tifm_7xx1: fix adapter resume function
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105
106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110
111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 const struct sk_buff *skb)
124 {
125 struct inet_connection_sock *icsk = inet_csk(sk);
126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 unsigned int len;
128
129 icsk->icsk_ack.last_seg_size = 0;
130
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
133 */
134 len = skb_shinfo(skb)->gso_size ?: skb->len;
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
140 *
141 * "len" is invariant segment length, including TCP header.
142 */
143 len += skb->data - skb_transport_header(skb);
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
149 */
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
155 */
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
158 if (len == lss) {
159 icsk->icsk_ack.rcv_mss = len;
160 return;
161 }
162 }
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 }
167 }
168
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174 if (quickacks==0)
175 quickacks=2;
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187
188 /* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197
198 /* Buffer size and advertised window tuning.
199 *
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201 */
202
203 static void tcp_fixup_sndbuf(struct sock *sk)
204 {
205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 sizeof(struct sk_buff);
207
208 if (sk->sk_sndbuf < 3 * sndmem)
209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210 }
211
212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213 *
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
223 *
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 * requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 * of receiver window. Check #2.
231 *
232 * The scheme does not work when sender sends good segments opening
233 * window and then starts to feed us spaghetti. But it should work
234 * in common situations. Otherwise, we have to rely on queue collapsing.
235 */
236
237 /* Slow part of check#2. */
238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
239 {
240 struct tcp_sock *tp = tcp_sk(sk);
241 /* Optimize this! */
242 int truesize = tcp_win_from_space(skb->truesize)/2;
243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244
245 while (tp->rcv_ssthresh <= window) {
246 if (truesize <= skb->len)
247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248
249 truesize >>= 1;
250 window >>= 1;
251 }
252 return 0;
253 }
254
255 static void tcp_grow_window(struct sock *sk,
256 struct sk_buff *skb)
257 {
258 struct tcp_sock *tp = tcp_sk(sk);
259
260 /* Check #1 */
261 if (tp->rcv_ssthresh < tp->window_clamp &&
262 (int)tp->rcv_ssthresh < tcp_space(sk) &&
263 !tcp_memory_pressure) {
264 int incr;
265
266 /* Check #2. Increase window, if skb with such overhead
267 * will fit to rcvbuf in future.
268 */
269 if (tcp_win_from_space(skb->truesize) <= skb->len)
270 incr = 2*tp->advmss;
271 else
272 incr = __tcp_grow_window(sk, skb);
273
274 if (incr) {
275 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
276 inet_csk(sk)->icsk_ack.quick |= 1;
277 }
278 }
279 }
280
281 /* 3. Tuning rcvbuf, when connection enters established state. */
282
283 static void tcp_fixup_rcvbuf(struct sock *sk)
284 {
285 struct tcp_sock *tp = tcp_sk(sk);
286 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
287
288 /* Try to select rcvbuf so that 4 mss-sized segments
289 * will fit to window and corresponding skbs will fit to our rcvbuf.
290 * (was 3; 4 is minimum to allow fast retransmit to work.)
291 */
292 while (tcp_win_from_space(rcvmem) < tp->advmss)
293 rcvmem += 128;
294 if (sk->sk_rcvbuf < 4 * rcvmem)
295 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296 }
297
298 /* 4. Try to fixup all. It is made immediately after connection enters
299 * established state.
300 */
301 static void tcp_init_buffer_space(struct sock *sk)
302 {
303 struct tcp_sock *tp = tcp_sk(sk);
304 int maxwin;
305
306 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307 tcp_fixup_rcvbuf(sk);
308 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309 tcp_fixup_sndbuf(sk);
310
311 tp->rcvq_space.space = tp->rcv_wnd;
312
313 maxwin = tcp_full_space(sk);
314
315 if (tp->window_clamp >= maxwin) {
316 tp->window_clamp = maxwin;
317
318 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319 tp->window_clamp = max(maxwin -
320 (maxwin >> sysctl_tcp_app_win),
321 4 * tp->advmss);
322 }
323
324 /* Force reservation of one segment. */
325 if (sysctl_tcp_app_win &&
326 tp->window_clamp > 2 * tp->advmss &&
327 tp->window_clamp + tp->advmss > maxwin)
328 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
329
330 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331 tp->snd_cwnd_stamp = tcp_time_stamp;
332 }
333
334 /* 5. Recalculate window clamp after socket hit its memory bounds. */
335 static void tcp_clamp_window(struct sock *sk)
336 {
337 struct tcp_sock *tp = tcp_sk(sk);
338 struct inet_connection_sock *icsk = inet_csk(sk);
339
340 icsk->icsk_ack.quick = 0;
341
342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 !tcp_memory_pressure &&
345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 sysctl_tcp_rmem[2]);
348 }
349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
350 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
351 }
352
353
354 /* Initialize RCV_MSS value.
355 * RCV_MSS is an our guess about MSS used by the peer.
356 * We haven't any direct information about the MSS.
357 * It's better to underestimate the RCV_MSS rather than overestimate.
358 * Overestimations make us ACKing less frequently than needed.
359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
360 */
361 void tcp_initialize_rcv_mss(struct sock *sk)
362 {
363 struct tcp_sock *tp = tcp_sk(sk);
364 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
365
366 hint = min(hint, tp->rcv_wnd/2);
367 hint = min(hint, TCP_MIN_RCVMSS);
368 hint = max(hint, TCP_MIN_MSS);
369
370 inet_csk(sk)->icsk_ack.rcv_mss = hint;
371 }
372
373 /* Receiver "autotuning" code.
374 *
375 * The algorithm for RTT estimation w/o timestamps is based on
376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
378 *
379 * More detail on this code can be found at
380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381 * though this reference is out of date. A new paper
382 * is pending.
383 */
384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
385 {
386 u32 new_sample = tp->rcv_rtt_est.rtt;
387 long m = sample;
388
389 if (m == 0)
390 m = 1;
391
392 if (new_sample != 0) {
393 /* If we sample in larger samples in the non-timestamp
394 * case, we could grossly overestimate the RTT especially
395 * with chatty applications or bulk transfer apps which
396 * are stalled on filesystem I/O.
397 *
398 * Also, since we are only going for a minimum in the
399 * non-timestamp case, we do not smooth things out
400 * else with timestamps disabled convergence takes too
401 * long.
402 */
403 if (!win_dep) {
404 m -= (new_sample >> 3);
405 new_sample += m;
406 } else if (m < new_sample)
407 new_sample = m << 3;
408 } else {
409 /* No previous measure. */
410 new_sample = m << 3;
411 }
412
413 if (tp->rcv_rtt_est.rtt != new_sample)
414 tp->rcv_rtt_est.rtt = new_sample;
415 }
416
417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
418 {
419 if (tp->rcv_rtt_est.time == 0)
420 goto new_measure;
421 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422 return;
423 tcp_rcv_rtt_update(tp,
424 jiffies - tp->rcv_rtt_est.time,
425 1);
426
427 new_measure:
428 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429 tp->rcv_rtt_est.time = tcp_time_stamp;
430 }
431
432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
433 {
434 struct tcp_sock *tp = tcp_sk(sk);
435 if (tp->rx_opt.rcv_tsecr &&
436 (TCP_SKB_CB(skb)->end_seq -
437 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
438 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439 }
440
441 /*
442 * This function should be called every time data is copied to user space.
443 * It calculates the appropriate TCP receive buffer space.
444 */
445 void tcp_rcv_space_adjust(struct sock *sk)
446 {
447 struct tcp_sock *tp = tcp_sk(sk);
448 int time;
449 int space;
450
451 if (tp->rcvq_space.time == 0)
452 goto new_measure;
453
454 time = tcp_time_stamp - tp->rcvq_space.time;
455 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456 tp->rcv_rtt_est.rtt == 0)
457 return;
458
459 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
460
461 space = max(tp->rcvq_space.space, space);
462
463 if (tp->rcvq_space.space != space) {
464 int rcvmem;
465
466 tp->rcvq_space.space = space;
467
468 if (sysctl_tcp_moderate_rcvbuf &&
469 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
470 int new_clamp = space;
471
472 /* Receive space grows, normalize in order to
473 * take into account packet headers and sk_buff
474 * structure overhead.
475 */
476 space /= tp->advmss;
477 if (!space)
478 space = 1;
479 rcvmem = (tp->advmss + MAX_TCP_HEADER +
480 16 + sizeof(struct sk_buff));
481 while (tcp_win_from_space(rcvmem) < tp->advmss)
482 rcvmem += 128;
483 space *= rcvmem;
484 space = min(space, sysctl_tcp_rmem[2]);
485 if (space > sk->sk_rcvbuf) {
486 sk->sk_rcvbuf = space;
487
488 /* Make the window clamp follow along. */
489 tp->window_clamp = new_clamp;
490 }
491 }
492 }
493
494 new_measure:
495 tp->rcvq_space.seq = tp->copied_seq;
496 tp->rcvq_space.time = tcp_time_stamp;
497 }
498
499 /* There is something which you must keep in mind when you analyze the
500 * behavior of the tp->ato delayed ack timeout interval. When a
501 * connection starts up, we want to ack as quickly as possible. The
502 * problem is that "good" TCP's do slow start at the beginning of data
503 * transmission. The means that until we send the first few ACK's the
504 * sender will sit on his end and only queue most of his data, because
505 * he can only send snd_cwnd unacked packets at any given time. For
506 * each ACK we send, he increments snd_cwnd and transmits more of his
507 * queue. -DaveM
508 */
509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
510 {
511 struct tcp_sock *tp = tcp_sk(sk);
512 struct inet_connection_sock *icsk = inet_csk(sk);
513 u32 now;
514
515 inet_csk_schedule_ack(sk);
516
517 tcp_measure_rcv_mss(sk, skb);
518
519 tcp_rcv_rtt_measure(tp);
520
521 now = tcp_time_stamp;
522
523 if (!icsk->icsk_ack.ato) {
524 /* The _first_ data packet received, initialize
525 * delayed ACK engine.
526 */
527 tcp_incr_quickack(sk);
528 icsk->icsk_ack.ato = TCP_ATO_MIN;
529 } else {
530 int m = now - icsk->icsk_ack.lrcvtime;
531
532 if (m <= TCP_ATO_MIN/2) {
533 /* The fastest case is the first. */
534 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535 } else if (m < icsk->icsk_ack.ato) {
536 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537 if (icsk->icsk_ack.ato > icsk->icsk_rto)
538 icsk->icsk_ack.ato = icsk->icsk_rto;
539 } else if (m > icsk->icsk_rto) {
540 /* Too long gap. Apparently sender failed to
541 * restart window, so that we send ACKs quickly.
542 */
543 tcp_incr_quickack(sk);
544 sk_stream_mem_reclaim(sk);
545 }
546 }
547 icsk->icsk_ack.lrcvtime = now;
548
549 TCP_ECN_check_ce(tp, skb);
550
551 if (skb->len >= 128)
552 tcp_grow_window(sk, skb);
553 }
554
555 /* Called to compute a smoothed rtt estimate. The data fed to this
556 * routine either comes from timestamps, or from segments that were
557 * known _not_ to have been retransmitted [see Karn/Partridge
558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559 * piece by Van Jacobson.
560 * NOTE: the next three routines used to be one big routine.
561 * To save cycles in the RFC 1323 implementation it was better to break
562 * it up into three procedures. -- erics
563 */
564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
565 {
566 struct tcp_sock *tp = tcp_sk(sk);
567 long m = mrtt; /* RTT */
568
569 /* The following amusing code comes from Jacobson's
570 * article in SIGCOMM '88. Note that rtt and mdev
571 * are scaled versions of rtt and mean deviation.
572 * This is designed to be as fast as possible
573 * m stands for "measurement".
574 *
575 * On a 1990 paper the rto value is changed to:
576 * RTO = rtt + 4 * mdev
577 *
578 * Funny. This algorithm seems to be very broken.
579 * These formulae increase RTO, when it should be decreased, increase
580 * too slowly, when it should be increased quickly, decrease too quickly
581 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582 * does not matter how to _calculate_ it. Seems, it was trap
583 * that VJ failed to avoid. 8)
584 */
585 if (m == 0)
586 m = 1;
587 if (tp->srtt != 0) {
588 m -= (tp->srtt >> 3); /* m is now error in rtt est */
589 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
590 if (m < 0) {
591 m = -m; /* m is now abs(error) */
592 m -= (tp->mdev >> 2); /* similar update on mdev */
593 /* This is similar to one of Eifel findings.
594 * Eifel blocks mdev updates when rtt decreases.
595 * This solution is a bit different: we use finer gain
596 * for mdev in this case (alpha*beta).
597 * Like Eifel it also prevents growth of rto,
598 * but also it limits too fast rto decreases,
599 * happening in pure Eifel.
600 */
601 if (m > 0)
602 m >>= 3;
603 } else {
604 m -= (tp->mdev >> 2); /* similar update on mdev */
605 }
606 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
607 if (tp->mdev > tp->mdev_max) {
608 tp->mdev_max = tp->mdev;
609 if (tp->mdev_max > tp->rttvar)
610 tp->rttvar = tp->mdev_max;
611 }
612 if (after(tp->snd_una, tp->rtt_seq)) {
613 if (tp->mdev_max < tp->rttvar)
614 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615 tp->rtt_seq = tp->snd_nxt;
616 tp->mdev_max = TCP_RTO_MIN;
617 }
618 } else {
619 /* no previous measure. */
620 tp->srtt = m<<3; /* take the measured time to be rtt */
621 tp->mdev = m<<1; /* make sure rto = 3*rtt */
622 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623 tp->rtt_seq = tp->snd_nxt;
624 }
625 }
626
627 /* Calculate rto without backoff. This is the second half of Van Jacobson's
628 * routine referred to above.
629 */
630 static inline void tcp_set_rto(struct sock *sk)
631 {
632 const struct tcp_sock *tp = tcp_sk(sk);
633 /* Old crap is replaced with new one. 8)
634 *
635 * More seriously:
636 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637 * It cannot be less due to utterly erratic ACK generation made
638 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639 * to do with delayed acks, because at cwnd>2 true delack timeout
640 * is invisible. Actually, Linux-2.4 also generates erratic
641 * ACKs in some circumstances.
642 */
643 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
644
645 /* 2. Fixups made earlier cannot be right.
646 * If we do not estimate RTO correctly without them,
647 * all the algo is pure shit and should be replaced
648 * with correct one. It is exactly, which we pretend to do.
649 */
650 }
651
652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653 * guarantees that rto is higher.
654 */
655 static inline void tcp_bound_rto(struct sock *sk)
656 {
657 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
659 }
660
661 /* Save metrics learned by this TCP session.
662 This function is called only, when TCP finishes successfully
663 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
664 */
665 void tcp_update_metrics(struct sock *sk)
666 {
667 struct tcp_sock *tp = tcp_sk(sk);
668 struct dst_entry *dst = __sk_dst_get(sk);
669
670 if (sysctl_tcp_nometrics_save)
671 return;
672
673 dst_confirm(dst);
674
675 if (dst && (dst->flags&DST_HOST)) {
676 const struct inet_connection_sock *icsk = inet_csk(sk);
677 int m;
678
679 if (icsk->icsk_backoff || !tp->srtt) {
680 /* This session failed to estimate rtt. Why?
681 * Probably, no packets returned in time.
682 * Reset our results.
683 */
684 if (!(dst_metric_locked(dst, RTAX_RTT)))
685 dst->metrics[RTAX_RTT-1] = 0;
686 return;
687 }
688
689 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
690
691 /* If newly calculated rtt larger than stored one,
692 * store new one. Otherwise, use EWMA. Remember,
693 * rtt overestimation is always better than underestimation.
694 */
695 if (!(dst_metric_locked(dst, RTAX_RTT))) {
696 if (m <= 0)
697 dst->metrics[RTAX_RTT-1] = tp->srtt;
698 else
699 dst->metrics[RTAX_RTT-1] -= (m>>3);
700 }
701
702 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703 if (m < 0)
704 m = -m;
705
706 /* Scale deviation to rttvar fixed point */
707 m >>= 1;
708 if (m < tp->mdev)
709 m = tp->mdev;
710
711 if (m >= dst_metric(dst, RTAX_RTTVAR))
712 dst->metrics[RTAX_RTTVAR-1] = m;
713 else
714 dst->metrics[RTAX_RTTVAR-1] -=
715 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
716 }
717
718 if (tp->snd_ssthresh >= 0xFFFF) {
719 /* Slow start still did not finish. */
720 if (dst_metric(dst, RTAX_SSTHRESH) &&
721 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724 if (!dst_metric_locked(dst, RTAX_CWND) &&
725 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
728 icsk->icsk_ca_state == TCP_CA_Open) {
729 /* Cong. avoidance phase, cwnd is reliable. */
730 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731 dst->metrics[RTAX_SSTHRESH-1] =
732 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733 if (!dst_metric_locked(dst, RTAX_CWND))
734 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735 } else {
736 /* Else slow start did not finish, cwnd is non-sense,
737 ssthresh may be also invalid.
738 */
739 if (!dst_metric_locked(dst, RTAX_CWND))
740 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741 if (dst->metrics[RTAX_SSTHRESH-1] &&
742 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
745 }
746
747 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749 tp->reordering != sysctl_tcp_reordering)
750 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751 }
752 }
753 }
754
755 /* Numbers are taken from RFC2414. */
756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
757 {
758 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
759
760 if (!cwnd) {
761 if (tp->mss_cache > 1460)
762 cwnd = 2;
763 else
764 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
765 }
766 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767 }
768
769 /* Set slow start threshold and cwnd not falling to slow start */
770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
771 {
772 struct tcp_sock *tp = tcp_sk(sk);
773 const struct inet_connection_sock *icsk = inet_csk(sk);
774
775 tp->prior_ssthresh = 0;
776 tp->bytes_acked = 0;
777 if (icsk->icsk_ca_state < TCP_CA_CWR) {
778 tp->undo_marker = 0;
779 if (set_ssthresh)
780 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
781 tp->snd_cwnd = min(tp->snd_cwnd,
782 tcp_packets_in_flight(tp) + 1U);
783 tp->snd_cwnd_cnt = 0;
784 tp->high_seq = tp->snd_nxt;
785 tp->snd_cwnd_stamp = tcp_time_stamp;
786 TCP_ECN_queue_cwr(tp);
787
788 tcp_set_ca_state(sk, TCP_CA_CWR);
789 }
790 }
791
792 /* Initialize metrics on socket. */
793
794 static void tcp_init_metrics(struct sock *sk)
795 {
796 struct tcp_sock *tp = tcp_sk(sk);
797 struct dst_entry *dst = __sk_dst_get(sk);
798
799 if (dst == NULL)
800 goto reset;
801
802 dst_confirm(dst);
803
804 if (dst_metric_locked(dst, RTAX_CWND))
805 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806 if (dst_metric(dst, RTAX_SSTHRESH)) {
807 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809 tp->snd_ssthresh = tp->snd_cwnd_clamp;
810 }
811 if (dst_metric(dst, RTAX_REORDERING) &&
812 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813 tp->rx_opt.sack_ok &= ~2;
814 tp->reordering = dst_metric(dst, RTAX_REORDERING);
815 }
816
817 if (dst_metric(dst, RTAX_RTT) == 0)
818 goto reset;
819
820 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821 goto reset;
822
823 /* Initial rtt is determined from SYN,SYN-ACK.
824 * The segment is small and rtt may appear much
825 * less than real one. Use per-dst memory
826 * to make it more realistic.
827 *
828 * A bit of theory. RTT is time passed after "normal" sized packet
829 * is sent until it is ACKed. In normal circumstances sending small
830 * packets force peer to delay ACKs and calculation is correct too.
831 * The algorithm is adaptive and, provided we follow specs, it
832 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833 * tricks sort of "quick acks" for time long enough to decrease RTT
834 * to low value, and then abruptly stops to do it and starts to delay
835 * ACKs, wait for troubles.
836 */
837 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838 tp->srtt = dst_metric(dst, RTAX_RTT);
839 tp->rtt_seq = tp->snd_nxt;
840 }
841 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
844 }
845 tcp_set_rto(sk);
846 tcp_bound_rto(sk);
847 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
848 goto reset;
849 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850 tp->snd_cwnd_stamp = tcp_time_stamp;
851 return;
852
853 reset:
854 /* Play conservative. If timestamps are not
855 * supported, TCP will fail to recalculate correct
856 * rtt, if initial rto is too small. FORGET ALL AND RESET!
857 */
858 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859 tp->srtt = 0;
860 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
861 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
862 }
863 }
864
865 static void tcp_update_reordering(struct sock *sk, const int metric,
866 const int ts)
867 {
868 struct tcp_sock *tp = tcp_sk(sk);
869 if (metric > tp->reordering) {
870 tp->reordering = min(TCP_MAX_REORDERING, metric);
871
872 /* This exciting event is worth to be remembered. 8) */
873 if (ts)
874 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875 else if (IsReno(tp))
876 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877 else if (IsFack(tp))
878 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879 else
880 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881 #if FASTRETRANS_DEBUG > 1
882 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
883 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
884 tp->reordering,
885 tp->fackets_out,
886 tp->sacked_out,
887 tp->undo_marker ? tp->undo_retrans : 0);
888 #endif
889 /* Disable FACK yet. */
890 tp->rx_opt.sack_ok &= ~2;
891 }
892 }
893
894 /* This procedure tags the retransmission queue when SACKs arrive.
895 *
896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897 * Packets in queue with these bits set are counted in variables
898 * sacked_out, retrans_out and lost_out, correspondingly.
899 *
900 * Valid combinations are:
901 * Tag InFlight Description
902 * 0 1 - orig segment is in flight.
903 * S 0 - nothing flies, orig reached receiver.
904 * L 0 - nothing flies, orig lost by net.
905 * R 2 - both orig and retransmit are in flight.
906 * L|R 1 - orig is lost, retransmit is in flight.
907 * S|R 1 - orig reached receiver, retrans is still in flight.
908 * (L|S|R is logically valid, it could occur when L|R is sacked,
909 * but it is equivalent to plain S and code short-curcuits it to S.
910 * L|S is logically invalid, it would mean -1 packet in flight 8))
911 *
912 * These 6 states form finite state machine, controlled by the following events:
913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915 * 3. Loss detection event of one of three flavors:
916 * A. Scoreboard estimator decided the packet is lost.
917 * A'. Reno "three dupacks" marks head of queue lost.
918 * A''. Its FACK modfication, head until snd.fack is lost.
919 * B. SACK arrives sacking data transmitted after never retransmitted
920 * hole was sent out.
921 * C. SACK arrives sacking SND.NXT at the moment, when the
922 * segment was retransmitted.
923 * 4. D-SACK added new rule: D-SACK changes any tag to S.
924 *
925 * It is pleasant to note, that state diagram turns out to be commutative,
926 * so that we are allowed not to be bothered by order of our actions,
927 * when multiple events arrive simultaneously. (see the function below).
928 *
929 * Reordering detection.
930 * --------------------
931 * Reordering metric is maximal distance, which a packet can be displaced
932 * in packet stream. With SACKs we can estimate it:
933 *
934 * 1. SACK fills old hole and the corresponding segment was not
935 * ever retransmitted -> reordering. Alas, we cannot use it
936 * when segment was retransmitted.
937 * 2. The last flaw is solved with D-SACK. D-SACK arrives
938 * for retransmitted and already SACKed segment -> reordering..
939 * Both of these heuristics are not used in Loss state, when we cannot
940 * account for retransmits accurately.
941 */
942 static int
943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
944 {
945 const struct inet_connection_sock *icsk = inet_csk(sk);
946 struct tcp_sock *tp = tcp_sk(sk);
947 unsigned char *ptr = (skb_transport_header(ack_skb) +
948 TCP_SKB_CB(ack_skb)->sacked);
949 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
950 struct sk_buff *cached_skb;
951 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952 int reord = tp->packets_out;
953 int prior_fackets;
954 u32 lost_retrans = 0;
955 int flag = 0;
956 int dup_sack = 0;
957 int cached_fack_count;
958 int i;
959 int first_sack_index;
960
961 if (!tp->sacked_out)
962 tp->fackets_out = 0;
963 prior_fackets = tp->fackets_out;
964
965 /* Check for D-SACK. */
966 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
967 dup_sack = 1;
968 tp->rx_opt.sack_ok |= 4;
969 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970 } else if (num_sacks > 1 &&
971 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
973 dup_sack = 1;
974 tp->rx_opt.sack_ok |= 4;
975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
976 }
977
978 /* D-SACK for already forgotten data...
979 * Do dumb counting. */
980 if (dup_sack &&
981 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
982 after(ntohl(sp[0].end_seq), tp->undo_marker))
983 tp->undo_retrans--;
984
985 /* Eliminate too old ACKs, but take into
986 * account more or less fresh ones, they can
987 * contain valid SACK info.
988 */
989 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990 return 0;
991
992 /* SACK fastpath:
993 * if the only SACK change is the increase of the end_seq of
994 * the first block then only apply that SACK block
995 * and use retrans queue hinting otherwise slowpath */
996 flag = 1;
997 for (i = 0; i < num_sacks; i++) {
998 __be32 start_seq = sp[i].start_seq;
999 __be32 end_seq = sp[i].end_seq;
1000
1001 if (i == 0) {
1002 if (tp->recv_sack_cache[i].start_seq != start_seq)
1003 flag = 0;
1004 } else {
1005 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006 (tp->recv_sack_cache[i].end_seq != end_seq))
1007 flag = 0;
1008 }
1009 tp->recv_sack_cache[i].start_seq = start_seq;
1010 tp->recv_sack_cache[i].end_seq = end_seq;
1011 }
1012 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014 tp->recv_sack_cache[i].start_seq = 0;
1015 tp->recv_sack_cache[i].end_seq = 0;
1016 }
1017
1018 first_sack_index = 0;
1019 if (flag)
1020 num_sacks = 1;
1021 else {
1022 int j;
1023 tp->fastpath_skb_hint = NULL;
1024
1025 /* order SACK blocks to allow in order walk of the retrans queue */
1026 for (i = num_sacks-1; i > 0; i--) {
1027 for (j = 0; j < i; j++){
1028 if (after(ntohl(sp[j].start_seq),
1029 ntohl(sp[j+1].start_seq))){
1030 struct tcp_sack_block_wire tmp;
1031
1032 tmp = sp[j];
1033 sp[j] = sp[j+1];
1034 sp[j+1] = tmp;
1035
1036 /* Track where the first SACK block goes to */
1037 if (j == first_sack_index)
1038 first_sack_index = j+1;
1039 }
1040
1041 }
1042 }
1043 }
1044
1045 /* clear flag as used for different purpose in following code */
1046 flag = 0;
1047
1048 /* Use SACK fastpath hint if valid */
1049 cached_skb = tp->fastpath_skb_hint;
1050 cached_fack_count = tp->fastpath_cnt_hint;
1051 if (!cached_skb) {
1052 cached_skb = tcp_write_queue_head(sk);
1053 cached_fack_count = 0;
1054 }
1055
1056 for (i=0; i<num_sacks; i++, sp++) {
1057 struct sk_buff *skb;
1058 __u32 start_seq = ntohl(sp->start_seq);
1059 __u32 end_seq = ntohl(sp->end_seq);
1060 int fack_count;
1061
1062 skb = cached_skb;
1063 fack_count = cached_fack_count;
1064
1065 /* Event "B" in the comment above. */
1066 if (after(end_seq, tp->high_seq))
1067 flag |= FLAG_DATA_LOST;
1068
1069 tcp_for_write_queue_from(skb, sk) {
1070 int in_sack, pcount;
1071 u8 sacked;
1072
1073 if (skb == tcp_send_head(sk))
1074 break;
1075
1076 cached_skb = skb;
1077 cached_fack_count = fack_count;
1078 if (i == first_sack_index) {
1079 tp->fastpath_skb_hint = skb;
1080 tp->fastpath_cnt_hint = fack_count;
1081 }
1082
1083 /* The retransmission queue is always in order, so
1084 * we can short-circuit the walk early.
1085 */
1086 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1087 break;
1088
1089 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1090 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1091
1092 pcount = tcp_skb_pcount(skb);
1093
1094 if (pcount > 1 && !in_sack &&
1095 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1096 unsigned int pkt_len;
1097
1098 in_sack = !after(start_seq,
1099 TCP_SKB_CB(skb)->seq);
1100
1101 if (!in_sack)
1102 pkt_len = (start_seq -
1103 TCP_SKB_CB(skb)->seq);
1104 else
1105 pkt_len = (end_seq -
1106 TCP_SKB_CB(skb)->seq);
1107 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1108 break;
1109 pcount = tcp_skb_pcount(skb);
1110 }
1111
1112 fack_count += pcount;
1113
1114 sacked = TCP_SKB_CB(skb)->sacked;
1115
1116 /* Account D-SACK for retransmitted packet. */
1117 if ((dup_sack && in_sack) &&
1118 (sacked & TCPCB_RETRANS) &&
1119 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1120 tp->undo_retrans--;
1121
1122 /* The frame is ACKed. */
1123 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1124 if (sacked&TCPCB_RETRANS) {
1125 if ((dup_sack && in_sack) &&
1126 (sacked&TCPCB_SACKED_ACKED))
1127 reord = min(fack_count, reord);
1128 } else {
1129 /* If it was in a hole, we detected reordering. */
1130 if (fack_count < prior_fackets &&
1131 !(sacked&TCPCB_SACKED_ACKED))
1132 reord = min(fack_count, reord);
1133 }
1134
1135 /* Nothing to do; acked frame is about to be dropped. */
1136 continue;
1137 }
1138
1139 if ((sacked&TCPCB_SACKED_RETRANS) &&
1140 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1141 (!lost_retrans || after(end_seq, lost_retrans)))
1142 lost_retrans = end_seq;
1143
1144 if (!in_sack)
1145 continue;
1146
1147 if (!(sacked&TCPCB_SACKED_ACKED)) {
1148 if (sacked & TCPCB_SACKED_RETRANS) {
1149 /* If the segment is not tagged as lost,
1150 * we do not clear RETRANS, believing
1151 * that retransmission is still in flight.
1152 */
1153 if (sacked & TCPCB_LOST) {
1154 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1155 tp->lost_out -= tcp_skb_pcount(skb);
1156 tp->retrans_out -= tcp_skb_pcount(skb);
1157
1158 /* clear lost hint */
1159 tp->retransmit_skb_hint = NULL;
1160 }
1161 } else {
1162 /* New sack for not retransmitted frame,
1163 * which was in hole. It is reordering.
1164 */
1165 if (!(sacked & TCPCB_RETRANS) &&
1166 fack_count < prior_fackets)
1167 reord = min(fack_count, reord);
1168
1169 if (sacked & TCPCB_LOST) {
1170 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1171 tp->lost_out -= tcp_skb_pcount(skb);
1172
1173 /* clear lost hint */
1174 tp->retransmit_skb_hint = NULL;
1175 }
1176 /* SACK enhanced F-RTO detection.
1177 * Set flag if and only if non-rexmitted
1178 * segments below frto_highmark are
1179 * SACKed (RFC4138; Appendix B).
1180 * Clearing correct due to in-order walk
1181 */
1182 if (after(end_seq, tp->frto_highmark)) {
1183 flag &= ~FLAG_ONLY_ORIG_SACKED;
1184 } else {
1185 if (!(sacked & TCPCB_RETRANS))
1186 flag |= FLAG_ONLY_ORIG_SACKED;
1187 }
1188 }
1189
1190 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1191 flag |= FLAG_DATA_SACKED;
1192 tp->sacked_out += tcp_skb_pcount(skb);
1193
1194 if (fack_count > tp->fackets_out)
1195 tp->fackets_out = fack_count;
1196 } else {
1197 if (dup_sack && (sacked&TCPCB_RETRANS))
1198 reord = min(fack_count, reord);
1199 }
1200
1201 /* D-SACK. We can detect redundant retransmission
1202 * in S|R and plain R frames and clear it.
1203 * undo_retrans is decreased above, L|R frames
1204 * are accounted above as well.
1205 */
1206 if (dup_sack &&
1207 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1208 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1209 tp->retrans_out -= tcp_skb_pcount(skb);
1210 tp->retransmit_skb_hint = NULL;
1211 }
1212 }
1213 }
1214
1215 /* Check for lost retransmit. This superb idea is
1216 * borrowed from "ratehalving". Event "C".
1217 * Later note: FACK people cheated me again 8),
1218 * we have to account for reordering! Ugly,
1219 * but should help.
1220 */
1221 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1222 struct sk_buff *skb;
1223
1224 tcp_for_write_queue(skb, sk) {
1225 if (skb == tcp_send_head(sk))
1226 break;
1227 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1228 break;
1229 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1230 continue;
1231 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1232 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1233 (IsFack(tp) ||
1234 !before(lost_retrans,
1235 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1236 tp->mss_cache))) {
1237 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1238 tp->retrans_out -= tcp_skb_pcount(skb);
1239
1240 /* clear lost hint */
1241 tp->retransmit_skb_hint = NULL;
1242
1243 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1244 tp->lost_out += tcp_skb_pcount(skb);
1245 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1246 flag |= FLAG_DATA_SACKED;
1247 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1248 }
1249 }
1250 }
1251 }
1252
1253 tp->left_out = tp->sacked_out + tp->lost_out;
1254
1255 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1256 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1257 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1258
1259 #if FASTRETRANS_DEBUG > 0
1260 BUG_TRAP((int)tp->sacked_out >= 0);
1261 BUG_TRAP((int)tp->lost_out >= 0);
1262 BUG_TRAP((int)tp->retrans_out >= 0);
1263 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1264 #endif
1265 return flag;
1266 }
1267
1268 /* F-RTO can only be used if TCP has never retransmitted anything other than
1269 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1270 */
1271 int tcp_use_frto(struct sock *sk)
1272 {
1273 const struct tcp_sock *tp = tcp_sk(sk);
1274 struct sk_buff *skb;
1275
1276 if (!sysctl_tcp_frto)
1277 return 0;
1278
1279 if (IsSackFrto())
1280 return 1;
1281
1282 /* Avoid expensive walking of rexmit queue if possible */
1283 if (tp->retrans_out > 1)
1284 return 0;
1285
1286 skb = tcp_write_queue_head(sk);
1287 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1288 tcp_for_write_queue_from(skb, sk) {
1289 if (skb == tcp_send_head(sk))
1290 break;
1291 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1292 return 0;
1293 /* Short-circuit when first non-SACKed skb has been checked */
1294 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1295 break;
1296 }
1297 return 1;
1298 }
1299
1300 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1301 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1302 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1303 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1304 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1305 * bits are handled if the Loss state is really to be entered (in
1306 * tcp_enter_frto_loss).
1307 *
1308 * Do like tcp_enter_loss() would; when RTO expires the second time it
1309 * does:
1310 * "Reduce ssthresh if it has not yet been made inside this window."
1311 */
1312 void tcp_enter_frto(struct sock *sk)
1313 {
1314 const struct inet_connection_sock *icsk = inet_csk(sk);
1315 struct tcp_sock *tp = tcp_sk(sk);
1316 struct sk_buff *skb;
1317
1318 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1319 tp->snd_una == tp->high_seq ||
1320 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1321 !icsk->icsk_retransmits)) {
1322 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1323 /* Our state is too optimistic in ssthresh() call because cwnd
1324 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1325 * recovery has not yet completed. Pattern would be this: RTO,
1326 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1327 * up here twice).
1328 * RFC4138 should be more specific on what to do, even though
1329 * RTO is quite unlikely to occur after the first Cumulative ACK
1330 * due to back-off and complexity of triggering events ...
1331 */
1332 if (tp->frto_counter) {
1333 u32 stored_cwnd;
1334 stored_cwnd = tp->snd_cwnd;
1335 tp->snd_cwnd = 2;
1336 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1337 tp->snd_cwnd = stored_cwnd;
1338 } else {
1339 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1340 }
1341 /* ... in theory, cong.control module could do "any tricks" in
1342 * ssthresh(), which means that ca_state, lost bits and lost_out
1343 * counter would have to be faked before the call occurs. We
1344 * consider that too expensive, unlikely and hacky, so modules
1345 * using these in ssthresh() must deal these incompatibility
1346 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1347 */
1348 tcp_ca_event(sk, CA_EVENT_FRTO);
1349 }
1350
1351 tp->undo_marker = tp->snd_una;
1352 tp->undo_retrans = 0;
1353
1354 skb = tcp_write_queue_head(sk);
1355 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1357 tp->retrans_out -= tcp_skb_pcount(skb);
1358 }
1359 tcp_sync_left_out(tp);
1360
1361 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1362 * The last condition is necessary at least in tp->frto_counter case.
1363 */
1364 if (IsSackFrto() && (tp->frto_counter ||
1365 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1366 after(tp->high_seq, tp->snd_una)) {
1367 tp->frto_highmark = tp->high_seq;
1368 } else {
1369 tp->frto_highmark = tp->snd_nxt;
1370 }
1371 tcp_set_ca_state(sk, TCP_CA_Disorder);
1372 tp->high_seq = tp->snd_nxt;
1373 tp->frto_counter = 1;
1374 }
1375
1376 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1377 * which indicates that we should follow the traditional RTO recovery,
1378 * i.e. mark everything lost and do go-back-N retransmission.
1379 */
1380 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1381 {
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 struct sk_buff *skb;
1384 int cnt = 0;
1385
1386 tp->sacked_out = 0;
1387 tp->lost_out = 0;
1388 tp->fackets_out = 0;
1389 tp->retrans_out = 0;
1390
1391 tcp_for_write_queue(skb, sk) {
1392 if (skb == tcp_send_head(sk))
1393 break;
1394 cnt += tcp_skb_pcount(skb);
1395 /*
1396 * Count the retransmission made on RTO correctly (only when
1397 * waiting for the first ACK and did not get it)...
1398 */
1399 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1400 tp->retrans_out += tcp_skb_pcount(skb);
1401 /* ...enter this if branch just for the first segment */
1402 flag |= FLAG_DATA_ACKED;
1403 } else {
1404 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1405 }
1406 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1407
1408 /* Do not mark those segments lost that were
1409 * forward transmitted after RTO
1410 */
1411 if (!after(TCP_SKB_CB(skb)->end_seq,
1412 tp->frto_highmark)) {
1413 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1414 tp->lost_out += tcp_skb_pcount(skb);
1415 }
1416 } else {
1417 tp->sacked_out += tcp_skb_pcount(skb);
1418 tp->fackets_out = cnt;
1419 }
1420 }
1421 tcp_sync_left_out(tp);
1422
1423 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1424 tp->snd_cwnd_cnt = 0;
1425 tp->snd_cwnd_stamp = tcp_time_stamp;
1426 tp->undo_marker = 0;
1427 tp->frto_counter = 0;
1428
1429 tp->reordering = min_t(unsigned int, tp->reordering,
1430 sysctl_tcp_reordering);
1431 tcp_set_ca_state(sk, TCP_CA_Loss);
1432 tp->high_seq = tp->frto_highmark;
1433 TCP_ECN_queue_cwr(tp);
1434
1435 clear_all_retrans_hints(tp);
1436 }
1437
1438 void tcp_clear_retrans(struct tcp_sock *tp)
1439 {
1440 tp->left_out = 0;
1441 tp->retrans_out = 0;
1442
1443 tp->fackets_out = 0;
1444 tp->sacked_out = 0;
1445 tp->lost_out = 0;
1446
1447 tp->undo_marker = 0;
1448 tp->undo_retrans = 0;
1449 }
1450
1451 /* Enter Loss state. If "how" is not zero, forget all SACK information
1452 * and reset tags completely, otherwise preserve SACKs. If receiver
1453 * dropped its ofo queue, we will know this due to reneging detection.
1454 */
1455 void tcp_enter_loss(struct sock *sk, int how)
1456 {
1457 const struct inet_connection_sock *icsk = inet_csk(sk);
1458 struct tcp_sock *tp = tcp_sk(sk);
1459 struct sk_buff *skb;
1460 int cnt = 0;
1461
1462 /* Reduce ssthresh if it has not yet been made inside this window. */
1463 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1464 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1465 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1466 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1467 tcp_ca_event(sk, CA_EVENT_LOSS);
1468 }
1469 tp->snd_cwnd = 1;
1470 tp->snd_cwnd_cnt = 0;
1471 tp->snd_cwnd_stamp = tcp_time_stamp;
1472
1473 tp->bytes_acked = 0;
1474 tcp_clear_retrans(tp);
1475
1476 /* Push undo marker, if it was plain RTO and nothing
1477 * was retransmitted. */
1478 if (!how)
1479 tp->undo_marker = tp->snd_una;
1480
1481 tcp_for_write_queue(skb, sk) {
1482 if (skb == tcp_send_head(sk))
1483 break;
1484 cnt += tcp_skb_pcount(skb);
1485 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1486 tp->undo_marker = 0;
1487 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1488 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1489 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1490 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1491 tp->lost_out += tcp_skb_pcount(skb);
1492 } else {
1493 tp->sacked_out += tcp_skb_pcount(skb);
1494 tp->fackets_out = cnt;
1495 }
1496 }
1497 tcp_sync_left_out(tp);
1498
1499 tp->reordering = min_t(unsigned int, tp->reordering,
1500 sysctl_tcp_reordering);
1501 tcp_set_ca_state(sk, TCP_CA_Loss);
1502 tp->high_seq = tp->snd_nxt;
1503 TCP_ECN_queue_cwr(tp);
1504
1505 clear_all_retrans_hints(tp);
1506 }
1507
1508 static int tcp_check_sack_reneging(struct sock *sk)
1509 {
1510 struct sk_buff *skb;
1511
1512 /* If ACK arrived pointing to a remembered SACK,
1513 * it means that our remembered SACKs do not reflect
1514 * real state of receiver i.e.
1515 * receiver _host_ is heavily congested (or buggy).
1516 * Do processing similar to RTO timeout.
1517 */
1518 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1519 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1520 struct inet_connection_sock *icsk = inet_csk(sk);
1521 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1522
1523 tcp_enter_loss(sk, 1);
1524 icsk->icsk_retransmits++;
1525 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1526 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1527 icsk->icsk_rto, TCP_RTO_MAX);
1528 return 1;
1529 }
1530 return 0;
1531 }
1532
1533 static inline int tcp_fackets_out(struct tcp_sock *tp)
1534 {
1535 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1536 }
1537
1538 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1539 {
1540 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1541 }
1542
1543 static inline int tcp_head_timedout(struct sock *sk)
1544 {
1545 struct tcp_sock *tp = tcp_sk(sk);
1546
1547 return tp->packets_out &&
1548 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1549 }
1550
1551 /* Linux NewReno/SACK/FACK/ECN state machine.
1552 * --------------------------------------
1553 *
1554 * "Open" Normal state, no dubious events, fast path.
1555 * "Disorder" In all the respects it is "Open",
1556 * but requires a bit more attention. It is entered when
1557 * we see some SACKs or dupacks. It is split of "Open"
1558 * mainly to move some processing from fast path to slow one.
1559 * "CWR" CWND was reduced due to some Congestion Notification event.
1560 * It can be ECN, ICMP source quench, local device congestion.
1561 * "Recovery" CWND was reduced, we are fast-retransmitting.
1562 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1563 *
1564 * tcp_fastretrans_alert() is entered:
1565 * - each incoming ACK, if state is not "Open"
1566 * - when arrived ACK is unusual, namely:
1567 * * SACK
1568 * * Duplicate ACK.
1569 * * ECN ECE.
1570 *
1571 * Counting packets in flight is pretty simple.
1572 *
1573 * in_flight = packets_out - left_out + retrans_out
1574 *
1575 * packets_out is SND.NXT-SND.UNA counted in packets.
1576 *
1577 * retrans_out is number of retransmitted segments.
1578 *
1579 * left_out is number of segments left network, but not ACKed yet.
1580 *
1581 * left_out = sacked_out + lost_out
1582 *
1583 * sacked_out: Packets, which arrived to receiver out of order
1584 * and hence not ACKed. With SACKs this number is simply
1585 * amount of SACKed data. Even without SACKs
1586 * it is easy to give pretty reliable estimate of this number,
1587 * counting duplicate ACKs.
1588 *
1589 * lost_out: Packets lost by network. TCP has no explicit
1590 * "loss notification" feedback from network (for now).
1591 * It means that this number can be only _guessed_.
1592 * Actually, it is the heuristics to predict lossage that
1593 * distinguishes different algorithms.
1594 *
1595 * F.e. after RTO, when all the queue is considered as lost,
1596 * lost_out = packets_out and in_flight = retrans_out.
1597 *
1598 * Essentially, we have now two algorithms counting
1599 * lost packets.
1600 *
1601 * FACK: It is the simplest heuristics. As soon as we decided
1602 * that something is lost, we decide that _all_ not SACKed
1603 * packets until the most forward SACK are lost. I.e.
1604 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1605 * It is absolutely correct estimate, if network does not reorder
1606 * packets. And it loses any connection to reality when reordering
1607 * takes place. We use FACK by default until reordering
1608 * is suspected on the path to this destination.
1609 *
1610 * NewReno: when Recovery is entered, we assume that one segment
1611 * is lost (classic Reno). While we are in Recovery and
1612 * a partial ACK arrives, we assume that one more packet
1613 * is lost (NewReno). This heuristics are the same in NewReno
1614 * and SACK.
1615 *
1616 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1617 * deflation etc. CWND is real congestion window, never inflated, changes
1618 * only according to classic VJ rules.
1619 *
1620 * Really tricky (and requiring careful tuning) part of algorithm
1621 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1622 * The first determines the moment _when_ we should reduce CWND and,
1623 * hence, slow down forward transmission. In fact, it determines the moment
1624 * when we decide that hole is caused by loss, rather than by a reorder.
1625 *
1626 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1627 * holes, caused by lost packets.
1628 *
1629 * And the most logically complicated part of algorithm is undo
1630 * heuristics. We detect false retransmits due to both too early
1631 * fast retransmit (reordering) and underestimated RTO, analyzing
1632 * timestamps and D-SACKs. When we detect that some segments were
1633 * retransmitted by mistake and CWND reduction was wrong, we undo
1634 * window reduction and abort recovery phase. This logic is hidden
1635 * inside several functions named tcp_try_undo_<something>.
1636 */
1637
1638 /* This function decides, when we should leave Disordered state
1639 * and enter Recovery phase, reducing congestion window.
1640 *
1641 * Main question: may we further continue forward transmission
1642 * with the same cwnd?
1643 */
1644 static int tcp_time_to_recover(struct sock *sk)
1645 {
1646 struct tcp_sock *tp = tcp_sk(sk);
1647 __u32 packets_out;
1648
1649 /* Do not perform any recovery during FRTO algorithm */
1650 if (tp->frto_counter)
1651 return 0;
1652
1653 /* Trick#1: The loss is proven. */
1654 if (tp->lost_out)
1655 return 1;
1656
1657 /* Not-A-Trick#2 : Classic rule... */
1658 if (tcp_fackets_out(tp) > tp->reordering)
1659 return 1;
1660
1661 /* Trick#3 : when we use RFC2988 timer restart, fast
1662 * retransmit can be triggered by timeout of queue head.
1663 */
1664 if (tcp_head_timedout(sk))
1665 return 1;
1666
1667 /* Trick#4: It is still not OK... But will it be useful to delay
1668 * recovery more?
1669 */
1670 packets_out = tp->packets_out;
1671 if (packets_out <= tp->reordering &&
1672 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1673 !tcp_may_send_now(sk)) {
1674 /* We have nothing to send. This connection is limited
1675 * either by receiver window or by application.
1676 */
1677 return 1;
1678 }
1679
1680 return 0;
1681 }
1682
1683 /* If we receive more dupacks than we expected counting segments
1684 * in assumption of absent reordering, interpret this as reordering.
1685 * The only another reason could be bug in receiver TCP.
1686 */
1687 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1688 {
1689 struct tcp_sock *tp = tcp_sk(sk);
1690 u32 holes;
1691
1692 holes = max(tp->lost_out, 1U);
1693 holes = min(holes, tp->packets_out);
1694
1695 if ((tp->sacked_out + holes) > tp->packets_out) {
1696 tp->sacked_out = tp->packets_out - holes;
1697 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1698 }
1699 }
1700
1701 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1702
1703 static void tcp_add_reno_sack(struct sock *sk)
1704 {
1705 struct tcp_sock *tp = tcp_sk(sk);
1706 tp->sacked_out++;
1707 tcp_check_reno_reordering(sk, 0);
1708 tcp_sync_left_out(tp);
1709 }
1710
1711 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1712
1713 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1714 {
1715 struct tcp_sock *tp = tcp_sk(sk);
1716
1717 if (acked > 0) {
1718 /* One ACK acked hole. The rest eat duplicate ACKs. */
1719 if (acked-1 >= tp->sacked_out)
1720 tp->sacked_out = 0;
1721 else
1722 tp->sacked_out -= acked-1;
1723 }
1724 tcp_check_reno_reordering(sk, acked);
1725 tcp_sync_left_out(tp);
1726 }
1727
1728 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1729 {
1730 tp->sacked_out = 0;
1731 tp->left_out = tp->lost_out;
1732 }
1733
1734 /* Mark head of queue up as lost. */
1735 static void tcp_mark_head_lost(struct sock *sk,
1736 int packets, u32 high_seq)
1737 {
1738 struct tcp_sock *tp = tcp_sk(sk);
1739 struct sk_buff *skb;
1740 int cnt;
1741
1742 BUG_TRAP(packets <= tp->packets_out);
1743 if (tp->lost_skb_hint) {
1744 skb = tp->lost_skb_hint;
1745 cnt = tp->lost_cnt_hint;
1746 } else {
1747 skb = tcp_write_queue_head(sk);
1748 cnt = 0;
1749 }
1750
1751 tcp_for_write_queue_from(skb, sk) {
1752 if (skb == tcp_send_head(sk))
1753 break;
1754 /* TODO: do this better */
1755 /* this is not the most efficient way to do this... */
1756 tp->lost_skb_hint = skb;
1757 tp->lost_cnt_hint = cnt;
1758 cnt += tcp_skb_pcount(skb);
1759 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1760 break;
1761 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1762 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1763 tp->lost_out += tcp_skb_pcount(skb);
1764
1765 /* clear xmit_retransmit_queue hints
1766 * if this is beyond hint */
1767 if (tp->retransmit_skb_hint != NULL &&
1768 before(TCP_SKB_CB(skb)->seq,
1769 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1770 tp->retransmit_skb_hint = NULL;
1771
1772 }
1773 }
1774 tcp_sync_left_out(tp);
1775 }
1776
1777 /* Account newly detected lost packet(s) */
1778
1779 static void tcp_update_scoreboard(struct sock *sk)
1780 {
1781 struct tcp_sock *tp = tcp_sk(sk);
1782
1783 if (IsFack(tp)) {
1784 int lost = tp->fackets_out - tp->reordering;
1785 if (lost <= 0)
1786 lost = 1;
1787 tcp_mark_head_lost(sk, lost, tp->high_seq);
1788 } else {
1789 tcp_mark_head_lost(sk, 1, tp->high_seq);
1790 }
1791
1792 /* New heuristics: it is possible only after we switched
1793 * to restart timer each time when something is ACKed.
1794 * Hence, we can detect timed out packets during fast
1795 * retransmit without falling to slow start.
1796 */
1797 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1798 struct sk_buff *skb;
1799
1800 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1801 : tcp_write_queue_head(sk);
1802
1803 tcp_for_write_queue_from(skb, sk) {
1804 if (skb == tcp_send_head(sk))
1805 break;
1806 if (!tcp_skb_timedout(sk, skb))
1807 break;
1808
1809 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1810 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1811 tp->lost_out += tcp_skb_pcount(skb);
1812
1813 /* clear xmit_retrans hint */
1814 if (tp->retransmit_skb_hint &&
1815 before(TCP_SKB_CB(skb)->seq,
1816 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1817
1818 tp->retransmit_skb_hint = NULL;
1819 }
1820 }
1821
1822 tp->scoreboard_skb_hint = skb;
1823
1824 tcp_sync_left_out(tp);
1825 }
1826 }
1827
1828 /* CWND moderation, preventing bursts due to too big ACKs
1829 * in dubious situations.
1830 */
1831 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1832 {
1833 tp->snd_cwnd = min(tp->snd_cwnd,
1834 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1835 tp->snd_cwnd_stamp = tcp_time_stamp;
1836 }
1837
1838 /* Lower bound on congestion window is slow start threshold
1839 * unless congestion avoidance choice decides to overide it.
1840 */
1841 static inline u32 tcp_cwnd_min(const struct sock *sk)
1842 {
1843 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1844
1845 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1846 }
1847
1848 /* Decrease cwnd each second ack. */
1849 static void tcp_cwnd_down(struct sock *sk)
1850 {
1851 struct tcp_sock *tp = tcp_sk(sk);
1852 int decr = tp->snd_cwnd_cnt + 1;
1853
1854 tp->snd_cwnd_cnt = decr&1;
1855 decr >>= 1;
1856
1857 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1858 tp->snd_cwnd -= decr;
1859
1860 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1861 tp->snd_cwnd_stamp = tcp_time_stamp;
1862 }
1863
1864 /* Nothing was retransmitted or returned timestamp is less
1865 * than timestamp of the first retransmission.
1866 */
1867 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1868 {
1869 return !tp->retrans_stamp ||
1870 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1871 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1872 }
1873
1874 /* Undo procedures. */
1875
1876 #if FASTRETRANS_DEBUG > 1
1877 static void DBGUNDO(struct sock *sk, const char *msg)
1878 {
1879 struct tcp_sock *tp = tcp_sk(sk);
1880 struct inet_sock *inet = inet_sk(sk);
1881
1882 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1883 msg,
1884 NIPQUAD(inet->daddr), ntohs(inet->dport),
1885 tp->snd_cwnd, tp->left_out,
1886 tp->snd_ssthresh, tp->prior_ssthresh,
1887 tp->packets_out);
1888 }
1889 #else
1890 #define DBGUNDO(x...) do { } while (0)
1891 #endif
1892
1893 static void tcp_undo_cwr(struct sock *sk, const int undo)
1894 {
1895 struct tcp_sock *tp = tcp_sk(sk);
1896
1897 if (tp->prior_ssthresh) {
1898 const struct inet_connection_sock *icsk = inet_csk(sk);
1899
1900 if (icsk->icsk_ca_ops->undo_cwnd)
1901 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1902 else
1903 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1904
1905 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1906 tp->snd_ssthresh = tp->prior_ssthresh;
1907 TCP_ECN_withdraw_cwr(tp);
1908 }
1909 } else {
1910 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1911 }
1912 tcp_moderate_cwnd(tp);
1913 tp->snd_cwnd_stamp = tcp_time_stamp;
1914
1915 /* There is something screwy going on with the retrans hints after
1916 an undo */
1917 clear_all_retrans_hints(tp);
1918 }
1919
1920 static inline int tcp_may_undo(struct tcp_sock *tp)
1921 {
1922 return tp->undo_marker &&
1923 (!tp->undo_retrans || tcp_packet_delayed(tp));
1924 }
1925
1926 /* People celebrate: "We love our President!" */
1927 static int tcp_try_undo_recovery(struct sock *sk)
1928 {
1929 struct tcp_sock *tp = tcp_sk(sk);
1930
1931 if (tcp_may_undo(tp)) {
1932 /* Happy end! We did not retransmit anything
1933 * or our original transmission succeeded.
1934 */
1935 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1936 tcp_undo_cwr(sk, 1);
1937 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1938 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1939 else
1940 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1941 tp->undo_marker = 0;
1942 }
1943 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1944 /* Hold old state until something *above* high_seq
1945 * is ACKed. For Reno it is MUST to prevent false
1946 * fast retransmits (RFC2582). SACK TCP is safe. */
1947 tcp_moderate_cwnd(tp);
1948 return 1;
1949 }
1950 tcp_set_ca_state(sk, TCP_CA_Open);
1951 return 0;
1952 }
1953
1954 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1955 static void tcp_try_undo_dsack(struct sock *sk)
1956 {
1957 struct tcp_sock *tp = tcp_sk(sk);
1958
1959 if (tp->undo_marker && !tp->undo_retrans) {
1960 DBGUNDO(sk, "D-SACK");
1961 tcp_undo_cwr(sk, 1);
1962 tp->undo_marker = 0;
1963 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1964 }
1965 }
1966
1967 /* Undo during fast recovery after partial ACK. */
1968
1969 static int tcp_try_undo_partial(struct sock *sk, int acked)
1970 {
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 /* Partial ACK arrived. Force Hoe's retransmit. */
1973 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1974
1975 if (tcp_may_undo(tp)) {
1976 /* Plain luck! Hole if filled with delayed
1977 * packet, rather than with a retransmit.
1978 */
1979 if (tp->retrans_out == 0)
1980 tp->retrans_stamp = 0;
1981
1982 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1983
1984 DBGUNDO(sk, "Hoe");
1985 tcp_undo_cwr(sk, 0);
1986 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1987
1988 /* So... Do not make Hoe's retransmit yet.
1989 * If the first packet was delayed, the rest
1990 * ones are most probably delayed as well.
1991 */
1992 failed = 0;
1993 }
1994 return failed;
1995 }
1996
1997 /* Undo during loss recovery after partial ACK. */
1998 static int tcp_try_undo_loss(struct sock *sk)
1999 {
2000 struct tcp_sock *tp = tcp_sk(sk);
2001
2002 if (tcp_may_undo(tp)) {
2003 struct sk_buff *skb;
2004 tcp_for_write_queue(skb, sk) {
2005 if (skb == tcp_send_head(sk))
2006 break;
2007 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2008 }
2009
2010 clear_all_retrans_hints(tp);
2011
2012 DBGUNDO(sk, "partial loss");
2013 tp->lost_out = 0;
2014 tp->left_out = tp->sacked_out;
2015 tcp_undo_cwr(sk, 1);
2016 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2017 inet_csk(sk)->icsk_retransmits = 0;
2018 tp->undo_marker = 0;
2019 if (!IsReno(tp))
2020 tcp_set_ca_state(sk, TCP_CA_Open);
2021 return 1;
2022 }
2023 return 0;
2024 }
2025
2026 static inline void tcp_complete_cwr(struct sock *sk)
2027 {
2028 struct tcp_sock *tp = tcp_sk(sk);
2029 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2030 tp->snd_cwnd_stamp = tcp_time_stamp;
2031 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2032 }
2033
2034 static void tcp_try_to_open(struct sock *sk, int flag)
2035 {
2036 struct tcp_sock *tp = tcp_sk(sk);
2037
2038 tp->left_out = tp->sacked_out;
2039
2040 if (tp->retrans_out == 0)
2041 tp->retrans_stamp = 0;
2042
2043 if (flag&FLAG_ECE)
2044 tcp_enter_cwr(sk, 1);
2045
2046 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2047 int state = TCP_CA_Open;
2048
2049 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2050 state = TCP_CA_Disorder;
2051
2052 if (inet_csk(sk)->icsk_ca_state != state) {
2053 tcp_set_ca_state(sk, state);
2054 tp->high_seq = tp->snd_nxt;
2055 }
2056 tcp_moderate_cwnd(tp);
2057 } else {
2058 tcp_cwnd_down(sk);
2059 }
2060 }
2061
2062 static void tcp_mtup_probe_failed(struct sock *sk)
2063 {
2064 struct inet_connection_sock *icsk = inet_csk(sk);
2065
2066 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2067 icsk->icsk_mtup.probe_size = 0;
2068 }
2069
2070 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2071 {
2072 struct tcp_sock *tp = tcp_sk(sk);
2073 struct inet_connection_sock *icsk = inet_csk(sk);
2074
2075 /* FIXME: breaks with very large cwnd */
2076 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2077 tp->snd_cwnd = tp->snd_cwnd *
2078 tcp_mss_to_mtu(sk, tp->mss_cache) /
2079 icsk->icsk_mtup.probe_size;
2080 tp->snd_cwnd_cnt = 0;
2081 tp->snd_cwnd_stamp = tcp_time_stamp;
2082 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2083
2084 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2085 icsk->icsk_mtup.probe_size = 0;
2086 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2087 }
2088
2089
2090 /* Process an event, which can update packets-in-flight not trivially.
2091 * Main goal of this function is to calculate new estimate for left_out,
2092 * taking into account both packets sitting in receiver's buffer and
2093 * packets lost by network.
2094 *
2095 * Besides that it does CWND reduction, when packet loss is detected
2096 * and changes state of machine.
2097 *
2098 * It does _not_ decide what to send, it is made in function
2099 * tcp_xmit_retransmit_queue().
2100 */
2101 static void
2102 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2103 int prior_packets, int flag)
2104 {
2105 struct inet_connection_sock *icsk = inet_csk(sk);
2106 struct tcp_sock *tp = tcp_sk(sk);
2107 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2108
2109 /* Some technical things:
2110 * 1. Reno does not count dupacks (sacked_out) automatically. */
2111 if (!tp->packets_out)
2112 tp->sacked_out = 0;
2113 /* 2. SACK counts snd_fack in packets inaccurately. */
2114 if (tp->sacked_out == 0)
2115 tp->fackets_out = 0;
2116
2117 /* Now state machine starts.
2118 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2119 if (flag&FLAG_ECE)
2120 tp->prior_ssthresh = 0;
2121
2122 /* B. In all the states check for reneging SACKs. */
2123 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2124 return;
2125
2126 /* C. Process data loss notification, provided it is valid. */
2127 if ((flag&FLAG_DATA_LOST) &&
2128 before(tp->snd_una, tp->high_seq) &&
2129 icsk->icsk_ca_state != TCP_CA_Open &&
2130 tp->fackets_out > tp->reordering) {
2131 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2132 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2133 }
2134
2135 /* D. Synchronize left_out to current state. */
2136 tcp_sync_left_out(tp);
2137
2138 /* E. Check state exit conditions. State can be terminated
2139 * when high_seq is ACKed. */
2140 if (icsk->icsk_ca_state == TCP_CA_Open) {
2141 BUG_TRAP(tp->retrans_out == 0);
2142 tp->retrans_stamp = 0;
2143 } else if (!before(tp->snd_una, tp->high_seq)) {
2144 switch (icsk->icsk_ca_state) {
2145 case TCP_CA_Loss:
2146 icsk->icsk_retransmits = 0;
2147 if (tcp_try_undo_recovery(sk))
2148 return;
2149 break;
2150
2151 case TCP_CA_CWR:
2152 /* CWR is to be held something *above* high_seq
2153 * is ACKed for CWR bit to reach receiver. */
2154 if (tp->snd_una != tp->high_seq) {
2155 tcp_complete_cwr(sk);
2156 tcp_set_ca_state(sk, TCP_CA_Open);
2157 }
2158 break;
2159
2160 case TCP_CA_Disorder:
2161 tcp_try_undo_dsack(sk);
2162 if (!tp->undo_marker ||
2163 /* For SACK case do not Open to allow to undo
2164 * catching for all duplicate ACKs. */
2165 IsReno(tp) || tp->snd_una != tp->high_seq) {
2166 tp->undo_marker = 0;
2167 tcp_set_ca_state(sk, TCP_CA_Open);
2168 }
2169 break;
2170
2171 case TCP_CA_Recovery:
2172 if (IsReno(tp))
2173 tcp_reset_reno_sack(tp);
2174 if (tcp_try_undo_recovery(sk))
2175 return;
2176 tcp_complete_cwr(sk);
2177 break;
2178 }
2179 }
2180
2181 /* F. Process state. */
2182 switch (icsk->icsk_ca_state) {
2183 case TCP_CA_Recovery:
2184 if (prior_snd_una == tp->snd_una) {
2185 if (IsReno(tp) && is_dupack)
2186 tcp_add_reno_sack(sk);
2187 } else {
2188 int acked = prior_packets - tp->packets_out;
2189 if (IsReno(tp))
2190 tcp_remove_reno_sacks(sk, acked);
2191 is_dupack = tcp_try_undo_partial(sk, acked);
2192 }
2193 break;
2194 case TCP_CA_Loss:
2195 if (flag&FLAG_DATA_ACKED)
2196 icsk->icsk_retransmits = 0;
2197 if (!tcp_try_undo_loss(sk)) {
2198 tcp_moderate_cwnd(tp);
2199 tcp_xmit_retransmit_queue(sk);
2200 return;
2201 }
2202 if (icsk->icsk_ca_state != TCP_CA_Open)
2203 return;
2204 /* Loss is undone; fall through to processing in Open state. */
2205 default:
2206 if (IsReno(tp)) {
2207 if (tp->snd_una != prior_snd_una)
2208 tcp_reset_reno_sack(tp);
2209 if (is_dupack)
2210 tcp_add_reno_sack(sk);
2211 }
2212
2213 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2214 tcp_try_undo_dsack(sk);
2215
2216 if (!tcp_time_to_recover(sk)) {
2217 tcp_try_to_open(sk, flag);
2218 return;
2219 }
2220
2221 /* MTU probe failure: don't reduce cwnd */
2222 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2223 icsk->icsk_mtup.probe_size &&
2224 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2225 tcp_mtup_probe_failed(sk);
2226 /* Restores the reduction we did in tcp_mtup_probe() */
2227 tp->snd_cwnd++;
2228 tcp_simple_retransmit(sk);
2229 return;
2230 }
2231
2232 /* Otherwise enter Recovery state */
2233
2234 if (IsReno(tp))
2235 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2236 else
2237 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2238
2239 tp->high_seq = tp->snd_nxt;
2240 tp->prior_ssthresh = 0;
2241 tp->undo_marker = tp->snd_una;
2242 tp->undo_retrans = tp->retrans_out;
2243
2244 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2245 if (!(flag&FLAG_ECE))
2246 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2247 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2248 TCP_ECN_queue_cwr(tp);
2249 }
2250
2251 tp->bytes_acked = 0;
2252 tp->snd_cwnd_cnt = 0;
2253 tcp_set_ca_state(sk, TCP_CA_Recovery);
2254 }
2255
2256 if (is_dupack || tcp_head_timedout(sk))
2257 tcp_update_scoreboard(sk);
2258 tcp_cwnd_down(sk);
2259 tcp_xmit_retransmit_queue(sk);
2260 }
2261
2262 /* Read draft-ietf-tcplw-high-performance before mucking
2263 * with this code. (Supersedes RFC1323)
2264 */
2265 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2266 {
2267 /* RTTM Rule: A TSecr value received in a segment is used to
2268 * update the averaged RTT measurement only if the segment
2269 * acknowledges some new data, i.e., only if it advances the
2270 * left edge of the send window.
2271 *
2272 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2273 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2274 *
2275 * Changed: reset backoff as soon as we see the first valid sample.
2276 * If we do not, we get strongly overestimated rto. With timestamps
2277 * samples are accepted even from very old segments: f.e., when rtt=1
2278 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2279 * answer arrives rto becomes 120 seconds! If at least one of segments
2280 * in window is lost... Voila. --ANK (010210)
2281 */
2282 struct tcp_sock *tp = tcp_sk(sk);
2283 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2284 tcp_rtt_estimator(sk, seq_rtt);
2285 tcp_set_rto(sk);
2286 inet_csk(sk)->icsk_backoff = 0;
2287 tcp_bound_rto(sk);
2288 }
2289
2290 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2291 {
2292 /* We don't have a timestamp. Can only use
2293 * packets that are not retransmitted to determine
2294 * rtt estimates. Also, we must not reset the
2295 * backoff for rto until we get a non-retransmitted
2296 * packet. This allows us to deal with a situation
2297 * where the network delay has increased suddenly.
2298 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2299 */
2300
2301 if (flag & FLAG_RETRANS_DATA_ACKED)
2302 return;
2303
2304 tcp_rtt_estimator(sk, seq_rtt);
2305 tcp_set_rto(sk);
2306 inet_csk(sk)->icsk_backoff = 0;
2307 tcp_bound_rto(sk);
2308 }
2309
2310 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2311 const s32 seq_rtt)
2312 {
2313 const struct tcp_sock *tp = tcp_sk(sk);
2314 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2315 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2316 tcp_ack_saw_tstamp(sk, flag);
2317 else if (seq_rtt >= 0)
2318 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2319 }
2320
2321 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2322 u32 in_flight, int good)
2323 {
2324 const struct inet_connection_sock *icsk = inet_csk(sk);
2325 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2326 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2327 }
2328
2329 /* Restart timer after forward progress on connection.
2330 * RFC2988 recommends to restart timer to now+rto.
2331 */
2332
2333 static void tcp_ack_packets_out(struct sock *sk)
2334 {
2335 struct tcp_sock *tp = tcp_sk(sk);
2336
2337 if (!tp->packets_out) {
2338 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2339 } else {
2340 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2341 }
2342 }
2343
2344 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2345 __u32 now, __s32 *seq_rtt)
2346 {
2347 struct tcp_sock *tp = tcp_sk(sk);
2348 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2349 __u32 seq = tp->snd_una;
2350 __u32 packets_acked;
2351 int acked = 0;
2352
2353 /* If we get here, the whole TSO packet has not been
2354 * acked.
2355 */
2356 BUG_ON(!after(scb->end_seq, seq));
2357
2358 packets_acked = tcp_skb_pcount(skb);
2359 if (tcp_trim_head(sk, skb, seq - scb->seq))
2360 return 0;
2361 packets_acked -= tcp_skb_pcount(skb);
2362
2363 if (packets_acked) {
2364 __u8 sacked = scb->sacked;
2365
2366 acked |= FLAG_DATA_ACKED;
2367 if (sacked) {
2368 if (sacked & TCPCB_RETRANS) {
2369 if (sacked & TCPCB_SACKED_RETRANS)
2370 tp->retrans_out -= packets_acked;
2371 acked |= FLAG_RETRANS_DATA_ACKED;
2372 *seq_rtt = -1;
2373 } else if (*seq_rtt < 0)
2374 *seq_rtt = now - scb->when;
2375 if (sacked & TCPCB_SACKED_ACKED)
2376 tp->sacked_out -= packets_acked;
2377 if (sacked & TCPCB_LOST)
2378 tp->lost_out -= packets_acked;
2379 if (sacked & TCPCB_URG) {
2380 if (tp->urg_mode &&
2381 !before(seq, tp->snd_up))
2382 tp->urg_mode = 0;
2383 }
2384 } else if (*seq_rtt < 0)
2385 *seq_rtt = now - scb->when;
2386
2387 if (tp->fackets_out) {
2388 __u32 dval = min(tp->fackets_out, packets_acked);
2389 tp->fackets_out -= dval;
2390 }
2391 tp->packets_out -= packets_acked;
2392
2393 BUG_ON(tcp_skb_pcount(skb) == 0);
2394 BUG_ON(!before(scb->seq, scb->end_seq));
2395 }
2396
2397 return acked;
2398 }
2399
2400 /* Remove acknowledged frames from the retransmission queue. */
2401 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2402 {
2403 struct tcp_sock *tp = tcp_sk(sk);
2404 const struct inet_connection_sock *icsk = inet_csk(sk);
2405 struct sk_buff *skb;
2406 __u32 now = tcp_time_stamp;
2407 int acked = 0;
2408 __s32 seq_rtt = -1;
2409 u32 pkts_acked = 0;
2410 ktime_t last_ackt = ktime_set(0,0);
2411
2412 while ((skb = tcp_write_queue_head(sk)) &&
2413 skb != tcp_send_head(sk)) {
2414 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2415 __u8 sacked = scb->sacked;
2416
2417 /* If our packet is before the ack sequence we can
2418 * discard it as it's confirmed to have arrived at
2419 * the other end.
2420 */
2421 if (after(scb->end_seq, tp->snd_una)) {
2422 if (tcp_skb_pcount(skb) > 1 &&
2423 after(tp->snd_una, scb->seq))
2424 acked |= tcp_tso_acked(sk, skb,
2425 now, &seq_rtt);
2426 break;
2427 }
2428
2429 /* Initial outgoing SYN's get put onto the write_queue
2430 * just like anything else we transmit. It is not
2431 * true data, and if we misinform our callers that
2432 * this ACK acks real data, we will erroneously exit
2433 * connection startup slow start one packet too
2434 * quickly. This is severely frowned upon behavior.
2435 */
2436 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2437 acked |= FLAG_DATA_ACKED;
2438 ++pkts_acked;
2439 } else {
2440 acked |= FLAG_SYN_ACKED;
2441 tp->retrans_stamp = 0;
2442 }
2443
2444 /* MTU probing checks */
2445 if (icsk->icsk_mtup.probe_size) {
2446 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2447 tcp_mtup_probe_success(sk, skb);
2448 }
2449 }
2450
2451 if (sacked) {
2452 if (sacked & TCPCB_RETRANS) {
2453 if (sacked & TCPCB_SACKED_RETRANS)
2454 tp->retrans_out -= tcp_skb_pcount(skb);
2455 acked |= FLAG_RETRANS_DATA_ACKED;
2456 seq_rtt = -1;
2457 } else if (seq_rtt < 0) {
2458 seq_rtt = now - scb->when;
2459 last_ackt = skb->tstamp;
2460 }
2461 if (sacked & TCPCB_SACKED_ACKED)
2462 tp->sacked_out -= tcp_skb_pcount(skb);
2463 if (sacked & TCPCB_LOST)
2464 tp->lost_out -= tcp_skb_pcount(skb);
2465 if (sacked & TCPCB_URG) {
2466 if (tp->urg_mode &&
2467 !before(scb->end_seq, tp->snd_up))
2468 tp->urg_mode = 0;
2469 }
2470 } else if (seq_rtt < 0) {
2471 seq_rtt = now - scb->when;
2472 last_ackt = skb->tstamp;
2473 }
2474 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2475 tcp_packets_out_dec(tp, skb);
2476 tcp_unlink_write_queue(skb, sk);
2477 sk_stream_free_skb(sk, skb);
2478 clear_all_retrans_hints(tp);
2479 }
2480
2481 if (acked&FLAG_ACKED) {
2482 const struct tcp_congestion_ops *ca_ops
2483 = inet_csk(sk)->icsk_ca_ops;
2484
2485 tcp_ack_update_rtt(sk, acked, seq_rtt);
2486 tcp_ack_packets_out(sk);
2487
2488 if (ca_ops->pkts_acked)
2489 ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
2490 }
2491
2492 #if FASTRETRANS_DEBUG > 0
2493 BUG_TRAP((int)tp->sacked_out >= 0);
2494 BUG_TRAP((int)tp->lost_out >= 0);
2495 BUG_TRAP((int)tp->retrans_out >= 0);
2496 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2497 const struct inet_connection_sock *icsk = inet_csk(sk);
2498 if (tp->lost_out) {
2499 printk(KERN_DEBUG "Leak l=%u %d\n",
2500 tp->lost_out, icsk->icsk_ca_state);
2501 tp->lost_out = 0;
2502 }
2503 if (tp->sacked_out) {
2504 printk(KERN_DEBUG "Leak s=%u %d\n",
2505 tp->sacked_out, icsk->icsk_ca_state);
2506 tp->sacked_out = 0;
2507 }
2508 if (tp->retrans_out) {
2509 printk(KERN_DEBUG "Leak r=%u %d\n",
2510 tp->retrans_out, icsk->icsk_ca_state);
2511 tp->retrans_out = 0;
2512 }
2513 }
2514 #endif
2515 *seq_rtt_p = seq_rtt;
2516 return acked;
2517 }
2518
2519 static void tcp_ack_probe(struct sock *sk)
2520 {
2521 const struct tcp_sock *tp = tcp_sk(sk);
2522 struct inet_connection_sock *icsk = inet_csk(sk);
2523
2524 /* Was it a usable window open? */
2525
2526 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2527 tp->snd_una + tp->snd_wnd)) {
2528 icsk->icsk_backoff = 0;
2529 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2530 /* Socket must be waked up by subsequent tcp_data_snd_check().
2531 * This function is not for random using!
2532 */
2533 } else {
2534 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2535 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2536 TCP_RTO_MAX);
2537 }
2538 }
2539
2540 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2541 {
2542 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2543 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2544 }
2545
2546 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2547 {
2548 const struct tcp_sock *tp = tcp_sk(sk);
2549 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2550 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2551 }
2552
2553 /* Check that window update is acceptable.
2554 * The function assumes that snd_una<=ack<=snd_next.
2555 */
2556 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2557 const u32 ack_seq, const u32 nwin)
2558 {
2559 return (after(ack, tp->snd_una) ||
2560 after(ack_seq, tp->snd_wl1) ||
2561 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2562 }
2563
2564 /* Update our send window.
2565 *
2566 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2567 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2568 */
2569 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2570 u32 ack_seq)
2571 {
2572 struct tcp_sock *tp = tcp_sk(sk);
2573 int flag = 0;
2574 u32 nwin = ntohs(tcp_hdr(skb)->window);
2575
2576 if (likely(!tcp_hdr(skb)->syn))
2577 nwin <<= tp->rx_opt.snd_wscale;
2578
2579 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2580 flag |= FLAG_WIN_UPDATE;
2581 tcp_update_wl(tp, ack, ack_seq);
2582
2583 if (tp->snd_wnd != nwin) {
2584 tp->snd_wnd = nwin;
2585
2586 /* Note, it is the only place, where
2587 * fast path is recovered for sending TCP.
2588 */
2589 tp->pred_flags = 0;
2590 tcp_fast_path_check(sk);
2591
2592 if (nwin > tp->max_window) {
2593 tp->max_window = nwin;
2594 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2595 }
2596 }
2597 }
2598
2599 tp->snd_una = ack;
2600
2601 return flag;
2602 }
2603
2604 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2605 * continue in congestion avoidance.
2606 */
2607 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2608 {
2609 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2610 tp->snd_cwnd_cnt = 0;
2611 tcp_moderate_cwnd(tp);
2612 }
2613
2614 /* A conservative spurious RTO response algorithm: reduce cwnd using
2615 * rate halving and continue in congestion avoidance.
2616 */
2617 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2618 {
2619 tcp_enter_cwr(sk, 0);
2620 }
2621
2622 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2623 {
2624 if (flag&FLAG_ECE)
2625 tcp_ratehalving_spur_to_response(sk);
2626 else
2627 tcp_undo_cwr(sk, 1);
2628 }
2629
2630 /* F-RTO spurious RTO detection algorithm (RFC4138)
2631 *
2632 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2633 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2634 * window (but not to or beyond highest sequence sent before RTO):
2635 * On First ACK, send two new segments out.
2636 * On Second ACK, RTO was likely spurious. Do spurious response (response
2637 * algorithm is not part of the F-RTO detection algorithm
2638 * given in RFC4138 but can be selected separately).
2639 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2640 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2641 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2642 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2643 *
2644 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2645 * original window even after we transmit two new data segments.
2646 *
2647 * SACK version:
2648 * on first step, wait until first cumulative ACK arrives, then move to
2649 * the second step. In second step, the next ACK decides.
2650 *
2651 * F-RTO is implemented (mainly) in four functions:
2652 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2653 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2654 * called when tcp_use_frto() showed green light
2655 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2656 * - tcp_enter_frto_loss() is called if there is not enough evidence
2657 * to prove that the RTO is indeed spurious. It transfers the control
2658 * from F-RTO to the conventional RTO recovery
2659 */
2660 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2661 {
2662 struct tcp_sock *tp = tcp_sk(sk);
2663
2664 tcp_sync_left_out(tp);
2665
2666 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2667 if (flag&FLAG_DATA_ACKED)
2668 inet_csk(sk)->icsk_retransmits = 0;
2669
2670 if (!before(tp->snd_una, tp->frto_highmark)) {
2671 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2672 return 1;
2673 }
2674
2675 if (!IsSackFrto() || IsReno(tp)) {
2676 /* RFC4138 shortcoming in step 2; should also have case c):
2677 * ACK isn't duplicate nor advances window, e.g., opposite dir
2678 * data, winupdate
2679 */
2680 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2681 !(flag&FLAG_FORWARD_PROGRESS))
2682 return 1;
2683
2684 if (!(flag&FLAG_DATA_ACKED)) {
2685 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2686 flag);
2687 return 1;
2688 }
2689 } else {
2690 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2691 /* Prevent sending of new data. */
2692 tp->snd_cwnd = min(tp->snd_cwnd,
2693 tcp_packets_in_flight(tp));
2694 return 1;
2695 }
2696
2697 if ((tp->frto_counter >= 2) &&
2698 (!(flag&FLAG_FORWARD_PROGRESS) ||
2699 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2700 /* RFC4138 shortcoming (see comment above) */
2701 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2702 return 1;
2703
2704 tcp_enter_frto_loss(sk, 3, flag);
2705 return 1;
2706 }
2707 }
2708
2709 if (tp->frto_counter == 1) {
2710 /* Sending of the next skb must be allowed or no FRTO */
2711 if (!tcp_send_head(sk) ||
2712 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2713 tp->snd_una + tp->snd_wnd)) {
2714 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2715 flag);
2716 return 1;
2717 }
2718
2719 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2720 tp->frto_counter = 2;
2721 return 1;
2722 } else {
2723 switch (sysctl_tcp_frto_response) {
2724 case 2:
2725 tcp_undo_spur_to_response(sk, flag);
2726 break;
2727 case 1:
2728 tcp_conservative_spur_to_response(tp);
2729 break;
2730 default:
2731 tcp_ratehalving_spur_to_response(sk);
2732 break;
2733 }
2734 tp->frto_counter = 0;
2735 }
2736 return 0;
2737 }
2738
2739 /* This routine deals with incoming acks, but not outgoing ones. */
2740 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2741 {
2742 struct inet_connection_sock *icsk = inet_csk(sk);
2743 struct tcp_sock *tp = tcp_sk(sk);
2744 u32 prior_snd_una = tp->snd_una;
2745 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2746 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2747 u32 prior_in_flight;
2748 s32 seq_rtt;
2749 int prior_packets;
2750 int frto_cwnd = 0;
2751
2752 /* If the ack is newer than sent or older than previous acks
2753 * then we can probably ignore it.
2754 */
2755 if (after(ack, tp->snd_nxt))
2756 goto uninteresting_ack;
2757
2758 if (before(ack, prior_snd_una))
2759 goto old_ack;
2760
2761 if (sysctl_tcp_abc) {
2762 if (icsk->icsk_ca_state < TCP_CA_CWR)
2763 tp->bytes_acked += ack - prior_snd_una;
2764 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2765 /* we assume just one segment left network */
2766 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2767 }
2768
2769 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2770 /* Window is constant, pure forward advance.
2771 * No more checks are required.
2772 * Note, we use the fact that SND.UNA>=SND.WL2.
2773 */
2774 tcp_update_wl(tp, ack, ack_seq);
2775 tp->snd_una = ack;
2776 flag |= FLAG_WIN_UPDATE;
2777
2778 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2779
2780 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2781 } else {
2782 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2783 flag |= FLAG_DATA;
2784 else
2785 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2786
2787 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2788
2789 if (TCP_SKB_CB(skb)->sacked)
2790 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2791
2792 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2793 flag |= FLAG_ECE;
2794
2795 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2796 }
2797
2798 /* We passed data and got it acked, remove any soft error
2799 * log. Something worked...
2800 */
2801 sk->sk_err_soft = 0;
2802 tp->rcv_tstamp = tcp_time_stamp;
2803 prior_packets = tp->packets_out;
2804 if (!prior_packets)
2805 goto no_queue;
2806
2807 prior_in_flight = tcp_packets_in_flight(tp);
2808
2809 /* See if we can take anything off of the retransmit queue. */
2810 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2811
2812 if (tp->frto_counter)
2813 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2814
2815 if (tcp_ack_is_dubious(sk, flag)) {
2816 /* Advance CWND, if state allows this. */
2817 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2818 tcp_may_raise_cwnd(sk, flag))
2819 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2820 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2821 } else {
2822 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2823 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2824 }
2825
2826 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2827 dst_confirm(sk->sk_dst_cache);
2828
2829 return 1;
2830
2831 no_queue:
2832 icsk->icsk_probes_out = 0;
2833
2834 /* If this ack opens up a zero window, clear backoff. It was
2835 * being used to time the probes, and is probably far higher than
2836 * it needs to be for normal retransmission.
2837 */
2838 if (tcp_send_head(sk))
2839 tcp_ack_probe(sk);
2840 return 1;
2841
2842 old_ack:
2843 if (TCP_SKB_CB(skb)->sacked)
2844 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2845
2846 uninteresting_ack:
2847 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2848 return 0;
2849 }
2850
2851
2852 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2853 * But, this can also be called on packets in the established flow when
2854 * the fast version below fails.
2855 */
2856 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2857 {
2858 unsigned char *ptr;
2859 struct tcphdr *th = tcp_hdr(skb);
2860 int length=(th->doff*4)-sizeof(struct tcphdr);
2861
2862 ptr = (unsigned char *)(th + 1);
2863 opt_rx->saw_tstamp = 0;
2864
2865 while (length > 0) {
2866 int opcode=*ptr++;
2867 int opsize;
2868
2869 switch (opcode) {
2870 case TCPOPT_EOL:
2871 return;
2872 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2873 length--;
2874 continue;
2875 default:
2876 opsize=*ptr++;
2877 if (opsize < 2) /* "silly options" */
2878 return;
2879 if (opsize > length)
2880 return; /* don't parse partial options */
2881 switch (opcode) {
2882 case TCPOPT_MSS:
2883 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2884 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2885 if (in_mss) {
2886 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2887 in_mss = opt_rx->user_mss;
2888 opt_rx->mss_clamp = in_mss;
2889 }
2890 }
2891 break;
2892 case TCPOPT_WINDOW:
2893 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2894 if (sysctl_tcp_window_scaling) {
2895 __u8 snd_wscale = *(__u8 *) ptr;
2896 opt_rx->wscale_ok = 1;
2897 if (snd_wscale > 14) {
2898 if (net_ratelimit())
2899 printk(KERN_INFO "tcp_parse_options: Illegal window "
2900 "scaling value %d >14 received.\n",
2901 snd_wscale);
2902 snd_wscale = 14;
2903 }
2904 opt_rx->snd_wscale = snd_wscale;
2905 }
2906 break;
2907 case TCPOPT_TIMESTAMP:
2908 if (opsize==TCPOLEN_TIMESTAMP) {
2909 if ((estab && opt_rx->tstamp_ok) ||
2910 (!estab && sysctl_tcp_timestamps)) {
2911 opt_rx->saw_tstamp = 1;
2912 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2913 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2914 }
2915 }
2916 break;
2917 case TCPOPT_SACK_PERM:
2918 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2919 if (sysctl_tcp_sack) {
2920 opt_rx->sack_ok = 1;
2921 tcp_sack_reset(opt_rx);
2922 }
2923 }
2924 break;
2925
2926 case TCPOPT_SACK:
2927 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2928 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2929 opt_rx->sack_ok) {
2930 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2931 }
2932 #ifdef CONFIG_TCP_MD5SIG
2933 case TCPOPT_MD5SIG:
2934 /*
2935 * The MD5 Hash has already been
2936 * checked (see tcp_v{4,6}_do_rcv()).
2937 */
2938 break;
2939 #endif
2940 }
2941
2942 ptr+=opsize-2;
2943 length-=opsize;
2944 }
2945 }
2946 }
2947
2948 /* Fast parse options. This hopes to only see timestamps.
2949 * If it is wrong it falls back on tcp_parse_options().
2950 */
2951 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2952 struct tcp_sock *tp)
2953 {
2954 if (th->doff == sizeof(struct tcphdr)>>2) {
2955 tp->rx_opt.saw_tstamp = 0;
2956 return 0;
2957 } else if (tp->rx_opt.tstamp_ok &&
2958 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2959 __be32 *ptr = (__be32 *)(th + 1);
2960 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2961 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2962 tp->rx_opt.saw_tstamp = 1;
2963 ++ptr;
2964 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2965 ++ptr;
2966 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2967 return 1;
2968 }
2969 }
2970 tcp_parse_options(skb, &tp->rx_opt, 1);
2971 return 1;
2972 }
2973
2974 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2975 {
2976 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2977 tp->rx_opt.ts_recent_stamp = get_seconds();
2978 }
2979
2980 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2981 {
2982 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2983 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2984 * extra check below makes sure this can only happen
2985 * for pure ACK frames. -DaveM
2986 *
2987 * Not only, also it occurs for expired timestamps.
2988 */
2989
2990 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2991 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2992 tcp_store_ts_recent(tp);
2993 }
2994 }
2995
2996 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2997 *
2998 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2999 * it can pass through stack. So, the following predicate verifies that
3000 * this segment is not used for anything but congestion avoidance or
3001 * fast retransmit. Moreover, we even are able to eliminate most of such
3002 * second order effects, if we apply some small "replay" window (~RTO)
3003 * to timestamp space.
3004 *
3005 * All these measures still do not guarantee that we reject wrapped ACKs
3006 * on networks with high bandwidth, when sequence space is recycled fastly,
3007 * but it guarantees that such events will be very rare and do not affect
3008 * connection seriously. This doesn't look nice, but alas, PAWS is really
3009 * buggy extension.
3010 *
3011 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3012 * states that events when retransmit arrives after original data are rare.
3013 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3014 * the biggest problem on large power networks even with minor reordering.
3015 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3016 * up to bandwidth of 18Gigabit/sec. 8) ]
3017 */
3018
3019 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3020 {
3021 struct tcp_sock *tp = tcp_sk(sk);
3022 struct tcphdr *th = tcp_hdr(skb);
3023 u32 seq = TCP_SKB_CB(skb)->seq;
3024 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3025
3026 return (/* 1. Pure ACK with correct sequence number. */
3027 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3028
3029 /* 2. ... and duplicate ACK. */
3030 ack == tp->snd_una &&
3031
3032 /* 3. ... and does not update window. */
3033 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3034
3035 /* 4. ... and sits in replay window. */
3036 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3037 }
3038
3039 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3040 {
3041 const struct tcp_sock *tp = tcp_sk(sk);
3042 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3043 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3044 !tcp_disordered_ack(sk, skb));
3045 }
3046
3047 /* Check segment sequence number for validity.
3048 *
3049 * Segment controls are considered valid, if the segment
3050 * fits to the window after truncation to the window. Acceptability
3051 * of data (and SYN, FIN, of course) is checked separately.
3052 * See tcp_data_queue(), for example.
3053 *
3054 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3055 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3056 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3057 * (borrowed from freebsd)
3058 */
3059
3060 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3061 {
3062 return !before(end_seq, tp->rcv_wup) &&
3063 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3064 }
3065
3066 /* When we get a reset we do this. */
3067 static void tcp_reset(struct sock *sk)
3068 {
3069 /* We want the right error as BSD sees it (and indeed as we do). */
3070 switch (sk->sk_state) {
3071 case TCP_SYN_SENT:
3072 sk->sk_err = ECONNREFUSED;
3073 break;
3074 case TCP_CLOSE_WAIT:
3075 sk->sk_err = EPIPE;
3076 break;
3077 case TCP_CLOSE:
3078 return;
3079 default:
3080 sk->sk_err = ECONNRESET;
3081 }
3082
3083 if (!sock_flag(sk, SOCK_DEAD))
3084 sk->sk_error_report(sk);
3085
3086 tcp_done(sk);
3087 }
3088
3089 /*
3090 * Process the FIN bit. This now behaves as it is supposed to work
3091 * and the FIN takes effect when it is validly part of sequence
3092 * space. Not before when we get holes.
3093 *
3094 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3095 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3096 * TIME-WAIT)
3097 *
3098 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3099 * close and we go into CLOSING (and later onto TIME-WAIT)
3100 *
3101 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3102 */
3103 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3104 {
3105 struct tcp_sock *tp = tcp_sk(sk);
3106
3107 inet_csk_schedule_ack(sk);
3108
3109 sk->sk_shutdown |= RCV_SHUTDOWN;
3110 sock_set_flag(sk, SOCK_DONE);
3111
3112 switch (sk->sk_state) {
3113 case TCP_SYN_RECV:
3114 case TCP_ESTABLISHED:
3115 /* Move to CLOSE_WAIT */
3116 tcp_set_state(sk, TCP_CLOSE_WAIT);
3117 inet_csk(sk)->icsk_ack.pingpong = 1;
3118 break;
3119
3120 case TCP_CLOSE_WAIT:
3121 case TCP_CLOSING:
3122 /* Received a retransmission of the FIN, do
3123 * nothing.
3124 */
3125 break;
3126 case TCP_LAST_ACK:
3127 /* RFC793: Remain in the LAST-ACK state. */
3128 break;
3129
3130 case TCP_FIN_WAIT1:
3131 /* This case occurs when a simultaneous close
3132 * happens, we must ack the received FIN and
3133 * enter the CLOSING state.
3134 */
3135 tcp_send_ack(sk);
3136 tcp_set_state(sk, TCP_CLOSING);
3137 break;
3138 case TCP_FIN_WAIT2:
3139 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3140 tcp_send_ack(sk);
3141 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3142 break;
3143 default:
3144 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3145 * cases we should never reach this piece of code.
3146 */
3147 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3148 __FUNCTION__, sk->sk_state);
3149 break;
3150 }
3151
3152 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3153 * Probably, we should reset in this case. For now drop them.
3154 */
3155 __skb_queue_purge(&tp->out_of_order_queue);
3156 if (tp->rx_opt.sack_ok)
3157 tcp_sack_reset(&tp->rx_opt);
3158 sk_stream_mem_reclaim(sk);
3159
3160 if (!sock_flag(sk, SOCK_DEAD)) {
3161 sk->sk_state_change(sk);
3162
3163 /* Do not send POLL_HUP for half duplex close. */
3164 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3165 sk->sk_state == TCP_CLOSE)
3166 sk_wake_async(sk, 1, POLL_HUP);
3167 else
3168 sk_wake_async(sk, 1, POLL_IN);
3169 }
3170 }
3171
3172 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3173 {
3174 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3175 if (before(seq, sp->start_seq))
3176 sp->start_seq = seq;
3177 if (after(end_seq, sp->end_seq))
3178 sp->end_seq = end_seq;
3179 return 1;
3180 }
3181 return 0;
3182 }
3183
3184 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3185 {
3186 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3187 if (before(seq, tp->rcv_nxt))
3188 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3189 else
3190 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3191
3192 tp->rx_opt.dsack = 1;
3193 tp->duplicate_sack[0].start_seq = seq;
3194 tp->duplicate_sack[0].end_seq = end_seq;
3195 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3196 }
3197 }
3198
3199 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3200 {
3201 if (!tp->rx_opt.dsack)
3202 tcp_dsack_set(tp, seq, end_seq);
3203 else
3204 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3205 }
3206
3207 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3208 {
3209 struct tcp_sock *tp = tcp_sk(sk);
3210
3211 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3212 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3213 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3214 tcp_enter_quickack_mode(sk);
3215
3216 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3217 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3218
3219 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3220 end_seq = tp->rcv_nxt;
3221 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3222 }
3223 }
3224
3225 tcp_send_ack(sk);
3226 }
3227
3228 /* These routines update the SACK block as out-of-order packets arrive or
3229 * in-order packets close up the sequence space.
3230 */
3231 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3232 {
3233 int this_sack;
3234 struct tcp_sack_block *sp = &tp->selective_acks[0];
3235 struct tcp_sack_block *swalk = sp+1;
3236
3237 /* See if the recent change to the first SACK eats into
3238 * or hits the sequence space of other SACK blocks, if so coalesce.
3239 */
3240 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3241 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3242 int i;
3243
3244 /* Zap SWALK, by moving every further SACK up by one slot.
3245 * Decrease num_sacks.
3246 */
3247 tp->rx_opt.num_sacks--;
3248 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3249 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3250 sp[i] = sp[i+1];
3251 continue;
3252 }
3253 this_sack++, swalk++;
3254 }
3255 }
3256
3257 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3258 {
3259 __u32 tmp;
3260
3261 tmp = sack1->start_seq;
3262 sack1->start_seq = sack2->start_seq;
3263 sack2->start_seq = tmp;
3264
3265 tmp = sack1->end_seq;
3266 sack1->end_seq = sack2->end_seq;
3267 sack2->end_seq = tmp;
3268 }
3269
3270 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3271 {
3272 struct tcp_sock *tp = tcp_sk(sk);
3273 struct tcp_sack_block *sp = &tp->selective_acks[0];
3274 int cur_sacks = tp->rx_opt.num_sacks;
3275 int this_sack;
3276
3277 if (!cur_sacks)
3278 goto new_sack;
3279
3280 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3281 if (tcp_sack_extend(sp, seq, end_seq)) {
3282 /* Rotate this_sack to the first one. */
3283 for (; this_sack>0; this_sack--, sp--)
3284 tcp_sack_swap(sp, sp-1);
3285 if (cur_sacks > 1)
3286 tcp_sack_maybe_coalesce(tp);
3287 return;
3288 }
3289 }
3290
3291 /* Could not find an adjacent existing SACK, build a new one,
3292 * put it at the front, and shift everyone else down. We
3293 * always know there is at least one SACK present already here.
3294 *
3295 * If the sack array is full, forget about the last one.
3296 */
3297 if (this_sack >= 4) {
3298 this_sack--;
3299 tp->rx_opt.num_sacks--;
3300 sp--;
3301 }
3302 for (; this_sack > 0; this_sack--, sp--)
3303 *sp = *(sp-1);
3304
3305 new_sack:
3306 /* Build the new head SACK, and we're done. */
3307 sp->start_seq = seq;
3308 sp->end_seq = end_seq;
3309 tp->rx_opt.num_sacks++;
3310 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3311 }
3312
3313 /* RCV.NXT advances, some SACKs should be eaten. */
3314
3315 static void tcp_sack_remove(struct tcp_sock *tp)
3316 {
3317 struct tcp_sack_block *sp = &tp->selective_acks[0];
3318 int num_sacks = tp->rx_opt.num_sacks;
3319 int this_sack;
3320
3321 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3322 if (skb_queue_empty(&tp->out_of_order_queue)) {
3323 tp->rx_opt.num_sacks = 0;
3324 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3325 return;
3326 }
3327
3328 for (this_sack = 0; this_sack < num_sacks; ) {
3329 /* Check if the start of the sack is covered by RCV.NXT. */
3330 if (!before(tp->rcv_nxt, sp->start_seq)) {
3331 int i;
3332
3333 /* RCV.NXT must cover all the block! */
3334 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3335
3336 /* Zap this SACK, by moving forward any other SACKS. */
3337 for (i=this_sack+1; i < num_sacks; i++)
3338 tp->selective_acks[i-1] = tp->selective_acks[i];
3339 num_sacks--;
3340 continue;
3341 }
3342 this_sack++;
3343 sp++;
3344 }
3345 if (num_sacks != tp->rx_opt.num_sacks) {
3346 tp->rx_opt.num_sacks = num_sacks;
3347 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3348 }
3349 }
3350
3351 /* This one checks to see if we can put data from the
3352 * out_of_order queue into the receive_queue.
3353 */
3354 static void tcp_ofo_queue(struct sock *sk)
3355 {
3356 struct tcp_sock *tp = tcp_sk(sk);
3357 __u32 dsack_high = tp->rcv_nxt;
3358 struct sk_buff *skb;
3359
3360 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3361 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3362 break;
3363
3364 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3365 __u32 dsack = dsack_high;
3366 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3367 dsack_high = TCP_SKB_CB(skb)->end_seq;
3368 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3369 }
3370
3371 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3372 SOCK_DEBUG(sk, "ofo packet was already received \n");
3373 __skb_unlink(skb, &tp->out_of_order_queue);
3374 __kfree_skb(skb);
3375 continue;
3376 }
3377 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3378 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3379 TCP_SKB_CB(skb)->end_seq);
3380
3381 __skb_unlink(skb, &tp->out_of_order_queue);
3382 __skb_queue_tail(&sk->sk_receive_queue, skb);
3383 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3384 if (tcp_hdr(skb)->fin)
3385 tcp_fin(skb, sk, tcp_hdr(skb));
3386 }
3387 }
3388
3389 static int tcp_prune_queue(struct sock *sk);
3390
3391 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3392 {
3393 struct tcphdr *th = tcp_hdr(skb);
3394 struct tcp_sock *tp = tcp_sk(sk);
3395 int eaten = -1;
3396
3397 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3398 goto drop;
3399
3400 __skb_pull(skb, th->doff*4);
3401
3402 TCP_ECN_accept_cwr(tp, skb);
3403
3404 if (tp->rx_opt.dsack) {
3405 tp->rx_opt.dsack = 0;
3406 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3407 4 - tp->rx_opt.tstamp_ok);
3408 }
3409
3410 /* Queue data for delivery to the user.
3411 * Packets in sequence go to the receive queue.
3412 * Out of sequence packets to the out_of_order_queue.
3413 */
3414 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3415 if (tcp_receive_window(tp) == 0)
3416 goto out_of_window;
3417
3418 /* Ok. In sequence. In window. */
3419 if (tp->ucopy.task == current &&
3420 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3421 sock_owned_by_user(sk) && !tp->urg_data) {
3422 int chunk = min_t(unsigned int, skb->len,
3423 tp->ucopy.len);
3424
3425 __set_current_state(TASK_RUNNING);
3426
3427 local_bh_enable();
3428 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3429 tp->ucopy.len -= chunk;
3430 tp->copied_seq += chunk;
3431 eaten = (chunk == skb->len && !th->fin);
3432 tcp_rcv_space_adjust(sk);
3433 }
3434 local_bh_disable();
3435 }
3436
3437 if (eaten <= 0) {
3438 queue_and_out:
3439 if (eaten < 0 &&
3440 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3441 !sk_stream_rmem_schedule(sk, skb))) {
3442 if (tcp_prune_queue(sk) < 0 ||
3443 !sk_stream_rmem_schedule(sk, skb))
3444 goto drop;
3445 }
3446 sk_stream_set_owner_r(skb, sk);
3447 __skb_queue_tail(&sk->sk_receive_queue, skb);
3448 }
3449 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3450 if (skb->len)
3451 tcp_event_data_recv(sk, skb);
3452 if (th->fin)
3453 tcp_fin(skb, sk, th);
3454
3455 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3456 tcp_ofo_queue(sk);
3457
3458 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3459 * gap in queue is filled.
3460 */
3461 if (skb_queue_empty(&tp->out_of_order_queue))
3462 inet_csk(sk)->icsk_ack.pingpong = 0;
3463 }
3464
3465 if (tp->rx_opt.num_sacks)
3466 tcp_sack_remove(tp);
3467
3468 tcp_fast_path_check(sk);
3469
3470 if (eaten > 0)
3471 __kfree_skb(skb);
3472 else if (!sock_flag(sk, SOCK_DEAD))
3473 sk->sk_data_ready(sk, 0);
3474 return;
3475 }
3476
3477 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3478 /* A retransmit, 2nd most common case. Force an immediate ack. */
3479 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3480 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3481
3482 out_of_window:
3483 tcp_enter_quickack_mode(sk);
3484 inet_csk_schedule_ack(sk);
3485 drop:
3486 __kfree_skb(skb);
3487 return;
3488 }
3489
3490 /* Out of window. F.e. zero window probe. */
3491 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3492 goto out_of_window;
3493
3494 tcp_enter_quickack_mode(sk);
3495
3496 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3497 /* Partial packet, seq < rcv_next < end_seq */
3498 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3499 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3500 TCP_SKB_CB(skb)->end_seq);
3501
3502 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3503
3504 /* If window is closed, drop tail of packet. But after
3505 * remembering D-SACK for its head made in previous line.
3506 */
3507 if (!tcp_receive_window(tp))
3508 goto out_of_window;
3509 goto queue_and_out;
3510 }
3511
3512 TCP_ECN_check_ce(tp, skb);
3513
3514 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3515 !sk_stream_rmem_schedule(sk, skb)) {
3516 if (tcp_prune_queue(sk) < 0 ||
3517 !sk_stream_rmem_schedule(sk, skb))
3518 goto drop;
3519 }
3520
3521 /* Disable header prediction. */
3522 tp->pred_flags = 0;
3523 inet_csk_schedule_ack(sk);
3524
3525 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3526 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3527
3528 sk_stream_set_owner_r(skb, sk);
3529
3530 if (!skb_peek(&tp->out_of_order_queue)) {
3531 /* Initial out of order segment, build 1 SACK. */
3532 if (tp->rx_opt.sack_ok) {
3533 tp->rx_opt.num_sacks = 1;
3534 tp->rx_opt.dsack = 0;
3535 tp->rx_opt.eff_sacks = 1;
3536 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3537 tp->selective_acks[0].end_seq =
3538 TCP_SKB_CB(skb)->end_seq;
3539 }
3540 __skb_queue_head(&tp->out_of_order_queue,skb);
3541 } else {
3542 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3543 u32 seq = TCP_SKB_CB(skb)->seq;
3544 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3545
3546 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3547 __skb_append(skb1, skb, &tp->out_of_order_queue);
3548
3549 if (!tp->rx_opt.num_sacks ||
3550 tp->selective_acks[0].end_seq != seq)
3551 goto add_sack;
3552
3553 /* Common case: data arrive in order after hole. */
3554 tp->selective_acks[0].end_seq = end_seq;
3555 return;
3556 }
3557
3558 /* Find place to insert this segment. */
3559 do {
3560 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3561 break;
3562 } while ((skb1 = skb1->prev) !=
3563 (struct sk_buff*)&tp->out_of_order_queue);
3564
3565 /* Do skb overlap to previous one? */
3566 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3567 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3568 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3569 /* All the bits are present. Drop. */
3570 __kfree_skb(skb);
3571 tcp_dsack_set(tp, seq, end_seq);
3572 goto add_sack;
3573 }
3574 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3575 /* Partial overlap. */
3576 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3577 } else {
3578 skb1 = skb1->prev;
3579 }
3580 }
3581 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3582
3583 /* And clean segments covered by new one as whole. */
3584 while ((skb1 = skb->next) !=
3585 (struct sk_buff*)&tp->out_of_order_queue &&
3586 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3587 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3588 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3589 break;
3590 }
3591 __skb_unlink(skb1, &tp->out_of_order_queue);
3592 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3593 __kfree_skb(skb1);
3594 }
3595
3596 add_sack:
3597 if (tp->rx_opt.sack_ok)
3598 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3599 }
3600 }
3601
3602 /* Collapse contiguous sequence of skbs head..tail with
3603 * sequence numbers start..end.
3604 * Segments with FIN/SYN are not collapsed (only because this
3605 * simplifies code)
3606 */
3607 static void
3608 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3609 struct sk_buff *head, struct sk_buff *tail,
3610 u32 start, u32 end)
3611 {
3612 struct sk_buff *skb;
3613
3614 /* First, check that queue is collapsible and find
3615 * the point where collapsing can be useful. */
3616 for (skb = head; skb != tail; ) {
3617 /* No new bits? It is possible on ofo queue. */
3618 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3619 struct sk_buff *next = skb->next;
3620 __skb_unlink(skb, list);
3621 __kfree_skb(skb);
3622 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3623 skb = next;
3624 continue;
3625 }
3626
3627 /* The first skb to collapse is:
3628 * - not SYN/FIN and
3629 * - bloated or contains data before "start" or
3630 * overlaps to the next one.
3631 */
3632 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3633 (tcp_win_from_space(skb->truesize) > skb->len ||
3634 before(TCP_SKB_CB(skb)->seq, start) ||
3635 (skb->next != tail &&
3636 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3637 break;
3638
3639 /* Decided to skip this, advance start seq. */
3640 start = TCP_SKB_CB(skb)->end_seq;
3641 skb = skb->next;
3642 }
3643 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3644 return;
3645
3646 while (before(start, end)) {
3647 struct sk_buff *nskb;
3648 int header = skb_headroom(skb);
3649 int copy = SKB_MAX_ORDER(header, 0);
3650
3651 /* Too big header? This can happen with IPv6. */
3652 if (copy < 0)
3653 return;
3654 if (end-start < copy)
3655 copy = end-start;
3656 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3657 if (!nskb)
3658 return;
3659
3660 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3661 skb_set_network_header(nskb, (skb_network_header(skb) -
3662 skb->head));
3663 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3664 skb->head));
3665 skb_reserve(nskb, header);
3666 memcpy(nskb->head, skb->head, header);
3667 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3668 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3669 __skb_insert(nskb, skb->prev, skb, list);
3670 sk_stream_set_owner_r(nskb, sk);
3671
3672 /* Copy data, releasing collapsed skbs. */
3673 while (copy > 0) {
3674 int offset = start - TCP_SKB_CB(skb)->seq;
3675 int size = TCP_SKB_CB(skb)->end_seq - start;
3676
3677 BUG_ON(offset < 0);
3678 if (size > 0) {
3679 size = min(copy, size);
3680 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3681 BUG();
3682 TCP_SKB_CB(nskb)->end_seq += size;
3683 copy -= size;
3684 start += size;
3685 }
3686 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3687 struct sk_buff *next = skb->next;
3688 __skb_unlink(skb, list);
3689 __kfree_skb(skb);
3690 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3691 skb = next;
3692 if (skb == tail ||
3693 tcp_hdr(skb)->syn ||
3694 tcp_hdr(skb)->fin)
3695 return;
3696 }
3697 }
3698 }
3699 }
3700
3701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3702 * and tcp_collapse() them until all the queue is collapsed.
3703 */
3704 static void tcp_collapse_ofo_queue(struct sock *sk)
3705 {
3706 struct tcp_sock *tp = tcp_sk(sk);
3707 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3708 struct sk_buff *head;
3709 u32 start, end;
3710
3711 if (skb == NULL)
3712 return;
3713
3714 start = TCP_SKB_CB(skb)->seq;
3715 end = TCP_SKB_CB(skb)->end_seq;
3716 head = skb;
3717
3718 for (;;) {
3719 skb = skb->next;
3720
3721 /* Segment is terminated when we see gap or when
3722 * we are at the end of all the queue. */
3723 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3724 after(TCP_SKB_CB(skb)->seq, end) ||
3725 before(TCP_SKB_CB(skb)->end_seq, start)) {
3726 tcp_collapse(sk, &tp->out_of_order_queue,
3727 head, skb, start, end);
3728 head = skb;
3729 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3730 break;
3731 /* Start new segment */
3732 start = TCP_SKB_CB(skb)->seq;
3733 end = TCP_SKB_CB(skb)->end_seq;
3734 } else {
3735 if (before(TCP_SKB_CB(skb)->seq, start))
3736 start = TCP_SKB_CB(skb)->seq;
3737 if (after(TCP_SKB_CB(skb)->end_seq, end))
3738 end = TCP_SKB_CB(skb)->end_seq;
3739 }
3740 }
3741 }
3742
3743 /* Reduce allocated memory if we can, trying to get
3744 * the socket within its memory limits again.
3745 *
3746 * Return less than zero if we should start dropping frames
3747 * until the socket owning process reads some of the data
3748 * to stabilize the situation.
3749 */
3750 static int tcp_prune_queue(struct sock *sk)
3751 {
3752 struct tcp_sock *tp = tcp_sk(sk);
3753
3754 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3755
3756 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3757
3758 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3759 tcp_clamp_window(sk);
3760 else if (tcp_memory_pressure)
3761 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3762
3763 tcp_collapse_ofo_queue(sk);
3764 tcp_collapse(sk, &sk->sk_receive_queue,
3765 sk->sk_receive_queue.next,
3766 (struct sk_buff*)&sk->sk_receive_queue,
3767 tp->copied_seq, tp->rcv_nxt);
3768 sk_stream_mem_reclaim(sk);
3769
3770 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3771 return 0;
3772
3773 /* Collapsing did not help, destructive actions follow.
3774 * This must not ever occur. */
3775
3776 /* First, purge the out_of_order queue. */
3777 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3778 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3779 __skb_queue_purge(&tp->out_of_order_queue);
3780
3781 /* Reset SACK state. A conforming SACK implementation will
3782 * do the same at a timeout based retransmit. When a connection
3783 * is in a sad state like this, we care only about integrity
3784 * of the connection not performance.
3785 */
3786 if (tp->rx_opt.sack_ok)
3787 tcp_sack_reset(&tp->rx_opt);
3788 sk_stream_mem_reclaim(sk);
3789 }
3790
3791 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3792 return 0;
3793
3794 /* If we are really being abused, tell the caller to silently
3795 * drop receive data on the floor. It will get retransmitted
3796 * and hopefully then we'll have sufficient space.
3797 */
3798 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3799
3800 /* Massive buffer overcommit. */
3801 tp->pred_flags = 0;
3802 return -1;
3803 }
3804
3805
3806 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3807 * As additional protections, we do not touch cwnd in retransmission phases,
3808 * and if application hit its sndbuf limit recently.
3809 */
3810 void tcp_cwnd_application_limited(struct sock *sk)
3811 {
3812 struct tcp_sock *tp = tcp_sk(sk);
3813
3814 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3815 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3816 /* Limited by application or receiver window. */
3817 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3818 u32 win_used = max(tp->snd_cwnd_used, init_win);
3819 if (win_used < tp->snd_cwnd) {
3820 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3821 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3822 }
3823 tp->snd_cwnd_used = 0;
3824 }
3825 tp->snd_cwnd_stamp = tcp_time_stamp;
3826 }
3827
3828 static int tcp_should_expand_sndbuf(struct sock *sk)
3829 {
3830 struct tcp_sock *tp = tcp_sk(sk);
3831
3832 /* If the user specified a specific send buffer setting, do
3833 * not modify it.
3834 */
3835 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3836 return 0;
3837
3838 /* If we are under global TCP memory pressure, do not expand. */
3839 if (tcp_memory_pressure)
3840 return 0;
3841
3842 /* If we are under soft global TCP memory pressure, do not expand. */
3843 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3844 return 0;
3845
3846 /* If we filled the congestion window, do not expand. */
3847 if (tp->packets_out >= tp->snd_cwnd)
3848 return 0;
3849
3850 return 1;
3851 }
3852
3853 /* When incoming ACK allowed to free some skb from write_queue,
3854 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3855 * on the exit from tcp input handler.
3856 *
3857 * PROBLEM: sndbuf expansion does not work well with largesend.
3858 */
3859 static void tcp_new_space(struct sock *sk)
3860 {
3861 struct tcp_sock *tp = tcp_sk(sk);
3862
3863 if (tcp_should_expand_sndbuf(sk)) {
3864 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3865 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3866 demanded = max_t(unsigned int, tp->snd_cwnd,
3867 tp->reordering + 1);
3868 sndmem *= 2*demanded;
3869 if (sndmem > sk->sk_sndbuf)
3870 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3871 tp->snd_cwnd_stamp = tcp_time_stamp;
3872 }
3873
3874 sk->sk_write_space(sk);
3875 }
3876
3877 static void tcp_check_space(struct sock *sk)
3878 {
3879 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3880 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3881 if (sk->sk_socket &&
3882 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3883 tcp_new_space(sk);
3884 }
3885 }
3886
3887 static inline void tcp_data_snd_check(struct sock *sk)
3888 {
3889 tcp_push_pending_frames(sk);
3890 tcp_check_space(sk);
3891 }
3892
3893 /*
3894 * Check if sending an ack is needed.
3895 */
3896 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3897 {
3898 struct tcp_sock *tp = tcp_sk(sk);
3899
3900 /* More than one full frame received... */
3901 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3902 /* ... and right edge of window advances far enough.
3903 * (tcp_recvmsg() will send ACK otherwise). Or...
3904 */
3905 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3906 /* We ACK each frame or... */
3907 tcp_in_quickack_mode(sk) ||
3908 /* We have out of order data. */
3909 (ofo_possible &&
3910 skb_peek(&tp->out_of_order_queue))) {
3911 /* Then ack it now */
3912 tcp_send_ack(sk);
3913 } else {
3914 /* Else, send delayed ack. */
3915 tcp_send_delayed_ack(sk);
3916 }
3917 }
3918
3919 static inline void tcp_ack_snd_check(struct sock *sk)
3920 {
3921 if (!inet_csk_ack_scheduled(sk)) {
3922 /* We sent a data segment already. */
3923 return;
3924 }
3925 __tcp_ack_snd_check(sk, 1);
3926 }
3927
3928 /*
3929 * This routine is only called when we have urgent data
3930 * signaled. Its the 'slow' part of tcp_urg. It could be
3931 * moved inline now as tcp_urg is only called from one
3932 * place. We handle URGent data wrong. We have to - as
3933 * BSD still doesn't use the correction from RFC961.
3934 * For 1003.1g we should support a new option TCP_STDURG to permit
3935 * either form (or just set the sysctl tcp_stdurg).
3936 */
3937
3938 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3939 {
3940 struct tcp_sock *tp = tcp_sk(sk);
3941 u32 ptr = ntohs(th->urg_ptr);
3942
3943 if (ptr && !sysctl_tcp_stdurg)
3944 ptr--;
3945 ptr += ntohl(th->seq);
3946
3947 /* Ignore urgent data that we've already seen and read. */
3948 if (after(tp->copied_seq, ptr))
3949 return;
3950
3951 /* Do not replay urg ptr.
3952 *
3953 * NOTE: interesting situation not covered by specs.
3954 * Misbehaving sender may send urg ptr, pointing to segment,
3955 * which we already have in ofo queue. We are not able to fetch
3956 * such data and will stay in TCP_URG_NOTYET until will be eaten
3957 * by recvmsg(). Seems, we are not obliged to handle such wicked
3958 * situations. But it is worth to think about possibility of some
3959 * DoSes using some hypothetical application level deadlock.
3960 */
3961 if (before(ptr, tp->rcv_nxt))
3962 return;
3963
3964 /* Do we already have a newer (or duplicate) urgent pointer? */
3965 if (tp->urg_data && !after(ptr, tp->urg_seq))
3966 return;
3967
3968 /* Tell the world about our new urgent pointer. */
3969 sk_send_sigurg(sk);
3970
3971 /* We may be adding urgent data when the last byte read was
3972 * urgent. To do this requires some care. We cannot just ignore
3973 * tp->copied_seq since we would read the last urgent byte again
3974 * as data, nor can we alter copied_seq until this data arrives
3975 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3976 *
3977 * NOTE. Double Dutch. Rendering to plain English: author of comment
3978 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3979 * and expect that both A and B disappear from stream. This is _wrong_.
3980 * Though this happens in BSD with high probability, this is occasional.
3981 * Any application relying on this is buggy. Note also, that fix "works"
3982 * only in this artificial test. Insert some normal data between A and B and we will
3983 * decline of BSD again. Verdict: it is better to remove to trap
3984 * buggy users.
3985 */
3986 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3987 !sock_flag(sk, SOCK_URGINLINE) &&
3988 tp->copied_seq != tp->rcv_nxt) {
3989 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3990 tp->copied_seq++;
3991 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3992 __skb_unlink(skb, &sk->sk_receive_queue);
3993 __kfree_skb(skb);
3994 }
3995 }
3996
3997 tp->urg_data = TCP_URG_NOTYET;
3998 tp->urg_seq = ptr;
3999
4000 /* Disable header prediction. */
4001 tp->pred_flags = 0;
4002 }
4003
4004 /* This is the 'fast' part of urgent handling. */
4005 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4006 {
4007 struct tcp_sock *tp = tcp_sk(sk);
4008
4009 /* Check if we get a new urgent pointer - normally not. */
4010 if (th->urg)
4011 tcp_check_urg(sk,th);
4012
4013 /* Do we wait for any urgent data? - normally not... */
4014 if (tp->urg_data == TCP_URG_NOTYET) {
4015 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4016 th->syn;
4017
4018 /* Is the urgent pointer pointing into this packet? */
4019 if (ptr < skb->len) {
4020 u8 tmp;
4021 if (skb_copy_bits(skb, ptr, &tmp, 1))
4022 BUG();
4023 tp->urg_data = TCP_URG_VALID | tmp;
4024 if (!sock_flag(sk, SOCK_DEAD))
4025 sk->sk_data_ready(sk, 0);
4026 }
4027 }
4028 }
4029
4030 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4031 {
4032 struct tcp_sock *tp = tcp_sk(sk);
4033 int chunk = skb->len - hlen;
4034 int err;
4035
4036 local_bh_enable();
4037 if (skb_csum_unnecessary(skb))
4038 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4039 else
4040 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4041 tp->ucopy.iov);
4042
4043 if (!err) {
4044 tp->ucopy.len -= chunk;
4045 tp->copied_seq += chunk;
4046 tcp_rcv_space_adjust(sk);
4047 }
4048
4049 local_bh_disable();
4050 return err;
4051 }
4052
4053 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4054 {
4055 __sum16 result;
4056
4057 if (sock_owned_by_user(sk)) {
4058 local_bh_enable();
4059 result = __tcp_checksum_complete(skb);
4060 local_bh_disable();
4061 } else {
4062 result = __tcp_checksum_complete(skb);
4063 }
4064 return result;
4065 }
4066
4067 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4068 {
4069 return !skb_csum_unnecessary(skb) &&
4070 __tcp_checksum_complete_user(sk, skb);
4071 }
4072
4073 #ifdef CONFIG_NET_DMA
4074 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4075 {
4076 struct tcp_sock *tp = tcp_sk(sk);
4077 int chunk = skb->len - hlen;
4078 int dma_cookie;
4079 int copied_early = 0;
4080
4081 if (tp->ucopy.wakeup)
4082 return 0;
4083
4084 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4085 tp->ucopy.dma_chan = get_softnet_dma();
4086
4087 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4088
4089 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4090 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4091
4092 if (dma_cookie < 0)
4093 goto out;
4094
4095 tp->ucopy.dma_cookie = dma_cookie;
4096 copied_early = 1;
4097
4098 tp->ucopy.len -= chunk;
4099 tp->copied_seq += chunk;
4100 tcp_rcv_space_adjust(sk);
4101
4102 if ((tp->ucopy.len == 0) ||
4103 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4104 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4105 tp->ucopy.wakeup = 1;
4106 sk->sk_data_ready(sk, 0);
4107 }
4108 } else if (chunk > 0) {
4109 tp->ucopy.wakeup = 1;
4110 sk->sk_data_ready(sk, 0);
4111 }
4112 out:
4113 return copied_early;
4114 }
4115 #endif /* CONFIG_NET_DMA */
4116
4117 /*
4118 * TCP receive function for the ESTABLISHED state.
4119 *
4120 * It is split into a fast path and a slow path. The fast path is
4121 * disabled when:
4122 * - A zero window was announced from us - zero window probing
4123 * is only handled properly in the slow path.
4124 * - Out of order segments arrived.
4125 * - Urgent data is expected.
4126 * - There is no buffer space left
4127 * - Unexpected TCP flags/window values/header lengths are received
4128 * (detected by checking the TCP header against pred_flags)
4129 * - Data is sent in both directions. Fast path only supports pure senders
4130 * or pure receivers (this means either the sequence number or the ack
4131 * value must stay constant)
4132 * - Unexpected TCP option.
4133 *
4134 * When these conditions are not satisfied it drops into a standard
4135 * receive procedure patterned after RFC793 to handle all cases.
4136 * The first three cases are guaranteed by proper pred_flags setting,
4137 * the rest is checked inline. Fast processing is turned on in
4138 * tcp_data_queue when everything is OK.
4139 */
4140 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4141 struct tcphdr *th, unsigned len)
4142 {
4143 struct tcp_sock *tp = tcp_sk(sk);
4144
4145 /*
4146 * Header prediction.
4147 * The code loosely follows the one in the famous
4148 * "30 instruction TCP receive" Van Jacobson mail.
4149 *
4150 * Van's trick is to deposit buffers into socket queue
4151 * on a device interrupt, to call tcp_recv function
4152 * on the receive process context and checksum and copy
4153 * the buffer to user space. smart...
4154 *
4155 * Our current scheme is not silly either but we take the
4156 * extra cost of the net_bh soft interrupt processing...
4157 * We do checksum and copy also but from device to kernel.
4158 */
4159
4160 tp->rx_opt.saw_tstamp = 0;
4161
4162 /* pred_flags is 0xS?10 << 16 + snd_wnd
4163 * if header_prediction is to be made
4164 * 'S' will always be tp->tcp_header_len >> 2
4165 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4166 * turn it off (when there are holes in the receive
4167 * space for instance)
4168 * PSH flag is ignored.
4169 */
4170
4171 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4172 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4173 int tcp_header_len = tp->tcp_header_len;
4174
4175 /* Timestamp header prediction: tcp_header_len
4176 * is automatically equal to th->doff*4 due to pred_flags
4177 * match.
4178 */
4179
4180 /* Check timestamp */
4181 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4182 __be32 *ptr = (__be32 *)(th + 1);
4183
4184 /* No? Slow path! */
4185 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4186 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4187 goto slow_path;
4188
4189 tp->rx_opt.saw_tstamp = 1;
4190 ++ptr;
4191 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4192 ++ptr;
4193 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4194
4195 /* If PAWS failed, check it more carefully in slow path */
4196 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4197 goto slow_path;
4198
4199 /* DO NOT update ts_recent here, if checksum fails
4200 * and timestamp was corrupted part, it will result
4201 * in a hung connection since we will drop all
4202 * future packets due to the PAWS test.
4203 */
4204 }
4205
4206 if (len <= tcp_header_len) {
4207 /* Bulk data transfer: sender */
4208 if (len == tcp_header_len) {
4209 /* Predicted packet is in window by definition.
4210 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4211 * Hence, check seq<=rcv_wup reduces to:
4212 */
4213 if (tcp_header_len ==
4214 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4215 tp->rcv_nxt == tp->rcv_wup)
4216 tcp_store_ts_recent(tp);
4217
4218 /* We know that such packets are checksummed
4219 * on entry.
4220 */
4221 tcp_ack(sk, skb, 0);
4222 __kfree_skb(skb);
4223 tcp_data_snd_check(sk);
4224 return 0;
4225 } else { /* Header too small */
4226 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4227 goto discard;
4228 }
4229 } else {
4230 int eaten = 0;
4231 int copied_early = 0;
4232
4233 if (tp->copied_seq == tp->rcv_nxt &&
4234 len - tcp_header_len <= tp->ucopy.len) {
4235 #ifdef CONFIG_NET_DMA
4236 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4237 copied_early = 1;
4238 eaten = 1;
4239 }
4240 #endif
4241 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4242 __set_current_state(TASK_RUNNING);
4243
4244 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4245 eaten = 1;
4246 }
4247 if (eaten) {
4248 /* Predicted packet is in window by definition.
4249 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4250 * Hence, check seq<=rcv_wup reduces to:
4251 */
4252 if (tcp_header_len ==
4253 (sizeof(struct tcphdr) +
4254 TCPOLEN_TSTAMP_ALIGNED) &&
4255 tp->rcv_nxt == tp->rcv_wup)
4256 tcp_store_ts_recent(tp);
4257
4258 tcp_rcv_rtt_measure_ts(sk, skb);
4259
4260 __skb_pull(skb, tcp_header_len);
4261 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4262 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4263 }
4264 if (copied_early)
4265 tcp_cleanup_rbuf(sk, skb->len);
4266 }
4267 if (!eaten) {
4268 if (tcp_checksum_complete_user(sk, skb))
4269 goto csum_error;
4270
4271 /* Predicted packet is in window by definition.
4272 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4273 * Hence, check seq<=rcv_wup reduces to:
4274 */
4275 if (tcp_header_len ==
4276 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4277 tp->rcv_nxt == tp->rcv_wup)
4278 tcp_store_ts_recent(tp);
4279
4280 tcp_rcv_rtt_measure_ts(sk, skb);
4281
4282 if ((int)skb->truesize > sk->sk_forward_alloc)
4283 goto step5;
4284
4285 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4286
4287 /* Bulk data transfer: receiver */
4288 __skb_pull(skb,tcp_header_len);
4289 __skb_queue_tail(&sk->sk_receive_queue, skb);
4290 sk_stream_set_owner_r(skb, sk);
4291 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4292 }
4293
4294 tcp_event_data_recv(sk, skb);
4295
4296 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4297 /* Well, only one small jumplet in fast path... */
4298 tcp_ack(sk, skb, FLAG_DATA);
4299 tcp_data_snd_check(sk);
4300 if (!inet_csk_ack_scheduled(sk))
4301 goto no_ack;
4302 }
4303
4304 __tcp_ack_snd_check(sk, 0);
4305 no_ack:
4306 #ifdef CONFIG_NET_DMA
4307 if (copied_early)
4308 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4309 else
4310 #endif
4311 if (eaten)
4312 __kfree_skb(skb);
4313 else
4314 sk->sk_data_ready(sk, 0);
4315 return 0;
4316 }
4317 }
4318
4319 slow_path:
4320 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4321 goto csum_error;
4322
4323 /*
4324 * RFC1323: H1. Apply PAWS check first.
4325 */
4326 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4327 tcp_paws_discard(sk, skb)) {
4328 if (!th->rst) {
4329 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4330 tcp_send_dupack(sk, skb);
4331 goto discard;
4332 }
4333 /* Resets are accepted even if PAWS failed.
4334
4335 ts_recent update must be made after we are sure
4336 that the packet is in window.
4337 */
4338 }
4339
4340 /*
4341 * Standard slow path.
4342 */
4343
4344 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4345 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4346 * (RST) segments are validated by checking their SEQ-fields."
4347 * And page 69: "If an incoming segment is not acceptable,
4348 * an acknowledgment should be sent in reply (unless the RST bit
4349 * is set, if so drop the segment and return)".
4350 */
4351 if (!th->rst)
4352 tcp_send_dupack(sk, skb);
4353 goto discard;
4354 }
4355
4356 if (th->rst) {
4357 tcp_reset(sk);
4358 goto discard;
4359 }
4360
4361 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4362
4363 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4364 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4365 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4366 tcp_reset(sk);
4367 return 1;
4368 }
4369
4370 step5:
4371 if (th->ack)
4372 tcp_ack(sk, skb, FLAG_SLOWPATH);
4373
4374 tcp_rcv_rtt_measure_ts(sk, skb);
4375
4376 /* Process urgent data. */
4377 tcp_urg(sk, skb, th);
4378
4379 /* step 7: process the segment text */
4380 tcp_data_queue(sk, skb);
4381
4382 tcp_data_snd_check(sk);
4383 tcp_ack_snd_check(sk);
4384 return 0;
4385
4386 csum_error:
4387 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4388
4389 discard:
4390 __kfree_skb(skb);
4391 return 0;
4392 }
4393
4394 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4395 struct tcphdr *th, unsigned len)
4396 {
4397 struct tcp_sock *tp = tcp_sk(sk);
4398 struct inet_connection_sock *icsk = inet_csk(sk);
4399 int saved_clamp = tp->rx_opt.mss_clamp;
4400
4401 tcp_parse_options(skb, &tp->rx_opt, 0);
4402
4403 if (th->ack) {
4404 /* rfc793:
4405 * "If the state is SYN-SENT then
4406 * first check the ACK bit
4407 * If the ACK bit is set
4408 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4409 * a reset (unless the RST bit is set, if so drop
4410 * the segment and return)"
4411 *
4412 * We do not send data with SYN, so that RFC-correct
4413 * test reduces to:
4414 */
4415 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4416 goto reset_and_undo;
4417
4418 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4419 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4420 tcp_time_stamp)) {
4421 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4422 goto reset_and_undo;
4423 }
4424
4425 /* Now ACK is acceptable.
4426 *
4427 * "If the RST bit is set
4428 * If the ACK was acceptable then signal the user "error:
4429 * connection reset", drop the segment, enter CLOSED state,
4430 * delete TCB, and return."
4431 */
4432
4433 if (th->rst) {
4434 tcp_reset(sk);
4435 goto discard;
4436 }
4437
4438 /* rfc793:
4439 * "fifth, if neither of the SYN or RST bits is set then
4440 * drop the segment and return."
4441 *
4442 * See note below!
4443 * --ANK(990513)
4444 */
4445 if (!th->syn)
4446 goto discard_and_undo;
4447
4448 /* rfc793:
4449 * "If the SYN bit is on ...
4450 * are acceptable then ...
4451 * (our SYN has been ACKed), change the connection
4452 * state to ESTABLISHED..."
4453 */
4454
4455 TCP_ECN_rcv_synack(tp, th);
4456
4457 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4458 tcp_ack(sk, skb, FLAG_SLOWPATH);
4459
4460 /* Ok.. it's good. Set up sequence numbers and
4461 * move to established.
4462 */
4463 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4464 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4465
4466 /* RFC1323: The window in SYN & SYN/ACK segments is
4467 * never scaled.
4468 */
4469 tp->snd_wnd = ntohs(th->window);
4470 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4471
4472 if (!tp->rx_opt.wscale_ok) {
4473 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4474 tp->window_clamp = min(tp->window_clamp, 65535U);
4475 }
4476
4477 if (tp->rx_opt.saw_tstamp) {
4478 tp->rx_opt.tstamp_ok = 1;
4479 tp->tcp_header_len =
4480 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4481 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4482 tcp_store_ts_recent(tp);
4483 } else {
4484 tp->tcp_header_len = sizeof(struct tcphdr);
4485 }
4486
4487 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4488 tp->rx_opt.sack_ok |= 2;
4489
4490 tcp_mtup_init(sk);
4491 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4492 tcp_initialize_rcv_mss(sk);
4493
4494 /* Remember, tcp_poll() does not lock socket!
4495 * Change state from SYN-SENT only after copied_seq
4496 * is initialized. */
4497 tp->copied_seq = tp->rcv_nxt;
4498 smp_mb();
4499 tcp_set_state(sk, TCP_ESTABLISHED);
4500
4501 security_inet_conn_established(sk, skb);
4502
4503 /* Make sure socket is routed, for correct metrics. */
4504 icsk->icsk_af_ops->rebuild_header(sk);
4505
4506 tcp_init_metrics(sk);
4507
4508 tcp_init_congestion_control(sk);
4509
4510 /* Prevent spurious tcp_cwnd_restart() on first data
4511 * packet.
4512 */
4513 tp->lsndtime = tcp_time_stamp;
4514
4515 tcp_init_buffer_space(sk);
4516
4517 if (sock_flag(sk, SOCK_KEEPOPEN))
4518 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4519
4520 if (!tp->rx_opt.snd_wscale)
4521 __tcp_fast_path_on(tp, tp->snd_wnd);
4522 else
4523 tp->pred_flags = 0;
4524
4525 if (!sock_flag(sk, SOCK_DEAD)) {
4526 sk->sk_state_change(sk);
4527 sk_wake_async(sk, 0, POLL_OUT);
4528 }
4529
4530 if (sk->sk_write_pending ||
4531 icsk->icsk_accept_queue.rskq_defer_accept ||
4532 icsk->icsk_ack.pingpong) {
4533 /* Save one ACK. Data will be ready after
4534 * several ticks, if write_pending is set.
4535 *
4536 * It may be deleted, but with this feature tcpdumps
4537 * look so _wonderfully_ clever, that I was not able
4538 * to stand against the temptation 8) --ANK
4539 */
4540 inet_csk_schedule_ack(sk);
4541 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4542 icsk->icsk_ack.ato = TCP_ATO_MIN;
4543 tcp_incr_quickack(sk);
4544 tcp_enter_quickack_mode(sk);
4545 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4546 TCP_DELACK_MAX, TCP_RTO_MAX);
4547
4548 discard:
4549 __kfree_skb(skb);
4550 return 0;
4551 } else {
4552 tcp_send_ack(sk);
4553 }
4554 return -1;
4555 }
4556
4557 /* No ACK in the segment */
4558
4559 if (th->rst) {
4560 /* rfc793:
4561 * "If the RST bit is set
4562 *
4563 * Otherwise (no ACK) drop the segment and return."
4564 */
4565
4566 goto discard_and_undo;
4567 }
4568
4569 /* PAWS check. */
4570 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4571 goto discard_and_undo;
4572
4573 if (th->syn) {
4574 /* We see SYN without ACK. It is attempt of
4575 * simultaneous connect with crossed SYNs.
4576 * Particularly, it can be connect to self.
4577 */
4578 tcp_set_state(sk, TCP_SYN_RECV);
4579
4580 if (tp->rx_opt.saw_tstamp) {
4581 tp->rx_opt.tstamp_ok = 1;
4582 tcp_store_ts_recent(tp);
4583 tp->tcp_header_len =
4584 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4585 } else {
4586 tp->tcp_header_len = sizeof(struct tcphdr);
4587 }
4588
4589 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4590 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4591
4592 /* RFC1323: The window in SYN & SYN/ACK segments is
4593 * never scaled.
4594 */
4595 tp->snd_wnd = ntohs(th->window);
4596 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4597 tp->max_window = tp->snd_wnd;
4598
4599 TCP_ECN_rcv_syn(tp, th);
4600
4601 tcp_mtup_init(sk);
4602 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4603 tcp_initialize_rcv_mss(sk);
4604
4605
4606 tcp_send_synack(sk);
4607 #if 0
4608 /* Note, we could accept data and URG from this segment.
4609 * There are no obstacles to make this.
4610 *
4611 * However, if we ignore data in ACKless segments sometimes,
4612 * we have no reasons to accept it sometimes.
4613 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4614 * is not flawless. So, discard packet for sanity.
4615 * Uncomment this return to process the data.
4616 */
4617 return -1;
4618 #else
4619 goto discard;
4620 #endif
4621 }
4622 /* "fifth, if neither of the SYN or RST bits is set then
4623 * drop the segment and return."
4624 */
4625
4626 discard_and_undo:
4627 tcp_clear_options(&tp->rx_opt);
4628 tp->rx_opt.mss_clamp = saved_clamp;
4629 goto discard;
4630
4631 reset_and_undo:
4632 tcp_clear_options(&tp->rx_opt);
4633 tp->rx_opt.mss_clamp = saved_clamp;
4634 return 1;
4635 }
4636
4637
4638 /*
4639 * This function implements the receiving procedure of RFC 793 for
4640 * all states except ESTABLISHED and TIME_WAIT.
4641 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4642 * address independent.
4643 */
4644
4645 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4646 struct tcphdr *th, unsigned len)
4647 {
4648 struct tcp_sock *tp = tcp_sk(sk);
4649 struct inet_connection_sock *icsk = inet_csk(sk);
4650 int queued = 0;
4651
4652 tp->rx_opt.saw_tstamp = 0;
4653
4654 switch (sk->sk_state) {
4655 case TCP_CLOSE:
4656 goto discard;
4657
4658 case TCP_LISTEN:
4659 if (th->ack)
4660 return 1;
4661
4662 if (th->rst)
4663 goto discard;
4664
4665 if (th->syn) {
4666 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4667 return 1;
4668
4669 /* Now we have several options: In theory there is
4670 * nothing else in the frame. KA9Q has an option to
4671 * send data with the syn, BSD accepts data with the
4672 * syn up to the [to be] advertised window and
4673 * Solaris 2.1 gives you a protocol error. For now
4674 * we just ignore it, that fits the spec precisely
4675 * and avoids incompatibilities. It would be nice in
4676 * future to drop through and process the data.
4677 *
4678 * Now that TTCP is starting to be used we ought to
4679 * queue this data.
4680 * But, this leaves one open to an easy denial of
4681 * service attack, and SYN cookies can't defend
4682 * against this problem. So, we drop the data
4683 * in the interest of security over speed unless
4684 * it's still in use.
4685 */
4686 kfree_skb(skb);
4687 return 0;
4688 }
4689 goto discard;
4690
4691 case TCP_SYN_SENT:
4692 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4693 if (queued >= 0)
4694 return queued;
4695
4696 /* Do step6 onward by hand. */
4697 tcp_urg(sk, skb, th);
4698 __kfree_skb(skb);
4699 tcp_data_snd_check(sk);
4700 return 0;
4701 }
4702
4703 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4704 tcp_paws_discard(sk, skb)) {
4705 if (!th->rst) {
4706 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4707 tcp_send_dupack(sk, skb);
4708 goto discard;
4709 }
4710 /* Reset is accepted even if it did not pass PAWS. */
4711 }
4712
4713 /* step 1: check sequence number */
4714 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4715 if (!th->rst)
4716 tcp_send_dupack(sk, skb);
4717 goto discard;
4718 }
4719
4720 /* step 2: check RST bit */
4721 if (th->rst) {
4722 tcp_reset(sk);
4723 goto discard;
4724 }
4725
4726 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4727
4728 /* step 3: check security and precedence [ignored] */
4729
4730 /* step 4:
4731 *
4732 * Check for a SYN in window.
4733 */
4734 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4735 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4736 tcp_reset(sk);
4737 return 1;
4738 }
4739
4740 /* step 5: check the ACK field */
4741 if (th->ack) {
4742 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4743
4744 switch (sk->sk_state) {
4745 case TCP_SYN_RECV:
4746 if (acceptable) {
4747 tp->copied_seq = tp->rcv_nxt;
4748 smp_mb();
4749 tcp_set_state(sk, TCP_ESTABLISHED);
4750 sk->sk_state_change(sk);
4751
4752 /* Note, that this wakeup is only for marginal
4753 * crossed SYN case. Passively open sockets
4754 * are not waked up, because sk->sk_sleep ==
4755 * NULL and sk->sk_socket == NULL.
4756 */
4757 if (sk->sk_socket) {
4758 sk_wake_async(sk,0,POLL_OUT);
4759 }
4760
4761 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4762 tp->snd_wnd = ntohs(th->window) <<
4763 tp->rx_opt.snd_wscale;
4764 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4765 TCP_SKB_CB(skb)->seq);
4766
4767 /* tcp_ack considers this ACK as duplicate
4768 * and does not calculate rtt.
4769 * Fix it at least with timestamps.
4770 */
4771 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4772 !tp->srtt)
4773 tcp_ack_saw_tstamp(sk, 0);
4774
4775 if (tp->rx_opt.tstamp_ok)
4776 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4777
4778 /* Make sure socket is routed, for
4779 * correct metrics.
4780 */
4781 icsk->icsk_af_ops->rebuild_header(sk);
4782
4783 tcp_init_metrics(sk);
4784
4785 tcp_init_congestion_control(sk);
4786
4787 /* Prevent spurious tcp_cwnd_restart() on
4788 * first data packet.
4789 */
4790 tp->lsndtime = tcp_time_stamp;
4791
4792 tcp_mtup_init(sk);
4793 tcp_initialize_rcv_mss(sk);
4794 tcp_init_buffer_space(sk);
4795 tcp_fast_path_on(tp);
4796 } else {
4797 return 1;
4798 }
4799 break;
4800
4801 case TCP_FIN_WAIT1:
4802 if (tp->snd_una == tp->write_seq) {
4803 tcp_set_state(sk, TCP_FIN_WAIT2);
4804 sk->sk_shutdown |= SEND_SHUTDOWN;
4805 dst_confirm(sk->sk_dst_cache);
4806
4807 if (!sock_flag(sk, SOCK_DEAD))
4808 /* Wake up lingering close() */
4809 sk->sk_state_change(sk);
4810 else {
4811 int tmo;
4812
4813 if (tp->linger2 < 0 ||
4814 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4815 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4816 tcp_done(sk);
4817 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4818 return 1;
4819 }
4820
4821 tmo = tcp_fin_time(sk);
4822 if (tmo > TCP_TIMEWAIT_LEN) {
4823 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4824 } else if (th->fin || sock_owned_by_user(sk)) {
4825 /* Bad case. We could lose such FIN otherwise.
4826 * It is not a big problem, but it looks confusing
4827 * and not so rare event. We still can lose it now,
4828 * if it spins in bh_lock_sock(), but it is really
4829 * marginal case.
4830 */
4831 inet_csk_reset_keepalive_timer(sk, tmo);
4832 } else {
4833 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4834 goto discard;
4835 }
4836 }
4837 }
4838 break;
4839
4840 case TCP_CLOSING:
4841 if (tp->snd_una == tp->write_seq) {
4842 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4843 goto discard;
4844 }
4845 break;
4846
4847 case TCP_LAST_ACK:
4848 if (tp->snd_una == tp->write_seq) {
4849 tcp_update_metrics(sk);
4850 tcp_done(sk);
4851 goto discard;
4852 }
4853 break;
4854 }
4855 } else
4856 goto discard;
4857
4858 /* step 6: check the URG bit */
4859 tcp_urg(sk, skb, th);
4860
4861 /* step 7: process the segment text */
4862 switch (sk->sk_state) {
4863 case TCP_CLOSE_WAIT:
4864 case TCP_CLOSING:
4865 case TCP_LAST_ACK:
4866 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4867 break;
4868 case TCP_FIN_WAIT1:
4869 case TCP_FIN_WAIT2:
4870 /* RFC 793 says to queue data in these states,
4871 * RFC 1122 says we MUST send a reset.
4872 * BSD 4.4 also does reset.
4873 */
4874 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4875 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4876 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4877 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4878 tcp_reset(sk);
4879 return 1;
4880 }
4881 }
4882 /* Fall through */
4883 case TCP_ESTABLISHED:
4884 tcp_data_queue(sk, skb);
4885 queued = 1;
4886 break;
4887 }
4888
4889 /* tcp_data could move socket to TIME-WAIT */
4890 if (sk->sk_state != TCP_CLOSE) {
4891 tcp_data_snd_check(sk);
4892 tcp_ack_snd_check(sk);
4893 }
4894
4895 if (!queued) {
4896 discard:
4897 __kfree_skb(skb);
4898 }
4899 return 0;
4900 }
4901
4902 EXPORT_SYMBOL(sysctl_tcp_ecn);
4903 EXPORT_SYMBOL(sysctl_tcp_reordering);
4904 EXPORT_SYMBOL(tcp_parse_options);
4905 EXPORT_SYMBOL(tcp_rcv_established);
4906 EXPORT_SYMBOL(tcp_rcv_state_process);
4907 EXPORT_SYMBOL(tcp_initialize_rcv_mss);