Merge branch 'vhost-net-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mst...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271
272 #include <net/icmp.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/netdma.h>
277 #include <net/sock.h>
278
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281
282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283
284 struct percpu_counter tcp_orphan_count;
285 EXPORT_SYMBOL_GPL(tcp_orphan_count);
286
287 int sysctl_tcp_wmem[3] __read_mostly;
288 int sysctl_tcp_rmem[3] __read_mostly;
289
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292
293 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295
296 /*
297 * Current number of TCP sockets.
298 */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301
302 /*
303 * TCP splice context
304 */
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
309 };
310
311 /*
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
316 */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 if (!tcp_memory_pressure) {
323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 tcp_memory_pressure = 1;
325 }
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 u8 res = 0;
333
334 if (seconds > 0) {
335 int period = timeout;
336
337 res = 1;
338 while (seconds > period && res < 255) {
339 res++;
340 timeout <<= 1;
341 if (timeout > rto_max)
342 timeout = rto_max;
343 period += timeout;
344 }
345 }
346 return res;
347 }
348
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 int period = 0;
353
354 if (retrans > 0) {
355 period = timeout;
356 while (--retrans) {
357 timeout <<= 1;
358 if (timeout > rto_max)
359 timeout = rto_max;
360 period += timeout;
361 }
362 }
363 return period;
364 }
365
366 /* Address-family independent initialization for a tcp_sock.
367 *
368 * NOTE: A lot of things set to zero explicitly by call to
369 * sk_alloc() so need not be done here.
370 */
371 void tcp_init_sock(struct sock *sk)
372 {
373 struct inet_connection_sock *icsk = inet_csk(sk);
374 struct tcp_sock *tp = tcp_sk(sk);
375
376 skb_queue_head_init(&tp->out_of_order_queue);
377 tcp_init_xmit_timers(sk);
378 tcp_prequeue_init(tp);
379
380 icsk->icsk_rto = TCP_TIMEOUT_INIT;
381 tp->mdev = TCP_TIMEOUT_INIT;
382
383 /* So many TCP implementations out there (incorrectly) count the
384 * initial SYN frame in their delayed-ACK and congestion control
385 * algorithms that we must have the following bandaid to talk
386 * efficiently to them. -DaveM
387 */
388 tp->snd_cwnd = TCP_INIT_CWND;
389
390 /* See draft-stevens-tcpca-spec-01 for discussion of the
391 * initialization of these values.
392 */
393 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
394 tp->snd_cwnd_clamp = ~0;
395 tp->mss_cache = TCP_MSS_DEFAULT;
396
397 tp->reordering = sysctl_tcp_reordering;
398 tcp_enable_early_retrans(tp);
399 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
400
401 sk->sk_state = TCP_CLOSE;
402
403 sk->sk_write_space = sk_stream_write_space;
404 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
405
406 icsk->icsk_sync_mss = tcp_sync_mss;
407
408 /* TCP Cookie Transactions */
409 if (sysctl_tcp_cookie_size > 0) {
410 /* Default, cookies without s_data_payload. */
411 tp->cookie_values =
412 kzalloc(sizeof(*tp->cookie_values),
413 sk->sk_allocation);
414 if (tp->cookie_values != NULL)
415 kref_init(&tp->cookie_values->kref);
416 }
417 /* Presumed zeroed, in order of appearance:
418 * cookie_in_always, cookie_out_never,
419 * s_data_constant, s_data_in, s_data_out
420 */
421 sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
423
424 local_bh_disable();
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
427 local_bh_enable();
428 }
429 EXPORT_SYMBOL(tcp_init_sock);
430
431 /*
432 * Wait for a TCP event.
433 *
434 * Note that we don't need to lock the socket, as the upper poll layers
435 * take care of normal races (between the test and the event) and we don't
436 * go look at any of the socket buffers directly.
437 */
438 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
439 {
440 unsigned int mask;
441 struct sock *sk = sock->sk;
442 const struct tcp_sock *tp = tcp_sk(sk);
443
444 sock_poll_wait(file, sk_sleep(sk), wait);
445 if (sk->sk_state == TCP_LISTEN)
446 return inet_csk_listen_poll(sk);
447
448 /* Socket is not locked. We are protected from async events
449 * by poll logic and correct handling of state changes
450 * made by other threads is impossible in any case.
451 */
452
453 mask = 0;
454
455 /*
456 * POLLHUP is certainly not done right. But poll() doesn't
457 * have a notion of HUP in just one direction, and for a
458 * socket the read side is more interesting.
459 *
460 * Some poll() documentation says that POLLHUP is incompatible
461 * with the POLLOUT/POLLWR flags, so somebody should check this
462 * all. But careful, it tends to be safer to return too many
463 * bits than too few, and you can easily break real applications
464 * if you don't tell them that something has hung up!
465 *
466 * Check-me.
467 *
468 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
469 * our fs/select.c). It means that after we received EOF,
470 * poll always returns immediately, making impossible poll() on write()
471 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
472 * if and only if shutdown has been made in both directions.
473 * Actually, it is interesting to look how Solaris and DUX
474 * solve this dilemma. I would prefer, if POLLHUP were maskable,
475 * then we could set it on SND_SHUTDOWN. BTW examples given
476 * in Stevens' books assume exactly this behaviour, it explains
477 * why POLLHUP is incompatible with POLLOUT. --ANK
478 *
479 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
480 * blocking on fresh not-connected or disconnected socket. --ANK
481 */
482 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
483 mask |= POLLHUP;
484 if (sk->sk_shutdown & RCV_SHUTDOWN)
485 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
486
487 /* Connected? */
488 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
489 int target = sock_rcvlowat(sk, 0, INT_MAX);
490
491 if (tp->urg_seq == tp->copied_seq &&
492 !sock_flag(sk, SOCK_URGINLINE) &&
493 tp->urg_data)
494 target++;
495
496 /* Potential race condition. If read of tp below will
497 * escape above sk->sk_state, we can be illegally awaken
498 * in SYN_* states. */
499 if (tp->rcv_nxt - tp->copied_seq >= target)
500 mask |= POLLIN | POLLRDNORM;
501
502 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
503 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
504 mask |= POLLOUT | POLLWRNORM;
505 } else { /* send SIGIO later */
506 set_bit(SOCK_ASYNC_NOSPACE,
507 &sk->sk_socket->flags);
508 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
509
510 /* Race breaker. If space is freed after
511 * wspace test but before the flags are set,
512 * IO signal will be lost.
513 */
514 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
515 mask |= POLLOUT | POLLWRNORM;
516 }
517 } else
518 mask |= POLLOUT | POLLWRNORM;
519
520 if (tp->urg_data & TCP_URG_VALID)
521 mask |= POLLPRI;
522 }
523 /* This barrier is coupled with smp_wmb() in tcp_reset() */
524 smp_rmb();
525 if (sk->sk_err)
526 mask |= POLLERR;
527
528 return mask;
529 }
530 EXPORT_SYMBOL(tcp_poll);
531
532 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
533 {
534 struct tcp_sock *tp = tcp_sk(sk);
535 int answ;
536
537 switch (cmd) {
538 case SIOCINQ:
539 if (sk->sk_state == TCP_LISTEN)
540 return -EINVAL;
541
542 lock_sock(sk);
543 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
544 answ = 0;
545 else if (sock_flag(sk, SOCK_URGINLINE) ||
546 !tp->urg_data ||
547 before(tp->urg_seq, tp->copied_seq) ||
548 !before(tp->urg_seq, tp->rcv_nxt)) {
549 struct sk_buff *skb;
550
551 answ = tp->rcv_nxt - tp->copied_seq;
552
553 /* Subtract 1, if FIN is in queue. */
554 skb = skb_peek_tail(&sk->sk_receive_queue);
555 if (answ && skb)
556 answ -= tcp_hdr(skb)->fin;
557 } else
558 answ = tp->urg_seq - tp->copied_seq;
559 release_sock(sk);
560 break;
561 case SIOCATMARK:
562 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
563 break;
564 case SIOCOUTQ:
565 if (sk->sk_state == TCP_LISTEN)
566 return -EINVAL;
567
568 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
569 answ = 0;
570 else
571 answ = tp->write_seq - tp->snd_una;
572 break;
573 case SIOCOUTQNSD:
574 if (sk->sk_state == TCP_LISTEN)
575 return -EINVAL;
576
577 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
578 answ = 0;
579 else
580 answ = tp->write_seq - tp->snd_nxt;
581 break;
582 default:
583 return -ENOIOCTLCMD;
584 }
585
586 return put_user(answ, (int __user *)arg);
587 }
588 EXPORT_SYMBOL(tcp_ioctl);
589
590 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
591 {
592 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
593 tp->pushed_seq = tp->write_seq;
594 }
595
596 static inline int forced_push(const struct tcp_sock *tp)
597 {
598 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
599 }
600
601 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
602 {
603 struct tcp_sock *tp = tcp_sk(sk);
604 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
605
606 skb->csum = 0;
607 tcb->seq = tcb->end_seq = tp->write_seq;
608 tcb->tcp_flags = TCPHDR_ACK;
609 tcb->sacked = 0;
610 skb_header_release(skb);
611 tcp_add_write_queue_tail(sk, skb);
612 sk->sk_wmem_queued += skb->truesize;
613 sk_mem_charge(sk, skb->truesize);
614 if (tp->nonagle & TCP_NAGLE_PUSH)
615 tp->nonagle &= ~TCP_NAGLE_PUSH;
616 }
617
618 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
619 {
620 if (flags & MSG_OOB)
621 tp->snd_up = tp->write_seq;
622 }
623
624 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
625 int nonagle)
626 {
627 if (tcp_send_head(sk)) {
628 struct tcp_sock *tp = tcp_sk(sk);
629
630 if (!(flags & MSG_MORE) || forced_push(tp))
631 tcp_mark_push(tp, tcp_write_queue_tail(sk));
632
633 tcp_mark_urg(tp, flags);
634 __tcp_push_pending_frames(sk, mss_now,
635 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
636 }
637 }
638
639 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
640 unsigned int offset, size_t len)
641 {
642 struct tcp_splice_state *tss = rd_desc->arg.data;
643 int ret;
644
645 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
646 tss->flags);
647 if (ret > 0)
648 rd_desc->count -= ret;
649 return ret;
650 }
651
652 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
653 {
654 /* Store TCP splice context information in read_descriptor_t. */
655 read_descriptor_t rd_desc = {
656 .arg.data = tss,
657 .count = tss->len,
658 };
659
660 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
661 }
662
663 /**
664 * tcp_splice_read - splice data from TCP socket to a pipe
665 * @sock: socket to splice from
666 * @ppos: position (not valid)
667 * @pipe: pipe to splice to
668 * @len: number of bytes to splice
669 * @flags: splice modifier flags
670 *
671 * Description:
672 * Will read pages from given socket and fill them into a pipe.
673 *
674 **/
675 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
676 struct pipe_inode_info *pipe, size_t len,
677 unsigned int flags)
678 {
679 struct sock *sk = sock->sk;
680 struct tcp_splice_state tss = {
681 .pipe = pipe,
682 .len = len,
683 .flags = flags,
684 };
685 long timeo;
686 ssize_t spliced;
687 int ret;
688
689 sock_rps_record_flow(sk);
690 /*
691 * We can't seek on a socket input
692 */
693 if (unlikely(*ppos))
694 return -ESPIPE;
695
696 ret = spliced = 0;
697
698 lock_sock(sk);
699
700 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
701 while (tss.len) {
702 ret = __tcp_splice_read(sk, &tss);
703 if (ret < 0)
704 break;
705 else if (!ret) {
706 if (spliced)
707 break;
708 if (sock_flag(sk, SOCK_DONE))
709 break;
710 if (sk->sk_err) {
711 ret = sock_error(sk);
712 break;
713 }
714 if (sk->sk_shutdown & RCV_SHUTDOWN)
715 break;
716 if (sk->sk_state == TCP_CLOSE) {
717 /*
718 * This occurs when user tries to read
719 * from never connected socket.
720 */
721 if (!sock_flag(sk, SOCK_DONE))
722 ret = -ENOTCONN;
723 break;
724 }
725 if (!timeo) {
726 ret = -EAGAIN;
727 break;
728 }
729 sk_wait_data(sk, &timeo);
730 if (signal_pending(current)) {
731 ret = sock_intr_errno(timeo);
732 break;
733 }
734 continue;
735 }
736 tss.len -= ret;
737 spliced += ret;
738
739 if (!timeo)
740 break;
741 release_sock(sk);
742 lock_sock(sk);
743
744 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
745 (sk->sk_shutdown & RCV_SHUTDOWN) ||
746 signal_pending(current))
747 break;
748 }
749
750 release_sock(sk);
751
752 if (spliced)
753 return spliced;
754
755 return ret;
756 }
757 EXPORT_SYMBOL(tcp_splice_read);
758
759 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
760 {
761 struct sk_buff *skb;
762
763 /* The TCP header must be at least 32-bit aligned. */
764 size = ALIGN(size, 4);
765
766 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
767 if (skb) {
768 if (sk_wmem_schedule(sk, skb->truesize)) {
769 skb_reserve(skb, sk->sk_prot->max_header);
770 /*
771 * Make sure that we have exactly size bytes
772 * available to the caller, no more, no less.
773 */
774 skb->avail_size = size;
775 return skb;
776 }
777 __kfree_skb(skb);
778 } else {
779 sk->sk_prot->enter_memory_pressure(sk);
780 sk_stream_moderate_sndbuf(sk);
781 }
782 return NULL;
783 }
784
785 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
786 int large_allowed)
787 {
788 struct tcp_sock *tp = tcp_sk(sk);
789 u32 xmit_size_goal, old_size_goal;
790
791 xmit_size_goal = mss_now;
792
793 if (large_allowed && sk_can_gso(sk)) {
794 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
795 inet_csk(sk)->icsk_af_ops->net_header_len -
796 inet_csk(sk)->icsk_ext_hdr_len -
797 tp->tcp_header_len);
798
799 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
800
801 /* We try hard to avoid divides here */
802 old_size_goal = tp->xmit_size_goal_segs * mss_now;
803
804 if (likely(old_size_goal <= xmit_size_goal &&
805 old_size_goal + mss_now > xmit_size_goal)) {
806 xmit_size_goal = old_size_goal;
807 } else {
808 tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
809 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
810 }
811 }
812
813 return max(xmit_size_goal, mss_now);
814 }
815
816 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
817 {
818 int mss_now;
819
820 mss_now = tcp_current_mss(sk);
821 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
822
823 return mss_now;
824 }
825
826 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
827 size_t psize, int flags)
828 {
829 struct tcp_sock *tp = tcp_sk(sk);
830 int mss_now, size_goal;
831 int err;
832 ssize_t copied;
833 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
834
835 /* Wait for a connection to finish. */
836 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
837 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
838 goto out_err;
839
840 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
841
842 mss_now = tcp_send_mss(sk, &size_goal, flags);
843 copied = 0;
844
845 err = -EPIPE;
846 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
847 goto out_err;
848
849 while (psize > 0) {
850 struct sk_buff *skb = tcp_write_queue_tail(sk);
851 struct page *page = pages[poffset / PAGE_SIZE];
852 int copy, i;
853 int offset = poffset % PAGE_SIZE;
854 int size = min_t(size_t, psize, PAGE_SIZE - offset);
855 bool can_coalesce;
856
857 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
858 new_segment:
859 if (!sk_stream_memory_free(sk))
860 goto wait_for_sndbuf;
861
862 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
863 if (!skb)
864 goto wait_for_memory;
865
866 skb_entail(sk, skb);
867 copy = size_goal;
868 }
869
870 if (copy > size)
871 copy = size;
872
873 i = skb_shinfo(skb)->nr_frags;
874 can_coalesce = skb_can_coalesce(skb, i, page, offset);
875 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
876 tcp_mark_push(tp, skb);
877 goto new_segment;
878 }
879 if (!sk_wmem_schedule(sk, copy))
880 goto wait_for_memory;
881
882 if (can_coalesce) {
883 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
884 } else {
885 get_page(page);
886 skb_fill_page_desc(skb, i, page, offset, copy);
887 }
888
889 skb->len += copy;
890 skb->data_len += copy;
891 skb->truesize += copy;
892 sk->sk_wmem_queued += copy;
893 sk_mem_charge(sk, copy);
894 skb->ip_summed = CHECKSUM_PARTIAL;
895 tp->write_seq += copy;
896 TCP_SKB_CB(skb)->end_seq += copy;
897 skb_shinfo(skb)->gso_segs = 0;
898
899 if (!copied)
900 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
901
902 copied += copy;
903 poffset += copy;
904 if (!(psize -= copy))
905 goto out;
906
907 if (skb->len < size_goal || (flags & MSG_OOB))
908 continue;
909
910 if (forced_push(tp)) {
911 tcp_mark_push(tp, skb);
912 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
913 } else if (skb == tcp_send_head(sk))
914 tcp_push_one(sk, mss_now);
915 continue;
916
917 wait_for_sndbuf:
918 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
919 wait_for_memory:
920 if (copied)
921 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
922
923 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
924 goto do_error;
925
926 mss_now = tcp_send_mss(sk, &size_goal, flags);
927 }
928
929 out:
930 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
931 tcp_push(sk, flags, mss_now, tp->nonagle);
932 return copied;
933
934 do_error:
935 if (copied)
936 goto out;
937 out_err:
938 return sk_stream_error(sk, flags, err);
939 }
940
941 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
942 size_t size, int flags)
943 {
944 ssize_t res;
945
946 if (!(sk->sk_route_caps & NETIF_F_SG) ||
947 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
948 return sock_no_sendpage(sk->sk_socket, page, offset, size,
949 flags);
950
951 lock_sock(sk);
952 res = do_tcp_sendpages(sk, &page, offset, size, flags);
953 release_sock(sk);
954 return res;
955 }
956 EXPORT_SYMBOL(tcp_sendpage);
957
958 static inline int select_size(const struct sock *sk, bool sg)
959 {
960 const struct tcp_sock *tp = tcp_sk(sk);
961 int tmp = tp->mss_cache;
962
963 if (sg) {
964 if (sk_can_gso(sk)) {
965 /* Small frames wont use a full page:
966 * Payload will immediately follow tcp header.
967 */
968 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
969 } else {
970 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
971
972 if (tmp >= pgbreak &&
973 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
974 tmp = pgbreak;
975 }
976 }
977
978 return tmp;
979 }
980
981 static int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
982 {
983 struct sk_buff *skb;
984 struct tcphdr *th;
985 bool fragstolen;
986
987 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
988 if (!skb)
989 goto err;
990
991 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
992 skb_reset_transport_header(skb);
993 memset(th, 0, sizeof(*th));
994
995 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
996 goto err_free;
997
998 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
999 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
1000 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
1001
1002 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
1003 WARN_ON_ONCE(fragstolen); /* should not happen */
1004 __kfree_skb(skb);
1005 }
1006 return size;
1007
1008 err_free:
1009 kfree_skb(skb);
1010 err:
1011 return -ENOMEM;
1012 }
1013
1014 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1015 size_t size)
1016 {
1017 struct iovec *iov;
1018 struct tcp_sock *tp = tcp_sk(sk);
1019 struct sk_buff *skb;
1020 int iovlen, flags, err, copied;
1021 int mss_now = 0, size_goal;
1022 bool sg;
1023 long timeo;
1024
1025 lock_sock(sk);
1026
1027 flags = msg->msg_flags;
1028 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1029
1030 /* Wait for a connection to finish. */
1031 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1032 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1033 goto out_err;
1034
1035 if (unlikely(tp->repair)) {
1036 if (tp->repair_queue == TCP_RECV_QUEUE) {
1037 copied = tcp_send_rcvq(sk, msg, size);
1038 goto out;
1039 }
1040
1041 err = -EINVAL;
1042 if (tp->repair_queue == TCP_NO_QUEUE)
1043 goto out_err;
1044
1045 /* 'common' sending to sendq */
1046 }
1047
1048 /* This should be in poll */
1049 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1050
1051 mss_now = tcp_send_mss(sk, &size_goal, flags);
1052
1053 /* Ok commence sending. */
1054 iovlen = msg->msg_iovlen;
1055 iov = msg->msg_iov;
1056 copied = 0;
1057
1058 err = -EPIPE;
1059 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1060 goto out_err;
1061
1062 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1063
1064 while (--iovlen >= 0) {
1065 size_t seglen = iov->iov_len;
1066 unsigned char __user *from = iov->iov_base;
1067
1068 iov++;
1069
1070 while (seglen > 0) {
1071 int copy = 0;
1072 int max = size_goal;
1073
1074 skb = tcp_write_queue_tail(sk);
1075 if (tcp_send_head(sk)) {
1076 if (skb->ip_summed == CHECKSUM_NONE)
1077 max = mss_now;
1078 copy = max - skb->len;
1079 }
1080
1081 if (copy <= 0) {
1082 new_segment:
1083 /* Allocate new segment. If the interface is SG,
1084 * allocate skb fitting to single page.
1085 */
1086 if (!sk_stream_memory_free(sk))
1087 goto wait_for_sndbuf;
1088
1089 skb = sk_stream_alloc_skb(sk,
1090 select_size(sk, sg),
1091 sk->sk_allocation);
1092 if (!skb)
1093 goto wait_for_memory;
1094
1095 /*
1096 * Check whether we can use HW checksum.
1097 */
1098 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1099 skb->ip_summed = CHECKSUM_PARTIAL;
1100
1101 skb_entail(sk, skb);
1102 copy = size_goal;
1103 max = size_goal;
1104 }
1105
1106 /* Try to append data to the end of skb. */
1107 if (copy > seglen)
1108 copy = seglen;
1109
1110 /* Where to copy to? */
1111 if (skb_availroom(skb) > 0) {
1112 /* We have some space in skb head. Superb! */
1113 copy = min_t(int, copy, skb_availroom(skb));
1114 err = skb_add_data_nocache(sk, skb, from, copy);
1115 if (err)
1116 goto do_fault;
1117 } else {
1118 int merge = 0;
1119 int i = skb_shinfo(skb)->nr_frags;
1120 struct page *page = sk->sk_sndmsg_page;
1121 int off;
1122
1123 if (page && page_count(page) == 1)
1124 sk->sk_sndmsg_off = 0;
1125
1126 off = sk->sk_sndmsg_off;
1127
1128 if (skb_can_coalesce(skb, i, page, off) &&
1129 off != PAGE_SIZE) {
1130 /* We can extend the last page
1131 * fragment. */
1132 merge = 1;
1133 } else if (i == MAX_SKB_FRAGS || !sg) {
1134 /* Need to add new fragment and cannot
1135 * do this because interface is non-SG,
1136 * or because all the page slots are
1137 * busy. */
1138 tcp_mark_push(tp, skb);
1139 goto new_segment;
1140 } else if (page) {
1141 if (off == PAGE_SIZE) {
1142 put_page(page);
1143 sk->sk_sndmsg_page = page = NULL;
1144 off = 0;
1145 }
1146 } else
1147 off = 0;
1148
1149 if (copy > PAGE_SIZE - off)
1150 copy = PAGE_SIZE - off;
1151
1152 if (!sk_wmem_schedule(sk, copy))
1153 goto wait_for_memory;
1154
1155 if (!page) {
1156 /* Allocate new cache page. */
1157 if (!(page = sk_stream_alloc_page(sk)))
1158 goto wait_for_memory;
1159 }
1160
1161 /* Time to copy data. We are close to
1162 * the end! */
1163 err = skb_copy_to_page_nocache(sk, from, skb,
1164 page, off, copy);
1165 if (err) {
1166 /* If this page was new, give it to the
1167 * socket so it does not get leaked.
1168 */
1169 if (!sk->sk_sndmsg_page) {
1170 sk->sk_sndmsg_page = page;
1171 sk->sk_sndmsg_off = 0;
1172 }
1173 goto do_error;
1174 }
1175
1176 /* Update the skb. */
1177 if (merge) {
1178 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1179 } else {
1180 skb_fill_page_desc(skb, i, page, off, copy);
1181 if (sk->sk_sndmsg_page) {
1182 get_page(page);
1183 } else if (off + copy < PAGE_SIZE) {
1184 get_page(page);
1185 sk->sk_sndmsg_page = page;
1186 }
1187 }
1188
1189 sk->sk_sndmsg_off = off + copy;
1190 }
1191
1192 if (!copied)
1193 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1194
1195 tp->write_seq += copy;
1196 TCP_SKB_CB(skb)->end_seq += copy;
1197 skb_shinfo(skb)->gso_segs = 0;
1198
1199 from += copy;
1200 copied += copy;
1201 if ((seglen -= copy) == 0 && iovlen == 0)
1202 goto out;
1203
1204 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1205 continue;
1206
1207 if (forced_push(tp)) {
1208 tcp_mark_push(tp, skb);
1209 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1210 } else if (skb == tcp_send_head(sk))
1211 tcp_push_one(sk, mss_now);
1212 continue;
1213
1214 wait_for_sndbuf:
1215 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1216 wait_for_memory:
1217 if (copied && likely(!tp->repair))
1218 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1219
1220 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1221 goto do_error;
1222
1223 mss_now = tcp_send_mss(sk, &size_goal, flags);
1224 }
1225 }
1226
1227 out:
1228 if (copied && likely(!tp->repair))
1229 tcp_push(sk, flags, mss_now, tp->nonagle);
1230 release_sock(sk);
1231 return copied;
1232
1233 do_fault:
1234 if (!skb->len) {
1235 tcp_unlink_write_queue(skb, sk);
1236 /* It is the one place in all of TCP, except connection
1237 * reset, where we can be unlinking the send_head.
1238 */
1239 tcp_check_send_head(sk, skb);
1240 sk_wmem_free_skb(sk, skb);
1241 }
1242
1243 do_error:
1244 if (copied)
1245 goto out;
1246 out_err:
1247 err = sk_stream_error(sk, flags, err);
1248 release_sock(sk);
1249 return err;
1250 }
1251 EXPORT_SYMBOL(tcp_sendmsg);
1252
1253 /*
1254 * Handle reading urgent data. BSD has very simple semantics for
1255 * this, no blocking and very strange errors 8)
1256 */
1257
1258 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1259 {
1260 struct tcp_sock *tp = tcp_sk(sk);
1261
1262 /* No URG data to read. */
1263 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1264 tp->urg_data == TCP_URG_READ)
1265 return -EINVAL; /* Yes this is right ! */
1266
1267 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1268 return -ENOTCONN;
1269
1270 if (tp->urg_data & TCP_URG_VALID) {
1271 int err = 0;
1272 char c = tp->urg_data;
1273
1274 if (!(flags & MSG_PEEK))
1275 tp->urg_data = TCP_URG_READ;
1276
1277 /* Read urgent data. */
1278 msg->msg_flags |= MSG_OOB;
1279
1280 if (len > 0) {
1281 if (!(flags & MSG_TRUNC))
1282 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1283 len = 1;
1284 } else
1285 msg->msg_flags |= MSG_TRUNC;
1286
1287 return err ? -EFAULT : len;
1288 }
1289
1290 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1291 return 0;
1292
1293 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1294 * the available implementations agree in this case:
1295 * this call should never block, independent of the
1296 * blocking state of the socket.
1297 * Mike <pall@rz.uni-karlsruhe.de>
1298 */
1299 return -EAGAIN;
1300 }
1301
1302 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1303 {
1304 struct sk_buff *skb;
1305 int copied = 0, err = 0;
1306
1307 /* XXX -- need to support SO_PEEK_OFF */
1308
1309 skb_queue_walk(&sk->sk_write_queue, skb) {
1310 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1311 if (err)
1312 break;
1313
1314 copied += skb->len;
1315 }
1316
1317 return err ?: copied;
1318 }
1319
1320 /* Clean up the receive buffer for full frames taken by the user,
1321 * then send an ACK if necessary. COPIED is the number of bytes
1322 * tcp_recvmsg has given to the user so far, it speeds up the
1323 * calculation of whether or not we must ACK for the sake of
1324 * a window update.
1325 */
1326 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1327 {
1328 struct tcp_sock *tp = tcp_sk(sk);
1329 int time_to_ack = 0;
1330
1331 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1332
1333 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1334 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1335 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1336
1337 if (inet_csk_ack_scheduled(sk)) {
1338 const struct inet_connection_sock *icsk = inet_csk(sk);
1339 /* Delayed ACKs frequently hit locked sockets during bulk
1340 * receive. */
1341 if (icsk->icsk_ack.blocked ||
1342 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1343 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1344 /*
1345 * If this read emptied read buffer, we send ACK, if
1346 * connection is not bidirectional, user drained
1347 * receive buffer and there was a small segment
1348 * in queue.
1349 */
1350 (copied > 0 &&
1351 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1352 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1353 !icsk->icsk_ack.pingpong)) &&
1354 !atomic_read(&sk->sk_rmem_alloc)))
1355 time_to_ack = 1;
1356 }
1357
1358 /* We send an ACK if we can now advertise a non-zero window
1359 * which has been raised "significantly".
1360 *
1361 * Even if window raised up to infinity, do not send window open ACK
1362 * in states, where we will not receive more. It is useless.
1363 */
1364 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1365 __u32 rcv_window_now = tcp_receive_window(tp);
1366
1367 /* Optimize, __tcp_select_window() is not cheap. */
1368 if (2*rcv_window_now <= tp->window_clamp) {
1369 __u32 new_window = __tcp_select_window(sk);
1370
1371 /* Send ACK now, if this read freed lots of space
1372 * in our buffer. Certainly, new_window is new window.
1373 * We can advertise it now, if it is not less than current one.
1374 * "Lots" means "at least twice" here.
1375 */
1376 if (new_window && new_window >= 2 * rcv_window_now)
1377 time_to_ack = 1;
1378 }
1379 }
1380 if (time_to_ack)
1381 tcp_send_ack(sk);
1382 }
1383
1384 static void tcp_prequeue_process(struct sock *sk)
1385 {
1386 struct sk_buff *skb;
1387 struct tcp_sock *tp = tcp_sk(sk);
1388
1389 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1390
1391 /* RX process wants to run with disabled BHs, though it is not
1392 * necessary */
1393 local_bh_disable();
1394 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1395 sk_backlog_rcv(sk, skb);
1396 local_bh_enable();
1397
1398 /* Clear memory counter. */
1399 tp->ucopy.memory = 0;
1400 }
1401
1402 #ifdef CONFIG_NET_DMA
1403 static void tcp_service_net_dma(struct sock *sk, bool wait)
1404 {
1405 dma_cookie_t done, used;
1406 dma_cookie_t last_issued;
1407 struct tcp_sock *tp = tcp_sk(sk);
1408
1409 if (!tp->ucopy.dma_chan)
1410 return;
1411
1412 last_issued = tp->ucopy.dma_cookie;
1413 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1414
1415 do {
1416 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1417 last_issued, &done,
1418 &used) == DMA_SUCCESS) {
1419 /* Safe to free early-copied skbs now */
1420 __skb_queue_purge(&sk->sk_async_wait_queue);
1421 break;
1422 } else {
1423 struct sk_buff *skb;
1424 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1425 (dma_async_is_complete(skb->dma_cookie, done,
1426 used) == DMA_SUCCESS)) {
1427 __skb_dequeue(&sk->sk_async_wait_queue);
1428 kfree_skb(skb);
1429 }
1430 }
1431 } while (wait);
1432 }
1433 #endif
1434
1435 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1436 {
1437 struct sk_buff *skb;
1438 u32 offset;
1439
1440 skb_queue_walk(&sk->sk_receive_queue, skb) {
1441 offset = seq - TCP_SKB_CB(skb)->seq;
1442 if (tcp_hdr(skb)->syn)
1443 offset--;
1444 if (offset < skb->len || tcp_hdr(skb)->fin) {
1445 *off = offset;
1446 return skb;
1447 }
1448 }
1449 return NULL;
1450 }
1451
1452 /*
1453 * This routine provides an alternative to tcp_recvmsg() for routines
1454 * that would like to handle copying from skbuffs directly in 'sendfile'
1455 * fashion.
1456 * Note:
1457 * - It is assumed that the socket was locked by the caller.
1458 * - The routine does not block.
1459 * - At present, there is no support for reading OOB data
1460 * or for 'peeking' the socket using this routine
1461 * (although both would be easy to implement).
1462 */
1463 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1464 sk_read_actor_t recv_actor)
1465 {
1466 struct sk_buff *skb;
1467 struct tcp_sock *tp = tcp_sk(sk);
1468 u32 seq = tp->copied_seq;
1469 u32 offset;
1470 int copied = 0;
1471
1472 if (sk->sk_state == TCP_LISTEN)
1473 return -ENOTCONN;
1474 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1475 if (offset < skb->len) {
1476 int used;
1477 size_t len;
1478
1479 len = skb->len - offset;
1480 /* Stop reading if we hit a patch of urgent data */
1481 if (tp->urg_data) {
1482 u32 urg_offset = tp->urg_seq - seq;
1483 if (urg_offset < len)
1484 len = urg_offset;
1485 if (!len)
1486 break;
1487 }
1488 used = recv_actor(desc, skb, offset, len);
1489 if (used < 0) {
1490 if (!copied)
1491 copied = used;
1492 break;
1493 } else if (used <= len) {
1494 seq += used;
1495 copied += used;
1496 offset += used;
1497 }
1498 /*
1499 * If recv_actor drops the lock (e.g. TCP splice
1500 * receive) the skb pointer might be invalid when
1501 * getting here: tcp_collapse might have deleted it
1502 * while aggregating skbs from the socket queue.
1503 */
1504 skb = tcp_recv_skb(sk, seq-1, &offset);
1505 if (!skb || (offset+1 != skb->len))
1506 break;
1507 }
1508 if (tcp_hdr(skb)->fin) {
1509 sk_eat_skb(sk, skb, 0);
1510 ++seq;
1511 break;
1512 }
1513 sk_eat_skb(sk, skb, 0);
1514 if (!desc->count)
1515 break;
1516 tp->copied_seq = seq;
1517 }
1518 tp->copied_seq = seq;
1519
1520 tcp_rcv_space_adjust(sk);
1521
1522 /* Clean up data we have read: This will do ACK frames. */
1523 if (copied > 0)
1524 tcp_cleanup_rbuf(sk, copied);
1525 return copied;
1526 }
1527 EXPORT_SYMBOL(tcp_read_sock);
1528
1529 /*
1530 * This routine copies from a sock struct into the user buffer.
1531 *
1532 * Technical note: in 2.3 we work on _locked_ socket, so that
1533 * tricks with *seq access order and skb->users are not required.
1534 * Probably, code can be easily improved even more.
1535 */
1536
1537 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1538 size_t len, int nonblock, int flags, int *addr_len)
1539 {
1540 struct tcp_sock *tp = tcp_sk(sk);
1541 int copied = 0;
1542 u32 peek_seq;
1543 u32 *seq;
1544 unsigned long used;
1545 int err;
1546 int target; /* Read at least this many bytes */
1547 long timeo;
1548 struct task_struct *user_recv = NULL;
1549 int copied_early = 0;
1550 struct sk_buff *skb;
1551 u32 urg_hole = 0;
1552
1553 lock_sock(sk);
1554
1555 err = -ENOTCONN;
1556 if (sk->sk_state == TCP_LISTEN)
1557 goto out;
1558
1559 timeo = sock_rcvtimeo(sk, nonblock);
1560
1561 /* Urgent data needs to be handled specially. */
1562 if (flags & MSG_OOB)
1563 goto recv_urg;
1564
1565 if (unlikely(tp->repair)) {
1566 err = -EPERM;
1567 if (!(flags & MSG_PEEK))
1568 goto out;
1569
1570 if (tp->repair_queue == TCP_SEND_QUEUE)
1571 goto recv_sndq;
1572
1573 err = -EINVAL;
1574 if (tp->repair_queue == TCP_NO_QUEUE)
1575 goto out;
1576
1577 /* 'common' recv queue MSG_PEEK-ing */
1578 }
1579
1580 seq = &tp->copied_seq;
1581 if (flags & MSG_PEEK) {
1582 peek_seq = tp->copied_seq;
1583 seq = &peek_seq;
1584 }
1585
1586 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1587
1588 #ifdef CONFIG_NET_DMA
1589 tp->ucopy.dma_chan = NULL;
1590 preempt_disable();
1591 skb = skb_peek_tail(&sk->sk_receive_queue);
1592 {
1593 int available = 0;
1594
1595 if (skb)
1596 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1597 if ((available < target) &&
1598 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1599 !sysctl_tcp_low_latency &&
1600 net_dma_find_channel()) {
1601 preempt_enable_no_resched();
1602 tp->ucopy.pinned_list =
1603 dma_pin_iovec_pages(msg->msg_iov, len);
1604 } else {
1605 preempt_enable_no_resched();
1606 }
1607 }
1608 #endif
1609
1610 do {
1611 u32 offset;
1612
1613 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1614 if (tp->urg_data && tp->urg_seq == *seq) {
1615 if (copied)
1616 break;
1617 if (signal_pending(current)) {
1618 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1619 break;
1620 }
1621 }
1622
1623 /* Next get a buffer. */
1624
1625 skb_queue_walk(&sk->sk_receive_queue, skb) {
1626 /* Now that we have two receive queues this
1627 * shouldn't happen.
1628 */
1629 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1630 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1631 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1632 flags))
1633 break;
1634
1635 offset = *seq - TCP_SKB_CB(skb)->seq;
1636 if (tcp_hdr(skb)->syn)
1637 offset--;
1638 if (offset < skb->len)
1639 goto found_ok_skb;
1640 if (tcp_hdr(skb)->fin)
1641 goto found_fin_ok;
1642 WARN(!(flags & MSG_PEEK),
1643 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1644 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1645 }
1646
1647 /* Well, if we have backlog, try to process it now yet. */
1648
1649 if (copied >= target && !sk->sk_backlog.tail)
1650 break;
1651
1652 if (copied) {
1653 if (sk->sk_err ||
1654 sk->sk_state == TCP_CLOSE ||
1655 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1656 !timeo ||
1657 signal_pending(current))
1658 break;
1659 } else {
1660 if (sock_flag(sk, SOCK_DONE))
1661 break;
1662
1663 if (sk->sk_err) {
1664 copied = sock_error(sk);
1665 break;
1666 }
1667
1668 if (sk->sk_shutdown & RCV_SHUTDOWN)
1669 break;
1670
1671 if (sk->sk_state == TCP_CLOSE) {
1672 if (!sock_flag(sk, SOCK_DONE)) {
1673 /* This occurs when user tries to read
1674 * from never connected socket.
1675 */
1676 copied = -ENOTCONN;
1677 break;
1678 }
1679 break;
1680 }
1681
1682 if (!timeo) {
1683 copied = -EAGAIN;
1684 break;
1685 }
1686
1687 if (signal_pending(current)) {
1688 copied = sock_intr_errno(timeo);
1689 break;
1690 }
1691 }
1692
1693 tcp_cleanup_rbuf(sk, copied);
1694
1695 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1696 /* Install new reader */
1697 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1698 user_recv = current;
1699 tp->ucopy.task = user_recv;
1700 tp->ucopy.iov = msg->msg_iov;
1701 }
1702
1703 tp->ucopy.len = len;
1704
1705 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1706 !(flags & (MSG_PEEK | MSG_TRUNC)));
1707
1708 /* Ugly... If prequeue is not empty, we have to
1709 * process it before releasing socket, otherwise
1710 * order will be broken at second iteration.
1711 * More elegant solution is required!!!
1712 *
1713 * Look: we have the following (pseudo)queues:
1714 *
1715 * 1. packets in flight
1716 * 2. backlog
1717 * 3. prequeue
1718 * 4. receive_queue
1719 *
1720 * Each queue can be processed only if the next ones
1721 * are empty. At this point we have empty receive_queue.
1722 * But prequeue _can_ be not empty after 2nd iteration,
1723 * when we jumped to start of loop because backlog
1724 * processing added something to receive_queue.
1725 * We cannot release_sock(), because backlog contains
1726 * packets arrived _after_ prequeued ones.
1727 *
1728 * Shortly, algorithm is clear --- to process all
1729 * the queues in order. We could make it more directly,
1730 * requeueing packets from backlog to prequeue, if
1731 * is not empty. It is more elegant, but eats cycles,
1732 * unfortunately.
1733 */
1734 if (!skb_queue_empty(&tp->ucopy.prequeue))
1735 goto do_prequeue;
1736
1737 /* __ Set realtime policy in scheduler __ */
1738 }
1739
1740 #ifdef CONFIG_NET_DMA
1741 if (tp->ucopy.dma_chan)
1742 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1743 #endif
1744 if (copied >= target) {
1745 /* Do not sleep, just process backlog. */
1746 release_sock(sk);
1747 lock_sock(sk);
1748 } else
1749 sk_wait_data(sk, &timeo);
1750
1751 #ifdef CONFIG_NET_DMA
1752 tcp_service_net_dma(sk, false); /* Don't block */
1753 tp->ucopy.wakeup = 0;
1754 #endif
1755
1756 if (user_recv) {
1757 int chunk;
1758
1759 /* __ Restore normal policy in scheduler __ */
1760
1761 if ((chunk = len - tp->ucopy.len) != 0) {
1762 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1763 len -= chunk;
1764 copied += chunk;
1765 }
1766
1767 if (tp->rcv_nxt == tp->copied_seq &&
1768 !skb_queue_empty(&tp->ucopy.prequeue)) {
1769 do_prequeue:
1770 tcp_prequeue_process(sk);
1771
1772 if ((chunk = len - tp->ucopy.len) != 0) {
1773 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1774 len -= chunk;
1775 copied += chunk;
1776 }
1777 }
1778 }
1779 if ((flags & MSG_PEEK) &&
1780 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1781 if (net_ratelimit())
1782 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1783 current->comm, task_pid_nr(current));
1784 peek_seq = tp->copied_seq;
1785 }
1786 continue;
1787
1788 found_ok_skb:
1789 /* Ok so how much can we use? */
1790 used = skb->len - offset;
1791 if (len < used)
1792 used = len;
1793
1794 /* Do we have urgent data here? */
1795 if (tp->urg_data) {
1796 u32 urg_offset = tp->urg_seq - *seq;
1797 if (urg_offset < used) {
1798 if (!urg_offset) {
1799 if (!sock_flag(sk, SOCK_URGINLINE)) {
1800 ++*seq;
1801 urg_hole++;
1802 offset++;
1803 used--;
1804 if (!used)
1805 goto skip_copy;
1806 }
1807 } else
1808 used = urg_offset;
1809 }
1810 }
1811
1812 if (!(flags & MSG_TRUNC)) {
1813 #ifdef CONFIG_NET_DMA
1814 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1815 tp->ucopy.dma_chan = net_dma_find_channel();
1816
1817 if (tp->ucopy.dma_chan) {
1818 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1819 tp->ucopy.dma_chan, skb, offset,
1820 msg->msg_iov, used,
1821 tp->ucopy.pinned_list);
1822
1823 if (tp->ucopy.dma_cookie < 0) {
1824
1825 pr_alert("%s: dma_cookie < 0\n",
1826 __func__);
1827
1828 /* Exception. Bailout! */
1829 if (!copied)
1830 copied = -EFAULT;
1831 break;
1832 }
1833
1834 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1835
1836 if ((offset + used) == skb->len)
1837 copied_early = 1;
1838
1839 } else
1840 #endif
1841 {
1842 err = skb_copy_datagram_iovec(skb, offset,
1843 msg->msg_iov, used);
1844 if (err) {
1845 /* Exception. Bailout! */
1846 if (!copied)
1847 copied = -EFAULT;
1848 break;
1849 }
1850 }
1851 }
1852
1853 *seq += used;
1854 copied += used;
1855 len -= used;
1856
1857 tcp_rcv_space_adjust(sk);
1858
1859 skip_copy:
1860 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1861 tp->urg_data = 0;
1862 tcp_fast_path_check(sk);
1863 }
1864 if (used + offset < skb->len)
1865 continue;
1866
1867 if (tcp_hdr(skb)->fin)
1868 goto found_fin_ok;
1869 if (!(flags & MSG_PEEK)) {
1870 sk_eat_skb(sk, skb, copied_early);
1871 copied_early = 0;
1872 }
1873 continue;
1874
1875 found_fin_ok:
1876 /* Process the FIN. */
1877 ++*seq;
1878 if (!(flags & MSG_PEEK)) {
1879 sk_eat_skb(sk, skb, copied_early);
1880 copied_early = 0;
1881 }
1882 break;
1883 } while (len > 0);
1884
1885 if (user_recv) {
1886 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1887 int chunk;
1888
1889 tp->ucopy.len = copied > 0 ? len : 0;
1890
1891 tcp_prequeue_process(sk);
1892
1893 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1894 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1895 len -= chunk;
1896 copied += chunk;
1897 }
1898 }
1899
1900 tp->ucopy.task = NULL;
1901 tp->ucopy.len = 0;
1902 }
1903
1904 #ifdef CONFIG_NET_DMA
1905 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1906 tp->ucopy.dma_chan = NULL;
1907
1908 if (tp->ucopy.pinned_list) {
1909 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1910 tp->ucopy.pinned_list = NULL;
1911 }
1912 #endif
1913
1914 /* According to UNIX98, msg_name/msg_namelen are ignored
1915 * on connected socket. I was just happy when found this 8) --ANK
1916 */
1917
1918 /* Clean up data we have read: This will do ACK frames. */
1919 tcp_cleanup_rbuf(sk, copied);
1920
1921 release_sock(sk);
1922 return copied;
1923
1924 out:
1925 release_sock(sk);
1926 return err;
1927
1928 recv_urg:
1929 err = tcp_recv_urg(sk, msg, len, flags);
1930 goto out;
1931
1932 recv_sndq:
1933 err = tcp_peek_sndq(sk, msg, len);
1934 goto out;
1935 }
1936 EXPORT_SYMBOL(tcp_recvmsg);
1937
1938 void tcp_set_state(struct sock *sk, int state)
1939 {
1940 int oldstate = sk->sk_state;
1941
1942 switch (state) {
1943 case TCP_ESTABLISHED:
1944 if (oldstate != TCP_ESTABLISHED)
1945 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1946 break;
1947
1948 case TCP_CLOSE:
1949 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1950 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1951
1952 sk->sk_prot->unhash(sk);
1953 if (inet_csk(sk)->icsk_bind_hash &&
1954 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1955 inet_put_port(sk);
1956 /* fall through */
1957 default:
1958 if (oldstate == TCP_ESTABLISHED)
1959 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1960 }
1961
1962 /* Change state AFTER socket is unhashed to avoid closed
1963 * socket sitting in hash tables.
1964 */
1965 sk->sk_state = state;
1966
1967 #ifdef STATE_TRACE
1968 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1969 #endif
1970 }
1971 EXPORT_SYMBOL_GPL(tcp_set_state);
1972
1973 /*
1974 * State processing on a close. This implements the state shift for
1975 * sending our FIN frame. Note that we only send a FIN for some
1976 * states. A shutdown() may have already sent the FIN, or we may be
1977 * closed.
1978 */
1979
1980 static const unsigned char new_state[16] = {
1981 /* current state: new state: action: */
1982 /* (Invalid) */ TCP_CLOSE,
1983 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1984 /* TCP_SYN_SENT */ TCP_CLOSE,
1985 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1986 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1987 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1988 /* TCP_TIME_WAIT */ TCP_CLOSE,
1989 /* TCP_CLOSE */ TCP_CLOSE,
1990 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1991 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1992 /* TCP_LISTEN */ TCP_CLOSE,
1993 /* TCP_CLOSING */ TCP_CLOSING,
1994 };
1995
1996 static int tcp_close_state(struct sock *sk)
1997 {
1998 int next = (int)new_state[sk->sk_state];
1999 int ns = next & TCP_STATE_MASK;
2000
2001 tcp_set_state(sk, ns);
2002
2003 return next & TCP_ACTION_FIN;
2004 }
2005
2006 /*
2007 * Shutdown the sending side of a connection. Much like close except
2008 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2009 */
2010
2011 void tcp_shutdown(struct sock *sk, int how)
2012 {
2013 /* We need to grab some memory, and put together a FIN,
2014 * and then put it into the queue to be sent.
2015 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2016 */
2017 if (!(how & SEND_SHUTDOWN))
2018 return;
2019
2020 /* If we've already sent a FIN, or it's a closed state, skip this. */
2021 if ((1 << sk->sk_state) &
2022 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2023 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2024 /* Clear out any half completed packets. FIN if needed. */
2025 if (tcp_close_state(sk))
2026 tcp_send_fin(sk);
2027 }
2028 }
2029 EXPORT_SYMBOL(tcp_shutdown);
2030
2031 bool tcp_check_oom(struct sock *sk, int shift)
2032 {
2033 bool too_many_orphans, out_of_socket_memory;
2034
2035 too_many_orphans = tcp_too_many_orphans(sk, shift);
2036 out_of_socket_memory = tcp_out_of_memory(sk);
2037
2038 if (too_many_orphans && net_ratelimit())
2039 pr_info("too many orphaned sockets\n");
2040 if (out_of_socket_memory && net_ratelimit())
2041 pr_info("out of memory -- consider tuning tcp_mem\n");
2042 return too_many_orphans || out_of_socket_memory;
2043 }
2044
2045 void tcp_close(struct sock *sk, long timeout)
2046 {
2047 struct sk_buff *skb;
2048 int data_was_unread = 0;
2049 int state;
2050
2051 lock_sock(sk);
2052 sk->sk_shutdown = SHUTDOWN_MASK;
2053
2054 if (sk->sk_state == TCP_LISTEN) {
2055 tcp_set_state(sk, TCP_CLOSE);
2056
2057 /* Special case. */
2058 inet_csk_listen_stop(sk);
2059
2060 goto adjudge_to_death;
2061 }
2062
2063 /* We need to flush the recv. buffs. We do this only on the
2064 * descriptor close, not protocol-sourced closes, because the
2065 * reader process may not have drained the data yet!
2066 */
2067 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2068 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2069 tcp_hdr(skb)->fin;
2070 data_was_unread += len;
2071 __kfree_skb(skb);
2072 }
2073
2074 sk_mem_reclaim(sk);
2075
2076 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2077 if (sk->sk_state == TCP_CLOSE)
2078 goto adjudge_to_death;
2079
2080 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2081 * data was lost. To witness the awful effects of the old behavior of
2082 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2083 * GET in an FTP client, suspend the process, wait for the client to
2084 * advertise a zero window, then kill -9 the FTP client, wheee...
2085 * Note: timeout is always zero in such a case.
2086 */
2087 if (unlikely(tcp_sk(sk)->repair)) {
2088 sk->sk_prot->disconnect(sk, 0);
2089 } else if (data_was_unread) {
2090 /* Unread data was tossed, zap the connection. */
2091 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2092 tcp_set_state(sk, TCP_CLOSE);
2093 tcp_send_active_reset(sk, sk->sk_allocation);
2094 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2095 /* Check zero linger _after_ checking for unread data. */
2096 sk->sk_prot->disconnect(sk, 0);
2097 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2098 } else if (tcp_close_state(sk)) {
2099 /* We FIN if the application ate all the data before
2100 * zapping the connection.
2101 */
2102
2103 /* RED-PEN. Formally speaking, we have broken TCP state
2104 * machine. State transitions:
2105 *
2106 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2107 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2108 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2109 *
2110 * are legal only when FIN has been sent (i.e. in window),
2111 * rather than queued out of window. Purists blame.
2112 *
2113 * F.e. "RFC state" is ESTABLISHED,
2114 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2115 *
2116 * The visible declinations are that sometimes
2117 * we enter time-wait state, when it is not required really
2118 * (harmless), do not send active resets, when they are
2119 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2120 * they look as CLOSING or LAST_ACK for Linux)
2121 * Probably, I missed some more holelets.
2122 * --ANK
2123 */
2124 tcp_send_fin(sk);
2125 }
2126
2127 sk_stream_wait_close(sk, timeout);
2128
2129 adjudge_to_death:
2130 state = sk->sk_state;
2131 sock_hold(sk);
2132 sock_orphan(sk);
2133
2134 /* It is the last release_sock in its life. It will remove backlog. */
2135 release_sock(sk);
2136
2137
2138 /* Now socket is owned by kernel and we acquire BH lock
2139 to finish close. No need to check for user refs.
2140 */
2141 local_bh_disable();
2142 bh_lock_sock(sk);
2143 WARN_ON(sock_owned_by_user(sk));
2144
2145 percpu_counter_inc(sk->sk_prot->orphan_count);
2146
2147 /* Have we already been destroyed by a softirq or backlog? */
2148 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2149 goto out;
2150
2151 /* This is a (useful) BSD violating of the RFC. There is a
2152 * problem with TCP as specified in that the other end could
2153 * keep a socket open forever with no application left this end.
2154 * We use a 3 minute timeout (about the same as BSD) then kill
2155 * our end. If they send after that then tough - BUT: long enough
2156 * that we won't make the old 4*rto = almost no time - whoops
2157 * reset mistake.
2158 *
2159 * Nope, it was not mistake. It is really desired behaviour
2160 * f.e. on http servers, when such sockets are useless, but
2161 * consume significant resources. Let's do it with special
2162 * linger2 option. --ANK
2163 */
2164
2165 if (sk->sk_state == TCP_FIN_WAIT2) {
2166 struct tcp_sock *tp = tcp_sk(sk);
2167 if (tp->linger2 < 0) {
2168 tcp_set_state(sk, TCP_CLOSE);
2169 tcp_send_active_reset(sk, GFP_ATOMIC);
2170 NET_INC_STATS_BH(sock_net(sk),
2171 LINUX_MIB_TCPABORTONLINGER);
2172 } else {
2173 const int tmo = tcp_fin_time(sk);
2174
2175 if (tmo > TCP_TIMEWAIT_LEN) {
2176 inet_csk_reset_keepalive_timer(sk,
2177 tmo - TCP_TIMEWAIT_LEN);
2178 } else {
2179 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2180 goto out;
2181 }
2182 }
2183 }
2184 if (sk->sk_state != TCP_CLOSE) {
2185 sk_mem_reclaim(sk);
2186 if (tcp_check_oom(sk, 0)) {
2187 tcp_set_state(sk, TCP_CLOSE);
2188 tcp_send_active_reset(sk, GFP_ATOMIC);
2189 NET_INC_STATS_BH(sock_net(sk),
2190 LINUX_MIB_TCPABORTONMEMORY);
2191 }
2192 }
2193
2194 if (sk->sk_state == TCP_CLOSE)
2195 inet_csk_destroy_sock(sk);
2196 /* Otherwise, socket is reprieved until protocol close. */
2197
2198 out:
2199 bh_unlock_sock(sk);
2200 local_bh_enable();
2201 sock_put(sk);
2202 }
2203 EXPORT_SYMBOL(tcp_close);
2204
2205 /* These states need RST on ABORT according to RFC793 */
2206
2207 static inline int tcp_need_reset(int state)
2208 {
2209 return (1 << state) &
2210 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2211 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2212 }
2213
2214 int tcp_disconnect(struct sock *sk, int flags)
2215 {
2216 struct inet_sock *inet = inet_sk(sk);
2217 struct inet_connection_sock *icsk = inet_csk(sk);
2218 struct tcp_sock *tp = tcp_sk(sk);
2219 int err = 0;
2220 int old_state = sk->sk_state;
2221
2222 if (old_state != TCP_CLOSE)
2223 tcp_set_state(sk, TCP_CLOSE);
2224
2225 /* ABORT function of RFC793 */
2226 if (old_state == TCP_LISTEN) {
2227 inet_csk_listen_stop(sk);
2228 } else if (unlikely(tp->repair)) {
2229 sk->sk_err = ECONNABORTED;
2230 } else if (tcp_need_reset(old_state) ||
2231 (tp->snd_nxt != tp->write_seq &&
2232 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2233 /* The last check adjusts for discrepancy of Linux wrt. RFC
2234 * states
2235 */
2236 tcp_send_active_reset(sk, gfp_any());
2237 sk->sk_err = ECONNRESET;
2238 } else if (old_state == TCP_SYN_SENT)
2239 sk->sk_err = ECONNRESET;
2240
2241 tcp_clear_xmit_timers(sk);
2242 __skb_queue_purge(&sk->sk_receive_queue);
2243 tcp_write_queue_purge(sk);
2244 __skb_queue_purge(&tp->out_of_order_queue);
2245 #ifdef CONFIG_NET_DMA
2246 __skb_queue_purge(&sk->sk_async_wait_queue);
2247 #endif
2248
2249 inet->inet_dport = 0;
2250
2251 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2252 inet_reset_saddr(sk);
2253
2254 sk->sk_shutdown = 0;
2255 sock_reset_flag(sk, SOCK_DONE);
2256 tp->srtt = 0;
2257 if ((tp->write_seq += tp->max_window + 2) == 0)
2258 tp->write_seq = 1;
2259 icsk->icsk_backoff = 0;
2260 tp->snd_cwnd = 2;
2261 icsk->icsk_probes_out = 0;
2262 tp->packets_out = 0;
2263 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2264 tp->snd_cwnd_cnt = 0;
2265 tp->bytes_acked = 0;
2266 tp->window_clamp = 0;
2267 tcp_set_ca_state(sk, TCP_CA_Open);
2268 tcp_clear_retrans(tp);
2269 inet_csk_delack_init(sk);
2270 tcp_init_send_head(sk);
2271 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2272 __sk_dst_reset(sk);
2273
2274 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2275
2276 sk->sk_error_report(sk);
2277 return err;
2278 }
2279 EXPORT_SYMBOL(tcp_disconnect);
2280
2281 static inline int tcp_can_repair_sock(struct sock *sk)
2282 {
2283 return capable(CAP_NET_ADMIN) &&
2284 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2285 }
2286
2287 static int tcp_repair_options_est(struct tcp_sock *tp,
2288 struct tcp_repair_opt __user *optbuf, unsigned int len)
2289 {
2290 struct tcp_repair_opt opt;
2291
2292 while (len >= sizeof(opt)) {
2293 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2294 return -EFAULT;
2295
2296 optbuf++;
2297 len -= sizeof(opt);
2298
2299 switch (opt.opt_code) {
2300 case TCPOPT_MSS:
2301 tp->rx_opt.mss_clamp = opt.opt_val;
2302 break;
2303 case TCPOPT_WINDOW:
2304 if (opt.opt_val > 14)
2305 return -EFBIG;
2306
2307 tp->rx_opt.snd_wscale = opt.opt_val;
2308 break;
2309 case TCPOPT_SACK_PERM:
2310 if (opt.opt_val != 0)
2311 return -EINVAL;
2312
2313 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2314 if (sysctl_tcp_fack)
2315 tcp_enable_fack(tp);
2316 break;
2317 case TCPOPT_TIMESTAMP:
2318 if (opt.opt_val != 0)
2319 return -EINVAL;
2320
2321 tp->rx_opt.tstamp_ok = 1;
2322 break;
2323 }
2324 }
2325
2326 return 0;
2327 }
2328
2329 /*
2330 * Socket option code for TCP.
2331 */
2332 static int do_tcp_setsockopt(struct sock *sk, int level,
2333 int optname, char __user *optval, unsigned int optlen)
2334 {
2335 struct tcp_sock *tp = tcp_sk(sk);
2336 struct inet_connection_sock *icsk = inet_csk(sk);
2337 int val;
2338 int err = 0;
2339
2340 /* These are data/string values, all the others are ints */
2341 switch (optname) {
2342 case TCP_CONGESTION: {
2343 char name[TCP_CA_NAME_MAX];
2344
2345 if (optlen < 1)
2346 return -EINVAL;
2347
2348 val = strncpy_from_user(name, optval,
2349 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2350 if (val < 0)
2351 return -EFAULT;
2352 name[val] = 0;
2353
2354 lock_sock(sk);
2355 err = tcp_set_congestion_control(sk, name);
2356 release_sock(sk);
2357 return err;
2358 }
2359 case TCP_COOKIE_TRANSACTIONS: {
2360 struct tcp_cookie_transactions ctd;
2361 struct tcp_cookie_values *cvp = NULL;
2362
2363 if (sizeof(ctd) > optlen)
2364 return -EINVAL;
2365 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2366 return -EFAULT;
2367
2368 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2369 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2370 return -EINVAL;
2371
2372 if (ctd.tcpct_cookie_desired == 0) {
2373 /* default to global value */
2374 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2375 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2376 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2377 return -EINVAL;
2378 }
2379
2380 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2381 /* Supercedes all other values */
2382 lock_sock(sk);
2383 if (tp->cookie_values != NULL) {
2384 kref_put(&tp->cookie_values->kref,
2385 tcp_cookie_values_release);
2386 tp->cookie_values = NULL;
2387 }
2388 tp->rx_opt.cookie_in_always = 0; /* false */
2389 tp->rx_opt.cookie_out_never = 1; /* true */
2390 release_sock(sk);
2391 return err;
2392 }
2393
2394 /* Allocate ancillary memory before locking.
2395 */
2396 if (ctd.tcpct_used > 0 ||
2397 (tp->cookie_values == NULL &&
2398 (sysctl_tcp_cookie_size > 0 ||
2399 ctd.tcpct_cookie_desired > 0 ||
2400 ctd.tcpct_s_data_desired > 0))) {
2401 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2402 GFP_KERNEL);
2403 if (cvp == NULL)
2404 return -ENOMEM;
2405
2406 kref_init(&cvp->kref);
2407 }
2408 lock_sock(sk);
2409 tp->rx_opt.cookie_in_always =
2410 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2411 tp->rx_opt.cookie_out_never = 0; /* false */
2412
2413 if (tp->cookie_values != NULL) {
2414 if (cvp != NULL) {
2415 /* Changed values are recorded by a changed
2416 * pointer, ensuring the cookie will differ,
2417 * without separately hashing each value later.
2418 */
2419 kref_put(&tp->cookie_values->kref,
2420 tcp_cookie_values_release);
2421 } else {
2422 cvp = tp->cookie_values;
2423 }
2424 }
2425
2426 if (cvp != NULL) {
2427 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2428
2429 if (ctd.tcpct_used > 0) {
2430 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2431 ctd.tcpct_used);
2432 cvp->s_data_desired = ctd.tcpct_used;
2433 cvp->s_data_constant = 1; /* true */
2434 } else {
2435 /* No constant payload data. */
2436 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2437 cvp->s_data_constant = 0; /* false */
2438 }
2439
2440 tp->cookie_values = cvp;
2441 }
2442 release_sock(sk);
2443 return err;
2444 }
2445 default:
2446 /* fallthru */
2447 break;
2448 }
2449
2450 if (optlen < sizeof(int))
2451 return -EINVAL;
2452
2453 if (get_user(val, (int __user *)optval))
2454 return -EFAULT;
2455
2456 lock_sock(sk);
2457
2458 switch (optname) {
2459 case TCP_MAXSEG:
2460 /* Values greater than interface MTU won't take effect. However
2461 * at the point when this call is done we typically don't yet
2462 * know which interface is going to be used */
2463 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2464 err = -EINVAL;
2465 break;
2466 }
2467 tp->rx_opt.user_mss = val;
2468 break;
2469
2470 case TCP_NODELAY:
2471 if (val) {
2472 /* TCP_NODELAY is weaker than TCP_CORK, so that
2473 * this option on corked socket is remembered, but
2474 * it is not activated until cork is cleared.
2475 *
2476 * However, when TCP_NODELAY is set we make
2477 * an explicit push, which overrides even TCP_CORK
2478 * for currently queued segments.
2479 */
2480 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2481 tcp_push_pending_frames(sk);
2482 } else {
2483 tp->nonagle &= ~TCP_NAGLE_OFF;
2484 }
2485 break;
2486
2487 case TCP_THIN_LINEAR_TIMEOUTS:
2488 if (val < 0 || val > 1)
2489 err = -EINVAL;
2490 else
2491 tp->thin_lto = val;
2492 break;
2493
2494 case TCP_THIN_DUPACK:
2495 if (val < 0 || val > 1)
2496 err = -EINVAL;
2497 else
2498 tp->thin_dupack = val;
2499 if (tp->thin_dupack)
2500 tcp_disable_early_retrans(tp);
2501 break;
2502
2503 case TCP_REPAIR:
2504 if (!tcp_can_repair_sock(sk))
2505 err = -EPERM;
2506 else if (val == 1) {
2507 tp->repair = 1;
2508 sk->sk_reuse = SK_FORCE_REUSE;
2509 tp->repair_queue = TCP_NO_QUEUE;
2510 } else if (val == 0) {
2511 tp->repair = 0;
2512 sk->sk_reuse = SK_NO_REUSE;
2513 tcp_send_window_probe(sk);
2514 } else
2515 err = -EINVAL;
2516
2517 break;
2518
2519 case TCP_REPAIR_QUEUE:
2520 if (!tp->repair)
2521 err = -EPERM;
2522 else if (val < TCP_QUEUES_NR)
2523 tp->repair_queue = val;
2524 else
2525 err = -EINVAL;
2526 break;
2527
2528 case TCP_QUEUE_SEQ:
2529 if (sk->sk_state != TCP_CLOSE)
2530 err = -EPERM;
2531 else if (tp->repair_queue == TCP_SEND_QUEUE)
2532 tp->write_seq = val;
2533 else if (tp->repair_queue == TCP_RECV_QUEUE)
2534 tp->rcv_nxt = val;
2535 else
2536 err = -EINVAL;
2537 break;
2538
2539 case TCP_REPAIR_OPTIONS:
2540 if (!tp->repair)
2541 err = -EINVAL;
2542 else if (sk->sk_state == TCP_ESTABLISHED)
2543 err = tcp_repair_options_est(tp,
2544 (struct tcp_repair_opt __user *)optval,
2545 optlen);
2546 else
2547 err = -EPERM;
2548 break;
2549
2550 case TCP_CORK:
2551 /* When set indicates to always queue non-full frames.
2552 * Later the user clears this option and we transmit
2553 * any pending partial frames in the queue. This is
2554 * meant to be used alongside sendfile() to get properly
2555 * filled frames when the user (for example) must write
2556 * out headers with a write() call first and then use
2557 * sendfile to send out the data parts.
2558 *
2559 * TCP_CORK can be set together with TCP_NODELAY and it is
2560 * stronger than TCP_NODELAY.
2561 */
2562 if (val) {
2563 tp->nonagle |= TCP_NAGLE_CORK;
2564 } else {
2565 tp->nonagle &= ~TCP_NAGLE_CORK;
2566 if (tp->nonagle&TCP_NAGLE_OFF)
2567 tp->nonagle |= TCP_NAGLE_PUSH;
2568 tcp_push_pending_frames(sk);
2569 }
2570 break;
2571
2572 case TCP_KEEPIDLE:
2573 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2574 err = -EINVAL;
2575 else {
2576 tp->keepalive_time = val * HZ;
2577 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2578 !((1 << sk->sk_state) &
2579 (TCPF_CLOSE | TCPF_LISTEN))) {
2580 u32 elapsed = keepalive_time_elapsed(tp);
2581 if (tp->keepalive_time > elapsed)
2582 elapsed = tp->keepalive_time - elapsed;
2583 else
2584 elapsed = 0;
2585 inet_csk_reset_keepalive_timer(sk, elapsed);
2586 }
2587 }
2588 break;
2589 case TCP_KEEPINTVL:
2590 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2591 err = -EINVAL;
2592 else
2593 tp->keepalive_intvl = val * HZ;
2594 break;
2595 case TCP_KEEPCNT:
2596 if (val < 1 || val > MAX_TCP_KEEPCNT)
2597 err = -EINVAL;
2598 else
2599 tp->keepalive_probes = val;
2600 break;
2601 case TCP_SYNCNT:
2602 if (val < 1 || val > MAX_TCP_SYNCNT)
2603 err = -EINVAL;
2604 else
2605 icsk->icsk_syn_retries = val;
2606 break;
2607
2608 case TCP_LINGER2:
2609 if (val < 0)
2610 tp->linger2 = -1;
2611 else if (val > sysctl_tcp_fin_timeout / HZ)
2612 tp->linger2 = 0;
2613 else
2614 tp->linger2 = val * HZ;
2615 break;
2616
2617 case TCP_DEFER_ACCEPT:
2618 /* Translate value in seconds to number of retransmits */
2619 icsk->icsk_accept_queue.rskq_defer_accept =
2620 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2621 TCP_RTO_MAX / HZ);
2622 break;
2623
2624 case TCP_WINDOW_CLAMP:
2625 if (!val) {
2626 if (sk->sk_state != TCP_CLOSE) {
2627 err = -EINVAL;
2628 break;
2629 }
2630 tp->window_clamp = 0;
2631 } else
2632 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2633 SOCK_MIN_RCVBUF / 2 : val;
2634 break;
2635
2636 case TCP_QUICKACK:
2637 if (!val) {
2638 icsk->icsk_ack.pingpong = 1;
2639 } else {
2640 icsk->icsk_ack.pingpong = 0;
2641 if ((1 << sk->sk_state) &
2642 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2643 inet_csk_ack_scheduled(sk)) {
2644 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2645 tcp_cleanup_rbuf(sk, 1);
2646 if (!(val & 1))
2647 icsk->icsk_ack.pingpong = 1;
2648 }
2649 }
2650 break;
2651
2652 #ifdef CONFIG_TCP_MD5SIG
2653 case TCP_MD5SIG:
2654 /* Read the IP->Key mappings from userspace */
2655 err = tp->af_specific->md5_parse(sk, optval, optlen);
2656 break;
2657 #endif
2658 case TCP_USER_TIMEOUT:
2659 /* Cap the max timeout in ms TCP will retry/retrans
2660 * before giving up and aborting (ETIMEDOUT) a connection.
2661 */
2662 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2663 break;
2664 default:
2665 err = -ENOPROTOOPT;
2666 break;
2667 }
2668
2669 release_sock(sk);
2670 return err;
2671 }
2672
2673 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2674 unsigned int optlen)
2675 {
2676 const struct inet_connection_sock *icsk = inet_csk(sk);
2677
2678 if (level != SOL_TCP)
2679 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2680 optval, optlen);
2681 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2682 }
2683 EXPORT_SYMBOL(tcp_setsockopt);
2684
2685 #ifdef CONFIG_COMPAT
2686 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2687 char __user *optval, unsigned int optlen)
2688 {
2689 if (level != SOL_TCP)
2690 return inet_csk_compat_setsockopt(sk, level, optname,
2691 optval, optlen);
2692 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2693 }
2694 EXPORT_SYMBOL(compat_tcp_setsockopt);
2695 #endif
2696
2697 /* Return information about state of tcp endpoint in API format. */
2698 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2699 {
2700 const struct tcp_sock *tp = tcp_sk(sk);
2701 const struct inet_connection_sock *icsk = inet_csk(sk);
2702 u32 now = tcp_time_stamp;
2703
2704 memset(info, 0, sizeof(*info));
2705
2706 info->tcpi_state = sk->sk_state;
2707 info->tcpi_ca_state = icsk->icsk_ca_state;
2708 info->tcpi_retransmits = icsk->icsk_retransmits;
2709 info->tcpi_probes = icsk->icsk_probes_out;
2710 info->tcpi_backoff = icsk->icsk_backoff;
2711
2712 if (tp->rx_opt.tstamp_ok)
2713 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2714 if (tcp_is_sack(tp))
2715 info->tcpi_options |= TCPI_OPT_SACK;
2716 if (tp->rx_opt.wscale_ok) {
2717 info->tcpi_options |= TCPI_OPT_WSCALE;
2718 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2719 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2720 }
2721
2722 if (tp->ecn_flags & TCP_ECN_OK)
2723 info->tcpi_options |= TCPI_OPT_ECN;
2724 if (tp->ecn_flags & TCP_ECN_SEEN)
2725 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2726
2727 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2728 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2729 info->tcpi_snd_mss = tp->mss_cache;
2730 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2731
2732 if (sk->sk_state == TCP_LISTEN) {
2733 info->tcpi_unacked = sk->sk_ack_backlog;
2734 info->tcpi_sacked = sk->sk_max_ack_backlog;
2735 } else {
2736 info->tcpi_unacked = tp->packets_out;
2737 info->tcpi_sacked = tp->sacked_out;
2738 }
2739 info->tcpi_lost = tp->lost_out;
2740 info->tcpi_retrans = tp->retrans_out;
2741 info->tcpi_fackets = tp->fackets_out;
2742
2743 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2744 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2745 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2746
2747 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2748 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2749 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2750 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2751 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2752 info->tcpi_snd_cwnd = tp->snd_cwnd;
2753 info->tcpi_advmss = tp->advmss;
2754 info->tcpi_reordering = tp->reordering;
2755
2756 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2757 info->tcpi_rcv_space = tp->rcvq_space.space;
2758
2759 info->tcpi_total_retrans = tp->total_retrans;
2760 }
2761 EXPORT_SYMBOL_GPL(tcp_get_info);
2762
2763 static int do_tcp_getsockopt(struct sock *sk, int level,
2764 int optname, char __user *optval, int __user *optlen)
2765 {
2766 struct inet_connection_sock *icsk = inet_csk(sk);
2767 struct tcp_sock *tp = tcp_sk(sk);
2768 int val, len;
2769
2770 if (get_user(len, optlen))
2771 return -EFAULT;
2772
2773 len = min_t(unsigned int, len, sizeof(int));
2774
2775 if (len < 0)
2776 return -EINVAL;
2777
2778 switch (optname) {
2779 case TCP_MAXSEG:
2780 val = tp->mss_cache;
2781 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2782 val = tp->rx_opt.user_mss;
2783 if (tp->repair)
2784 val = tp->rx_opt.mss_clamp;
2785 break;
2786 case TCP_NODELAY:
2787 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2788 break;
2789 case TCP_CORK:
2790 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2791 break;
2792 case TCP_KEEPIDLE:
2793 val = keepalive_time_when(tp) / HZ;
2794 break;
2795 case TCP_KEEPINTVL:
2796 val = keepalive_intvl_when(tp) / HZ;
2797 break;
2798 case TCP_KEEPCNT:
2799 val = keepalive_probes(tp);
2800 break;
2801 case TCP_SYNCNT:
2802 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2803 break;
2804 case TCP_LINGER2:
2805 val = tp->linger2;
2806 if (val >= 0)
2807 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2808 break;
2809 case TCP_DEFER_ACCEPT:
2810 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2811 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2812 break;
2813 case TCP_WINDOW_CLAMP:
2814 val = tp->window_clamp;
2815 break;
2816 case TCP_INFO: {
2817 struct tcp_info info;
2818
2819 if (get_user(len, optlen))
2820 return -EFAULT;
2821
2822 tcp_get_info(sk, &info);
2823
2824 len = min_t(unsigned int, len, sizeof(info));
2825 if (put_user(len, optlen))
2826 return -EFAULT;
2827 if (copy_to_user(optval, &info, len))
2828 return -EFAULT;
2829 return 0;
2830 }
2831 case TCP_QUICKACK:
2832 val = !icsk->icsk_ack.pingpong;
2833 break;
2834
2835 case TCP_CONGESTION:
2836 if (get_user(len, optlen))
2837 return -EFAULT;
2838 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2839 if (put_user(len, optlen))
2840 return -EFAULT;
2841 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2842 return -EFAULT;
2843 return 0;
2844
2845 case TCP_COOKIE_TRANSACTIONS: {
2846 struct tcp_cookie_transactions ctd;
2847 struct tcp_cookie_values *cvp = tp->cookie_values;
2848
2849 if (get_user(len, optlen))
2850 return -EFAULT;
2851 if (len < sizeof(ctd))
2852 return -EINVAL;
2853
2854 memset(&ctd, 0, sizeof(ctd));
2855 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2856 TCP_COOKIE_IN_ALWAYS : 0)
2857 | (tp->rx_opt.cookie_out_never ?
2858 TCP_COOKIE_OUT_NEVER : 0);
2859
2860 if (cvp != NULL) {
2861 ctd.tcpct_flags |= (cvp->s_data_in ?
2862 TCP_S_DATA_IN : 0)
2863 | (cvp->s_data_out ?
2864 TCP_S_DATA_OUT : 0);
2865
2866 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2867 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2868
2869 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2870 cvp->cookie_pair_size);
2871 ctd.tcpct_used = cvp->cookie_pair_size;
2872 }
2873
2874 if (put_user(sizeof(ctd), optlen))
2875 return -EFAULT;
2876 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2877 return -EFAULT;
2878 return 0;
2879 }
2880 case TCP_THIN_LINEAR_TIMEOUTS:
2881 val = tp->thin_lto;
2882 break;
2883 case TCP_THIN_DUPACK:
2884 val = tp->thin_dupack;
2885 break;
2886
2887 case TCP_REPAIR:
2888 val = tp->repair;
2889 break;
2890
2891 case TCP_REPAIR_QUEUE:
2892 if (tp->repair)
2893 val = tp->repair_queue;
2894 else
2895 return -EINVAL;
2896 break;
2897
2898 case TCP_QUEUE_SEQ:
2899 if (tp->repair_queue == TCP_SEND_QUEUE)
2900 val = tp->write_seq;
2901 else if (tp->repair_queue == TCP_RECV_QUEUE)
2902 val = tp->rcv_nxt;
2903 else
2904 return -EINVAL;
2905 break;
2906
2907 case TCP_USER_TIMEOUT:
2908 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2909 break;
2910 default:
2911 return -ENOPROTOOPT;
2912 }
2913
2914 if (put_user(len, optlen))
2915 return -EFAULT;
2916 if (copy_to_user(optval, &val, len))
2917 return -EFAULT;
2918 return 0;
2919 }
2920
2921 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2922 int __user *optlen)
2923 {
2924 struct inet_connection_sock *icsk = inet_csk(sk);
2925
2926 if (level != SOL_TCP)
2927 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2928 optval, optlen);
2929 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2930 }
2931 EXPORT_SYMBOL(tcp_getsockopt);
2932
2933 #ifdef CONFIG_COMPAT
2934 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2935 char __user *optval, int __user *optlen)
2936 {
2937 if (level != SOL_TCP)
2938 return inet_csk_compat_getsockopt(sk, level, optname,
2939 optval, optlen);
2940 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2941 }
2942 EXPORT_SYMBOL(compat_tcp_getsockopt);
2943 #endif
2944
2945 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2946 netdev_features_t features)
2947 {
2948 struct sk_buff *segs = ERR_PTR(-EINVAL);
2949 struct tcphdr *th;
2950 unsigned int thlen;
2951 unsigned int seq;
2952 __be32 delta;
2953 unsigned int oldlen;
2954 unsigned int mss;
2955
2956 if (!pskb_may_pull(skb, sizeof(*th)))
2957 goto out;
2958
2959 th = tcp_hdr(skb);
2960 thlen = th->doff * 4;
2961 if (thlen < sizeof(*th))
2962 goto out;
2963
2964 if (!pskb_may_pull(skb, thlen))
2965 goto out;
2966
2967 oldlen = (u16)~skb->len;
2968 __skb_pull(skb, thlen);
2969
2970 mss = skb_shinfo(skb)->gso_size;
2971 if (unlikely(skb->len <= mss))
2972 goto out;
2973
2974 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2975 /* Packet is from an untrusted source, reset gso_segs. */
2976 int type = skb_shinfo(skb)->gso_type;
2977
2978 if (unlikely(type &
2979 ~(SKB_GSO_TCPV4 |
2980 SKB_GSO_DODGY |
2981 SKB_GSO_TCP_ECN |
2982 SKB_GSO_TCPV6 |
2983 0) ||
2984 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2985 goto out;
2986
2987 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2988
2989 segs = NULL;
2990 goto out;
2991 }
2992
2993 segs = skb_segment(skb, features);
2994 if (IS_ERR(segs))
2995 goto out;
2996
2997 delta = htonl(oldlen + (thlen + mss));
2998
2999 skb = segs;
3000 th = tcp_hdr(skb);
3001 seq = ntohl(th->seq);
3002
3003 do {
3004 th->fin = th->psh = 0;
3005
3006 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3007 (__force u32)delta));
3008 if (skb->ip_summed != CHECKSUM_PARTIAL)
3009 th->check =
3010 csum_fold(csum_partial(skb_transport_header(skb),
3011 thlen, skb->csum));
3012
3013 seq += mss;
3014 skb = skb->next;
3015 th = tcp_hdr(skb);
3016
3017 th->seq = htonl(seq);
3018 th->cwr = 0;
3019 } while (skb->next);
3020
3021 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3022 skb->data_len);
3023 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3024 (__force u32)delta));
3025 if (skb->ip_summed != CHECKSUM_PARTIAL)
3026 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3027 thlen, skb->csum));
3028
3029 out:
3030 return segs;
3031 }
3032 EXPORT_SYMBOL(tcp_tso_segment);
3033
3034 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3035 {
3036 struct sk_buff **pp = NULL;
3037 struct sk_buff *p;
3038 struct tcphdr *th;
3039 struct tcphdr *th2;
3040 unsigned int len;
3041 unsigned int thlen;
3042 __be32 flags;
3043 unsigned int mss = 1;
3044 unsigned int hlen;
3045 unsigned int off;
3046 int flush = 1;
3047 int i;
3048
3049 off = skb_gro_offset(skb);
3050 hlen = off + sizeof(*th);
3051 th = skb_gro_header_fast(skb, off);
3052 if (skb_gro_header_hard(skb, hlen)) {
3053 th = skb_gro_header_slow(skb, hlen, off);
3054 if (unlikely(!th))
3055 goto out;
3056 }
3057
3058 thlen = th->doff * 4;
3059 if (thlen < sizeof(*th))
3060 goto out;
3061
3062 hlen = off + thlen;
3063 if (skb_gro_header_hard(skb, hlen)) {
3064 th = skb_gro_header_slow(skb, hlen, off);
3065 if (unlikely(!th))
3066 goto out;
3067 }
3068
3069 skb_gro_pull(skb, thlen);
3070
3071 len = skb_gro_len(skb);
3072 flags = tcp_flag_word(th);
3073
3074 for (; (p = *head); head = &p->next) {
3075 if (!NAPI_GRO_CB(p)->same_flow)
3076 continue;
3077
3078 th2 = tcp_hdr(p);
3079
3080 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3081 NAPI_GRO_CB(p)->same_flow = 0;
3082 continue;
3083 }
3084
3085 goto found;
3086 }
3087
3088 goto out_check_final;
3089
3090 found:
3091 flush = NAPI_GRO_CB(p)->flush;
3092 flush |= (__force int)(flags & TCP_FLAG_CWR);
3093 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3094 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3095 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3096 for (i = sizeof(*th); i < thlen; i += 4)
3097 flush |= *(u32 *)((u8 *)th + i) ^
3098 *(u32 *)((u8 *)th2 + i);
3099
3100 mss = skb_shinfo(p)->gso_size;
3101
3102 flush |= (len - 1) >= mss;
3103 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3104
3105 if (flush || skb_gro_receive(head, skb)) {
3106 mss = 1;
3107 goto out_check_final;
3108 }
3109
3110 p = *head;
3111 th2 = tcp_hdr(p);
3112 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3113
3114 out_check_final:
3115 flush = len < mss;
3116 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3117 TCP_FLAG_RST | TCP_FLAG_SYN |
3118 TCP_FLAG_FIN));
3119
3120 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3121 pp = head;
3122
3123 out:
3124 NAPI_GRO_CB(skb)->flush |= flush;
3125
3126 return pp;
3127 }
3128 EXPORT_SYMBOL(tcp_gro_receive);
3129
3130 int tcp_gro_complete(struct sk_buff *skb)
3131 {
3132 struct tcphdr *th = tcp_hdr(skb);
3133
3134 skb->csum_start = skb_transport_header(skb) - skb->head;
3135 skb->csum_offset = offsetof(struct tcphdr, check);
3136 skb->ip_summed = CHECKSUM_PARTIAL;
3137
3138 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3139
3140 if (th->cwr)
3141 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3142
3143 return 0;
3144 }
3145 EXPORT_SYMBOL(tcp_gro_complete);
3146
3147 #ifdef CONFIG_TCP_MD5SIG
3148 static unsigned long tcp_md5sig_users;
3149 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3150 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3151
3152 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3153 {
3154 int cpu;
3155
3156 for_each_possible_cpu(cpu) {
3157 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3158
3159 if (p->md5_desc.tfm)
3160 crypto_free_hash(p->md5_desc.tfm);
3161 }
3162 free_percpu(pool);
3163 }
3164
3165 void tcp_free_md5sig_pool(void)
3166 {
3167 struct tcp_md5sig_pool __percpu *pool = NULL;
3168
3169 spin_lock_bh(&tcp_md5sig_pool_lock);
3170 if (--tcp_md5sig_users == 0) {
3171 pool = tcp_md5sig_pool;
3172 tcp_md5sig_pool = NULL;
3173 }
3174 spin_unlock_bh(&tcp_md5sig_pool_lock);
3175 if (pool)
3176 __tcp_free_md5sig_pool(pool);
3177 }
3178 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3179
3180 static struct tcp_md5sig_pool __percpu *
3181 __tcp_alloc_md5sig_pool(struct sock *sk)
3182 {
3183 int cpu;
3184 struct tcp_md5sig_pool __percpu *pool;
3185
3186 pool = alloc_percpu(struct tcp_md5sig_pool);
3187 if (!pool)
3188 return NULL;
3189
3190 for_each_possible_cpu(cpu) {
3191 struct crypto_hash *hash;
3192
3193 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3194 if (!hash || IS_ERR(hash))
3195 goto out_free;
3196
3197 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3198 }
3199 return pool;
3200 out_free:
3201 __tcp_free_md5sig_pool(pool);
3202 return NULL;
3203 }
3204
3205 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3206 {
3207 struct tcp_md5sig_pool __percpu *pool;
3208 int alloc = 0;
3209
3210 retry:
3211 spin_lock_bh(&tcp_md5sig_pool_lock);
3212 pool = tcp_md5sig_pool;
3213 if (tcp_md5sig_users++ == 0) {
3214 alloc = 1;
3215 spin_unlock_bh(&tcp_md5sig_pool_lock);
3216 } else if (!pool) {
3217 tcp_md5sig_users--;
3218 spin_unlock_bh(&tcp_md5sig_pool_lock);
3219 cpu_relax();
3220 goto retry;
3221 } else
3222 spin_unlock_bh(&tcp_md5sig_pool_lock);
3223
3224 if (alloc) {
3225 /* we cannot hold spinlock here because this may sleep. */
3226 struct tcp_md5sig_pool __percpu *p;
3227
3228 p = __tcp_alloc_md5sig_pool(sk);
3229 spin_lock_bh(&tcp_md5sig_pool_lock);
3230 if (!p) {
3231 tcp_md5sig_users--;
3232 spin_unlock_bh(&tcp_md5sig_pool_lock);
3233 return NULL;
3234 }
3235 pool = tcp_md5sig_pool;
3236 if (pool) {
3237 /* oops, it has already been assigned. */
3238 spin_unlock_bh(&tcp_md5sig_pool_lock);
3239 __tcp_free_md5sig_pool(p);
3240 } else {
3241 tcp_md5sig_pool = pool = p;
3242 spin_unlock_bh(&tcp_md5sig_pool_lock);
3243 }
3244 }
3245 return pool;
3246 }
3247 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3248
3249
3250 /**
3251 * tcp_get_md5sig_pool - get md5sig_pool for this user
3252 *
3253 * We use percpu structure, so if we succeed, we exit with preemption
3254 * and BH disabled, to make sure another thread or softirq handling
3255 * wont try to get same context.
3256 */
3257 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3258 {
3259 struct tcp_md5sig_pool __percpu *p;
3260
3261 local_bh_disable();
3262
3263 spin_lock(&tcp_md5sig_pool_lock);
3264 p = tcp_md5sig_pool;
3265 if (p)
3266 tcp_md5sig_users++;
3267 spin_unlock(&tcp_md5sig_pool_lock);
3268
3269 if (p)
3270 return this_cpu_ptr(p);
3271
3272 local_bh_enable();
3273 return NULL;
3274 }
3275 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3276
3277 void tcp_put_md5sig_pool(void)
3278 {
3279 local_bh_enable();
3280 tcp_free_md5sig_pool();
3281 }
3282 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3283
3284 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3285 const struct tcphdr *th)
3286 {
3287 struct scatterlist sg;
3288 struct tcphdr hdr;
3289 int err;
3290
3291 /* We are not allowed to change tcphdr, make a local copy */
3292 memcpy(&hdr, th, sizeof(hdr));
3293 hdr.check = 0;
3294
3295 /* options aren't included in the hash */
3296 sg_init_one(&sg, &hdr, sizeof(hdr));
3297 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3298 return err;
3299 }
3300 EXPORT_SYMBOL(tcp_md5_hash_header);
3301
3302 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3303 const struct sk_buff *skb, unsigned int header_len)
3304 {
3305 struct scatterlist sg;
3306 const struct tcphdr *tp = tcp_hdr(skb);
3307 struct hash_desc *desc = &hp->md5_desc;
3308 unsigned int i;
3309 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3310 skb_headlen(skb) - header_len : 0;
3311 const struct skb_shared_info *shi = skb_shinfo(skb);
3312 struct sk_buff *frag_iter;
3313
3314 sg_init_table(&sg, 1);
3315
3316 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3317 if (crypto_hash_update(desc, &sg, head_data_len))
3318 return 1;
3319
3320 for (i = 0; i < shi->nr_frags; ++i) {
3321 const struct skb_frag_struct *f = &shi->frags[i];
3322 struct page *page = skb_frag_page(f);
3323 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3324 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3325 return 1;
3326 }
3327
3328 skb_walk_frags(skb, frag_iter)
3329 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3330 return 1;
3331
3332 return 0;
3333 }
3334 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3335
3336 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3337 {
3338 struct scatterlist sg;
3339
3340 sg_init_one(&sg, key->key, key->keylen);
3341 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3342 }
3343 EXPORT_SYMBOL(tcp_md5_hash_key);
3344
3345 #endif
3346
3347 /**
3348 * Each Responder maintains up to two secret values concurrently for
3349 * efficient secret rollover. Each secret value has 4 states:
3350 *
3351 * Generating. (tcp_secret_generating != tcp_secret_primary)
3352 * Generates new Responder-Cookies, but not yet used for primary
3353 * verification. This is a short-term state, typically lasting only
3354 * one round trip time (RTT).
3355 *
3356 * Primary. (tcp_secret_generating == tcp_secret_primary)
3357 * Used both for generation and primary verification.
3358 *
3359 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3360 * Used for verification, until the first failure that can be
3361 * verified by the newer Generating secret. At that time, this
3362 * cookie's state is changed to Secondary, and the Generating
3363 * cookie's state is changed to Primary. This is a short-term state,
3364 * typically lasting only one round trip time (RTT).
3365 *
3366 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3367 * Used for secondary verification, after primary verification
3368 * failures. This state lasts no more than twice the Maximum Segment
3369 * Lifetime (2MSL). Then, the secret is discarded.
3370 */
3371 struct tcp_cookie_secret {
3372 /* The secret is divided into two parts. The digest part is the
3373 * equivalent of previously hashing a secret and saving the state,
3374 * and serves as an initialization vector (IV). The message part
3375 * serves as the trailing secret.
3376 */
3377 u32 secrets[COOKIE_WORKSPACE_WORDS];
3378 unsigned long expires;
3379 };
3380
3381 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3382 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3383 #define TCP_SECRET_LIFE (HZ * 600)
3384
3385 static struct tcp_cookie_secret tcp_secret_one;
3386 static struct tcp_cookie_secret tcp_secret_two;
3387
3388 /* Essentially a circular list, without dynamic allocation. */
3389 static struct tcp_cookie_secret *tcp_secret_generating;
3390 static struct tcp_cookie_secret *tcp_secret_primary;
3391 static struct tcp_cookie_secret *tcp_secret_retiring;
3392 static struct tcp_cookie_secret *tcp_secret_secondary;
3393
3394 static DEFINE_SPINLOCK(tcp_secret_locker);
3395
3396 /* Select a pseudo-random word in the cookie workspace.
3397 */
3398 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3399 {
3400 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3401 }
3402
3403 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3404 * Called in softirq context.
3405 * Returns: 0 for success.
3406 */
3407 int tcp_cookie_generator(u32 *bakery)
3408 {
3409 unsigned long jiffy = jiffies;
3410
3411 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3412 spin_lock_bh(&tcp_secret_locker);
3413 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3414 /* refreshed by another */
3415 memcpy(bakery,
3416 &tcp_secret_generating->secrets[0],
3417 COOKIE_WORKSPACE_WORDS);
3418 } else {
3419 /* still needs refreshing */
3420 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3421
3422 /* The first time, paranoia assumes that the
3423 * randomization function isn't as strong. But,
3424 * this secret initialization is delayed until
3425 * the last possible moment (packet arrival).
3426 * Although that time is observable, it is
3427 * unpredictably variable. Mash in the most
3428 * volatile clock bits available, and expire the
3429 * secret extra quickly.
3430 */
3431 if (unlikely(tcp_secret_primary->expires ==
3432 tcp_secret_secondary->expires)) {
3433 struct timespec tv;
3434
3435 getnstimeofday(&tv);
3436 bakery[COOKIE_DIGEST_WORDS+0] ^=
3437 (u32)tv.tv_nsec;
3438
3439 tcp_secret_secondary->expires = jiffy
3440 + TCP_SECRET_1MSL
3441 + (0x0f & tcp_cookie_work(bakery, 0));
3442 } else {
3443 tcp_secret_secondary->expires = jiffy
3444 + TCP_SECRET_LIFE
3445 + (0xff & tcp_cookie_work(bakery, 1));
3446 tcp_secret_primary->expires = jiffy
3447 + TCP_SECRET_2MSL
3448 + (0x1f & tcp_cookie_work(bakery, 2));
3449 }
3450 memcpy(&tcp_secret_secondary->secrets[0],
3451 bakery, COOKIE_WORKSPACE_WORDS);
3452
3453 rcu_assign_pointer(tcp_secret_generating,
3454 tcp_secret_secondary);
3455 rcu_assign_pointer(tcp_secret_retiring,
3456 tcp_secret_primary);
3457 /*
3458 * Neither call_rcu() nor synchronize_rcu() needed.
3459 * Retiring data is not freed. It is replaced after
3460 * further (locked) pointer updates, and a quiet time
3461 * (minimum 1MSL, maximum LIFE - 2MSL).
3462 */
3463 }
3464 spin_unlock_bh(&tcp_secret_locker);
3465 } else {
3466 rcu_read_lock_bh();
3467 memcpy(bakery,
3468 &rcu_dereference(tcp_secret_generating)->secrets[0],
3469 COOKIE_WORKSPACE_WORDS);
3470 rcu_read_unlock_bh();
3471 }
3472 return 0;
3473 }
3474 EXPORT_SYMBOL(tcp_cookie_generator);
3475
3476 void tcp_done(struct sock *sk)
3477 {
3478 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3479 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3480
3481 tcp_set_state(sk, TCP_CLOSE);
3482 tcp_clear_xmit_timers(sk);
3483
3484 sk->sk_shutdown = SHUTDOWN_MASK;
3485
3486 if (!sock_flag(sk, SOCK_DEAD))
3487 sk->sk_state_change(sk);
3488 else
3489 inet_csk_destroy_sock(sk);
3490 }
3491 EXPORT_SYMBOL_GPL(tcp_done);
3492
3493 extern struct tcp_congestion_ops tcp_reno;
3494
3495 static __initdata unsigned long thash_entries;
3496 static int __init set_thash_entries(char *str)
3497 {
3498 if (!str)
3499 return 0;
3500 thash_entries = simple_strtoul(str, &str, 0);
3501 return 1;
3502 }
3503 __setup("thash_entries=", set_thash_entries);
3504
3505 void tcp_init_mem(struct net *net)
3506 {
3507 unsigned long limit = nr_free_buffer_pages() / 8;
3508 limit = max(limit, 128UL);
3509 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3510 net->ipv4.sysctl_tcp_mem[1] = limit;
3511 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3512 }
3513
3514 void __init tcp_init(void)
3515 {
3516 struct sk_buff *skb = NULL;
3517 unsigned long limit;
3518 int max_share, cnt;
3519 unsigned int i;
3520 unsigned long jiffy = jiffies;
3521
3522 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3523
3524 percpu_counter_init(&tcp_sockets_allocated, 0);
3525 percpu_counter_init(&tcp_orphan_count, 0);
3526 tcp_hashinfo.bind_bucket_cachep =
3527 kmem_cache_create("tcp_bind_bucket",
3528 sizeof(struct inet_bind_bucket), 0,
3529 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3530
3531 /* Size and allocate the main established and bind bucket
3532 * hash tables.
3533 *
3534 * The methodology is similar to that of the buffer cache.
3535 */
3536 tcp_hashinfo.ehash =
3537 alloc_large_system_hash("TCP established",
3538 sizeof(struct inet_ehash_bucket),
3539 thash_entries,
3540 (totalram_pages >= 128 * 1024) ?
3541 13 : 15,
3542 0,
3543 NULL,
3544 &tcp_hashinfo.ehash_mask,
3545 thash_entries ? 0 : 512 * 1024);
3546 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3547 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3548 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3549 }
3550 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3551 panic("TCP: failed to alloc ehash_locks");
3552 tcp_hashinfo.bhash =
3553 alloc_large_system_hash("TCP bind",
3554 sizeof(struct inet_bind_hashbucket),
3555 tcp_hashinfo.ehash_mask + 1,
3556 (totalram_pages >= 128 * 1024) ?
3557 13 : 15,
3558 0,
3559 &tcp_hashinfo.bhash_size,
3560 NULL,
3561 64 * 1024);
3562 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3563 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3564 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3565 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3566 }
3567
3568
3569 cnt = tcp_hashinfo.ehash_mask + 1;
3570
3571 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3572 sysctl_tcp_max_orphans = cnt / 2;
3573 sysctl_max_syn_backlog = max(128, cnt / 256);
3574
3575 tcp_init_mem(&init_net);
3576 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3577 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3578 max_share = min(4UL*1024*1024, limit);
3579
3580 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3581 sysctl_tcp_wmem[1] = 16*1024;
3582 sysctl_tcp_wmem[2] = max(64*1024, max_share);
3583
3584 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3585 sysctl_tcp_rmem[1] = 87380;
3586 sysctl_tcp_rmem[2] = max(87380, max_share);
3587
3588 pr_info("Hash tables configured (established %u bind %u)\n",
3589 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3590
3591 tcp_register_congestion_control(&tcp_reno);
3592
3593 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3594 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3595 tcp_secret_one.expires = jiffy; /* past due */
3596 tcp_secret_two.expires = jiffy; /* past due */
3597 tcp_secret_generating = &tcp_secret_one;
3598 tcp_secret_primary = &tcp_secret_one;
3599 tcp_secret_retiring = &tcp_secret_two;
3600 tcp_secret_secondary = &tcp_secret_two;
3601 }