out = 0;
2378 tcp_clear_all_retrans_hints(tp);
2379 }
2380
2381 if (tp->prior_ssthresh) {
2382 const struct inet_connection_sock *icsk = inet_csk(sk);
2383
2384 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2385
2386 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2387 tp->snd_ssthresh = tp->prior_ssthresh;
2388 tcp_ecn_withdraw_cwr(tp);
2389 }
2390 }
2391 tp->snd_cwnd_stamp = tcp_jiffies32;
2392 tp->undo_marker = 0;
2393 }
2394
2395 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2396 {
2397 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2398 }
2399
2400 /* People celebrate: "We love our President!" */
2401 static bool tcp_try_undo_recovery(struct sock *sk)
2402 {
2403 struct tcp_sock *tp = tcp_sk(sk);
2404
2405 if (tcp_may_undo(tp)) {
2406 int mib_idx;
2407
2408 /* Happy end! We did not retransmit anything
2409 * or our original transmission succeeded.
2410 */
2411 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2412 tcp_undo_cwnd_reduction(sk, false);
2413 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2414 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2415 else
2416 mib_idx = LINUX_MIB_TCPFULLUNDO;
2417
2418 NET_INC_STATS(sock_net(sk), mib_idx);
2419 }
2420 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2421 /* Hold old state until something *above* high_seq
2422 * is ACKed. For Reno it is MUST to prevent false
2423 * fast retransmits (RFC2582). SACK TCP is safe. */
2424 if (!tcp_any_retrans_done(sk))
2425 tp->retrans_stamp = 0;
2426 return true;
2427 }
2428 tcp_set_ca_state(sk, TCP_CA_Open);
2429 return false;
2430 }
2431
2432 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2433 static bool tcp_try_undo_dsack(struct sock *sk)
2434 {
2435 struct tcp_sock *tp = tcp_sk(sk);
2436
2437 if (tp->undo_marker && !tp->undo_retrans) {
2438 DBGUNDO(sk, "D-SACK");
2439 tcp_undo_cwnd_reduction(sk, false);
2440 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2441 return true;
2442 }
2443 return false;
2444 }
2445
2446 /* Undo during loss recovery after partial ACK or using F-RTO. */
2447 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2448 {
2449 struct tcp_sock *tp = tcp_sk(sk);
2450
2451 if (frto_undo || tcp_may_undo(tp)) {
2452 tcp_undo_cwnd_reduction(sk, true);
2453
2454 DBGUNDO(sk, "partial loss");
2455 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2456 if (frto_undo)
2457 NET_INC_STATS(sock_net(sk),
2458 LINUX_MIB_TCPSPURIOUSRTOS);
2459 inet_csk(sk)->icsk_retransmits = 0;
2460 if (frto_undo || tcp_is_sack(tp))
2461 tcp_set_ca_state(sk, TCP_CA_Open);
2462 return true;
2463 }
2464 return false;
2465 }
2466
2467 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2468 * It computes the number of packets to send (sndcnt) based on packets newly
2469 * delivered:
2470 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2471 * cwnd reductions across a full RTT.
2472 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2473 * But when the retransmits are acked without further losses, PRR
2474 * slow starts cwnd up to ssthresh to speed up the recovery.
2475 */
2476 static void tcp_init_cwnd_reduction(struct sock *sk)
2477 {
2478 struct tcp_sock *tp = tcp_sk(sk);
2479
2480 tp->high_seq = tp->snd_nxt;
2481 tp->tlp_high_seq = 0;
2482 tp->snd_cwnd_cnt = 0;
2483 tp->prior_cwnd = tp->snd_cwnd;
2484 tp->prr_delivered = 0;
2485 tp->prr_out = 0;
2486 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2487 tcp_ecn_queue_cwr(tp);
2488 }
2489
2490 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2491 {
2492 struct tcp_sock *tp = tcp_sk(sk);
2493 int sndcnt = 0;
2494 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2495
2496 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2497 return;
2498
2499 tp->prr_delivered += newly_acked_sacked;
2500 if (delta < 0) {
2501 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2502 tp->prior_cwnd - 1;
2503 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2504 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2505 !(flag & FLAG_LOST_RETRANS)) {
2506 sndcnt = min_t(int, delta,
2507 max_t(int, tp->prr_delivered - tp->prr_out,
2508 newly_acked_sacked) + 1);
2509 } else {
2510 sndcnt = min(delta, newly_acked_sacked);
2511 }
2512 /* Force a fast retransmit upon entering fast recovery */
2513 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2514 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2515 }
2516
2517 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2518 {
2519 struct tcp_sock *tp = tcp_sk(sk);
2520
2521 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2522 return;
2523
2524 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2525 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2526 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2527 tp->snd_cwnd = tp->snd_ssthresh;
2528 tp->snd_cwnd_stamp = tcp_jiffies32;
2529 }
2530 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2531 }
2532
2533 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2534 void tcp_enter_cwr(struct sock *sk)
2535 {
2536 struct tcp_sock *tp = tcp_sk(sk);
2537
2538 tp->prior_ssthresh = 0;
2539 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2540 tp->undo_marker = 0;
2541 tcp_init_cwnd_reduction(sk);
2542 tcp_set_ca_state(sk, TCP_CA_CWR);
2543 }
2544 }
2545 EXPORT_SYMBOL(tcp_enter_cwr);
2546
2547 static void tcp_try_keep_open(struct sock *sk)
2548 {
2549 struct tcp_sock *tp = tcp_sk(sk);
2550 int state = TCP_CA_Open;
2551
2552 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2553 state = TCP_CA_Disorder;
2554
2555 if (inet_csk(sk)->icsk_ca_state != state) {
2556 tcp_set_ca_state(sk, state);
2557 tp->high_seq = tp->snd_nxt;
2558 }
2559 }
2560
2561 static void tcp_try_to_open(struct sock *sk, int flag)
2562 {
2563 struct tcp_sock *tp = tcp_sk(sk);
2564
2565 tcp_verify_left_out(tp);
2566
2567 if (!tcp_any_retrans_done(sk))
2568 tp->retrans_stamp = 0;
2569
2570 if (flag & FLAG_ECE)
2571 tcp_enter_cwr(sk);
2572
2573 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2574 tcp_try_keep_open(sk);
2575 }
2576 }
2577
2578 static void tcp_mtup_probe_failed(struct sock *sk)
2579 {
2580 struct inet_connection_sock *icsk = inet_csk(sk);
2581
2582 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2583 icsk->icsk_mtup.probe_size = 0;
2584 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2585 }
2586
2587 static void tcp_mtup_probe_success(struct sock *sk)
2588 {
2589 struct tcp_sock *tp = tcp_sk(sk);
2590 struct inet_connection_sock *icsk = inet_csk(sk);
2591
2592 /* FIXME: breaks with very large cwnd */
2593 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2594 tp->snd_cwnd = tp->snd_cwnd *
2595 tcp_mss_to_mtu(sk, tp->mss_cache) /
2596 icsk->icsk_mtup.probe_size;
2597 tp->snd_cwnd_cnt = 0;
2598 tp->snd_cwnd_stamp = tcp_jiffies32;
2599 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2600
2601 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2602 icsk->icsk_mtup.probe_size = 0;
2603 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2604 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2605 }
2606
2607 /* Do a simple retransmit without using the backoff mechanisms in
2608 * tcp_timer. This is used for path mtu discovery.
2609 * The socket is already locked here.
2610 */
2611 void tcp_simple_retransmit(struct sock *sk)
2612 {
2613 const struct inet_connection_sock *icsk = inet_csk(sk);
2614 struct tcp_sock *tp = tcp_sk(sk);
2615 struct sk_buff *skb;
2616 unsigned int mss = tcp_current_mss(sk);
2617 u32 prior_lost = tp->lost_out;
2618
2619 tcp_for_write_queue(skb, sk) {
2620 if (skb == tcp_send_head(sk))
2621 break;
2622 if (tcp_skb_seglen(skb) > mss &&
2623 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2624 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2625 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2626 tp->retrans_out -= tcp_skb_pcount(skb);
2627 }
2628 tcp_skb_mark_lost_uncond_verify(tp, skb);
2629 }
2630 }
2631
2632 tcp_clear_retrans_hints_partial(tp);
2633
2634 if (prior_lost == tp->lost_out)
2635 return;
2636
2637 if (tcp_is_reno(tp))
2638 tcp_limit_reno_sacked(tp);
2639
2640 tcp_verify_left_out(tp);
2641
2642 /* Don't muck with the congestion window here.
2643 * Reason is that we do not increase amount of _data_
2644 * in network, but units changed and effective
2645 * cwnd/ssthresh really reduced now.
2646 */
2647 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2648 tp->high_seq = tp->snd_nxt;
2649 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2650 tp->prior_ssthresh = 0;
2651 tp->undo_marker = 0;
2652 tcp_set_ca_state(sk, TCP_CA_Loss);
2653 }
2654 tcp_xmit_retransmit_queue(sk);
2655 }
2656 EXPORT_SYMBOL(tcp_simple_retransmit);
2657
2658 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2659 {
2660 struct tcp_sock *tp = tcp_sk(sk);
2661 int mib_idx;
2662
2663 if (tcp_is_reno(tp))
2664 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2665 else
2666 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2667
2668 NET_INC_STATS(sock_net(sk), mib_idx);
2669
2670 tp->prior_ssthresh = 0;
2671 tcp_init_undo(tp);
2672
2673 if (!tcp_in_cwnd_reduction(sk)) {
2674 if (!ece_ack)
2675 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2676 tcp_init_cwnd_reduction(sk);
2677 }
2678 tcp_set_ca_state(sk, TCP_CA_Recovery);
2679 }
2680
2681 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2682 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2683 */
2684 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2685 int *rexmit)
2686 {
2687 struct tcp_sock *tp = tcp_sk(sk);
2688 bool recovered = !before(tp->snd_una, tp->high_seq);
2689
2690 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2691 tcp_try_undo_loss(sk, false))
2692 return;
2693
2694 /* The ACK (s)acks some never-retransmitted data meaning not all
2695 * the data packets before the timeout were lost. Therefore we
2696 * undo the congestion window and state. This is essentially
2697 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2698 * a retransmitted skb is permantly marked, we can apply such an
2699 * operation even if F-RTO was not used.
2700 */
2701 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2702 tcp_try_undo_loss(sk, tp->undo_marker))
2703 return;
2704
2705 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2706 if (after(tp->snd_nxt, tp->high_seq)) {
2707 if (flag & FLAG_DATA_SACKED || is_dupack)
2708 tp->frto = 0; /* Step 3.a. loss was real */
2709 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2710 tp->high_seq = tp->snd_nxt;
2711 /* Step 2.b. Try send new data (but deferred until cwnd
2712 * is updated in tcp_ack()). Otherwise fall back to
2713 * the conventional recovery.
2714 */
2715 if (tcp_send_head(sk) &&
2716 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2717 *rexmit = REXMIT_NEW;
2718 return;
2719 }
2720 tp->frto = 0;
2721 }
2722 }
2723
2724 if (recovered) {
2725 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2726 tcp_try_undo_recovery(sk);
2727 return;
2728 }
2729 if (tcp_is_reno(tp)) {
2730 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2731 * delivered. Lower inflight to clock out (re)tranmissions.
2732 */
2733 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2734 tcp_add_reno_sack(sk);
2735 else if (flag & FLAG_SND_UNA_ADVANCED)
2736 tcp_reset_reno_sack(tp);
2737 }
2738 *rexmit = REXMIT_LOST;
2739 }
2740
2741 /* Undo during fast recovery after partial ACK. */
2742 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2743 {
2744 struct tcp_sock *tp = tcp_sk(sk);
2745
2746 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2747 /* Plain luck! Hole if filled with delayed
2748 * packet, rather than with a retransmit.
2749 */
2750 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2751
2752 /* We are getting evidence that the reordering degree is higher
2753 * than we realized. If there are no retransmits out then we
2754 * can undo. Otherwise we clock out new packets but do not
2755 * mark more packets lost or retransmit more.
2756 */
2757 if (tp->retrans_out)
2758 return true;
2759
2760 if (!tcp_any_retrans_done(sk))
2761 tp->retrans_stamp = 0;
2762
2763 DBGUNDO(sk, "partial recovery");
2764 tcp_undo_cwnd_reduction(sk, true);
2765 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2766 tcp_try_keep_open(sk);
2767 return true;
2768 }
2769 return false;
2770 }
2771
2772 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2773 {
2774 struct tcp_sock *tp = tcp_sk(sk);
2775
2776 /* Use RACK to detect loss */
2777 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2778 u32 prior_retrans = tp->retrans_out;
2779
2780 tcp_rack_mark_lost(sk);
2781 if (prior_retrans > tp->retrans_out)
2782 *ack_flag |= FLAG_LOST_RETRANS;
2783 }
2784 }
2785
2786 /* Process an event, which can update packets-in-flight not trivially.
2787 * Main goal of this function is to calculate new estimate for left_out,
2788 * taking into account both packets sitting in receiver's buffer and
2789 * packets lost by network.
2790 *
2791 * Besides that it updates the congestion state when packet loss or ECN
2792 * is detected. But it does not reduce the cwnd, it is done by the
2793 * congestion control later.
2794 *
2795 * It does _not_ decide what to send, it is made in function
2796 * tcp_xmit_retransmit_queue().
2797 */
2798 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2799 bool is_dupack, int *ack_flag, int *rexmit)
2800 {
2801 struct inet_connection_sock *icsk = inet_csk(sk);
2802 struct tcp_sock *tp = tcp_sk(sk);
2803 int fast_rexmit = 0, flag = *ack_flag;
2804 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2805 (tcp_fackets_out(tp) > tp->reordering));
2806
2807 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2808 tp->sacked_out = 0;
2809 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2810 tp->fackets_out = 0;
2811
2812 /* Now state machine starts.
2813 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2814 if (flag & FLAG_ECE)
2815 tp->prior_ssthresh = 0;
2816
2817 /* B. In all the states check for reneging SACKs. */
2818 if (tcp_check_sack_reneging(sk, flag))
2819 return;
2820
2821 /* C. Check consistency of the current state. */
2822 tcp_verify_left_out(tp);
2823
2824 /* D. Check state exit conditions. State can be terminated
2825 * when high_seq is ACKed. */
2826 if (icsk->icsk_ca_state == TCP_CA_Open) {
2827 WARN_ON(tp->retrans_out != 0);
2828 tp->retrans_stamp = 0;
2829 } else if (!before(tp->snd_una, tp->high_seq)) {
2830 switch (icsk->icsk_ca_state) {
2831 case TCP_CA_CWR:
2832 /* CWR is to be held something *above* high_seq
2833 * is ACKed for CWR bit to reach receiver. */
2834 if (tp->snd_una != tp->high_seq) {
2835 tcp_end_cwnd_reduction(sk);
2836 tcp_set_ca_state(sk, TCP_CA_Open);
2837 }
2838 break;
2839
2840 case TCP_CA_Recovery:
2841 if (tcp_is_reno(tp))
2842 tcp_reset_reno_sack(tp);
2843 if (tcp_try_undo_recovery(sk))
2844 return;
2845 tcp_end_cwnd_reduction(sk);
2846 break;
2847 }
2848 }
2849
2850 /* E. Process state. */
2851 switch (icsk->icsk_ca_state) {
2852 case TCP_CA_Recovery:
2853 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2854 if (tcp_is_reno(tp) && is_dupack)
2855 tcp_add_reno_sack(sk);
2856 } else {
2857 if (tcp_try_undo_partial(sk, acked))
2858 return;
2859 /* Partial ACK arrived. Force fast retransmit. */
2860 do_lost = tcp_is_reno(tp) ||
2861 tcp_fackets_out(tp) > tp->reordering;
2862 }
2863 if (tcp_try_undo_dsack(sk)) {
2864 tcp_try_keep_open(sk);
2865 return;
2866 }
2867 tcp_rack_identify_loss(sk, ack_flag);
2868 break;
2869 case TCP_CA_Loss:
2870 tcp_process_loss(sk, flag, is_dupack, rexmit);
2871 tcp_rack_identify_loss(sk, ack_flag);
2872 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2873 (*ack_flag & FLAG_LOST_RETRANS)))
2874 return;
2875 /* Change state if cwnd is undone or retransmits are lost */
2876 default:
2877 if (tcp_is_reno(tp)) {
2878 if (flag & FLAG_SND_UNA_ADVANCED)
2879 tcp_reset_reno_sack(tp);
2880 if (is_dupack)
2881 tcp_add_reno_sack(sk);
2882 }
2883
2884 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2885 tcp_try_undo_dsack(sk);
2886
2887 tcp_rack_identify_loss(sk, ack_flag);
2888 if (!tcp_time_to_recover(sk, flag)) {
2889 tcp_try_to_open(sk, flag);
2890 return;
2891 }
2892
2893 /* MTU probe failure: don't reduce cwnd */
2894 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2895 icsk->icsk_mtup.probe_size &&
2896 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2897 tcp_mtup_probe_failed(sk);
2898 /* Restores the reduction we did in tcp_mtup_probe() */
2899 tp->snd_cwnd++;
2900 tcp_simple_retransmit(sk);
2901 return;
2902 }
2903
2904 /* Otherwise enter Recovery state */
2905 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2906 fast_rexmit = 1;
2907 }
2908
2909 if (do_lost)
2910 tcp_update_scoreboard(sk, fast_rexmit);
2911 *rexmit = REXMIT_LOST;
2912 }
2913
2914 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2915 {
2916 struct tcp_sock *tp = tcp_sk(sk);
2917 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2918
2919 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2920 rtt_us ? : jiffies_to_usecs(1));
2921 }
2922
2923 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2924 long seq_rtt_us, long sack_rtt_us,
2925 long ca_rtt_us, struct rate_sample *rs)
2926 {
2927 const struct tcp_sock *tp = tcp_sk(sk);
2928
2929 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2930 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2931 * Karn's algorithm forbids taking RTT if some retransmitted data
2932 * is acked (RFC6298).
2933 */
2934 if (seq_rtt_us < 0)
2935 seq_rtt_us = sack_rtt_us;
2936
2937 /* RTTM Rule: A TSecr value received in a segment is used to
2938 * update the averaged RTT measurement only if the segment
2939 * acknowledges some new data, i.e., only if it advances the
2940 * left edge of the send window.
2941 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2942 */
2943 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2944 flag & FLAG_ACKED) {
2945 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2946 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2947
2948 seq_rtt_us = ca_rtt_us = delta_us;
2949 }
2950 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2951 if (seq_rtt_us < 0)
2952 return false;
2953
2954 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2955 * always taken together with ACK, SACK, or TS-opts. Any negative
2956 * values will be skipped with the seq_rtt_us < 0 check above.
2957 */
2958 tcp_update_rtt_min(sk, ca_rtt_us);
2959 tcp_rtt_estimator(sk, seq_rtt_us);
2960 tcp_set_rto(sk);
2961
2962 /* RFC6298: only reset backoff on valid RTT measurement. */
2963 inet_csk(sk)->icsk_backoff = 0;
2964 return true;
2965 }
2966
2967 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2968 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2969 {
2970 struct rate_sample rs;
2971 long rtt_us = -1L;
2972
2973 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2974 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2975
2976 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2977 }
2978
2979
2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2981 {
2982 const struct inet_connection_sock *icsk = inet_csk(sk);
2983
2984 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2985 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2986 }
2987
2988 /* Restart timer after forward progress on connection.
2989 * RFC2988 recommends to restart timer to now+rto.
2990 */
2991 void tcp_rearm_rto(struct sock *sk)
2992 {
2993 const struct inet_connection_sock *icsk = inet_csk(sk);
2994 struct tcp_sock *tp = tcp_sk(sk);
2995
2996 /* If the retrans timer is currently being used by Fast Open
2997 * for SYN-ACK retrans purpose, stay put.
2998 */
2999 if (tp->fastopen_rsk)
3000 return;
3001
3002 if (!tp->packets_out) {
3003 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3004 } else {
3005 u32 rto = inet_csk(sk)->icsk_rto;
3006 /* Offset the time elapsed after installing regular RTO */
3007 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3008 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3009 s64 delta_us = tcp_rto_delta_us(sk);
3010 /* delta_us may not be positive if the socket is locked
3011 * when the retrans timer fires and is rescheduled.
3012 */
3013 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3014 }
3015 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3016 TCP_RTO_MAX);
3017 }
3018 }
3019
3020 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3021 static void tcp_set_xmit_timer(struct sock *sk)
3022 {
3023 if (!tcp_schedule_loss_probe(sk))
3024 tcp_rearm_rto(sk);
3025 }
3026
3027 /* If we get here, the whole TSO packet has not been acked. */
3028 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3029 {
3030 struct tcp_sock *tp = tcp_sk(sk);
3031 u32 packets_acked;
3032
3033 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3034
3035 packets_acked = tcp_skb_pcount(skb);
3036 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3037 return 0;
3038 packets_acked -= tcp_skb_pcount(skb);
3039
3040 if (packets_acked) {
3041 BUG_ON(tcp_skb_pcount(skb) == 0);
3042 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3043 }
3044
3045 return packets_acked;
3046 }
3047
3048 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3049 u32 prior_snd_una)
3050 {
3051 const struct skb_shared_info *shinfo;
3052
3053 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3054 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3055 return;
3056
3057 shinfo = skb_shinfo(skb);
3058 if (!before(shinfo->tskey, prior_snd_una) &&
3059 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3060 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3061 }
3062
3063 /* Remove acknowledged frames from the retransmission queue. If our packet
3064 * is before the ack sequence we can discard it as it's confirmed to have
3065 * arrived at the other end.
3066 */
3067 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3068 u32 prior_snd_una, int *acked,
3069 struct tcp_sacktag_state *sack)
3070 {
3071 const struct inet_connection_sock *icsk = inet_csk(sk);
3072 u64 first_ackt, last_ackt;
3073 struct tcp_sock *tp = tcp_sk(sk);
3074 u32 prior_sacked = tp->sacked_out;
3075 u32 reord = tp->packets_out;
3076 bool fully_acked = true;
3077 long sack_rtt_us = -1L;
3078 long seq_rtt_us = -1L;
3079 long ca_rtt_us = -1L;
3080 struct sk_buff *skb;
3081 u32 pkts_acked = 0;
3082 u32 last_in_flight = 0;
3083 bool rtt_update;
3084 int flag = 0;
3085
3086 first_ackt = 0;
3087
3088 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3089 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3090 u8 sacked = scb->sacked;
3091 u32 acked_pcount;
3092
3093 tcp_ack_tstamp(sk, skb, prior_snd_una);
3094
3095 /* Determine how many packets and what bytes were acked, tso and else */
3096 if (after(scb->end_seq, tp->snd_una)) {
3097 if (tcp_skb_pcount(skb) == 1 ||
3098 !after(tp->snd_una, scb->seq))
3099 break;
3100
3101 acked_pcount = tcp_tso_acked(sk, skb);
3102 if (!acked_pcount)
3103 break;
3104 fully_acked = false;
3105 } else {
3106 /* Speedup tcp_unlink_write_queue() and next loop */
3107 prefetchw(skb->next);
3108 acked_pcount = tcp_skb_pcount(skb);
3109 }
3110
3111 if (unlikely(sacked & TCPCB_RETRANS)) {
3112 if (sacked & TCPCB_SACKED_RETRANS)
3113 tp->retrans_out -= acked_pcount;
3114 flag |= FLAG_RETRANS_DATA_ACKED;
3115 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3116 last_ackt = skb->skb_mstamp;
3117 WARN_ON_ONCE(last_ackt == 0);
3118 if (!first_ackt)
3119 first_ackt = last_ackt;
3120
3121 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3122 reord = min(pkts_acked, reord);
3123 if (!after(scb->end_seq, tp->high_seq))
3124 flag |= FLAG_ORIG_SACK_ACKED;
3125 }
3126
3127 if (sacked & TCPCB_SACKED_ACKED) {
3128 tp->sacked_out -= acked_pcount;
3129 } else if (tcp_is_sack(tp)) {
3130 tp->delivered += acked_pcount;
3131 if (!tcp_skb_spurious_retrans(tp, skb))
3132 tcp_rack_advance(tp, sacked, scb->end_seq,
3133 skb->skb_mstamp);
3134 }
3135 if (sacked & TCPCB_LOST)
3136 tp->lost_out -= acked_pcount;
3137
3138 tp->packets_out -= acked_pcount;
3139 pkts_acked += acked_pcount;
3140 tcp_rate_skb_delivered(sk, skb, sack->rate);
3141
3142 /* Initial outgoing SYN's get put onto the write_queue
3143 * just like anything else we transmit. It is not
3144 * true data, and if we misinform our callers that
3145 * this ACK acks real data, we will erroneously exit
3146 * connection startup slow start one packet too
3147 * quickly. This is severely frowned upon behavior.
3148 */
3149 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3150 flag |= FLAG_DATA_ACKED;
3151 } else {
3152 flag |= FLAG_SYN_ACKED;
3153 tp->retrans_stamp = 0;
3154 }
3155
3156 if (!fully_acked)
3157 break;
3158
3159 tcp_unlink_write_queue(skb, sk);
3160 sk_wmem_free_skb(sk, skb);
3161 if (unlikely(skb == tp->retransmit_skb_hint))
3162 tp->retransmit_skb_hint = NULL;
3163 if (unlikely(skb == tp->lost_skb_hint))
3164 tp->lost_skb_hint = NULL;
3165 }
3166
3167 if (!skb)
3168 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3169
3170 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3171 tp->snd_up = tp->snd_una;
3172
3173 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3174 flag |= FLAG_SACK_RENEGING;
3175
3176 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3177 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3178 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3179 }
3180 if (sack->first_sackt) {
3181 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3182 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3183 }
3184 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3185 ca_rtt_us, sack->rate);
3186
3187 if (flag & FLAG_ACKED) {
3188 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3189 if (unlikely(icsk->icsk_mtup.probe_size &&
3190 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3191 tcp_mtup_probe_success(sk);
3192 }
3193
3194 if (tcp_is_reno(tp)) {
3195 tcp_remove_reno_sacks(sk, pkts_acked);
3196 } else {
3197 int delta;
3198
3199 /* Non-retransmitted hole got filled? That's reordering */
3200 if (reord < prior_fackets && reord <= tp->fackets_out)
3201 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3202
3203 delta = tcp_is_fack(tp) ? pkts_acked :
3204 prior_sacked - tp->sacked_out;
3205 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3206 }
3207
3208 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3209
3210 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3211 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3212 /* Do not re-arm RTO if the sack RTT is measured from data sent
3213 * after when the head was last (re)transmitted. Otherwise the
3214 * timeout may continue to extend in loss recovery.
3215 */
3216 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3217 }
3218
3219 if (icsk->icsk_ca_ops->pkts_acked) {
3220 struct ack_sample sample = { .pkts_acked = pkts_acked,
3221 .rtt_us = sack->rate->rtt_us,
3222 .in_flight = last_in_flight };
3223
3224 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3225 }
3226
3227 #if FASTRETRANS_DEBUG > 0
3228 WARN_ON((int)tp->sacked_out < 0);
3229 WARN_ON((int)tp->lost_out < 0);
3230 WARN_ON((int)tp->retrans_out < 0);
3231 if (!tp->packets_out && tcp_is_sack(tp)) {
3232 icsk = inet_csk(sk);
3233 if (tp->lost_out) {
3234 pr_debug("Leak l=%u %d\n",
3235 tp->lost_out, icsk->icsk_ca_state);
3236 tp->lost_out = 0;
3237 }
3238 if (tp->sacked_out) {
3239 pr_debug("Leak s=%u %d\n",
3240 tp->sacked_out, icsk->icsk_ca_state);
3241 tp->sacked_out = 0;
3242 }
3243 if (tp->retrans_out) {
3244 pr_debug("Leak r=%u %d\n",
3245 tp->retrans_out, icsk->icsk_ca_state);
3246 tp->retrans_out = 0;
3247 }
3248 }
3249 #endif
3250 *acked = pkts_acked;
3251 return flag;
3252 }
3253
3254 static void tcp_ack_probe(struct sock *sk)
3255 {
3256 const struct tcp_sock *tp = tcp_sk(sk);
3257 struct inet_connection_sock *icsk = inet_csk(sk);
3258
3259 /* Was it a usable window open? */
3260
3261 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3262 icsk->icsk_backoff = 0;
3263 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3264 /* Socket must be waked up by subsequent tcp_data_snd_check().
3265 * This function is not for random using!
3266 */
3267 } else {
3268 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3269
3270 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3271 when, TCP_RTO_MAX);
3272 }
3273 }
3274
3275 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3276 {
3277 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3278 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3279 }
3280
3281 /* Decide wheather to run the increase function of congestion control. */
3282 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3283 {
3284 /* If reordering is high then always grow cwnd whenever data is
3285 * delivered regardless of its ordering. Otherwise stay conservative
3286 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3287 * new SACK or ECE mark may first advance cwnd here and later reduce
3288 * cwnd in tcp_fastretrans_alert() based on more states.
3289 */
3290 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3291 return flag & FLAG_FORWARD_PROGRESS;
3292
3293 return flag & FLAG_DATA_ACKED;
3294 }
3295
3296 /* The "ultimate" congestion control function that aims to replace the rigid
3297 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3298 * It's called toward the end of processing an ACK with precise rate
3299 * information. All transmission or retransmission are delayed afterwards.
3300 */
3301 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3302 int flag, const struct rate_sample *rs)
3303 {
3304 const struct inet_connection_sock *icsk = inet_csk(sk);
3305
3306 if (icsk->icsk_ca_ops->cong_control) {
3307 icsk->icsk_ca_ops->cong_control(sk, rs);
3308 return;
3309 }
3310
3311 if (tcp_in_cwnd_reduction(sk)) {
3312 /* Reduce cwnd if state mandates */
3313 tcp_cwnd_reduction(sk, acked_sacked, flag);
3314 } else if (tcp_may_raise_cwnd(sk, flag)) {
3315 /* Advance cwnd if state allows */
3316 tcp_cong_avoid(sk, ack, acked_sacked);
3317 }
3318 tcp_update_pacing_rate(sk);
3319 }
3320
3321 /* Check that window update is acceptable.
3322 * The function assumes that snd_una<=ack<=snd_next.
3323 */
3324 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3325 const u32 ack, const u32 ack_seq,
3326 const u32 nwin)
3327 {
3328 return after(ack, tp->snd_una) ||
3329 after(ack_seq, tp->snd_wl1) ||
3330 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3331 }
3332
3333 /* If we update tp->snd_una, also update tp->bytes_acked */
3334 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3335 {
3336 u32 delta = ack - tp->snd_una;
3337
3338 sock_owned_by_me((struct sock *)tp);
3339 tp->bytes_acked += delta;
3340 tp->snd_una = ack;
3341 }
3342
3343 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3344 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3345 {
3346 u32 delta = seq - tp->rcv_nxt;
3347
3348 sock_owned_by_me((struct sock *)tp);
3349 tp->bytes_received += delta;
3350 tp->rcv_nxt = seq;
3351 }
3352
3353 /* Update our send window.
3354 *
3355 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3356 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3357 */
3358 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3359 u32 ack_seq)
3360 {
3361 struct tcp_sock *tp = tcp_sk(sk);
3362 int flag = 0;
3363 u32 nwin = ntohs(tcp_hdr(skb)->window);
3364
3365 if (likely(!tcp_hdr(skb)->syn))
3366 nwin <<= tp->rx_opt.snd_wscale;
3367
3368 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3369 flag |= FLAG_WIN_UPDATE;
3370 tcp_update_wl(tp, ack_seq);
3371
3372 if (tp->snd_wnd != nwin) {
3373 tp->snd_wnd = nwin;
3374
3375 /* Note, it is the only place, where
3376 * fast path is recovered for sending TCP.
3377 */
3378 tp->pred_flags = 0;
3379 tcp_fast_path_check(sk);
3380
3381 if (tcp_send_head(sk))
3382 tcp_slow_start_after_idle_check(sk);
3383
3384 if (nwin > tp->max_window) {
3385 tp->max_window = nwin;
3386 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3387 }
3388 }
3389 }
3390
3391 tcp_snd_una_update(tp, ack);
3392
3393 return flag;
3394 }
3395
3396 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3397 u32 *last_oow_ack_time)
3398 {
3399 if (*last_oow_ack_time) {
3400 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3401
3402 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3403 NET_INC_STATS(net, mib_idx);
3404 return true; /* rate-limited: don't send yet! */
3405 }
3406 }
3407
3408 *last_oow_ack_time = tcp_jiffies32;
3409
3410 return false; /* not rate-limited: go ahead, send dupack now! */
3411 }
3412
3413 /* Return true if we're currently rate-limiting out-of-window ACKs and
3414 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3415 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3416 * attacks that send repeated SYNs or ACKs for the same connection. To
3417 * do this, we do not send a duplicate SYNACK or ACK if the remote
3418 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3419 */
3420 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3421 int mib_idx, u32 *last_oow_ack_time)
3422 {
3423 /* Data packets without SYNs are not likely part of an ACK loop. */
3424 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3425 !tcp_hdr(skb)->syn)
3426 return false;
3427
3428 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3429 }
3430
3431 /* RFC 5961 7 [ACK Throttling] */
3432 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3433 {
3434 /* unprotected vars, we dont care of overwrites */
3435 static u32 challenge_timestamp;
3436 static unsigned int challenge_count;
3437 struct tcp_sock *tp = tcp_sk(sk);
3438 u32 count, now;
3439
3440 /* First check our per-socket dupack rate limit. */
3441 if (__tcp_oow_rate_limited(sock_net(sk),
3442 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3443 &tp->last_oow_ack_time))
3444 return;
3445
3446 /* Then check host-wide RFC 5961 rate limit. */
3447 now = jiffies / HZ;
3448 if (now != challenge_timestamp) {
3449 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3450
3451 challenge_timestamp = now;
3452 WRITE_ONCE(challenge_count, half +
3453 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3454 }
3455 count = READ_ONCE(challenge_count);
3456 if (count > 0) {
3457 WRITE_ONCE(challenge_count, count - 1);
3458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3459 tcp_send_ack(sk);
3460 }
3461 }
3462
3463 static void tcp_store_ts_recent(struct tcp_sock *tp)
3464 {
3465 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3466 tp->rx_opt.ts_recent_stamp = get_seconds();
3467 }
3468
3469 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3470 {
3471 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3472 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3473 * extra check below makes sure this can only happen
3474 * for pure ACK frames. -DaveM
3475 *
3476 * Not only, also it occurs for expired timestamps.
3477 */
3478
3479 if (tcp_paws_check(&tp->rx_opt, 0))
3480 tcp_store_ts_recent(tp);
3481 }
3482 }
3483
3484 /* This routine deals with acks during a TLP episode.
3485 * We mark the end of a TLP episode on receiving TLP dupack or when
3486 * ack is after tlp_high_seq.
3487 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3488 */
3489 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3490 {
3491 struct tcp_sock *tp = tcp_sk(sk);
3492
3493 if (before(ack, tp->tlp_high_seq))
3494 return;
3495
3496 if (flag & FLAG_DSACKING_ACK) {
3497 /* This DSACK means original and TLP probe arrived; no loss */
3498 tp->tlp_high_seq = 0;
3499 } else if (after(ack, tp->tlp_high_seq)) {
3500 /* ACK advances: there was a loss, so reduce cwnd. Reset
3501 * tlp_high_seq in tcp_init_cwnd_reduction()
3502 */
3503 tcp_init_cwnd_reduction(sk);
3504 tcp_set_ca_state(sk, TCP_CA_CWR);
3505 tcp_end_cwnd_reduction(sk);
3506 tcp_try_keep_open(sk);
3507 NET_INC_STATS(sock_net(sk),
3508 LINUX_MIB_TCPLOSSPROBERECOVERY);
3509 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3510 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3511 /* Pure dupack: original and TLP probe arrived; no loss */
3512 tp->tlp_high_seq = 0;
3513 }
3514 }
3515
3516 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3517 {
3518 const struct inet_connection_sock *icsk = inet_csk(sk);
3519
3520 if (icsk->icsk_ca_ops->in_ack_event)
3521 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3522 }
3523
3524 /* Congestion control has updated the cwnd already. So if we're in
3525 * loss recovery then now we do any new sends (for FRTO) or
3526 * retransmits (for CA_Loss or CA_recovery) that make sense.
3527 */
3528 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3529 {
3530 struct tcp_sock *tp = tcp_sk(sk);
3531
3532 if (rexmit == REXMIT_NONE)
3533 return;
3534
3535 if (unlikely(rexmit == 2)) {
3536 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3537 TCP_NAGLE_OFF);
3538 if (after(tp->snd_nxt, tp->high_seq))
3539 return;
3540 tp->frto = 0;
3541 }
3542 tcp_xmit_retransmit_queue(sk);
3543 }
3544
3545 /* This routine deals with incoming acks, but not outgoing ones. */
3546 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3547 {
3548 struct inet_connection_sock *icsk = inet_csk(sk);
3549 struct tcp_sock *tp = tcp_sk(sk);
3550 struct tcp_sacktag_state sack_state;
3551 struct rate_sample rs = { .prior_delivered = 0 };
3552 u32 prior_snd_una = tp->snd_una;
3553 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3554 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3555 bool is_dupack = false;
3556 u32 prior_fackets;
3557 int prior_packets = tp->packets_out;
3558 u32 delivered = tp->delivered;
3559 u32 lost = tp->lost;
3560 int acked = 0; /* Number of packets newly acked */
3561 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3562
3563 sack_state.first_sackt = 0;
3564 sack_state.rate = &rs;
3565
3566 /* We very likely will need to access write queue head. */
3567 prefetchw(sk->sk_write_queue.next);
3568
3569 /* If the ack is older than previous acks
3570 * then we can probably ignore it.
3571 */
3572 if (before(ack, prior_snd_una)) {
3573 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3574 if (before(ack, prior_snd_una - tp->max_window)) {
3575 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3576 tcp_send_challenge_ack(sk, skb);
3577 return -1;
3578 }
3579 goto old_ack;
3580 }
3581
3582 /* If the ack includes data we haven't sent yet, discard
3583 * this segment (RFC793 Section 3.9).
3584 */
3585 if (after(ack, tp->snd_nxt))
3586 goto invalid_ack;
3587
3588 if (after(ack, prior_snd_una)) {
3589 flag |= FLAG_SND_UNA_ADVANCED;
3590 icsk->icsk_retransmits = 0;
3591 }
3592
3593 prior_fackets = tp->fackets_out;
3594 rs.prior_in_flight = tcp_packets_in_flight(tp);
3595
3596 /* ts_recent update must be made after we are sure that the packet
3597 * is in window.
3598 */
3599 if (flag & FLAG_UPDATE_TS_RECENT)
3600 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3601
3602 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3603 /* Window is constant, pure forward advance.
3604 * No more checks are required.
3605 * Note, we use the fact that SND.UNA>=SND.WL2.
3606 */
3607 tcp_update_wl(tp, ack_seq);
3608 tcp_snd_una_update(tp, ack);
3609 flag |= FLAG_WIN_UPDATE;
3610
3611 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3612
3613 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3614 } else {
3615 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3616
3617 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3618 flag |= FLAG_DATA;
3619 else
3620 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3621
3622 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3623
3624 if (TCP_SKB_CB(skb)->sacked)
3625 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3626 &sack_state);
3627
3628 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3629 flag |= FLAG_ECE;
3630 ack_ev_flags |= CA_ACK_ECE;
3631 }
3632
3633 if (flag & FLAG_WIN_UPDATE)
3634 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3635
3636 tcp_in_ack_event(sk, ack_ev_flags);
3637 }
3638
3639 /* We passed data and got it acked, remove any soft error
3640 * log. Something worked...
3641 */
3642 sk->sk_err_soft = 0;
3643 icsk->icsk_probes_out = 0;
3644 tp->rcv_tstamp = tcp_jiffies32;
3645 if (!prior_packets)
3646 goto no_queue;
3647
3648 /* See if we can take anything off of the retransmit queue. */
3649 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3650 &sack_state);
3651
3652 if (tp->tlp_high_seq)
3653 tcp_process_tlp_ack(sk, ack, flag);
3654 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3655 if (flag & FLAG_SET_XMIT_TIMER)
3656 tcp_set_xmit_timer(sk);
3657
3658 if (tcp_ack_is_dubious(sk, flag)) {
3659 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3660 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3661 }
3662
3663 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3664 sk_dst_confirm(sk);
3665
3666 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3667 lost = tp->lost - lost; /* freshly marked lost */
3668 tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3669 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3670 tcp_xmit_recovery(sk, rexmit);
3671 return 1;
3672
3673 no_queue:
3674 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3675 if (flag & FLAG_DSACKING_ACK)
3676 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3677 /* If this ack opens up a zero window, clear backoff. It was
3678 * being used to time the probes, and is probably far higher than
3679 * it needs to be for normal retransmission.
3680 */
3681 if (tcp_send_head(sk))
3682 tcp_ack_probe(sk);
3683
3684 if (tp->tlp_high_seq)
3685 tcp_process_tlp_ack(sk, ack, flag);
3686 return 1;
3687
3688 invalid_ack:
3689 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3690 return -1;
3691
3692 old_ack:
3693 /* If data was SACKed, tag it and see if we should send more data.
3694 * If data was DSACKed, see if we can undo a cwnd reduction.
3695 */
3696 if (TCP_SKB_CB(skb)->sacked) {
3697 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3698 &sack_state);
3699 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3700 tcp_xmit_recovery(sk, rexmit);
3701 }
3702
3703 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3704 return 0;
3705 }
3706
3707 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3708 bool syn, struct tcp_fastopen_cookie *foc,
3709 bool exp_opt)
3710 {
3711 /* Valid only in SYN or SYN-ACK with an even length. */
3712 if (!foc || !syn || len < 0 || (len & 1))
3713 return;
3714
3715 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3716 len <= TCP_FASTOPEN_COOKIE_MAX)
3717 memcpy(foc->val, cookie, len);
3718 else if (len != 0)
3719 len = -1;
3720 foc->len = len;
3721 foc->exp = exp_opt;
3722 }
3723
3724 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3725 * But, this can also be called on packets in the established flow when
3726 * the fast version below fails.
3727 */
3728 void tcp_parse_options(const struct net *net,
3729 const struct sk_buff *skb,
3730 struct tcp_options_received *opt_rx, int estab,
3731 struct tcp_fastopen_cookie *foc)
3732 {
3733 const unsigned char *ptr;
3734 const struct tcphdr *th = tcp_hdr(skb);
3735 int length = (th->doff * 4) - sizeof(struct tcphdr);
3736
3737 ptr = (const unsigned char *)(th + 1);
3738 opt_rx->saw_tstamp = 0;
3739
3740 while (length > 0) {
3741 int opcode = *ptr++;
3742 int opsize;
3743
3744 switch (opcode) {
3745 case TCPOPT_EOL:
3746 return;
3747 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3748 length--;
3749 continue;
3750 default:
3751 opsize = *ptr++;
3752 if (opsize < 2) /* "silly options" */
3753 return;
3754 if (opsize > length)
3755 return; /* don't parse partial options */
3756 switch (opcode) {
3757 case TCPOPT_MSS:
3758 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3759 u16 in_mss = get_unaligned_be16(ptr);
3760 if (in_mss) {
3761 if (opt_rx->user_mss &&
3762 opt_rx->user_mss < in_mss)
3763 in_mss = opt_rx->user_mss;
3764 opt_rx->mss_clamp = in_mss;
3765 }
3766 }
3767 break;
3768 case TCPOPT_WINDOW:
3769 if (opsize == TCPOLEN_WINDOW && th->syn &&
3770 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3771 __u8 snd_wscale = *(__u8 *)ptr;
3772 opt_rx->wscale_ok = 1;
3773 if (snd_wscale > TCP_MAX_WSCALE) {
3774 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3775 __func__,
3776 snd_wscale,
3777 TCP_MAX_WSCALE);
3778 snd_wscale = TCP_MAX_WSCALE;
3779 }
3780 opt_rx->snd_wscale = snd_wscale;
3781 }
3782 break;
3783 case TCPOPT_TIMESTAMP:
3784 if ((opsize == TCPOLEN_TIMESTAMP) &&
3785 ((estab && opt_rx->tstamp_ok) ||
3786 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3787 opt_rx->saw_tstamp = 1;
3788 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3789 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3790 }
3791 break;
3792 case TCPOPT_SACK_PERM:
3793 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3794 !estab && net->ipv4.sysctl_tcp_sack) {
3795 opt_rx->sack_ok = TCP_SACK_SEEN;
3796 tcp_sack_reset(opt_rx);
3797 }
3798 break;
3799
3800 case TCPOPT_SACK:
3801 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3802 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3803 opt_rx->sack_ok) {
3804 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3805 }
3806 break;
3807 #ifdef CONFIG_TCP_MD5SIG
3808 case TCPOPT_MD5SIG:
3809 /*
3810 * The MD5 Hash has already been
3811 * checked (see tcp_v{4,6}_do_rcv()).
3812 */
3813 break;
3814 #endif
3815 case TCPOPT_FASTOPEN:
3816 tcp_parse_fastopen_option(
3817 opsize - TCPOLEN_FASTOPEN_BASE,
3818 ptr, th->syn, foc, false);
3819 break;
3820
3821 case TCPOPT_EXP:
3822 /* Fast Open option shares code 254 using a
3823 * 16 bits magic number.
3824 */
3825 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3826 get_unaligned_be16(ptr) ==
3827 TCPOPT_FASTOPEN_MAGIC)
3828 tcp_parse_fastopen_option(opsize -
3829 TCPOLEN_EXP_FASTOPEN_BASE,
3830 ptr + 2, th->syn, foc, true);
3831 break;
3832
3833 }
3834 ptr += opsize-2;
3835 length -= opsize;
3836 }
3837 }
3838 }
3839 EXPORT_SYMBOL(tcp_parse_options);
3840
3841 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3842 {
3843 const __be32 *ptr = (const __be32 *)(th + 1);
3844
3845 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3846 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3847 tp->rx_opt.saw_tstamp = 1;
3848 ++ptr;
3849 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3850 ++ptr;
3851 if (*ptr)
3852 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3853 else
3854 tp->rx_opt.rcv_tsecr = 0;
3855 return true;
3856 }
3857 return false;
3858 }
3859
3860 /* Fast parse options. This hopes to only see timestamps.
3861 * If it is wrong it falls back on tcp_parse_options().
3862 */
3863 static bool tcp_fast_parse_options(const struct net *net,
3864 const struct sk_buff *skb,
3865 const struct tcphdr *th, struct tcp_sock *tp)
3866 {
3867 /* In the spirit of fast parsing, compare doff directly to constant
3868 * values. Because equality is used, short doff can be ignored here.
3869 */
3870 if (th->doff == (sizeof(*th) / 4)) {
3871 tp->rx_opt.saw_tstamp = 0;
3872 return false;
3873 } else if (tp->rx_opt.tstamp_ok &&
3874 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3875 if (tcp_parse_aligned_timestamp(tp, th))
3876 return true;
3877 }
3878
3879 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3880 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3881 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3882
3883 return true;
3884 }
3885
3886 #ifdef CONFIG_TCP_MD5SIG
3887 /*
3888 * Parse MD5 Signature option
3889 */
3890 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3891 {
3892 int length = (th->doff << 2) - sizeof(*th);
3893 const u8 *ptr = (const u8 *)(th + 1);
3894
3895 /* If the TCP option is too short, we can short cut */
3896 if (length < TCPOLEN_MD5SIG)
3897 return NULL;
3898
3899 while (length > 0) {
3900 int opcode = *ptr++;
3901 int opsize;
3902
3903 switch (opcode) {
3904 case TCPOPT_EOL:
3905 return NULL;
3906 case TCPOPT_NOP:
3907 length--;
3908 continue;
3909 default:
3910 opsize = *ptr++;
3911 if (opsize < 2 || opsize > length)
3912 return NULL;
3913 if (opcode == TCPOPT_MD5SIG)
3914 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3915 }
3916 ptr += opsize - 2;
3917 length -= opsize;
3918 }
3919 return NULL;
3920 }
3921 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3922 #endif
3923
3924 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3925 *
3926 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3927 * it can pass through stack. So, the following predicate verifies that
3928 * this segment is not used for anything but congestion avoidance or
3929 * fast retransmit. Moreover, we even are able to eliminate most of such
3930 * second order effects, if we apply some small "replay" window (~RTO)
3931 * to timestamp space.
3932 *
3933 * All these measures still do not guarantee that we reject wrapped ACKs
3934 * on networks with high bandwidth, when sequence space is recycled fastly,
3935 * but it guarantees that such events will be very rare and do not affect
3936 * connection seriously. This doesn't look nice, but alas, PAWS is really
3937 * buggy extension.
3938 *
3939 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3940 * states that events when retransmit arrives after original data are rare.
3941 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3942 * the biggest problem on large power networks even with minor reordering.
3943 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3944 * up to bandwidth of 18Gigabit/sec. 8) ]
3945 */
3946
3947 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3948 {
3949 const struct tcp_sock *tp = tcp_sk(sk);
3950 const struct tcphdr *th = tcp_hdr(skb);
3951 u32 seq = TCP_SKB_CB(skb)->seq;
3952 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3953
3954 return (/* 1. Pure ACK with correct sequence number. */
3955 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3956
3957 /* 2. ... and duplicate ACK. */
3958 ack == tp->snd_una &&
3959
3960 /* 3. ... and does not update window. */
3961 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3962
3963 /* 4. ... and sits in replay window. */
3964 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3965 }
3966
3967 static inline bool tcp_paws_discard(const struct sock *sk,
3968 const struct sk_buff *skb)
3969 {
3970 const struct tcp_sock *tp = tcp_sk(sk);
3971
3972 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3973 !tcp_disordered_ack(sk, skb);
3974 }
3975
3976 /* Check segment sequence number for validity.
3977 *
3978 * Segment controls are considered valid, if the segment
3979 * fits to the window after truncation to the window. Acceptability
3980 * of data (and SYN, FIN, of course) is checked separately.
3981 * See tcp_data_queue(), for example.
3982 *
3983 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3984 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3985 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3986 * (borrowed from freebsd)
3987 */
3988
3989 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3990 {
3991 return !before(end_seq, tp->rcv_wup) &&
3992 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3993 }
3994
3995 /* When we get a reset we do this. */
3996 void tcp_reset(struct sock *sk)
3997 {
3998 /* We want the right error as BSD sees it (and indeed as we do). */
3999 switch (sk->sk_state) {
4000 case TCP_SYN_SENT:
4001 sk->sk_err = ECONNREFUSED;
4002 break;
4003 case TCP_CLOSE_WAIT:
4004 sk->sk_err = EPIPE;
4005 break;
4006 case TCP_CLOSE:
4007 return;
4008 default:
4009 sk->sk_err = ECONNRESET;
4010 }
4011 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4012 smp_wmb();
4013
4014 tcp_done(sk);
4015
4016 if (!sock_flag(sk, SOCK_DEAD))
4017 sk->sk_error_report(sk);
4018 }
4019
4020 /*
4021 * Process the FIN bit. This now behaves as it is supposed to work
4022 * and the FIN takes effect when it is validly part of sequence
4023 * space. Not before when we get holes.
4024 *
4025 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4026 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4027 * TIME-WAIT)
4028 *
4029 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4030 * close and we go into CLOSING (and later onto TIME-WAIT)
4031 *
4032 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4033 */
4034 void tcp_fin(struct sock *sk)
4035 {
4036 struct tcp_sock *tp = tcp_sk(sk);
4037
4038 inet_csk_schedule_ack(sk);
4039
4040 sk->sk_shutdown |= RCV_SHUTDOWN;
4041 sock_set_flag(sk, SOCK_DONE);
4042
4043 switch (sk->sk_state) {
4044 case TCP_SYN_RECV:
4045 case TCP_ESTABLISHED:
4046 /* Move to CLOSE_WAIT */
4047 tcp_set_state(sk, TCP_CLOSE_WAIT);
4048 inet_csk(sk)->icsk_ack.pingpong = 1;
4049 break;
4050
4051 case TCP_CLOSE_WAIT:
4052 case TCP_CLOSING:
4053 /* Received a retransmission of the FIN, do
4054 * nothing.
4055 */
4056 break;
4057 case TCP_LAST_ACK:
4058 /* RFC793: Remain in the LAST-ACK state. */
4059 break;
4060
4061 case TCP_FIN_WAIT1:
4062 /* This case occurs when a simultaneous close
4063 * happens, we must ack the received FIN and
4064 * enter the CLOSING state.
4065 */
4066 tcp_send_ack(sk);
4067 tcp_set_state(sk, TCP_CLOSING);
4068 break;
4069 case TCP_FIN_WAIT2:
4070 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4071 tcp_send_ack(sk);
4072 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4073 break;
4074 default:
4075 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4076 * cases we should never reach this piece of code.
4077 */
4078 pr_err("%s: Impossible, sk->sk_state=%d\n",
4079 __func__, sk->sk_state);
4080 break;
4081 }
4082
4083 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4084 * Probably, we should reset in this case. For now drop them.
4085 */
4086 skb_rbtree_purge(&tp->out_of_order_queue);
4087 if (tcp_is_sack(tp))
4088 tcp_sack_reset(&tp->rx_opt);
4089 sk_mem_reclaim(sk);
4090
4091 if (!sock_flag(sk, SOCK_DEAD)) {
4092 sk->sk_state_change(sk);
4093
4094 /* Do not send POLL_HUP for half duplex close. */
4095 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4096 sk->sk_state == TCP_CLOSE)
4097 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4098 else
4099 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4100 }
4101 }
4102
4103 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4104 u32 end_seq)
4105 {
4106 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4107 if (before(seq, sp->start_seq))
4108 sp->start_seq = seq;
4109 if (after(end_seq, sp->end_seq))
4110 sp->end_seq = end_seq;
4111 return true;
4112 }
4113 return false;
4114 }
4115
4116 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4117 {
4118 struct tcp_sock *tp = tcp_sk(sk);
4119
4120 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4121 int mib_idx;
4122
4123 if (before(seq, tp->rcv_nxt))
4124 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4125 else
4126 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4127
4128 NET_INC_STATS(sock_net(sk), mib_idx);
4129
4130 tp->rx_opt.dsack = 1;
4131 tp->duplicate_sack[0].start_seq = seq;
4132 tp->duplicate_sack[0].end_seq = end_seq;
4133 }
4134 }
4135
4136 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4137 {
4138 struct tcp_sock *tp = tcp_sk(sk);
4139
4140 if (!tp->rx_opt.dsack)
4141 tcp_dsack_set(sk, seq, end_seq);
4142 else
4143 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4144 }
4145
4146 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4147 {
4148 struct tcp_sock *tp = tcp_sk(sk);
4149
4150 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4151 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4152 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4153 tcp_enter_quickack_mode(sk);
4154
4155 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4156 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4157
4158 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4159 end_seq = tp->rcv_nxt;
4160 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4161 }
4162 }
4163
4164 tcp_send_ack(sk);
4165 }
4166
4167 /* These routines update the SACK block as out-of-order packets arrive or
4168 * in-order packets close up the sequence space.
4169 */
4170 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4171 {
4172 int this_sack;
4173 struct tcp_sack_block *sp = &tp->selective_acks[0];
4174 struct tcp_sack_block *swalk = sp + 1;
4175
4176 /* See if the recent change to the first SACK eats into
4177 * or hits the sequence space of other SACK blocks, if so coalesce.
4178 */
4179 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4180 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4181 int i;
4182
4183 /* Zap SWALK, by moving every further SACK up by one slot.
4184 * Decrease num_sacks.
4185 */
4186 tp->rx_opt.num_sacks--;
4187 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4188 sp[i] = sp[i + 1];
4189 continue;
4190 }
4191 this_sack++, swalk++;
4192 }
4193 }
4194
4195 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4196 {
4197 struct tcp_sock *tp = tcp_sk(sk);
4198 struct tcp_sack_block *sp = &tp->selective_acks[0];
4199 int cur_sacks = tp->rx_opt.num_sacks;
4200 int this_sack;
4201
4202 if (!cur_sacks)
4203 goto new_sack;
4204
4205 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4206 if (tcp_sack_extend(sp, seq, end_seq)) {
4207 /* Rotate this_sack to the first one. */
4208 for (; this_sack > 0; this_sack--, sp--)
4209 swap(*sp, *(sp - 1));
4210 if (cur_sacks > 1)
4211 tcp_sack_maybe_coalesce(tp);
4212 return;
4213 }
4214 }
4215
4216 /* Could not find an adjacent existing SACK, build a new one,
4217 * put it at the front, and shift everyone else down. We
4218 * always know there is at least one SACK present already here.
4219 *
4220 * If the sack array is full, forget about the last one.
4221 */
4222 if (this_sack >= TCP_NUM_SACKS) {
4223 this_sack--;
4224 tp->rx_opt.num_sacks--;
4225 sp--;
4226 }
4227 for (; this_sack > 0; this_sack--, sp--)
4228 *sp = *(sp - 1);
4229
4230 new_sack:
4231 /* Build the new head SACK, and we're done. */
4232 sp->start_seq = seq;
4233 sp->end_seq = end_seq;
4234 tp->rx_opt.num_sacks++;
4235 }
4236
4237 /* RCV.NXT advances, some SACKs should be eaten. */
4238
4239 static void tcp_sack_remove(struct tcp_sock *tp)
4240 {
4241 struct tcp_sack_block *sp = &tp->selective_acks[0];
4242 int num_sacks = tp->rx_opt.num_sacks;
4243 int this_sack;
4244
4245 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4246 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4247 tp->rx_opt.num_sacks = 0;
4248 return;
4249 }
4250
4251 for (this_sack = 0; this_sack < num_sacks;) {
4252 /* Check if the start of the sack is covered by RCV.NXT. */
4253 if (!before(tp->rcv_nxt, sp->start_seq)) {
4254 int i;
4255
4256 /* RCV.NXT must cover all the block! */
4257 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4258
4259 /* Zap this SACK, by moving forward any other SACKS. */
4260 for (i = this_sack+1; i < num_sacks; i++)
4261 tp->selective_acks[i-1] = tp->selective_acks[i];
4262 num_sacks--;
4263 continue;
4264 }
4265 this_sack++;
4266 sp++;
4267 }
4268 tp->rx_opt.num_sacks = num_sacks;
4269 }
4270
4271 enum tcp_queue {
4272 OOO_QUEUE,
4273 RCV_QUEUE,
4274 };
4275
4276 /**
4277 * tcp_try_coalesce - try to merge skb to prior one
4278 * @sk: socket
4279 * @dest: destination queue
4280 * @to: prior buffer
4281 * @from: buffer to add in queue
4282 * @fragstolen: pointer to boolean
4283 *
4284 * Before queueing skb @from after @to, try to merge them
4285 * to reduce overall memory use and queue lengths, if cost is small.
4286 * Packets in ofo or receive queues can stay a long time.
4287 * Better try to coalesce them right now to avoid future collapses.
4288 * Returns true if caller should free @from instead of queueing it
4289 */
4290 static bool tcp_try_coalesce(struct sock *sk,
4291 enum tcp_queue dest,
4292 struct sk_buff *to,
4293 struct sk_buff *from,
4294 bool *fragstolen)
4295 {
4296 int delta;
4297
4298 *fragstolen = false;
4299
4300 /* Its possible this segment overlaps with prior segment in queue */
4301 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4302 return false;
4303
4304 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4305 return false;
4306
4307 atomic_add(delta, &sk->sk_rmem_alloc);
4308 sk_mem_charge(sk, delta);
4309 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4310 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4311 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4312 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4313
4314 if (TCP_SKB_CB(from)->has_rxtstamp) {
4315 TCP_SKB_CB(to)->has_rxtstamp = true;
4316 if (dest == OOO_QUEUE)
4317 TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
4318 else
4319 to->tstamp = from->tstamp;
4320 }
4321
4322 return true;
4323 }
4324
4325 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4326 {
4327 sk_drops_add(sk, skb);
4328 __kfree_skb(skb);
4329 }
4330
4331 /* This one checks to see if we can put data from the
4332 * out_of_order queue into the receive_queue.
4333 */
4334 static void tcp_ofo_queue(struct sock *sk)
4335 {
4336 struct tcp_sock *tp = tcp_sk(sk);
4337 __u32 dsack_high = tp->rcv_nxt;
4338 bool fin, fragstolen, eaten;
4339 struct sk_buff *skb, *tail;
4340 struct rb_node *p;
4341
4342 p = rb_first(&tp->out_of_order_queue);
4343 while (p) {
4344 skb = rb_entry(p, struct sk_buff, rbnode);
4345 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4346 break;
4347
4348 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4349 __u32 dsack = dsack_high;
4350 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4351 dsack_high = TCP_SKB_CB(skb)->end_seq;
4352 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4353 }
4354 p = rb_next(p);
4355 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4356 /* Replace tstamp which was stomped by rbnode */
4357 if (TCP_SKB_CB(skb)->has_rxtstamp)
4358 skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
4359
4360 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4361 SOCK_DEBUG(sk, "ofo packet was already received\n");
4362 tcp_drop(sk, skb);
4363 continue;
4364 }
4365 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4366 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4367 TCP_SKB_CB(skb)->end_seq);
4368
4369 tail = skb_peek_tail(&sk->sk_receive_queue);
4370 eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
4371 tail, skb, &fragstolen);
4372 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4373 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4374 if (!eaten)
4375 __skb_queue_tail(&sk->sk_receive_queue, skb);
4376 else
4377 kfree_skb_partial(skb, fragstolen);
4378
4379 if (unlikely(fin)) {
4380 tcp_fin(sk);
4381 /* tcp_fin() purges tp->out_of_order_queue,
4382 * so we must end this loop right now.
4383 */
4384 break;
4385 }
4386 }
4387 }
4388
4389 static bool tcp_prune_ofo_queue(struct sock *sk);
4390 static int tcp_prune_queue(struct sock *sk);
4391
4392 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4393 unsigned int size)
4394 {
4395 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4396 !sk_rmem_schedule(sk, skb, size)) {
4397
4398 if (tcp_prune_queue(sk) < 0)
4399 return -1;
4400
4401 while (!sk_rmem_schedule(sk, skb, size)) {
4402 if (!tcp_prune_ofo_queue(sk))
4403 return -1;
4404 }
4405 }
4406 return 0;
4407 }
4408
4409 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4410 {
4411 struct tcp_sock *tp = tcp_sk(sk);
4412 struct rb_node **p, *q, *parent;
4413 struct sk_buff *skb1;
4414 u32 seq, end_seq;
4415 bool fragstolen;
4416
4417 tcp_ecn_check_ce(tp, skb);
4418
4419 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4420 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4421 tcp_drop(sk, skb);
4422 return;
4423 }
4424
4425 /* Stash tstamp to avoid being stomped on by rbnode */
4426 if (TCP_SKB_CB(skb)->has_rxtstamp)
4427 TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
4428
4429 /* Disable header prediction. */
4430 tp->pred_flags = 0;
4431 inet_csk_schedule_ack(sk);
4432
4433 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4434 seq = TCP_SKB_CB(skb)->seq;
4435 end_seq = TCP_SKB_CB(skb)->end_seq;
4436 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4437 tp->rcv_nxt, seq, end_seq);
4438
4439 p = &tp->out_of_order_queue.rb_node;
4440 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4441 /* Initial out of order segment, build 1 SACK. */
4442 if (tcp_is_sack(tp)) {
4443 tp->rx_opt.num_sacks = 1;
4444 tp->selective_acks[0].start_seq = seq;
4445 tp->selective_acks[0].end_seq = end_seq;
4446 }
4447 rb_link_node(&skb->rbnode, NULL, p);
4448 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4449 tp->ooo_last_skb = skb;
4450 goto end;
4451 }
4452
4453 /* In the typical case, we are adding an skb to the end of the list.
4454 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4455 */
4456 if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb,
4457 skb, &fragstolen)) {
4458 coalesce_done:
4459 tcp_grow_window(sk, skb);
4460 kfree_skb_partial(skb, fragstolen);
4461 skb = NULL;
4462 goto add_sack;
4463 }
4464 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4465 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4466 parent = &tp->ooo_last_skb->rbnode;
4467 p = &parent->rb_right;
4468 goto insert;
4469 }
4470
4471 /* Find place to insert this segment. Handle overlaps on the way. */
4472 parent = NULL;
4473 while (*p) {
4474 parent = *p;
4475 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4476 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4477 p = &parent->rb_left;
4478 continue;
4479 }
4480 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4481 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4482 /* All the bits are present. Drop. */
4483 NET_INC_STATS(sock_net(sk),
4484 LINUX_MIB_TCPOFOMERGE);
4485 __kfree_skb(skb);
4486 skb = NULL;
4487 tcp_dsack_set(sk, seq, end_seq);
4488 goto add_sack;
4489 }
4490 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4491 /* Partial overlap. */
4492 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4493 } else {
4494 /* skb's seq == skb1's seq and skb covers skb1.
4495 * Replace skb1 with skb.
4496 */
4497 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4498 &tp->out_of_order_queue);
4499 tcp_dsack_extend(sk,
4500 TCP_SKB_CB(skb1)->seq,
4501 TCP_SKB_CB(skb1)->end_seq);
4502 NET_INC_STATS(sock_net(sk),
4503 LINUX_MIB_TCPOFOMERGE);
4504 __kfree_skb(skb1);
4505 goto merge_right;
4506 }
4507 } else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1,
4508 skb, &fragstolen)) {
4509 goto coalesce_done;
4510 }
4511 p = &parent->rb_right;
4512 }
4513 insert:
4514 /* Insert segment into RB tree. */
4515 rb_link_node(&skb->rbnode, parent, p);
4516 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4517
4518 merge_right:
4519 /* Remove other segments covered by skb. */
4520 while ((q = rb_next(&skb->rbnode)) != NULL) {
4521 skb1 = rb_entry(q, struct sk_buff, rbnode);
4522
4523 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4524 break;
4525 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4526 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4527 end_seq);
4528 break;
4529 }
4530 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4531 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4532 TCP_SKB_CB(skb1)->end_seq);
4533 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4534 tcp_drop(sk, skb1);
4535 }
4536 /* If there is no skb after us, we are the last_skb ! */
4537 if (!q)
4538 tp->ooo_last_skb = skb;
4539
4540 add_sack:
4541 if (tcp_is_sack(tp))
4542 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4543 end:
4544 if (skb) {
4545 tcp_grow_window(sk, skb);
4546 skb_condense(skb);
4547 skb_set_owner_r(skb, sk);
4548 }
4549 }
4550
4551 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4552 bool *fragstolen)
4553 {
4554 int eaten;
4555 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4556
4557 __skb_pull(skb, hdrlen);
4558 eaten = (tail &&
4559 tcp_try_coalesce(sk, RCV_QUEUE, tail,
4560 skb, fragstolen)) ? 1 : 0;
4561 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4562 if (!eaten) {
4563 __skb_queue_tail(&sk->sk_receive_queue, skb);
4564 skb_set_owner_r(skb, sk);
4565 }
4566 return eaten;
4567 }
4568
4569 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4570 {
4571 struct sk_buff *skb;
4572 int err = -ENOMEM;
4573 int data_len = 0;
4574 bool fragstolen;
4575
4576 if (size == 0)
4577 return 0;
4578
4579 if (size > PAGE_SIZE) {
4580 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4581
4582 data_len = npages << PAGE_SHIFT;
4583 size = data_len + (size & ~PAGE_MASK);
4584 }
4585 skb = alloc_skb_with_frags(size - data_len, data_len,
4586 PAGE_ALLOC_COSTLY_ORDER,
4587 &err, sk->sk_allocation);
4588 if (!skb)
4589 goto err;
4590
4591 skb_put(skb, size - data_len);
4592 skb->data_len = data_len;
4593 skb->len = size;
4594
4595 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4596 goto err_free;
4597
4598 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4599 if (err)
4600 goto err_free;
4601
4602 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4603 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4604 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4605
4606 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4607 WARN_ON_ONCE(fragstolen); /* should not happen */
4608 __kfree_skb(skb);
4609 }
4610 return size;
4611
4612 err_free:
4613 kfree_skb(skb);
4614 err:
4615 return err;
4616
4617 }
4618
4619 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4620 {
4621 struct tcp_sock *tp = tcp_sk(sk);
4622 bool fragstolen;
4623 int eaten;
4624
4625 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4626 __kfree_skb(skb);
4627 return;
4628 }
4629 skb_dst_drop(skb);
4630 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4631
4632 tcp_ecn_accept_cwr(tp, skb);
4633
4634 tp->rx_opt.dsack = 0;
4635
4636 /* Queue data for delivery to the user.
4637 * Packets in sequence go to the receive queue.
4638 * Out of sequence packets to the out_of_order_queue.
4639 */
4640 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4641 if (tcp_receive_window(tp) == 0)
4642 goto out_of_window;
4643
4644 /* Ok. In sequence. In window. */
4645 queue_and_out:
4646 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4647 sk_forced_mem_schedule(sk, skb->truesize);
4648 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4649 goto drop;
4650
4651 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4652 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4653 if (skb->len)
4654 tcp_event_data_recv(sk, skb);
4655 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4656 tcp_fin(sk);
4657
4658 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4659 tcp_ofo_queue(sk);
4660
4661 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4662 * gap in queue is filled.
4663 */
4664 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4665 inet_csk(sk)->icsk_ack.pingpong = 0;
4666 }
4667
4668 if (tp->rx_opt.num_sacks)
4669 tcp_sack_remove(tp);
4670
4671 tcp_fast_path_check(sk);
4672
4673 if (eaten > 0)
4674 kfree_skb_partial(skb, fragstolen);
4675 if (!sock_flag(sk, SOCK_DEAD))
4676 sk->sk_data_ready(sk);
4677 return;
4678 }
4679
4680 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4681 /* A retransmit, 2nd most common case. Force an immediate ack. */
4682 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4683 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4684
4685 out_of_window:
4686 tcp_enter_quickack_mode(sk);
4687 inet_csk_schedule_ack(sk);
4688 drop:
4689 tcp_drop(sk, skb);
4690 return;
4691 }
4692
4693 /* Out of window. F.e. zero window probe. */
4694 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4695 goto out_of_window;
4696
4697 tcp_enter_quickack_mode(sk);
4698
4699 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4700 /* Partial packet, seq < rcv_next < end_seq */
4701 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4702 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4703 TCP_SKB_CB(skb)->end_seq);
4704
4705 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4706
4707 /* If window is closed, drop tail of packet. But after
4708 * remembering D-SACK for its head made in previous line.
4709 */
4710 if (!tcp_receive_window(tp))
4711 goto out_of_window;
4712 goto queue_and_out;
4713 }
4714
4715 tcp_data_queue_ofo(sk, skb);
4716 }
4717
4718 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4719 {
4720 if (list)
4721 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4722
4723 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4724 }
4725
4726 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4727 struct sk_buff_head *list,
4728 struct rb_root *root)
4729 {
4730 struct sk_buff *next = tcp_skb_next(skb, list);
4731
4732 if (list)
4733 __skb_unlink(skb, list);
4734 else
4735 rb_erase(&skb->rbnode, root);
4736
4737 __kfree_skb(skb);
4738 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4739
4740 return next;
4741 }
4742
4743 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4744 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4745 {
4746 struct rb_node **p = &root->rb_node;
4747 struct rb_node *parent = NULL;
4748 struct sk_buff *skb1;
4749
4750 while (*p) {
4751 parent = *p;
4752 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4753 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4754 p = &parent->rb_left;
4755 else
4756 p = &parent->rb_right;
4757 }
4758 rb_link_node(&skb->rbnode, parent, p);
4759 rb_insert_color(&skb->rbnode, root);
4760 }
4761
4762 /* Collapse contiguous sequence of skbs head..tail with
4763 * sequence numbers start..end.
4764 *
4765 * If tail is NULL, this means until the end of the queue.
4766 *
4767 * Segments with FIN/SYN are not collapsed (only because this
4768 * simplifies code)
4769 */
4770 static void
4771 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4772 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4773 {
4774 struct sk_buff *skb = head, *n;
4775 struct sk_buff_head tmp;
4776 bool end_of_skbs;
4777
4778 /* First, check that queue is collapsible and find
4779 * the point where collapsing can be useful.
4780 */
4781 restart:
4782 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4783 n = tcp_skb_next(skb, list);
4784
4785 /* No new bits? It is possible on ofo queue. */
4786 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4787 skb = tcp_collapse_one(sk, skb, list, root);
4788 if (!skb)
4789 break;
4790 goto restart;
4791 }
4792
4793 /* The first skb to collapse is:
4794 * - not SYN/FIN and
4795 * - bloated or contains data before "start" or
4796 * overlaps to the next one.
4797 */
4798 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4799 (tcp_win_from_space(skb->truesize) > skb->len ||
4800 before(TCP_SKB_CB(skb)->seq, start))) {
4801 end_of_skbs = false;
4802 break;
4803 }
4804
4805 if (n && n != tail &&
4806 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4807 end_of_skbs = false;
4808 break;
4809 }
4810
4811 /* Decided to skip this, advance start seq. */
4812 start = TCP_SKB_CB(skb)->end_seq;
4813 }
4814 if (end_of_skbs ||
4815 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4816 return;
4817
4818 __skb_queue_head_init(&tmp);
4819
4820 while (before(start, end)) {
4821 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4822 struct sk_buff *nskb;
4823
4824 nskb = alloc_skb(copy, GFP_ATOMIC);
4825 if (!nskb)
4826 break;
4827
4828 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4829 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4830 if (list)
4831 __skb_queue_before(list, skb, nskb);
4832 else
4833 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4834 skb_set_owner_r(nskb, sk);
4835
4836 /* Copy data, releasing collapsed skbs. */
4837 while (copy > 0) {
4838 int offset = start - TCP_SKB_CB(skb)->seq;
4839 int size = TCP_SKB_CB(skb)->end_seq - start;
4840
4841 BUG_ON(offset < 0);
4842 if (size > 0) {
4843 size = min(copy, size);
4844 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4845 BUG();
4846 TCP_SKB_CB(nskb)->end_seq += size;
4847 copy -= size;
4848 start += size;
4849 }
4850 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4851 skb = tcp_collapse_one(sk, skb, list, root);
4852 if (!skb ||
4853 skb == tail ||
4854 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4855 goto end;
4856 }
4857 }
4858 }
4859 end:
4860 skb_queue_walk_safe(&tmp, skb, n)
4861 tcp_rbtree_insert(root, skb);
4862 }
4863
4864 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4865 * and tcp_collapse() them until all the queue is collapsed.
4866 */
4867 static void tcp_collapse_ofo_queue(struct sock *sk)
4868 {
4869 struct tcp_sock *tp = tcp_sk(sk);
4870 struct sk_buff *skb, *head;
4871 struct rb_node *p;
4872 u32 start, end;
4873
4874 p = rb_first(&tp->out_of_order_queue);
4875 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4876 new_range:
4877 if (!skb) {
4878 p = rb_last(&tp->out_of_order_queue);
4879 /* Note: This is possible p is NULL here. We do not
4880 * use rb_entry_safe(), as ooo_last_skb is valid only
4881 * if rbtree is not empty.
4882 */
4883 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4884 return;
4885 }
4886 start = TCP_SKB_CB(skb)->seq;
4887 end = TCP_SKB_CB(skb)->end_seq;
4888
4889 for (head = skb;;) {
4890 skb = tcp_skb_next(skb, NULL);
4891
4892 /* Range is terminated when we see a gap or when
4893 * we are at the queue end.
4894 */
4895 if (!skb ||
4896 after(TCP_SKB_CB(skb)->seq, end) ||
4897 before(TCP_SKB_CB(skb)->end_seq, start)) {
4898 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4899 head, skb, start, end);
4900 goto new_range;
4901 }
4902
4903 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4904 start = TCP_SKB_CB(skb)->seq;
4905 if (after(TCP_SKB_CB(skb)->end_seq, end))
4906 end = TCP_SKB_CB(skb)->end_seq;
4907 }
4908 }
4909
4910 /*
4911 * Clean the out-of-order queue to make room.
4912 * We drop high sequences packets to :
4913 * 1) Let a chance for holes to be filled.
4914 * 2) not add too big latencies if thousands of packets sit there.
4915 * (But if application shrinks SO_RCVBUF, we could still end up
4916 * freeing whole queue here)
4917 *
4918 * Return true if queue has shrunk.
4919 */
4920 static bool tcp_prune_ofo_queue(struct sock *sk)
4921 {
4922 struct tcp_sock *tp = tcp_sk(sk);
4923 struct rb_node *node, *prev;
4924
4925 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4926 return false;
4927
4928 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4929 node = &tp->ooo_last_skb->rbnode;
4930 do {
4931 prev = rb_prev(node);
4932 rb_erase(node, &tp->out_of_order_queue);
4933 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4934 sk_mem_reclaim(sk);
4935 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4936 !tcp_under_memory_pressure(sk))
4937 break;
4938 node = prev;
4939 } while (node);
4940 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4941
4942 /* Reset SACK state. A conforming SACK implementation will
4943 * do the same at a timeout based retransmit. When a connection
4944 * is in a sad state like this, we care only about integrity
4945 * of the connection not performance.
4946 */
4947 if (tp->rx_opt.sack_ok)
4948 tcp_sack_reset(&tp->rx_opt);
4949 return true;
4950 }
4951
4952 /* Reduce allocated memory if we can, trying to get
4953 * the socket within its memory limits again.
4954 *
4955 * Return less than zero if we should start dropping frames
4956 * until the socket owning process reads some of the data
4957 * to stabilize the situation.
4958 */
4959 static int tcp_prune_queue(struct sock *sk)
4960 {
4961 struct tcp_sock *tp = tcp_sk(sk);
4962
4963 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4964
4965 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4966
4967 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4968 tcp_clamp_window(sk);
4969 else if (tcp_under_memory_pressure(sk))
4970 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4971
4972 tcp_collapse_ofo_queue(sk);
4973 if (!skb_queue_empty(&sk->sk_receive_queue))
4974 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4975 skb_peek(&sk->sk_receive_queue),
4976 NULL,
4977 tp->copied_seq, tp->rcv_nxt);
4978 sk_mem_reclaim(sk);
4979
4980 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4981 return 0;
4982
4983 /* Collapsing did not help, destructive actions follow.
4984 * This must not ever occur. */
4985
4986 tcp_prune_ofo_queue(sk);
4987
4988 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4989 return 0;
4990
4991 /* If we are really being abused, tell the caller to silently
4992 * drop receive data on the floor. It will get retransmitted
4993 * and hopefully then we'll have sufficient space.
4994 */
4995 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4996
4997 /* Massive buffer overcommit. */
4998 tp->pred_flags = 0;
4999 return -1;
5000 }
5001
5002 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5003 {
5004 const struct tcp_sock *tp = tcp_sk(sk);
5005
5006 /* If the user specified a specific send buffer setting, do
5007 * not modify it.
5008 */
5009 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5010 return false;
5011
5012 /* If we are under global TCP memory pressure, do not expand. */
5013 if (tcp_under_memory_pressure(sk))
5014 return false;
5015
5016 /* If we are under soft global TCP memory pressure, do not expand. */
5017 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5018 return false;
5019
5020 /* If we filled the congestion window, do not expand. */
5021 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5022 return false;
5023
5024 return true;
5025 }
5026
5027 /* When incoming ACK allowed to free some skb from write_queue,
5028 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5029 * on the exit from tcp input handler.
5030 *
5031 * PROBLEM: sndbuf expansion does not work well with largesend.
5032 */
5033 static void tcp_new_space(struct sock *sk)
5034 {
5035 struct tcp_sock *tp = tcp_sk(sk);
5036
5037 if (tcp_should_expand_sndbuf(sk)) {
5038 tcp_sndbuf_expand(sk);
5039 tp->snd_cwnd_stamp = tcp_jiffies32;
5040 }
5041
5042 sk->sk_write_space(sk);
5043 }
5044
5045 static void tcp_check_space(struct sock *sk)
5046 {
5047 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5048 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5049 /* pairs with tcp_poll() */
5050 smp_mb();
5051 if (sk->sk_socket &&
5052 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5053 tcp_new_space(sk);
5054 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5055 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5056 }
5057 }
5058 }
5059
5060 static inline void tcp_data_snd_check(struct sock *sk)
5061 {
5062 tcp_push_pending_frames(sk);
5063 tcp_check_space(sk);
5064 }
5065
5066 /*
5067 * Check if sending an ack is needed.
5068 */
5069 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5070 {
5071 struct tcp_sock *tp = tcp_sk(sk);
5072
5073 /* More than one full frame received... */
5074 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5075 /* ... and right edge of window advances far enough.
5076 * (tcp_recvmsg() will send ACK otherwise). Or...
5077 */
5078 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5079 /* We ACK each frame or... */
5080 tcp_in_quickack_mode(sk) ||
5081 /* We have out of order data. */
5082 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5083 /* Then ack it now */
5084 tcp_send_ack(sk);
5085 } else {
5086 /* Else, send delayed ack. */
5087 tcp_send_delayed_ack(sk);
5088 }
5089 }
5090
5091 static inline void tcp_ack_snd_check(struct sock *sk)
5092 {
5093 if (!inet_csk_ack_scheduled(sk)) {
5094 /* We sent a data segment already. */
5095 return;
5096 }
5097 __tcp_ack_snd_check(sk, 1);
5098 }
5099
5100 /*
5101 * This routine is only called when we have urgent data
5102 * signaled. Its the 'slow' part of tcp_urg. It could be
5103 * moved inline now as tcp_urg is only called from one
5104 * place. We handle URGent data wrong. We have to - as
5105 * BSD still doesn't use the correction from RFC961.
5106 * For 1003.1g we should support a new option TCP_STDURG to permit
5107 * either form (or just set the sysctl tcp_stdurg).
5108 */
5109
5110 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5111 {
5112 struct tcp_sock *tp = tcp_sk(sk);
5113 u32 ptr = ntohs(th->urg_ptr);
5114
5115 if (ptr && !sysctl_tcp_stdurg)
5116 ptr--;
5117 ptr += ntohl(th->seq);
5118
5119 /* Ignore urgent data that we've already seen and read. */
5120 if (after(tp->copied_seq, ptr))
5121 return;
5122
5123 /* Do not replay urg ptr.
5124 *
5125 * NOTE: interesting situation not covered by specs.
5126 * Misbehaving sender may send urg ptr, pointing to segment,
5127 * which we already have in ofo queue. We are not able to fetch
5128 * such data and will stay in TCP_URG_NOTYET until will be eaten
5129 * by recvmsg(). Seems, we are not obliged to handle such wicked
5130 * situations. But it is worth to think about possibility of some
5131 * DoSes using some hypothetical application level deadlock.
5132 */
5133 if (before(ptr, tp->rcv_nxt))
5134 return;
5135
5136 /* Do we already have a newer (or duplicate) urgent pointer? */
5137 if (tp->urg_data && !after(ptr, tp->urg_seq))
5138 return;
5139
5140 /* Tell the world about our new urgent pointer. */
5141 sk_send_sigurg(sk);
5142
5143 /* We may be adding urgent data when the last byte read was
5144 * urgent. To do this requires some care. We cannot just ignore
5145 * tp->copied_seq since we would read the last urgent byte again
5146 * as data, nor can we alter copied_seq until this data arrives
5147 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5148 *
5149 * NOTE. Double Dutch. Rendering to plain English: author of comment
5150 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5151 * and expect that both A and B disappear from stream. This is _wrong_.
5152 * Though this happens in BSD with high probability, this is occasional.
5153 * Any application relying on this is buggy. Note also, that fix "works"
5154 * only in this artificial test. Insert some normal data between A and B and we will
5155 * decline of BSD again. Verdict: it is better to remove to trap
5156 * buggy users.
5157 */
5158 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5159 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5160 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5161 tp->copied_seq++;
5162 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5163 __skb_unlink(skb, &sk->sk_receive_queue);
5164 __kfree_skb(skb);
5165 }
5166 }
5167
5168 tp->urg_data = TCP_URG_NOTYET;
5169 tp->urg_seq = ptr;
5170
5171 /* Disable header prediction. */
5172 tp->pred_flags = 0;
5173 }
5174
5175 /* This is the 'fast' part of urgent handling. */
5176 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5177 {
5178 struct tcp_sock *tp = tcp_sk(sk);
5179
5180 /* Check if we get a new urgent pointer - normally not. */
5181 if (th->urg)
5182 tcp_check_urg(sk, th);
5183
5184 /* Do we wait for any urgent data? - normally not... */
5185 if (tp->urg_data == TCP_URG_NOTYET) {
5186 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5187 th->syn;
5188
5189 /* Is the urgent pointer pointing into this packet? */
5190 if (ptr < skb->len) {
5191 u8 tmp;
5192 if (skb_copy_bits(skb, ptr, &tmp, 1))
5193 BUG();
5194 tp->urg_data = TCP_URG_VALID | tmp;
5195 if (!sock_flag(sk, SOCK_DEAD))
5196 sk->sk_data_ready(sk);
5197 }
5198 }
5199 }
5200
5201 /* Accept RST for rcv_nxt - 1 after a FIN.
5202 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5203 * FIN is sent followed by a RST packet. The RST is sent with the same
5204 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5205 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5206 * ACKs on the closed socket. In addition middleboxes can drop either the
5207 * challenge ACK or a subsequent RST.
5208 */
5209 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5210 {
5211 struct tcp_sock *tp = tcp_sk(sk);
5212
5213 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5214 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5215 TCPF_CLOSING));
5216 }
5217
5218 /* Does PAWS and seqno based validation of an incoming segment, flags will
5219 * play significant role here.
5220 */
5221 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5222 const struct tcphdr *th, int syn_inerr)
5223 {
5224 struct tcp_sock *tp = tcp_sk(sk);
5225 bool rst_seq_match = false;
5226
5227 /* RFC1323: H1. Apply PAWS check first. */
5228 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5229 tp->rx_opt.saw_tstamp &&
5230 tcp_paws_discard(sk, skb)) {
5231 if (!th->rst) {
5232 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5233 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5234 LINUX_MIB_TCPACKSKIPPEDPAWS,
5235 &tp->last_oow_ack_time))
5236 tcp_send_dupack(sk, skb);
5237 goto discard;
5238 }
5239 /* Reset is accepted even if it did not pass PAWS. */
5240 }
5241
5242 /* Step 1: check sequence number */
5243 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5244 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5245 * (RST) segments are validated by checking their SEQ-fields."
5246 * And page 69: "If an incoming segment is not acceptable,
5247 * an acknowledgment should be sent in reply (unless the RST
5248 * bit is set, if so drop the segment and return)".
5249 */
5250 if (!th->rst) {
5251 if (th->syn)
5252 goto syn_challenge;
5253 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5254 LINUX_MIB_TCPACKSKIPPEDSEQ,
5255 &tp->last_oow_ack_time))
5256 tcp_send_dupack(sk, skb);
5257 } else if (tcp_reset_check(sk, skb)) {
5258 tcp_reset(sk);
5259 }
5260 goto discard;
5261 }
5262
5263 /* Step 2: check RST bit */
5264 if (th->rst) {
5265 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5266 * FIN and SACK too if available):
5267 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5268 * the right-most SACK block,
5269 * then
5270 * RESET the connection
5271 * else
5272 * Send a challenge ACK
5273 */
5274 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5275 tcp_reset_check(sk, skb)) {
5276 rst_seq_match = true;
5277 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5278 struct tcp_sack_block *sp = &tp->selective_acks[0];
5279 int max_sack = sp[0].end_seq;
5280 int this_sack;
5281
5282 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5283 ++this_sack) {
5284 max_sack = after(sp[this_sack].end_seq,
5285 max_sack) ?
5286 sp[this_sack].end_seq : max_sack;
5287 }
5288
5289 if (TCP_SKB_CB(skb)->seq == max_sack)
5290 rst_seq_match = true;
5291 }
5292
5293 if (rst_seq_match)
5294 tcp_reset(sk);
5295 else {
5296 /* Disable TFO if RST is out-of-order
5297 * and no data has been received
5298 * for current active TFO socket
5299 */
5300 if (tp->syn_fastopen && !tp->data_segs_in &&
5301 sk->sk_state == TCP_ESTABLISHED)
5302 tcp_fastopen_active_disable(sk);
5303 tcp_send_challenge_ack(sk, skb);
5304 }
5305 goto discard;
5306 }
5307
5308 /* step 3: check security and precedence [ignored] */
5309
5310 /* step 4: Check for a SYN
5311 * RFC 5961 4.2 : Send a challenge ack
5312 */
5313 if (th->syn) {
5314 syn_challenge:
5315 if (syn_inerr)
5316 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5318 tcp_send_challenge_ack(sk, skb);
5319 goto discard;
5320 }
5321
5322 return true;
5323
5324 discard:
5325 tcp_drop(sk, skb);
5326 return false;
5327 }
5328
5329 /*
5330 * TCP receive function for the ESTABLISHED state.
5331 *
5332 * It is split into a fast path and a slow path. The fast path is
5333 * disabled when:
5334 * - A zero window was announced from us - zero window probing
5335 * is only handled properly in the slow path.
5336 * - Out of order segments arrived.
5337 * - Urgent data is expected.
5338 * - There is no buffer space left
5339 * - Unexpected TCP flags/window values/header lengths are received
5340 * (detected by checking the TCP header against pred_flags)
5341 * - Data is sent in both directions. Fast path only supports pure senders
5342 * or pure receivers (this means either the sequence number or the ack
5343 * value must stay constant)
5344 * - Unexpected TCP option.
5345 *
5346 * When these conditions are not satisfied it drops into a standard
5347 * receive procedure patterned after RFC793 to handle all cases.
5348 * The first three cases are guaranteed by proper pred_flags setting,
5349 * the rest is checked inline. Fast processing is turned on in
5350 * tcp_data_queue when everything is OK.
5351 */
5352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353 const struct tcphdr *th)
5354 {
5355 unsigned int len = skb->len;
5356 struct tcp_sock *tp = tcp_sk(sk);
5357
5358 tcp_mstamp_refresh(tp);
5359 if (unlikely(!sk->sk_rx_dst))
5360 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5361 /*
5362 * Header prediction.
5363 * The code loosely follows the one in the famous
5364 * "30 instruction TCP receive" Van Jacobson mail.
5365 *
5366 * Van's trick is to deposit buffers into socket queue
5367 * on a device interrupt, to call tcp_recv function
5368 * on the receive process context and checksum and copy
5369 * the buffer to user space. smart...
5370 *
5371 * Our current scheme is not silly either but we take the
5372 * extra cost of the net_bh soft interrupt processing...
5373 * We do checksum and copy also but from device to kernel.
5374 */
5375
5376 tp->rx_opt.saw_tstamp = 0;
5377
5378 /* pred_flags is 0xS?10 << 16 + snd_wnd
5379 * if header_prediction is to be made
5380 * 'S' will always be tp->tcp_header_len >> 2
5381 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5382 * turn it off (when there are holes in the receive
5383 * space for instance)
5384 * PSH flag is ignored.
5385 */
5386
5387 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5388 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5389 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5390 int tcp_header_len = tp->tcp_header_len;
5391
5392 /* Timestamp header prediction: tcp_header_len
5393 * is automatically equal to th->doff*4 due to pred_flags
5394 * match.
5395 */
5396
5397 /* Check timestamp */
5398 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5399 /* No? Slow path! */
5400 if (!tcp_parse_aligned_timestamp(tp, th))
5401 goto slow_path;
5402
5403 /* If PAWS failed, check it more carefully in slow path */
5404 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5405 goto slow_path;
5406
5407 /* DO NOT update ts_recent here, if checksum fails
5408 * and timestamp was corrupted part, it will result
5409 * in a hung connection since we will drop all
5410 * future packets due to the PAWS test.
5411 */
5412 }
5413
5414 if (len <= tcp_header_len) {
5415 /* Bulk data transfer: sender */
5416 if (len == tcp_header_len) {
5417 /* Predicted packet is in window by definition.
5418 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5419 * Hence, check seq<=rcv_wup reduces to:
5420 */
5421 if (tcp_header_len ==
5422 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5423 tp->rcv_nxt == tp->rcv_wup)
5424 tcp_store_ts_recent(tp);
5425
5426 /* We know that such packets are checksummed
5427 * on entry.
5428 */
5429 tcp_ack(sk, skb, 0);
5430 __kfree_skb(skb);
5431 tcp_data_snd_check(sk);
5432 return;
5433 } else { /* Header too small */
5434 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5435 goto discard;
5436 }
5437 } else {
5438 int eaten = 0;
5439 bool fragstolen = false;
5440
5441 if (tcp_checksum_complete(skb))
5442 goto csum_error;
5443
5444 if ((int)skb->truesize > sk->sk_forward_alloc)
5445 goto step5;
5446
5447 /* Predicted packet is in window by definition.
5448 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5449 * Hence, check seq<=rcv_wup reduces to:
5450 */
5451 if (tcp_header_len ==
5452 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5453 tp->rcv_nxt == tp->rcv_wup)
5454 tcp_store_ts_recent(tp);
5455
5456 tcp_rcv_rtt_measure_ts(sk, skb);
5457
5458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5459
5460 /* Bulk data transfer: receiver */
5461 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5462 &fragstolen);
5463
5464 tcp_event_data_recv(sk, skb);
5465
5466 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5467 /* Well, only one small jumplet in fast path... */
5468 tcp_ack(sk, skb, FLAG_DATA);
5469 tcp_data_snd_check(sk);
5470 if (!inet_csk_ack_scheduled(sk))
5471 goto no_ack;
5472 }
5473
5474 __tcp_ack_snd_check(sk, 0);
5475 no_ack:
5476 if (eaten)
5477 kfree_skb_partial(skb, fragstolen);
5478 sk->sk_data_ready(sk);
5479 return;
5480 }
5481 }
5482
5483 slow_path:
5484 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5485 goto csum_error;
5486
5487 if (!th->ack && !th->rst && !th->syn)
5488 goto discard;
5489
5490 /*
5491 * Standard slow path.
5492 */
5493
5494 if (!tcp_validate_incoming(sk, skb, th, 1))
5495 return;
5496
5497 step5:
5498 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5499 goto discard;
5500
5501 tcp_rcv_rtt_measure_ts(sk, skb);
5502
5503 /* Process urgent data. */
5504 tcp_urg(sk, skb, th);
5505
5506 /* step 7: process the segment text */
5507 tcp_data_queue(sk, skb);
5508
5509 tcp_data_snd_check(sk);
5510 tcp_ack_snd_check(sk);
5511 return;
5512
5513 csum_error:
5514 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5515 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5516
5517 discard:
5518 tcp_drop(sk, skb);
5519 }
5520 EXPORT_SYMBOL(tcp_rcv_established);
5521
5522 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5523 {
5524 struct tcp_sock *tp = tcp_sk(sk);
5525 struct inet_connection_sock *icsk = inet_csk(sk);
5526
5527 tcp_set_state(sk, TCP_ESTABLISHED);
5528 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5529
5530 if (skb) {
5531 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5532 security_inet_conn_established(sk, skb);
5533 }
5534
5535 /* Make sure socket is routed, for correct metrics. */
5536 icsk->icsk_af_ops->rebuild_header(sk);
5537
5538 tcp_init_metrics(sk);
5539 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5540 tcp_init_congestion_control(sk);
5541
5542 /* Prevent spurious tcp_cwnd_restart() on first data
5543 * packet.
5544 */
5545 tp->lsndtime = tcp_jiffies32;
5546
5547 tcp_init_buffer_space(sk);
5548
5549 if (sock_flag(sk, SOCK_KEEPOPEN))
5550 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5551
5552 if (!tp->rx_opt.snd_wscale)
5553 __tcp_fast_path_on(tp, tp->snd_wnd);
5554 else
5555 tp->pred_flags = 0;
5556 }
5557
5558 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5559 struct tcp_fastopen_cookie *cookie)
5560 {
5561 struct tcp_sock *tp = tcp_sk(sk);
5562 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5563 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5564 bool syn_drop = false;
5565
5566 if (mss == tp->rx_opt.user_mss) {
5567 struct tcp_options_received opt;
5568
5569 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5570 tcp_clear_options(&opt);
5571 opt.user_mss = opt.mss_clamp = 0;
5572 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5573 mss = opt.mss_clamp;
5574 }
5575
5576 if (!tp->syn_fastopen) {
5577 /* Ignore an unsolicited cookie */
5578 cookie->len = -1;
5579 } else if (tp->total_retrans) {
5580 /* SYN timed out and the SYN-ACK neither has a cookie nor
5581 * acknowledges data. Presumably the remote received only
5582 * the retransmitted (regular) SYNs: either the original
5583 * SYN-data or the corresponding SYN-ACK was dropped.
5584 */
5585 syn_drop = (cookie->len < 0 && data);
5586 } else if (cookie->len < 0 && !tp->syn_data) {
5587 /* We requested a cookie but didn't get it. If we did not use
5588 * the (old) exp opt format then try so next time (try_exp=1).
5589 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5590 */
5591 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5592 }
5593
5594 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5595
5596 if (data) { /* Retransmit unacked data in SYN */
5597 tcp_for_write_queue_from(data, sk) {
5598 if (data == tcp_send_head(sk) ||
5599 __tcp_retransmit_skb(sk, data, 1))
5600 break;
5601 }
5602 tcp_rearm_rto(sk);
5603 NET_INC_STATS(sock_net(sk),
5604 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5605 return true;
5606 }
5607 tp->syn_data_acked = tp->syn_data;
5608 if (tp->syn_data_acked)
5609 NET_INC_STATS(sock_net(sk),
5610 LINUX_MIB_TCPFASTOPENACTIVE);
5611
5612 tcp_fastopen_add_skb(sk, synack);
5613
5614 return false;
5615 }
5616
5617 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5618 const struct tcphdr *th)
5619 {
5620 struct inet_connection_sock *icsk = inet_csk(sk);
5621 struct tcp_sock *tp = tcp_sk(sk);
5622 struct tcp_fastopen_cookie foc = { .len = -1 };
5623 int saved_clamp = tp->rx_opt.mss_clamp;
5624 bool fastopen_fail;
5625
5626 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5627 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5628 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5629
5630 if (th->ack) {
5631 /* rfc793:
5632 * "If the state is SYN-SENT then
5633 * first check the ACK bit
5634 * If the ACK bit is set
5635 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5636 * a reset (unless the RST bit is set, if so drop
5637 * the segment and return)"
5638 */
5639 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5640 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5641 goto reset_and_undo;
5642
5643 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5644 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5645 tcp_time_stamp(tp))) {
5646 NET_INC_STATS(sock_net(sk),
5647 LINUX_MIB_PAWSACTIVEREJECTED);
5648 goto reset_and_undo;
5649 }
5650
5651 /* Now ACK is acceptable.
5652 *
5653 * "If the RST bit is set
5654 * If the ACK was acceptable then signal the user "error:
5655 * connection reset", drop the segment, enter CLOSED state,
5656 * delete TCB, and return."
5657 */
5658
5659 if (th->rst) {
5660 tcp_reset(sk);
5661 goto discard;
5662 }
5663
5664 /* rfc793:
5665 * "fifth, if neither of the SYN or RST bits is set then
5666 * drop the segment and return."
5667 *
5668 * See note below!
5669 * --ANK(990513)
5670 */
5671 if (!th->syn)
5672 goto discard_and_undo;
5673
5674 /* rfc793:
5675 * "If the SYN bit is on ...
5676 * are acceptable then ...
5677 * (our SYN has been ACKed), change the connection
5678 * state to ESTABLISHED..."
5679 */
5680
5681 tcp_ecn_rcv_synack(tp, th);
5682
5683 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5684 tcp_ack(sk, skb, FLAG_SLOWPATH);
5685
5686 /* Ok.. it's good. Set up sequence numbers and
5687 * move to established.
5688 */
5689 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5690 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5691
5692 /* RFC1323: The window in SYN & SYN/ACK segments is
5693 * never scaled.
5694 */
5695 tp->snd_wnd = ntohs(th->window);
5696
5697 if (!tp->rx_opt.wscale_ok) {
5698 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5699 tp->window_clamp = min(tp->window_clamp, 65535U);
5700 }
5701
5702 if (tp->rx_opt.saw_tstamp) {
5703 tp->rx_opt.tstamp_ok = 1;
5704 tp->tcp_header_len =
5705 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5706 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5707 tcp_store_ts_recent(tp);
5708 } else {
5709 tp->tcp_header_len = sizeof(struct tcphdr);
5710 }
5711
5712 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5713 tcp_enable_fack(tp);
5714
5715 tcp_mtup_init(sk);
5716 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5717 tcp_initialize_rcv_mss(sk);
5718
5719 /* Remember, tcp_poll() does not lock socket!
5720 * Change state from SYN-SENT only after copied_seq
5721 * is initialized. */
5722 tp->copied_seq = tp->rcv_nxt;
5723
5724 smp_mb();
5725
5726 tcp_finish_connect(sk, skb);
5727
5728 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5729 tcp_rcv_fastopen_synack(sk, skb, &foc);
5730
5731 if (!sock_flag(sk, SOCK_DEAD)) {
5732 sk->sk_state_change(sk);
5733 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5734 }
5735 if (fastopen_fail)
5736 return -1;
5737 if (sk->sk_write_pending ||
5738 icsk->icsk_accept_queue.rskq_defer_accept ||
5739 icsk->icsk_ack.pingpong) {
5740 /* Save one ACK. Data will be ready after
5741 * several ticks, if write_pending is set.
5742 *
5743 * It may be deleted, but with this feature tcpdumps
5744 * look so _wonderfully_ clever, that I was not able
5745 * to stand against the temptation 8) --ANK
5746 */
5747 inet_csk_schedule_ack(sk);
5748 tcp_enter_quickack_mode(sk);
5749 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5750 TCP_DELACK_MAX, TCP_RTO_MAX);
5751
5752 discard:
5753 tcp_drop(sk, skb);
5754 return 0;
5755 } else {
5756 tcp_send_ack(sk);
5757 }
5758 return -1;
5759 }
5760
5761 /* No ACK in the segment */
5762
5763 if (th->rst) {
5764 /* rfc793:
5765 * "If the RST bit is set
5766 *
5767 * Otherwise (no ACK) drop the segment and return."
5768 */
5769
5770 goto discard_and_undo;
5771 }
5772
5773 /* PAWS check. */
5774 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5775 tcp_paws_reject(&tp->rx_opt, 0))
5776 goto discard_and_undo;
5777
5778 if (th->syn) {
5779 /* We see SYN without ACK. It is attempt of
5780 * simultaneous connect with crossed SYNs.
5781 * Particularly, it can be connect to self.
5782 */
5783 tcp_set_state(sk, TCP_SYN_RECV);
5784
5785 if (tp->rx_opt.saw_tstamp) {
5786 tp->rx_opt.tstamp_ok = 1;
5787 tcp_store_ts_recent(tp);
5788 tp->tcp_header_len =
5789 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5790 } else {
5791 tp->tcp_header_len = sizeof(struct tcphdr);
5792 }
5793
5794 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5795 tp->copied_seq = tp->rcv_nxt;
5796 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5797
5798 /* RFC1323: The window in SYN & SYN/ACK segments is
5799 * never scaled.
5800 */
5801 tp->snd_wnd = ntohs(th->window);
5802 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5803 tp->max_window = tp->snd_wnd;
5804
5805 tcp_ecn_rcv_syn(tp, th);
5806
5807 tcp_mtup_init(sk);
5808 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5809 tcp_initialize_rcv_mss(sk);
5810
5811 tcp_send_synack(sk);
5812 #if 0
5813 /* Note, we could accept data and URG from this segment.
5814 * There are no obstacles to make this (except that we must
5815 * either change tcp_recvmsg() to prevent it from returning data
5816 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5817 *
5818 * However, if we ignore data in ACKless segments sometimes,
5819 * we have no reasons to accept it sometimes.
5820 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5821 * is not flawless. So, discard packet for sanity.
5822 * Uncomment this return to process the data.
5823 */
5824 return -1;
5825 #else
5826 goto discard;
5827 #endif
5828 }
5829 /* "fifth, if neither of the SYN or RST bits is set then
5830 * drop the segment and return."
5831 */
5832
5833 discard_and_undo:
5834 tcp_clear_options(&tp->rx_opt);
5835 tp->rx_opt.mss_clamp = saved_clamp;
5836 goto discard;
5837
5838 reset_and_undo:
5839 tcp_clear_options(&tp->rx_opt);
5840 tp->rx_opt.mss_clamp = saved_clamp;
5841 return 1;
5842 }
5843
5844 /*
5845 * This function implements the receiving procedure of RFC 793 for
5846 * all states except ESTABLISHED and TIME_WAIT.
5847 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5848 * address independent.
5849 */
5850
5851 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5852 {
5853 struct tcp_sock *tp = tcp_sk(sk);
5854 struct inet_connection_sock *icsk = inet_csk(sk);
5855 const struct tcphdr *th = tcp_hdr(skb);
5856 struct request_sock *req;
5857 int queued = 0;
5858 bool acceptable;
5859
5860 switch (sk->sk_state) {
5861 case TCP_CLOSE:
5862 goto discard;
5863
5864 case TCP_LISTEN:
5865 if (th->ack)
5866 return 1;
5867
5868 if (th->rst)
5869 goto discard;
5870
5871 if (th->syn) {
5872 if (th->fin)
5873 goto discard;
5874 /* It is possible that we process SYN packets from backlog,
5875 * so we need to make sure to disable BH right there.
5876 */
5877 local_bh_disable();
5878 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5879 local_bh_enable();
5880
5881 if (!acceptable)
5882 return 1;
5883 consume_skb(skb);
5884 return 0;
5885 }
5886 goto discard;
5887
5888 case TCP_SYN_SENT:
5889 tp->rx_opt.saw_tstamp = 0;
5890 tcp_mstamp_refresh(tp);
5891 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5892 if (queued >= 0)
5893 return queued;
5894
5895 /* Do step6 onward by hand. */
5896 tcp_urg(sk, skb, th);
5897 __kfree_skb(skb);
5898 tcp_data_snd_check(sk);
5899 return 0;
5900 }
5901
5902 tcp_mstamp_refresh(tp);
5903 tp->rx_opt.saw_tstamp = 0;
5904 req = tp->fastopen_rsk;
5905 if (req) {
5906 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5907 sk->sk_state != TCP_FIN_WAIT1);
5908
5909 if (!tcp_check_req(sk, skb, req, true))
5910 goto discard;
5911 }
5912
5913 if (!th->ack && !th->rst && !th->syn)
5914 goto discard;
5915
5916 if (!tcp_validate_incoming(sk, skb, th, 0))
5917 return 0;
5918
5919 /* step 5: check the ACK field */
5920 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5921 FLAG_UPDATE_TS_RECENT |
5922 FLAG_NO_CHALLENGE_ACK) > 0;
5923
5924 if (!acceptable) {
5925 if (sk->sk_state == TCP_SYN_RECV)
5926 return 1; /* send one RST */
5927 tcp_send_challenge_ack(sk, skb);
5928 goto discard;
5929 }
5930 switch (sk->sk_state) {
5931 case TCP_SYN_RECV:
5932 if (!tp->srtt_us)
5933 tcp_synack_rtt_meas(sk, req);
5934
5935 /* Once we leave TCP_SYN_RECV, we no longer need req
5936 * so release it.
5937 */
5938 if (req) {
5939 inet_csk(sk)->icsk_retransmits = 0;
5940 reqsk_fastopen_remove(sk, req, false);
5941 } else {
5942 /* Make sure socket is routed, for correct metrics. */
5943 icsk->icsk_af_ops->rebuild_header(sk);
5944 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5945 tcp_init_congestion_control(sk);
5946
5947 tcp_mtup_init(sk);
5948 tp->copied_seq = tp->rcv_nxt;
5949 tcp_init_buffer_space(sk);
5950 }
5951 smp_mb();
5952 tcp_set_state(sk, TCP_ESTABLISHED);
5953 sk->sk_state_change(sk);
5954
5955 /* Note, that this wakeup is only for marginal crossed SYN case.
5956 * Passively open sockets are not waked up, because
5957 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5958 */
5959 if (sk->sk_socket)
5960 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5961
5962 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5963 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5964 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5965
5966 if (tp->rx_opt.tstamp_ok)
5967 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5968
5969 if (req) {
5970 /* Re-arm the timer because data may have been sent out.
5971 * This is similar to the regular data transmission case
5972 * when new data has just been ack'ed.
5973 *
5974 * (TFO) - we could try to be more aggressive and
5975 * retransmitting any data sooner based on when they
5976 * are sent out.
5977 */
5978 tcp_rearm_rto(sk);
5979 } else
5980 tcp_init_metrics(sk);
5981
5982 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5983 tcp_update_pacing_rate(sk);
5984
5985 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5986 tp->lsndtime = tcp_jiffies32;
5987
5988 tcp_initialize_rcv_mss(sk);
5989 tcp_fast_path_on(tp);
5990 break;
5991
5992 case TCP_FIN_WAIT1: {
5993 int tmo;
5994
5995 /* If we enter the TCP_FIN_WAIT1 state and we are a
5996 * Fast Open socket and this is the first acceptable
5997 * ACK we have received, this would have acknowledged
5998 * our SYNACK so stop the SYNACK timer.
5999 */
6000 if (req) {
6001 /* We no longer need the request sock. */
6002 reqsk_fastopen_remove(sk, req, false);
6003 tcp_rearm_rto(sk);
6004 }
6005 if (tp->snd_una != tp->write_seq)
6006 break;
6007
6008 tcp_set_state(sk, TCP_FIN_WAIT2);
6009 sk->sk_shutdown |= SEND_SHUTDOWN;
6010
6011 sk_dst_confirm(sk);
6012
6013 if (!sock_flag(sk, SOCK_DEAD)) {
6014 /* Wake up lingering close() */
6015 sk->sk_state_change(sk);
6016 break;
6017 }
6018
6019 if (tp->linger2 < 0) {
6020 tcp_done(sk);
6021 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6022 return 1;
6023 }
6024 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6025 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6026 /* Receive out of order FIN after close() */
6027 if (tp->syn_fastopen && th->fin)
6028 tcp_fastopen_active_disable(sk);
6029 tcp_done(sk);
6030 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6031 return 1;
6032 }
6033
6034 tmo = tcp_fin_time(sk);
6035 if (tmo > TCP_TIMEWAIT_LEN) {
6036 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6037 } else if (th->fin || sock_owned_by_user(sk)) {
6038 /* Bad case. We could lose such FIN otherwise.
6039 * It is not a big problem, but it looks confusing
6040 * and not so rare event. We still can lose it now,
6041 * if it spins in bh_lock_sock(), but it is really
6042 * marginal case.
6043 */
6044 inet_csk_reset_keepalive_timer(sk, tmo);
6045 } else {
6046 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6047 goto discard;
6048 }
6049 break;
6050 }
6051
6052 case TCP_CLOSING:
6053 if (tp->snd_una == tp->write_seq) {
6054 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6055 goto discard;
6056 }
6057 break;
6058
6059 case TCP_LAST_ACK:
6060 if (tp->snd_una == tp->write_seq) {
6061 tcp_update_metrics(sk);
6062 tcp_done(sk);
6063 goto discard;
6064 }
6065 break;
6066 }
6067
6068 /* step 6: check the URG bit */
6069 tcp_urg(sk, skb, th);
6070
6071 /* step 7: process the segment text */
6072 switch (sk->sk_state) {
6073 case TCP_CLOSE_WAIT:
6074 case TCP_CLOSING:
6075 case TCP_LAST_ACK:
6076 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6077 break;
6078 case TCP_FIN_WAIT1:
6079 case TCP_FIN_WAIT2:
6080 /* RFC 793 says to queue data in these states,
6081 * RFC 1122 says we MUST send a reset.
6082 * BSD 4.4 also does reset.
6083 */
6084 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6085 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6086 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6087 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6088 tcp_reset(sk);
6089 return 1;
6090 }
6091 }
6092 /* Fall through */
6093 case TCP_ESTABLISHED:
6094 tcp_data_queue(sk, skb);
6095 queued = 1;
6096 break;
6097 }
6098
6099 /* tcp_data could move socket to TIME-WAIT */
6100 if (sk->sk_state != TCP_CLOSE) {
6101 tcp_data_snd_check(sk);
6102 tcp_ack_snd_check(sk);
6103 }
6104
6105 if (!queued) {
6106 discard:
6107 tcp_drop(sk, skb);
6108 }
6109 return 0;
6110 }
6111 EXPORT_SYMBOL(tcp_rcv_state_process);
6112
6113 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6114 {
6115 struct inet_request_sock *ireq = inet_rsk(req);
6116
6117 if (family == AF_INET)
6118 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6119 &ireq->ir_rmt_addr, port);
6120 #if IS_ENABLED(CONFIG_IPV6)
6121 else if (family == AF_INET6)
6122 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6123 &ireq->ir_v6_rmt_addr, port);
6124 #endif
6125 }
6126
6127 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6128 *
6129 * If we receive a SYN packet with these bits set, it means a
6130 * network is playing bad games with TOS bits. In order to
6131 * avoid possible false congestion notifications, we disable
6132 * TCP ECN negotiation.
6133 *
6134 * Exception: tcp_ca wants ECN. This is required for DCTCP
6135 * congestion control: Linux DCTCP asserts ECT on all packets,
6136 * including SYN, which is most optimal solution; however,
6137 * others, such as FreeBSD do not.
6138 */
6139 static void tcp_ecn_create_request(struct request_sock *req,
6140 const struct sk_buff *skb,
6141 const struct sock *listen_sk,
6142 const struct dst_entry *dst)
6143 {
6144 const struct tcphdr *th = tcp_hdr(skb);
6145 const struct net *net = sock_net(listen_sk);
6146 bool th_ecn = th->ece && th->cwr;
6147 bool ect, ecn_ok;
6148 u32 ecn_ok_dst;
6149
6150 if (!th_ecn)
6151 return;
6152
6153 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6154 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6155 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6156
6157 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6158 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6159 tcp_bpf_ca_needs_ecn((struct sock *)req))
6160 inet_rsk(req)->ecn_ok = 1;
6161 }
6162
6163 static void tcp_openreq_init(struct request_sock *req,
6164 const struct tcp_options_received *rx_opt,
6165 struct sk_buff *skb, const struct sock *sk)
6166 {
6167 struct inet_request_sock *ireq = inet_rsk(req);
6168
6169 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6170 req->cookie_ts = 0;
6171 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6172 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6173 tcp_rsk(req)->snt_synack = tcp_clock_us();
6174 tcp_rsk(req)->last_oow_ack_time = 0;
6175 req->mss = rx_opt->mss_clamp;
6176 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6177 ireq->tstamp_ok = rx_opt->tstamp_ok;
6178 ireq->sack_ok = rx_opt->sack_ok;
6179 ireq->snd_wscale = rx_opt->snd_wscale;
6180 ireq->wscale_ok = rx_opt->wscale_ok;
6181 ireq->acked = 0;
6182 ireq->ecn_ok = 0;
6183 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6184 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6185 ireq->ir_mark = inet_request_mark(sk, skb);
6186 }
6187
6188 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6189 struct sock *sk_listener,
6190 bool attach_listener)
6191 {
6192 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6193 attach_listener);
6194
6195 if (req) {
6196 struct inet_request_sock *ireq = inet_rsk(req);
6197
6198 kmemcheck_annotate_bitfield(ireq, flags);
6199 ireq->ireq_opt = NULL;
6200 #if IS_ENABLED(CONFIG_IPV6)
6201 ireq->pktopts = NULL;
6202 #endif
6203 atomic64_set(&ireq->ir_cookie, 0);
6204 ireq->ireq_state = TCP_NEW_SYN_RECV;
6205 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6206 ireq->ireq_family = sk_listener->sk_family;
6207 }
6208
6209 return req;
6210 }
6211 EXPORT_SYMBOL(inet_reqsk_alloc);
6212
6213 /*
6214 * Return true if a syncookie should be sent
6215 */
6216 static bool tcp_syn_flood_action(const struct sock *sk,
6217 const struct sk_buff *skb,
6218 const char *proto)
6219 {
6220 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6221 const char *msg = "Dropping request";
6222 bool want_cookie = false;
6223 struct net *net = sock_net(sk);
6224
6225 #ifdef CONFIG_SYN_COOKIES
6226 if (net->ipv4.sysctl_tcp_syncookies) {
6227 msg = "Sending cookies";
6228 want_cookie = true;
6229 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6230 } else
6231 #endif
6232 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6233
6234 if (!queue->synflood_warned &&
6235 net->ipv4.sysctl_tcp_syncookies != 2 &&
6236 xchg(&queue->synflood_warned, 1) == 0)
6237 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6238 proto, ntohs(tcp_hdr(skb)->dest), msg);
6239
6240 return want_cookie;
6241 }
6242
6243 static void tcp_reqsk_record_syn(const struct sock *sk,
6244 struct request_sock *req,
6245 const struct sk_buff *skb)
6246 {
6247 if (tcp_sk(sk)->save_syn) {
6248 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6249 u32 *copy;
6250
6251 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6252 if (copy) {
6253 copy[0] = len;
6254 memcpy(&copy[1], skb_network_header(skb), len);
6255 req->saved_syn = copy;
6256 }
6257 }
6258 }
6259
6260 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6261 const struct tcp_request_sock_ops *af_ops,
6262 struct sock *sk, struct sk_buff *skb)
6263 {
6264 struct tcp_fastopen_cookie foc = { .len = -1 };
6265 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6266 struct tcp_options_received tmp_opt;
6267 struct tcp_sock *tp = tcp_sk(sk);
6268 struct net *net = sock_net(sk);
6269 struct sock *fastopen_sk = NULL;
6270 struct request_sock *req;
6271 bool want_cookie = false;
6272 struct dst_entry *dst;
6273 struct flowi fl;
6274
6275 /* TW buckets are converted to open requests without
6276 * limitations, they conserve resources and peer is
6277 * evidently real one.
6278 */
6279 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6280 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6281 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6282 if (!want_cookie)
6283 goto drop;
6284 }
6285
6286 if (sk_acceptq_is_full(sk)) {
6287 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6288 goto drop;
6289 }
6290
6291 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6292 if (!req)
6293 goto drop;
6294
6295 tcp_rsk(req)->af_specific = af_ops;
6296 tcp_rsk(req)->ts_off = 0;
6297
6298 tcp_clear_options(&tmp_opt);
6299 tmp_opt.mss_clamp = af_ops->mss_clamp;
6300 tmp_opt.user_mss = tp->rx_opt.user_mss;
6301 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6302 want_cookie ? NULL : &foc);
6303
6304 if (want_cookie && !tmp_opt.saw_tstamp)
6305 tcp_clear_options(&tmp_opt);
6306
6307 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6308 tcp_openreq_init(req, &tmp_opt, skb, sk);
6309 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6310
6311 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6312 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6313
6314 af_ops->init_req(req, sk, skb);
6315
6316 if (security_inet_conn_request(sk, skb, req))
6317 goto drop_and_free;
6318
6319 if (tmp_opt.tstamp_ok)
6320 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6321
6322 dst = af_ops->route_req(sk, &fl, req);
6323 if (!dst)
6324 goto drop_and_free;
6325
6326 if (!want_cookie && !isn) {
6327 /* Kill the following clause, if you dislike this way. */
6328 if (!net->ipv4.sysctl_tcp_syncookies &&
6329 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6330 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6331 !tcp_peer_is_proven(req, dst)) {
6332 /* Without syncookies last quarter of
6333 * backlog is filled with destinations,
6334 * proven to be alive.
6335 * It means that we continue to communicate
6336 * to destinations, already remembered
6337 * to the moment of synflood.
6338 */
6339 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6340 rsk_ops->family);
6341 goto drop_and_release;
6342 }
6343
6344 isn = af_ops->init_seq(skb);
6345 }
6346
6347 tcp_ecn_create_request(req, skb, sk, dst);
6348
6349 if (want_cookie) {
6350 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6351 req->cookie_ts = tmp_opt.tstamp_ok;
6352 if (!tmp_opt.tstamp_ok)
6353 inet_rsk(req)->ecn_ok = 0;
6354 }
6355
6356 tcp_rsk(req)->snt_isn = isn;
6357 tcp_rsk(req)->txhash = net_tx_rndhash();
6358 tcp_openreq_init_rwin(req, sk, dst);
6359 if (!want_cookie) {
6360 tcp_reqsk_record_syn(sk, req, skb);
6361 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
6362 }
6363 if (fastopen_sk) {
6364 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6365 &foc, TCP_SYNACK_FASTOPEN);
6366 /* Add the child socket directly into the accept queue */
6367 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6368 sk->sk_data_ready(sk);
6369 bh_unlock_sock(fastopen_sk);
6370 sock_put(fastopen_sk);
6371 } else {
6372 tcp_rsk(req)->tfo_listener = false;
6373 if (!want_cookie)
6374 inet_csk_reqsk_queue_hash_add(sk, req,
6375 tcp_timeout_init((struct sock *)req));
6376 af_ops->send_synack(sk, dst, &fl, req, &foc,
6377 !want_cookie ? TCP_SYNACK_NORMAL :
6378 TCP_SYNACK_COOKIE);
6379 if (want_cookie) {
6380 reqsk_free(req);
6381 return 0;
6382 }
6383 }
6384 reqsk_put(req);
6385 return 0;
6386
6387 drop_and_release:
6388 dst_release(dst);
6389 drop_and_free:
6390 reqsk_free(req);
6391 drop:
6392 tcp_listendrop(sk);
6393 return 0;
6394 }
6395 EXPORT_SYMBOL(tcp_conn_request);