TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_cubic.c
1 /*
2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3 * Home page:
4 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5 * This is from the implementation of CUBIC TCP in
6 * Sangtae Ha, Injong Rhee and Lisong Xu,
7 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8 * in ACM SIGOPS Operating System Review, July 2008.
9 * Available from:
10 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11 *
12 * CUBIC integrates a new slow start algorithm, called HyStart.
13 * The details of HyStart are presented in
14 * Sangtae Ha and Injong Rhee,
15 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16 * Available from:
17 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18 *
19 * All testing results are available from:
20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21 *
22 * Unless CUBIC is enabled and congestion window is large
23 * this behaves the same as the original Reno.
24 */
25
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/math64.h>
29 #include <net/tcp.h>
30
31 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
32 * max_cwnd = snd_cwnd * beta
33 */
34 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
35
36 /* Two methods of hybrid slow start */
37 #define HYSTART_ACK_TRAIN 0x1
38 #define HYSTART_DELAY 0x2
39
40 /* Number of delay samples for detecting the increase of delay */
41 #define HYSTART_MIN_SAMPLES 8
42 #define HYSTART_DELAY_MIN (4U<<3)
43 #define HYSTART_DELAY_MAX (16U<<3)
44 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45
46 static int fast_convergence __read_mostly = 1;
47 static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
48 static int initial_ssthresh __read_mostly;
49 static int bic_scale __read_mostly = 41;
50 static int tcp_friendliness __read_mostly = 1;
51
52 static int hystart __read_mostly = 1;
53 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54 static int hystart_low_window __read_mostly = 16;
55 static int hystart_ack_delta __read_mostly = 2;
56
57 static u32 cube_rtt_scale __read_mostly;
58 static u32 beta_scale __read_mostly;
59 static u64 cube_factor __read_mostly;
60
61 /* Note parameters that are used for precomputing scale factors are read-only */
62 module_param(fast_convergence, int, 0644);
63 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64 module_param(beta, int, 0644);
65 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66 module_param(initial_ssthresh, int, 0644);
67 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68 module_param(bic_scale, int, 0444);
69 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70 module_param(tcp_friendliness, int, 0644);
71 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72 module_param(hystart, int, 0644);
73 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74 module_param(hystart_detect, int, 0644);
75 MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76 " 1: packet-train 2: delay 3: both packet-train and delay");
77 module_param(hystart_low_window, int, 0644);
78 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79 module_param(hystart_ack_delta, int, 0644);
80 MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81
82 /* BIC TCP Parameters */
83 struct bictcp {
84 u32 cnt; /* increase cwnd by 1 after ACKs */
85 u32 last_max_cwnd; /* last maximum snd_cwnd */
86 u32 loss_cwnd; /* congestion window at last loss */
87 u32 last_cwnd; /* the last snd_cwnd */
88 u32 last_time; /* time when updated last_cwnd */
89 u32 bic_origin_point;/* origin point of bic function */
90 u32 bic_K; /* time to origin point from the beginning of the current epoch */
91 u32 delay_min; /* min delay (msec << 3) */
92 u32 epoch_start; /* beginning of an epoch */
93 u32 ack_cnt; /* number of acks */
94 u32 tcp_cwnd; /* estimated tcp cwnd */
95 #define ACK_RATIO_SHIFT 4
96 u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
97 u8 sample_cnt; /* number of samples to decide curr_rtt */
98 u8 found; /* the exit point is found? */
99 u32 round_start; /* beginning of each round */
100 u32 end_seq; /* end_seq of the round */
101 u32 last_ack; /* last time when the ACK spacing is close */
102 u32 curr_rtt; /* the minimum rtt of current round */
103 };
104
105 static inline void bictcp_reset(struct bictcp *ca)
106 {
107 ca->cnt = 0;
108 ca->last_max_cwnd = 0;
109 ca->loss_cwnd = 0;
110 ca->last_cwnd = 0;
111 ca->last_time = 0;
112 ca->bic_origin_point = 0;
113 ca->bic_K = 0;
114 ca->delay_min = 0;
115 ca->epoch_start = 0;
116 ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
117 ca->ack_cnt = 0;
118 ca->tcp_cwnd = 0;
119 ca->found = 0;
120 }
121
122 static inline u32 bictcp_clock(void)
123 {
124 #if HZ < 1000
125 return ktime_to_ms(ktime_get_real());
126 #else
127 return jiffies_to_msecs(jiffies);
128 #endif
129 }
130
131 static inline void bictcp_hystart_reset(struct sock *sk)
132 {
133 struct tcp_sock *tp = tcp_sk(sk);
134 struct bictcp *ca = inet_csk_ca(sk);
135
136 ca->round_start = ca->last_ack = bictcp_clock();
137 ca->end_seq = tp->snd_nxt;
138 ca->curr_rtt = 0;
139 ca->sample_cnt = 0;
140 }
141
142 static void bictcp_init(struct sock *sk)
143 {
144 bictcp_reset(inet_csk_ca(sk));
145
146 if (hystart)
147 bictcp_hystart_reset(sk);
148
149 if (!hystart && initial_ssthresh)
150 tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
151 }
152
153 /* calculate the cubic root of x using a table lookup followed by one
154 * Newton-Raphson iteration.
155 * Avg err ~= 0.195%
156 */
157 static u32 cubic_root(u64 a)
158 {
159 u32 x, b, shift;
160 /*
161 * cbrt(x) MSB values for x MSB values in [0..63].
162 * Precomputed then refined by hand - Willy Tarreau
163 *
164 * For x in [0..63],
165 * v = cbrt(x << 18) - 1
166 * cbrt(x) = (v[x] + 10) >> 6
167 */
168 static const u8 v[] = {
169 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
170 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
171 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
172 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
173 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
174 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
175 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
176 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
177 };
178
179 b = fls64(a);
180 if (b < 7) {
181 /* a in [0..63] */
182 return ((u32)v[(u32)a] + 35) >> 6;
183 }
184
185 b = ((b * 84) >> 8) - 1;
186 shift = (a >> (b * 3));
187
188 x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
189
190 /*
191 * Newton-Raphson iteration
192 * 2
193 * x = ( 2 * x + a / x ) / 3
194 * k+1 k k
195 */
196 x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
197 x = ((x * 341) >> 10);
198 return x;
199 }
200
201 /*
202 * Compute congestion window to use.
203 */
204 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
205 {
206 u64 offs;
207 u32 delta, t, bic_target, max_cnt;
208
209 ca->ack_cnt++; /* count the number of ACKs */
210
211 if (ca->last_cwnd == cwnd &&
212 (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
213 return;
214
215 ca->last_cwnd = cwnd;
216 ca->last_time = tcp_time_stamp;
217
218 if (ca->epoch_start == 0) {
219 ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
220 ca->ack_cnt = 1; /* start counting */
221 ca->tcp_cwnd = cwnd; /* syn with cubic */
222
223 if (ca->last_max_cwnd <= cwnd) {
224 ca->bic_K = 0;
225 ca->bic_origin_point = cwnd;
226 } else {
227 /* Compute new K based on
228 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
229 */
230 ca->bic_K = cubic_root(cube_factor
231 * (ca->last_max_cwnd - cwnd));
232 ca->bic_origin_point = ca->last_max_cwnd;
233 }
234 }
235
236 /* cubic function - calc*/
237 /* calculate c * time^3 / rtt,
238 * while considering overflow in calculation of time^3
239 * (so time^3 is done by using 64 bit)
240 * and without the support of division of 64bit numbers
241 * (so all divisions are done by using 32 bit)
242 * also NOTE the unit of those veriables
243 * time = (t - K) / 2^bictcp_HZ
244 * c = bic_scale >> 10
245 * rtt = (srtt >> 3) / HZ
246 * !!! The following code does not have overflow problems,
247 * if the cwnd < 1 million packets !!!
248 */
249
250 /* change the unit from HZ to bictcp_HZ */
251 t = ((tcp_time_stamp + msecs_to_jiffies(ca->delay_min>>3)
252 - ca->epoch_start) << BICTCP_HZ) / HZ;
253
254 if (t < ca->bic_K) /* t - K */
255 offs = ca->bic_K - t;
256 else
257 offs = t - ca->bic_K;
258
259 /* c/rtt * (t-K)^3 */
260 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
261 if (t < ca->bic_K) /* below origin*/
262 bic_target = ca->bic_origin_point - delta;
263 else /* above origin*/
264 bic_target = ca->bic_origin_point + delta;
265
266 /* cubic function - calc bictcp_cnt*/
267 if (bic_target > cwnd) {
268 ca->cnt = cwnd / (bic_target - cwnd);
269 } else {
270 ca->cnt = 100 * cwnd; /* very small increment*/
271 }
272
273 /*
274 * The initial growth of cubic function may be too conservative
275 * when the available bandwidth is still unknown.
276 */
277 if (ca->loss_cwnd == 0 && ca->cnt > 20)
278 ca->cnt = 20; /* increase cwnd 5% per RTT */
279
280 /* TCP Friendly */
281 if (tcp_friendliness) {
282 u32 scale = beta_scale;
283 delta = (cwnd * scale) >> 3;
284 while (ca->ack_cnt > delta) { /* update tcp cwnd */
285 ca->ack_cnt -= delta;
286 ca->tcp_cwnd++;
287 }
288
289 if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
290 delta = ca->tcp_cwnd - cwnd;
291 max_cnt = cwnd / delta;
292 if (ca->cnt > max_cnt)
293 ca->cnt = max_cnt;
294 }
295 }
296
297 ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
298 if (ca->cnt == 0) /* cannot be zero */
299 ca->cnt = 1;
300 }
301
302 static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
303 {
304 struct tcp_sock *tp = tcp_sk(sk);
305 struct bictcp *ca = inet_csk_ca(sk);
306
307 if (!tcp_is_cwnd_limited(sk, in_flight))
308 return;
309
310 if (tp->snd_cwnd <= tp->snd_ssthresh) {
311 if (hystart && after(ack, ca->end_seq))
312 bictcp_hystart_reset(sk);
313 tcp_slow_start(tp);
314 } else {
315 bictcp_update(ca, tp->snd_cwnd);
316 tcp_cong_avoid_ai(tp, ca->cnt);
317 }
318
319 }
320
321 static u32 bictcp_recalc_ssthresh(struct sock *sk)
322 {
323 const struct tcp_sock *tp = tcp_sk(sk);
324 struct bictcp *ca = inet_csk_ca(sk);
325
326 ca->epoch_start = 0; /* end of epoch */
327
328 /* Wmax and fast convergence */
329 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
330 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
331 / (2 * BICTCP_BETA_SCALE);
332 else
333 ca->last_max_cwnd = tp->snd_cwnd;
334
335 ca->loss_cwnd = tp->snd_cwnd;
336
337 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
338 }
339
340 static u32 bictcp_undo_cwnd(struct sock *sk)
341 {
342 struct bictcp *ca = inet_csk_ca(sk);
343
344 return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
345 }
346
347 static void bictcp_state(struct sock *sk, u8 new_state)
348 {
349 if (new_state == TCP_CA_Loss) {
350 bictcp_reset(inet_csk_ca(sk));
351 bictcp_hystart_reset(sk);
352 }
353 }
354
355 static void hystart_update(struct sock *sk, u32 delay)
356 {
357 struct tcp_sock *tp = tcp_sk(sk);
358 struct bictcp *ca = inet_csk_ca(sk);
359
360 if (!(ca->found & hystart_detect)) {
361 u32 now = bictcp_clock();
362
363 /* first detection parameter - ack-train detection */
364 if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
365 ca->last_ack = now;
366 if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
367 ca->found |= HYSTART_ACK_TRAIN;
368 }
369
370 /* obtain the minimum delay of more than sampling packets */
371 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
372 if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
373 ca->curr_rtt = delay;
374
375 ca->sample_cnt++;
376 } else {
377 if (ca->curr_rtt > ca->delay_min +
378 HYSTART_DELAY_THRESH(ca->delay_min>>4))
379 ca->found |= HYSTART_DELAY;
380 }
381 /*
382 * Either one of two conditions are met,
383 * we exit from slow start immediately.
384 */
385 if (ca->found & hystart_detect)
386 tp->snd_ssthresh = tp->snd_cwnd;
387 }
388 }
389
390 /* Track delayed acknowledgment ratio using sliding window
391 * ratio = (15*ratio + sample) / 16
392 */
393 static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
394 {
395 const struct inet_connection_sock *icsk = inet_csk(sk);
396 const struct tcp_sock *tp = tcp_sk(sk);
397 struct bictcp *ca = inet_csk_ca(sk);
398 u32 delay;
399
400 if (icsk->icsk_ca_state == TCP_CA_Open) {
401 cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
402 ca->delayed_ack += cnt;
403 }
404
405 /* Some calls are for duplicates without timetamps */
406 if (rtt_us < 0)
407 return;
408
409 /* Discard delay samples right after fast recovery */
410 if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
411 return;
412
413 delay = (rtt_us << 3) / USEC_PER_MSEC;
414 if (delay == 0)
415 delay = 1;
416
417 /* first time call or link delay decreases */
418 if (ca->delay_min == 0 || ca->delay_min > delay)
419 ca->delay_min = delay;
420
421 /* hystart triggers when cwnd is larger than some threshold */
422 if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
423 tp->snd_cwnd >= hystart_low_window)
424 hystart_update(sk, delay);
425 }
426
427 static struct tcp_congestion_ops cubictcp __read_mostly = {
428 .init = bictcp_init,
429 .ssthresh = bictcp_recalc_ssthresh,
430 .cong_avoid = bictcp_cong_avoid,
431 .set_state = bictcp_state,
432 .undo_cwnd = bictcp_undo_cwnd,
433 .pkts_acked = bictcp_acked,
434 .owner = THIS_MODULE,
435 .name = "cubic",
436 };
437
438 static int __init cubictcp_register(void)
439 {
440 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
441
442 /* Precompute a bunch of the scaling factors that are used per-packet
443 * based on SRTT of 100ms
444 */
445
446 beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
447
448 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
449
450 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
451 * so K = cubic_root( (wmax-cwnd)*rtt/c )
452 * the unit of K is bictcp_HZ=2^10, not HZ
453 *
454 * c = bic_scale >> 10
455 * rtt = 100ms
456 *
457 * the following code has been designed and tested for
458 * cwnd < 1 million packets
459 * RTT < 100 seconds
460 * HZ < 1,000,00 (corresponding to 10 nano-second)
461 */
462
463 /* 1/c * 2^2*bictcp_HZ * srtt */
464 cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
465
466 /* divide by bic_scale and by constant Srtt (100ms) */
467 do_div(cube_factor, bic_scale * 10);
468
469 /* hystart needs ms clock resolution */
470 if (hystart && HZ < 1000)
471 cubictcp.flags |= TCP_CONG_RTT_STAMP;
472
473 return tcp_register_congestion_control(&cubictcp);
474 }
475
476 static void __exit cubictcp_unregister(void)
477 {
478 tcp_unregister_congestion_control(&cubictcp);
479 }
480
481 module_init(cubictcp_register);
482 module_exit(cubictcp_unregister);
483
484 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
485 MODULE_LICENSE("GPL");
486 MODULE_DESCRIPTION("CUBIC TCP");
487 MODULE_VERSION("2.3");