ce3d5f734fdb10ff692242a4c0390d2e10bcd93f
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70
71 #include <linux/nospec.h>
72
73 struct ipmr_rule {
74 struct fib_rule common;
75 };
76
77 struct ipmr_result {
78 struct mr_table *mrt;
79 };
80
81 /* Big lock, protecting vif table, mrt cache and mroute socket state.
82 * Note that the changes are semaphored via rtnl_lock.
83 */
84
85 static DEFINE_RWLOCK(mrt_lock);
86
87 /* Multicast router control variables */
88
89 /* Special spinlock for queue of unresolved entries */
90 static DEFINE_SPINLOCK(mfc_unres_lock);
91
92 /* We return to original Alan's scheme. Hash table of resolved
93 * entries is changed only in process context and protected
94 * with weak lock mrt_lock. Queue of unresolved entries is protected
95 * with strong spinlock mfc_unres_lock.
96 *
97 * In this case data path is free of exclusive locks at all.
98 */
99
100 static struct kmem_cache *mrt_cachep __read_mostly;
101
102 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
103 static void ipmr_free_table(struct mr_table *mrt);
104
105 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
106 struct net_device *dev, struct sk_buff *skb,
107 struct mfc_cache *cache, int local);
108 static int ipmr_cache_report(struct mr_table *mrt,
109 struct sk_buff *pkt, vifi_t vifi, int assert);
110 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
111 struct mfc_cache *c, struct rtmsg *rtm);
112 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
113 int cmd);
114 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
115 static void mroute_clean_tables(struct mr_table *mrt, bool all);
116 static void ipmr_expire_process(unsigned long arg);
117
118 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
119 #define ipmr_for_each_table(mrt, net) \
120 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
121
122 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
123 {
124 struct mr_table *mrt;
125
126 ipmr_for_each_table(mrt, net) {
127 if (mrt->id == id)
128 return mrt;
129 }
130 return NULL;
131 }
132
133 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
134 struct mr_table **mrt)
135 {
136 int err;
137 struct ipmr_result res;
138 struct fib_lookup_arg arg = {
139 .result = &res,
140 .flags = FIB_LOOKUP_NOREF,
141 };
142
143 /* update flow if oif or iif point to device enslaved to l3mdev */
144 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
145
146 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
147 flowi4_to_flowi(flp4), 0, &arg);
148 if (err < 0)
149 return err;
150 *mrt = res.mrt;
151 return 0;
152 }
153
154 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
155 int flags, struct fib_lookup_arg *arg)
156 {
157 struct ipmr_result *res = arg->result;
158 struct mr_table *mrt;
159
160 switch (rule->action) {
161 case FR_ACT_TO_TBL:
162 break;
163 case FR_ACT_UNREACHABLE:
164 return -ENETUNREACH;
165 case FR_ACT_PROHIBIT:
166 return -EACCES;
167 case FR_ACT_BLACKHOLE:
168 default:
169 return -EINVAL;
170 }
171
172 arg->table = fib_rule_get_table(rule, arg);
173
174 mrt = ipmr_get_table(rule->fr_net, arg->table);
175 if (!mrt)
176 return -EAGAIN;
177 res->mrt = mrt;
178 return 0;
179 }
180
181 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
182 {
183 return 1;
184 }
185
186 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
187 FRA_GENERIC_POLICY,
188 };
189
190 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
191 struct fib_rule_hdr *frh, struct nlattr **tb)
192 {
193 return 0;
194 }
195
196 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
197 struct nlattr **tb)
198 {
199 return 1;
200 }
201
202 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
203 struct fib_rule_hdr *frh)
204 {
205 frh->dst_len = 0;
206 frh->src_len = 0;
207 frh->tos = 0;
208 return 0;
209 }
210
211 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
212 .family = RTNL_FAMILY_IPMR,
213 .rule_size = sizeof(struct ipmr_rule),
214 .addr_size = sizeof(u32),
215 .action = ipmr_rule_action,
216 .match = ipmr_rule_match,
217 .configure = ipmr_rule_configure,
218 .compare = ipmr_rule_compare,
219 .fill = ipmr_rule_fill,
220 .nlgroup = RTNLGRP_IPV4_RULE,
221 .policy = ipmr_rule_policy,
222 .owner = THIS_MODULE,
223 };
224
225 static int __net_init ipmr_rules_init(struct net *net)
226 {
227 struct fib_rules_ops *ops;
228 struct mr_table *mrt;
229 int err;
230
231 ops = fib_rules_register(&ipmr_rules_ops_template, net);
232 if (IS_ERR(ops))
233 return PTR_ERR(ops);
234
235 INIT_LIST_HEAD(&net->ipv4.mr_tables);
236
237 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
238 if (IS_ERR(mrt)) {
239 err = PTR_ERR(mrt);
240 goto err1;
241 }
242
243 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
244 if (err < 0)
245 goto err2;
246
247 net->ipv4.mr_rules_ops = ops;
248 return 0;
249
250 err2:
251 ipmr_free_table(mrt);
252 err1:
253 fib_rules_unregister(ops);
254 return err;
255 }
256
257 static void __net_exit ipmr_rules_exit(struct net *net)
258 {
259 struct mr_table *mrt, *next;
260
261 rtnl_lock();
262 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
263 list_del(&mrt->list);
264 ipmr_free_table(mrt);
265 }
266 fib_rules_unregister(net->ipv4.mr_rules_ops);
267 rtnl_unlock();
268 }
269 #else
270 #define ipmr_for_each_table(mrt, net) \
271 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
272
273 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
274 {
275 return net->ipv4.mrt;
276 }
277
278 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
279 struct mr_table **mrt)
280 {
281 *mrt = net->ipv4.mrt;
282 return 0;
283 }
284
285 static int __net_init ipmr_rules_init(struct net *net)
286 {
287 struct mr_table *mrt;
288
289 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
290 if (IS_ERR(mrt))
291 return PTR_ERR(mrt);
292 net->ipv4.mrt = mrt;
293 return 0;
294 }
295
296 static void __net_exit ipmr_rules_exit(struct net *net)
297 {
298 rtnl_lock();
299 ipmr_free_table(net->ipv4.mrt);
300 net->ipv4.mrt = NULL;
301 rtnl_unlock();
302 }
303 #endif
304
305 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
306 const void *ptr)
307 {
308 const struct mfc_cache_cmp_arg *cmparg = arg->key;
309 struct mfc_cache *c = (struct mfc_cache *)ptr;
310
311 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
312 cmparg->mfc_origin != c->mfc_origin;
313 }
314
315 static const struct rhashtable_params ipmr_rht_params = {
316 .head_offset = offsetof(struct mfc_cache, mnode),
317 .key_offset = offsetof(struct mfc_cache, cmparg),
318 .key_len = sizeof(struct mfc_cache_cmp_arg),
319 .nelem_hint = 3,
320 .locks_mul = 1,
321 .obj_cmpfn = ipmr_hash_cmp,
322 .automatic_shrinking = true,
323 };
324
325 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
326 {
327 struct mr_table *mrt;
328 int err;
329
330 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
331 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
332 return ERR_PTR(-EINVAL);
333
334 mrt = ipmr_get_table(net, id);
335 if (mrt)
336 return mrt;
337
338 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
339 if (!mrt)
340 return ERR_PTR(-ENOMEM);
341 write_pnet(&mrt->net, net);
342 mrt->id = id;
343
344 err = rhltable_init(&mrt->mfc_hash, &ipmr_rht_params);
345 if (err) {
346 kfree(mrt);
347 return ERR_PTR(err);
348 }
349 INIT_LIST_HEAD(&mrt->mfc_cache_list);
350 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
351
352 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
353 (unsigned long)mrt);
354
355 mrt->mroute_reg_vif_num = -1;
356 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
357 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
358 #endif
359 return mrt;
360 }
361
362 static void ipmr_free_table(struct mr_table *mrt)
363 {
364 del_timer_sync(&mrt->ipmr_expire_timer);
365 mroute_clean_tables(mrt, true);
366 rhltable_destroy(&mrt->mfc_hash);
367 kfree(mrt);
368 }
369
370 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
371
372 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
373 {
374 struct net *net = dev_net(dev);
375
376 dev_close(dev);
377
378 dev = __dev_get_by_name(net, "tunl0");
379 if (dev) {
380 const struct net_device_ops *ops = dev->netdev_ops;
381 struct ifreq ifr;
382 struct ip_tunnel_parm p;
383
384 memset(&p, 0, sizeof(p));
385 p.iph.daddr = v->vifc_rmt_addr.s_addr;
386 p.iph.saddr = v->vifc_lcl_addr.s_addr;
387 p.iph.version = 4;
388 p.iph.ihl = 5;
389 p.iph.protocol = IPPROTO_IPIP;
390 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
391 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
392
393 if (ops->ndo_do_ioctl) {
394 mm_segment_t oldfs = get_fs();
395
396 set_fs(KERNEL_DS);
397 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
398 set_fs(oldfs);
399 }
400 }
401 }
402
403 /* Initialize ipmr pimreg/tunnel in_device */
404 static bool ipmr_init_vif_indev(const struct net_device *dev)
405 {
406 struct in_device *in_dev;
407
408 ASSERT_RTNL();
409
410 in_dev = __in_dev_get_rtnl(dev);
411 if (!in_dev)
412 return false;
413 ipv4_devconf_setall(in_dev);
414 neigh_parms_data_state_setall(in_dev->arp_parms);
415 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
416
417 return true;
418 }
419
420 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
421 {
422 struct net_device *dev;
423
424 dev = __dev_get_by_name(net, "tunl0");
425
426 if (dev) {
427 const struct net_device_ops *ops = dev->netdev_ops;
428 int err;
429 struct ifreq ifr;
430 struct ip_tunnel_parm p;
431
432 memset(&p, 0, sizeof(p));
433 p.iph.daddr = v->vifc_rmt_addr.s_addr;
434 p.iph.saddr = v->vifc_lcl_addr.s_addr;
435 p.iph.version = 4;
436 p.iph.ihl = 5;
437 p.iph.protocol = IPPROTO_IPIP;
438 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
439 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
440
441 if (ops->ndo_do_ioctl) {
442 mm_segment_t oldfs = get_fs();
443
444 set_fs(KERNEL_DS);
445 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
446 set_fs(oldfs);
447 } else {
448 err = -EOPNOTSUPP;
449 }
450 dev = NULL;
451
452 if (err == 0 &&
453 (dev = __dev_get_by_name(net, p.name)) != NULL) {
454 dev->flags |= IFF_MULTICAST;
455 if (!ipmr_init_vif_indev(dev))
456 goto failure;
457 if (dev_open(dev))
458 goto failure;
459 dev_hold(dev);
460 }
461 }
462 return dev;
463
464 failure:
465 unregister_netdevice(dev);
466 return NULL;
467 }
468
469 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
470 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
471 {
472 struct net *net = dev_net(dev);
473 struct mr_table *mrt;
474 struct flowi4 fl4 = {
475 .flowi4_oif = dev->ifindex,
476 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
477 .flowi4_mark = skb->mark,
478 };
479 int err;
480
481 err = ipmr_fib_lookup(net, &fl4, &mrt);
482 if (err < 0) {
483 kfree_skb(skb);
484 return err;
485 }
486
487 read_lock(&mrt_lock);
488 dev->stats.tx_bytes += skb->len;
489 dev->stats.tx_packets++;
490 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
491 read_unlock(&mrt_lock);
492 kfree_skb(skb);
493 return NETDEV_TX_OK;
494 }
495
496 static int reg_vif_get_iflink(const struct net_device *dev)
497 {
498 return 0;
499 }
500
501 static const struct net_device_ops reg_vif_netdev_ops = {
502 .ndo_start_xmit = reg_vif_xmit,
503 .ndo_get_iflink = reg_vif_get_iflink,
504 };
505
506 static void reg_vif_setup(struct net_device *dev)
507 {
508 dev->type = ARPHRD_PIMREG;
509 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
510 dev->flags = IFF_NOARP;
511 dev->netdev_ops = &reg_vif_netdev_ops;
512 dev->needs_free_netdev = true;
513 dev->features |= NETIF_F_NETNS_LOCAL;
514 }
515
516 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
517 {
518 struct net_device *dev;
519 char name[IFNAMSIZ];
520
521 if (mrt->id == RT_TABLE_DEFAULT)
522 sprintf(name, "pimreg");
523 else
524 sprintf(name, "pimreg%u", mrt->id);
525
526 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
527
528 if (!dev)
529 return NULL;
530
531 dev_net_set(dev, net);
532
533 if (register_netdevice(dev)) {
534 free_netdev(dev);
535 return NULL;
536 }
537
538 if (!ipmr_init_vif_indev(dev))
539 goto failure;
540 if (dev_open(dev))
541 goto failure;
542
543 dev_hold(dev);
544
545 return dev;
546
547 failure:
548 unregister_netdevice(dev);
549 return NULL;
550 }
551
552 /* called with rcu_read_lock() */
553 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
554 unsigned int pimlen)
555 {
556 struct net_device *reg_dev = NULL;
557 struct iphdr *encap;
558
559 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
560 /* Check that:
561 * a. packet is really sent to a multicast group
562 * b. packet is not a NULL-REGISTER
563 * c. packet is not truncated
564 */
565 if (!ipv4_is_multicast(encap->daddr) ||
566 encap->tot_len == 0 ||
567 ntohs(encap->tot_len) + pimlen > skb->len)
568 return 1;
569
570 read_lock(&mrt_lock);
571 if (mrt->mroute_reg_vif_num >= 0)
572 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
573 read_unlock(&mrt_lock);
574
575 if (!reg_dev)
576 return 1;
577
578 skb->mac_header = skb->network_header;
579 skb_pull(skb, (u8 *)encap - skb->data);
580 skb_reset_network_header(skb);
581 skb->protocol = htons(ETH_P_IP);
582 skb->ip_summed = CHECKSUM_NONE;
583
584 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
585
586 netif_rx(skb);
587
588 return NET_RX_SUCCESS;
589 }
590 #else
591 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
592 {
593 return NULL;
594 }
595 #endif
596
597 /**
598 * vif_delete - Delete a VIF entry
599 * @notify: Set to 1, if the caller is a notifier_call
600 */
601 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
602 struct list_head *head)
603 {
604 struct vif_device *v;
605 struct net_device *dev;
606 struct in_device *in_dev;
607
608 if (vifi < 0 || vifi >= mrt->maxvif)
609 return -EADDRNOTAVAIL;
610
611 v = &mrt->vif_table[vifi];
612
613 write_lock_bh(&mrt_lock);
614 dev = v->dev;
615 v->dev = NULL;
616
617 if (!dev) {
618 write_unlock_bh(&mrt_lock);
619 return -EADDRNOTAVAIL;
620 }
621
622 if (vifi == mrt->mroute_reg_vif_num)
623 mrt->mroute_reg_vif_num = -1;
624
625 if (vifi + 1 == mrt->maxvif) {
626 int tmp;
627
628 for (tmp = vifi - 1; tmp >= 0; tmp--) {
629 if (VIF_EXISTS(mrt, tmp))
630 break;
631 }
632 mrt->maxvif = tmp+1;
633 }
634
635 write_unlock_bh(&mrt_lock);
636
637 dev_set_allmulti(dev, -1);
638
639 in_dev = __in_dev_get_rtnl(dev);
640 if (in_dev) {
641 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
642 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
643 NETCONFA_MC_FORWARDING,
644 dev->ifindex, &in_dev->cnf);
645 ip_rt_multicast_event(in_dev);
646 }
647
648 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
649 unregister_netdevice_queue(dev, head);
650
651 dev_put(dev);
652 return 0;
653 }
654
655 static void ipmr_cache_free_rcu(struct rcu_head *head)
656 {
657 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
658
659 kmem_cache_free(mrt_cachep, c);
660 }
661
662 static inline void ipmr_cache_free(struct mfc_cache *c)
663 {
664 call_rcu(&c->rcu, ipmr_cache_free_rcu);
665 }
666
667 /* Destroy an unresolved cache entry, killing queued skbs
668 * and reporting error to netlink readers.
669 */
670 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
671 {
672 struct net *net = read_pnet(&mrt->net);
673 struct sk_buff *skb;
674 struct nlmsgerr *e;
675
676 atomic_dec(&mrt->cache_resolve_queue_len);
677
678 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
679 if (ip_hdr(skb)->version == 0) {
680 struct nlmsghdr *nlh = skb_pull(skb,
681 sizeof(struct iphdr));
682 nlh->nlmsg_type = NLMSG_ERROR;
683 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
684 skb_trim(skb, nlh->nlmsg_len);
685 e = nlmsg_data(nlh);
686 e->error = -ETIMEDOUT;
687 memset(&e->msg, 0, sizeof(e->msg));
688
689 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
690 } else {
691 kfree_skb(skb);
692 }
693 }
694
695 ipmr_cache_free(c);
696 }
697
698 /* Timer process for the unresolved queue. */
699 static void ipmr_expire_process(unsigned long arg)
700 {
701 struct mr_table *mrt = (struct mr_table *)arg;
702 unsigned long now;
703 unsigned long expires;
704 struct mfc_cache *c, *next;
705
706 if (!spin_trylock(&mfc_unres_lock)) {
707 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
708 return;
709 }
710
711 if (list_empty(&mrt->mfc_unres_queue))
712 goto out;
713
714 now = jiffies;
715 expires = 10*HZ;
716
717 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
718 if (time_after(c->mfc_un.unres.expires, now)) {
719 unsigned long interval = c->mfc_un.unres.expires - now;
720 if (interval < expires)
721 expires = interval;
722 continue;
723 }
724
725 list_del(&c->list);
726 mroute_netlink_event(mrt, c, RTM_DELROUTE);
727 ipmr_destroy_unres(mrt, c);
728 }
729
730 if (!list_empty(&mrt->mfc_unres_queue))
731 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
732
733 out:
734 spin_unlock(&mfc_unres_lock);
735 }
736
737 /* Fill oifs list. It is called under write locked mrt_lock. */
738 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
739 unsigned char *ttls)
740 {
741 int vifi;
742
743 cache->mfc_un.res.minvif = MAXVIFS;
744 cache->mfc_un.res.maxvif = 0;
745 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
746
747 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
748 if (VIF_EXISTS(mrt, vifi) &&
749 ttls[vifi] && ttls[vifi] < 255) {
750 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
751 if (cache->mfc_un.res.minvif > vifi)
752 cache->mfc_un.res.minvif = vifi;
753 if (cache->mfc_un.res.maxvif <= vifi)
754 cache->mfc_un.res.maxvif = vifi + 1;
755 }
756 }
757 cache->mfc_un.res.lastuse = jiffies;
758 }
759
760 static int vif_add(struct net *net, struct mr_table *mrt,
761 struct vifctl *vifc, int mrtsock)
762 {
763 int vifi = vifc->vifc_vifi;
764 struct vif_device *v = &mrt->vif_table[vifi];
765 struct net_device *dev;
766 struct in_device *in_dev;
767 int err;
768
769 /* Is vif busy ? */
770 if (VIF_EXISTS(mrt, vifi))
771 return -EADDRINUSE;
772
773 switch (vifc->vifc_flags) {
774 case VIFF_REGISTER:
775 if (!ipmr_pimsm_enabled())
776 return -EINVAL;
777 /* Special Purpose VIF in PIM
778 * All the packets will be sent to the daemon
779 */
780 if (mrt->mroute_reg_vif_num >= 0)
781 return -EADDRINUSE;
782 dev = ipmr_reg_vif(net, mrt);
783 if (!dev)
784 return -ENOBUFS;
785 err = dev_set_allmulti(dev, 1);
786 if (err) {
787 unregister_netdevice(dev);
788 dev_put(dev);
789 return err;
790 }
791 break;
792 case VIFF_TUNNEL:
793 dev = ipmr_new_tunnel(net, vifc);
794 if (!dev)
795 return -ENOBUFS;
796 err = dev_set_allmulti(dev, 1);
797 if (err) {
798 ipmr_del_tunnel(dev, vifc);
799 dev_put(dev);
800 return err;
801 }
802 break;
803 case VIFF_USE_IFINDEX:
804 case 0:
805 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
806 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
807 if (dev && !__in_dev_get_rtnl(dev)) {
808 dev_put(dev);
809 return -EADDRNOTAVAIL;
810 }
811 } else {
812 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
813 }
814 if (!dev)
815 return -EADDRNOTAVAIL;
816 err = dev_set_allmulti(dev, 1);
817 if (err) {
818 dev_put(dev);
819 return err;
820 }
821 break;
822 default:
823 return -EINVAL;
824 }
825
826 in_dev = __in_dev_get_rtnl(dev);
827 if (!in_dev) {
828 dev_put(dev);
829 return -EADDRNOTAVAIL;
830 }
831 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
832 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
833 dev->ifindex, &in_dev->cnf);
834 ip_rt_multicast_event(in_dev);
835
836 /* Fill in the VIF structures */
837
838 v->rate_limit = vifc->vifc_rate_limit;
839 v->local = vifc->vifc_lcl_addr.s_addr;
840 v->remote = vifc->vifc_rmt_addr.s_addr;
841 v->flags = vifc->vifc_flags;
842 if (!mrtsock)
843 v->flags |= VIFF_STATIC;
844 v->threshold = vifc->vifc_threshold;
845 v->bytes_in = 0;
846 v->bytes_out = 0;
847 v->pkt_in = 0;
848 v->pkt_out = 0;
849 v->link = dev->ifindex;
850 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
851 v->link = dev_get_iflink(dev);
852
853 /* And finish update writing critical data */
854 write_lock_bh(&mrt_lock);
855 v->dev = dev;
856 if (v->flags & VIFF_REGISTER)
857 mrt->mroute_reg_vif_num = vifi;
858 if (vifi+1 > mrt->maxvif)
859 mrt->maxvif = vifi+1;
860 write_unlock_bh(&mrt_lock);
861 return 0;
862 }
863
864 /* called with rcu_read_lock() */
865 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
866 __be32 origin,
867 __be32 mcastgrp)
868 {
869 struct mfc_cache_cmp_arg arg = {
870 .mfc_mcastgrp = mcastgrp,
871 .mfc_origin = origin
872 };
873 struct rhlist_head *tmp, *list;
874 struct mfc_cache *c;
875
876 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
877 rhl_for_each_entry_rcu(c, tmp, list, mnode)
878 return c;
879
880 return NULL;
881 }
882
883 /* Look for a (*,*,oif) entry */
884 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
885 int vifi)
886 {
887 struct mfc_cache_cmp_arg arg = {
888 .mfc_mcastgrp = htonl(INADDR_ANY),
889 .mfc_origin = htonl(INADDR_ANY)
890 };
891 struct rhlist_head *tmp, *list;
892 struct mfc_cache *c;
893
894 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
895 rhl_for_each_entry_rcu(c, tmp, list, mnode)
896 if (c->mfc_un.res.ttls[vifi] < 255)
897 return c;
898
899 return NULL;
900 }
901
902 /* Look for a (*,G) entry */
903 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
904 __be32 mcastgrp, int vifi)
905 {
906 struct mfc_cache_cmp_arg arg = {
907 .mfc_mcastgrp = mcastgrp,
908 .mfc_origin = htonl(INADDR_ANY)
909 };
910 struct rhlist_head *tmp, *list;
911 struct mfc_cache *c, *proxy;
912
913 if (mcastgrp == htonl(INADDR_ANY))
914 goto skip;
915
916 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
917 rhl_for_each_entry_rcu(c, tmp, list, mnode) {
918 if (c->mfc_un.res.ttls[vifi] < 255)
919 return c;
920
921 /* It's ok if the vifi is part of the static tree */
922 proxy = ipmr_cache_find_any_parent(mrt, c->mfc_parent);
923 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
924 return c;
925 }
926
927 skip:
928 return ipmr_cache_find_any_parent(mrt, vifi);
929 }
930
931 /* Look for a (S,G,iif) entry if parent != -1 */
932 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
933 __be32 origin, __be32 mcastgrp,
934 int parent)
935 {
936 struct mfc_cache_cmp_arg arg = {
937 .mfc_mcastgrp = mcastgrp,
938 .mfc_origin = origin,
939 };
940 struct rhlist_head *tmp, *list;
941 struct mfc_cache *c;
942
943 list = rhltable_lookup(&mrt->mfc_hash, &arg, ipmr_rht_params);
944 rhl_for_each_entry_rcu(c, tmp, list, mnode)
945 if (parent == -1 || parent == c->mfc_parent)
946 return c;
947
948 return NULL;
949 }
950
951 /* Allocate a multicast cache entry */
952 static struct mfc_cache *ipmr_cache_alloc(void)
953 {
954 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
955
956 if (c) {
957 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
958 c->mfc_un.res.minvif = MAXVIFS;
959 }
960 return c;
961 }
962
963 static struct mfc_cache *ipmr_cache_alloc_unres(void)
964 {
965 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
966
967 if (c) {
968 skb_queue_head_init(&c->mfc_un.unres.unresolved);
969 c->mfc_un.unres.expires = jiffies + 10*HZ;
970 }
971 return c;
972 }
973
974 /* A cache entry has gone into a resolved state from queued */
975 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
976 struct mfc_cache *uc, struct mfc_cache *c)
977 {
978 struct sk_buff *skb;
979 struct nlmsgerr *e;
980
981 /* Play the pending entries through our router */
982 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
983 if (ip_hdr(skb)->version == 0) {
984 struct nlmsghdr *nlh = skb_pull(skb,
985 sizeof(struct iphdr));
986
987 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
988 nlh->nlmsg_len = skb_tail_pointer(skb) -
989 (u8 *)nlh;
990 } else {
991 nlh->nlmsg_type = NLMSG_ERROR;
992 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
993 skb_trim(skb, nlh->nlmsg_len);
994 e = nlmsg_data(nlh);
995 e->error = -EMSGSIZE;
996 memset(&e->msg, 0, sizeof(e->msg));
997 }
998
999 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1000 } else {
1001 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1002 }
1003 }
1004 }
1005
1006 /* Bounce a cache query up to mrouted and netlink.
1007 *
1008 * Called under mrt_lock.
1009 */
1010 static int ipmr_cache_report(struct mr_table *mrt,
1011 struct sk_buff *pkt, vifi_t vifi, int assert)
1012 {
1013 const int ihl = ip_hdrlen(pkt);
1014 struct sock *mroute_sk;
1015 struct igmphdr *igmp;
1016 struct igmpmsg *msg;
1017 struct sk_buff *skb;
1018 int ret;
1019
1020 if (assert == IGMPMSG_WHOLEPKT)
1021 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1022 else
1023 skb = alloc_skb(128, GFP_ATOMIC);
1024
1025 if (!skb)
1026 return -ENOBUFS;
1027
1028 if (assert == IGMPMSG_WHOLEPKT) {
1029 /* Ugly, but we have no choice with this interface.
1030 * Duplicate old header, fix ihl, length etc.
1031 * And all this only to mangle msg->im_msgtype and
1032 * to set msg->im_mbz to "mbz" :-)
1033 */
1034 skb_push(skb, sizeof(struct iphdr));
1035 skb_reset_network_header(skb);
1036 skb_reset_transport_header(skb);
1037 msg = (struct igmpmsg *)skb_network_header(skb);
1038 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1039 msg->im_msgtype = IGMPMSG_WHOLEPKT;
1040 msg->im_mbz = 0;
1041 msg->im_vif = mrt->mroute_reg_vif_num;
1042 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1043 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1044 sizeof(struct iphdr));
1045 } else {
1046 /* Copy the IP header */
1047 skb_set_network_header(skb, skb->len);
1048 skb_put(skb, ihl);
1049 skb_copy_to_linear_data(skb, pkt->data, ihl);
1050 /* Flag to the kernel this is a route add */
1051 ip_hdr(skb)->protocol = 0;
1052 msg = (struct igmpmsg *)skb_network_header(skb);
1053 msg->im_vif = vifi;
1054 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1055 /* Add our header */
1056 igmp = skb_put(skb, sizeof(struct igmphdr));
1057 igmp->type = assert;
1058 msg->im_msgtype = assert;
1059 igmp->code = 0;
1060 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1061 skb->transport_header = skb->network_header;
1062 }
1063
1064 rcu_read_lock();
1065 mroute_sk = rcu_dereference(mrt->mroute_sk);
1066 if (!mroute_sk) {
1067 rcu_read_unlock();
1068 kfree_skb(skb);
1069 return -EINVAL;
1070 }
1071
1072 igmpmsg_netlink_event(mrt, skb);
1073
1074 /* Deliver to mrouted */
1075 ret = sock_queue_rcv_skb(mroute_sk, skb);
1076 rcu_read_unlock();
1077 if (ret < 0) {
1078 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1079 kfree_skb(skb);
1080 }
1081
1082 return ret;
1083 }
1084
1085 /* Queue a packet for resolution. It gets locked cache entry! */
1086 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1087 struct sk_buff *skb, struct net_device *dev)
1088 {
1089 const struct iphdr *iph = ip_hdr(skb);
1090 struct mfc_cache *c;
1091 bool found = false;
1092 int err;
1093
1094 spin_lock_bh(&mfc_unres_lock);
1095 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1096 if (c->mfc_mcastgrp == iph->daddr &&
1097 c->mfc_origin == iph->saddr) {
1098 found = true;
1099 break;
1100 }
1101 }
1102
1103 if (!found) {
1104 /* Create a new entry if allowable */
1105 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1106 (c = ipmr_cache_alloc_unres()) == NULL) {
1107 spin_unlock_bh(&mfc_unres_lock);
1108
1109 kfree_skb(skb);
1110 return -ENOBUFS;
1111 }
1112
1113 /* Fill in the new cache entry */
1114 c->mfc_parent = -1;
1115 c->mfc_origin = iph->saddr;
1116 c->mfc_mcastgrp = iph->daddr;
1117
1118 /* Reflect first query at mrouted. */
1119 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1120 if (err < 0) {
1121 /* If the report failed throw the cache entry
1122 out - Brad Parker
1123 */
1124 spin_unlock_bh(&mfc_unres_lock);
1125
1126 ipmr_cache_free(c);
1127 kfree_skb(skb);
1128 return err;
1129 }
1130
1131 atomic_inc(&mrt->cache_resolve_queue_len);
1132 list_add(&c->list, &mrt->mfc_unres_queue);
1133 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1134
1135 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1136 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1137 }
1138
1139 /* See if we can append the packet */
1140 if (c->mfc_un.unres.unresolved.qlen > 3) {
1141 kfree_skb(skb);
1142 err = -ENOBUFS;
1143 } else {
1144 if (dev) {
1145 skb->dev = dev;
1146 skb->skb_iif = dev->ifindex;
1147 }
1148 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1149 err = 0;
1150 }
1151
1152 spin_unlock_bh(&mfc_unres_lock);
1153 return err;
1154 }
1155
1156 /* MFC cache manipulation by user space mroute daemon */
1157
1158 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1159 {
1160 struct mfc_cache *c;
1161
1162 /* The entries are added/deleted only under RTNL */
1163 rcu_read_lock();
1164 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1165 mfc->mfcc_mcastgrp.s_addr, parent);
1166 rcu_read_unlock();
1167 if (!c)
1168 return -ENOENT;
1169 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1170 list_del_rcu(&c->list);
1171 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1172 ipmr_cache_free(c);
1173
1174 return 0;
1175 }
1176
1177 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1178 struct mfcctl *mfc, int mrtsock, int parent)
1179 {
1180 struct mfc_cache *uc, *c;
1181 bool found;
1182 int ret;
1183
1184 if (mfc->mfcc_parent >= MAXVIFS)
1185 return -ENFILE;
1186
1187 /* The entries are added/deleted only under RTNL */
1188 rcu_read_lock();
1189 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1190 mfc->mfcc_mcastgrp.s_addr, parent);
1191 rcu_read_unlock();
1192 if (c) {
1193 write_lock_bh(&mrt_lock);
1194 c->mfc_parent = mfc->mfcc_parent;
1195 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1196 if (!mrtsock)
1197 c->mfc_flags |= MFC_STATIC;
1198 write_unlock_bh(&mrt_lock);
1199 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1200 return 0;
1201 }
1202
1203 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1204 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1205 return -EINVAL;
1206
1207 c = ipmr_cache_alloc();
1208 if (!c)
1209 return -ENOMEM;
1210
1211 c->mfc_origin = mfc->mfcc_origin.s_addr;
1212 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1213 c->mfc_parent = mfc->mfcc_parent;
1214 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1215 if (!mrtsock)
1216 c->mfc_flags |= MFC_STATIC;
1217
1218 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->mnode,
1219 ipmr_rht_params);
1220 if (ret) {
1221 pr_err("ipmr: rhtable insert error %d\n", ret);
1222 ipmr_cache_free(c);
1223 return ret;
1224 }
1225 list_add_tail_rcu(&c->list, &mrt->mfc_cache_list);
1226 /* Check to see if we resolved a queued list. If so we
1227 * need to send on the frames and tidy up.
1228 */
1229 found = false;
1230 spin_lock_bh(&mfc_unres_lock);
1231 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1232 if (uc->mfc_origin == c->mfc_origin &&
1233 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1234 list_del(&uc->list);
1235 atomic_dec(&mrt->cache_resolve_queue_len);
1236 found = true;
1237 break;
1238 }
1239 }
1240 if (list_empty(&mrt->mfc_unres_queue))
1241 del_timer(&mrt->ipmr_expire_timer);
1242 spin_unlock_bh(&mfc_unres_lock);
1243
1244 if (found) {
1245 ipmr_cache_resolve(net, mrt, uc, c);
1246 ipmr_cache_free(uc);
1247 }
1248 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1249 return 0;
1250 }
1251
1252 /* Close the multicast socket, and clear the vif tables etc */
1253 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1254 {
1255 struct mfc_cache *c, *tmp;
1256 LIST_HEAD(list);
1257 int i;
1258
1259 /* Shut down all active vif entries */
1260 for (i = 0; i < mrt->maxvif; i++) {
1261 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1262 continue;
1263 vif_delete(mrt, i, 0, &list);
1264 }
1265 unregister_netdevice_many(&list);
1266
1267 /* Wipe the cache */
1268 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1269 if (!all && (c->mfc_flags & MFC_STATIC))
1270 continue;
1271 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1272 list_del_rcu(&c->list);
1273 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1274 ipmr_cache_free(c);
1275 }
1276
1277 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1278 spin_lock_bh(&mfc_unres_lock);
1279 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1280 list_del(&c->list);
1281 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1282 ipmr_destroy_unres(mrt, c);
1283 }
1284 spin_unlock_bh(&mfc_unres_lock);
1285 }
1286 }
1287
1288 /* called from ip_ra_control(), before an RCU grace period,
1289 * we dont need to call synchronize_rcu() here
1290 */
1291 static void mrtsock_destruct(struct sock *sk)
1292 {
1293 struct net *net = sock_net(sk);
1294 struct mr_table *mrt;
1295
1296 ASSERT_RTNL();
1297 ipmr_for_each_table(mrt, net) {
1298 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1299 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1300 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1301 NETCONFA_MC_FORWARDING,
1302 NETCONFA_IFINDEX_ALL,
1303 net->ipv4.devconf_all);
1304 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1305 mroute_clean_tables(mrt, false);
1306 }
1307 }
1308 }
1309
1310 /* Socket options and virtual interface manipulation. The whole
1311 * virtual interface system is a complete heap, but unfortunately
1312 * that's how BSD mrouted happens to think. Maybe one day with a proper
1313 * MOSPF/PIM router set up we can clean this up.
1314 */
1315
1316 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1317 unsigned int optlen)
1318 {
1319 struct net *net = sock_net(sk);
1320 int val, ret = 0, parent = 0;
1321 struct mr_table *mrt;
1322 struct vifctl vif;
1323 struct mfcctl mfc;
1324 u32 uval;
1325
1326 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1327 rtnl_lock();
1328 if (sk->sk_type != SOCK_RAW ||
1329 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1330 ret = -EOPNOTSUPP;
1331 goto out_unlock;
1332 }
1333
1334 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1335 if (!mrt) {
1336 ret = -ENOENT;
1337 goto out_unlock;
1338 }
1339 if (optname != MRT_INIT) {
1340 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1341 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1342 ret = -EACCES;
1343 goto out_unlock;
1344 }
1345 }
1346
1347 switch (optname) {
1348 case MRT_INIT:
1349 if (optlen != sizeof(int)) {
1350 ret = -EINVAL;
1351 break;
1352 }
1353 if (rtnl_dereference(mrt->mroute_sk)) {
1354 ret = -EADDRINUSE;
1355 break;
1356 }
1357
1358 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1359 if (ret == 0) {
1360 rcu_assign_pointer(mrt->mroute_sk, sk);
1361 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1362 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1363 NETCONFA_MC_FORWARDING,
1364 NETCONFA_IFINDEX_ALL,
1365 net->ipv4.devconf_all);
1366 }
1367 break;
1368 case MRT_DONE:
1369 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1370 ret = -EACCES;
1371 } else {
1372 ret = ip_ra_control(sk, 0, NULL);
1373 goto out_unlock;
1374 }
1375 break;
1376 case MRT_ADD_VIF:
1377 case MRT_DEL_VIF:
1378 if (optlen != sizeof(vif)) {
1379 ret = -EINVAL;
1380 break;
1381 }
1382 if (copy_from_user(&vif, optval, sizeof(vif))) {
1383 ret = -EFAULT;
1384 break;
1385 }
1386 if (vif.vifc_vifi >= MAXVIFS) {
1387 ret = -ENFILE;
1388 break;
1389 }
1390 if (optname == MRT_ADD_VIF) {
1391 ret = vif_add(net, mrt, &vif,
1392 sk == rtnl_dereference(mrt->mroute_sk));
1393 } else {
1394 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1395 }
1396 break;
1397 /* Manipulate the forwarding caches. These live
1398 * in a sort of kernel/user symbiosis.
1399 */
1400 case MRT_ADD_MFC:
1401 case MRT_DEL_MFC:
1402 parent = -1;
1403 case MRT_ADD_MFC_PROXY:
1404 case MRT_DEL_MFC_PROXY:
1405 if (optlen != sizeof(mfc)) {
1406 ret = -EINVAL;
1407 break;
1408 }
1409 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1410 ret = -EFAULT;
1411 break;
1412 }
1413 if (parent == 0)
1414 parent = mfc.mfcc_parent;
1415 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1416 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1417 else
1418 ret = ipmr_mfc_add(net, mrt, &mfc,
1419 sk == rtnl_dereference(mrt->mroute_sk),
1420 parent);
1421 break;
1422 /* Control PIM assert. */
1423 case MRT_ASSERT:
1424 if (optlen != sizeof(val)) {
1425 ret = -EINVAL;
1426 break;
1427 }
1428 if (get_user(val, (int __user *)optval)) {
1429 ret = -EFAULT;
1430 break;
1431 }
1432 mrt->mroute_do_assert = val;
1433 break;
1434 case MRT_PIM:
1435 if (!ipmr_pimsm_enabled()) {
1436 ret = -ENOPROTOOPT;
1437 break;
1438 }
1439 if (optlen != sizeof(val)) {
1440 ret = -EINVAL;
1441 break;
1442 }
1443 if (get_user(val, (int __user *)optval)) {
1444 ret = -EFAULT;
1445 break;
1446 }
1447
1448 val = !!val;
1449 if (val != mrt->mroute_do_pim) {
1450 mrt->mroute_do_pim = val;
1451 mrt->mroute_do_assert = val;
1452 }
1453 break;
1454 case MRT_TABLE:
1455 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1456 ret = -ENOPROTOOPT;
1457 break;
1458 }
1459 if (optlen != sizeof(uval)) {
1460 ret = -EINVAL;
1461 break;
1462 }
1463 if (get_user(uval, (u32 __user *)optval)) {
1464 ret = -EFAULT;
1465 break;
1466 }
1467
1468 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1469 ret = -EBUSY;
1470 } else {
1471 mrt = ipmr_new_table(net, uval);
1472 if (IS_ERR(mrt))
1473 ret = PTR_ERR(mrt);
1474 else
1475 raw_sk(sk)->ipmr_table = uval;
1476 }
1477 break;
1478 /* Spurious command, or MRT_VERSION which you cannot set. */
1479 default:
1480 ret = -ENOPROTOOPT;
1481 }
1482 out_unlock:
1483 rtnl_unlock();
1484 return ret;
1485 }
1486
1487 /* Getsock opt support for the multicast routing system. */
1488 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1489 {
1490 int olr;
1491 int val;
1492 struct net *net = sock_net(sk);
1493 struct mr_table *mrt;
1494
1495 if (sk->sk_type != SOCK_RAW ||
1496 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1497 return -EOPNOTSUPP;
1498
1499 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1500 if (!mrt)
1501 return -ENOENT;
1502
1503 switch (optname) {
1504 case MRT_VERSION:
1505 val = 0x0305;
1506 break;
1507 case MRT_PIM:
1508 if (!ipmr_pimsm_enabled())
1509 return -ENOPROTOOPT;
1510 val = mrt->mroute_do_pim;
1511 break;
1512 case MRT_ASSERT:
1513 val = mrt->mroute_do_assert;
1514 break;
1515 default:
1516 return -ENOPROTOOPT;
1517 }
1518
1519 if (get_user(olr, optlen))
1520 return -EFAULT;
1521 olr = min_t(unsigned int, olr, sizeof(int));
1522 if (olr < 0)
1523 return -EINVAL;
1524 if (put_user(olr, optlen))
1525 return -EFAULT;
1526 if (copy_to_user(optval, &val, olr))
1527 return -EFAULT;
1528 return 0;
1529 }
1530
1531 /* The IP multicast ioctl support routines. */
1532 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1533 {
1534 struct sioc_sg_req sr;
1535 struct sioc_vif_req vr;
1536 struct vif_device *vif;
1537 struct mfc_cache *c;
1538 struct net *net = sock_net(sk);
1539 struct mr_table *mrt;
1540
1541 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1542 if (!mrt)
1543 return -ENOENT;
1544
1545 switch (cmd) {
1546 case SIOCGETVIFCNT:
1547 if (copy_from_user(&vr, arg, sizeof(vr)))
1548 return -EFAULT;
1549 if (vr.vifi >= mrt->maxvif)
1550 return -EINVAL;
1551 read_lock(&mrt_lock);
1552 vif = &mrt->vif_table[vr.vifi];
1553 if (VIF_EXISTS(mrt, vr.vifi)) {
1554 vr.icount = vif->pkt_in;
1555 vr.ocount = vif->pkt_out;
1556 vr.ibytes = vif->bytes_in;
1557 vr.obytes = vif->bytes_out;
1558 read_unlock(&mrt_lock);
1559
1560 if (copy_to_user(arg, &vr, sizeof(vr)))
1561 return -EFAULT;
1562 return 0;
1563 }
1564 read_unlock(&mrt_lock);
1565 return -EADDRNOTAVAIL;
1566 case SIOCGETSGCNT:
1567 if (copy_from_user(&sr, arg, sizeof(sr)))
1568 return -EFAULT;
1569
1570 rcu_read_lock();
1571 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1572 if (c) {
1573 sr.pktcnt = c->mfc_un.res.pkt;
1574 sr.bytecnt = c->mfc_un.res.bytes;
1575 sr.wrong_if = c->mfc_un.res.wrong_if;
1576 rcu_read_unlock();
1577
1578 if (copy_to_user(arg, &sr, sizeof(sr)))
1579 return -EFAULT;
1580 return 0;
1581 }
1582 rcu_read_unlock();
1583 return -EADDRNOTAVAIL;
1584 default:
1585 return -ENOIOCTLCMD;
1586 }
1587 }
1588
1589 #ifdef CONFIG_COMPAT
1590 struct compat_sioc_sg_req {
1591 struct in_addr src;
1592 struct in_addr grp;
1593 compat_ulong_t pktcnt;
1594 compat_ulong_t bytecnt;
1595 compat_ulong_t wrong_if;
1596 };
1597
1598 struct compat_sioc_vif_req {
1599 vifi_t vifi; /* Which iface */
1600 compat_ulong_t icount;
1601 compat_ulong_t ocount;
1602 compat_ulong_t ibytes;
1603 compat_ulong_t obytes;
1604 };
1605
1606 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1607 {
1608 struct compat_sioc_sg_req sr;
1609 struct compat_sioc_vif_req vr;
1610 struct vif_device *vif;
1611 struct mfc_cache *c;
1612 struct net *net = sock_net(sk);
1613 struct mr_table *mrt;
1614
1615 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1616 if (!mrt)
1617 return -ENOENT;
1618
1619 switch (cmd) {
1620 case SIOCGETVIFCNT:
1621 if (copy_from_user(&vr, arg, sizeof(vr)))
1622 return -EFAULT;
1623 if (vr.vifi >= mrt->maxvif)
1624 return -EINVAL;
1625 vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
1626 read_lock(&mrt_lock);
1627 vif = &mrt->vif_table[vr.vifi];
1628 if (VIF_EXISTS(mrt, vr.vifi)) {
1629 vr.icount = vif->pkt_in;
1630 vr.ocount = vif->pkt_out;
1631 vr.ibytes = vif->bytes_in;
1632 vr.obytes = vif->bytes_out;
1633 read_unlock(&mrt_lock);
1634
1635 if (copy_to_user(arg, &vr, sizeof(vr)))
1636 return -EFAULT;
1637 return 0;
1638 }
1639 read_unlock(&mrt_lock);
1640 return -EADDRNOTAVAIL;
1641 case SIOCGETSGCNT:
1642 if (copy_from_user(&sr, arg, sizeof(sr)))
1643 return -EFAULT;
1644
1645 rcu_read_lock();
1646 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1647 if (c) {
1648 sr.pktcnt = c->mfc_un.res.pkt;
1649 sr.bytecnt = c->mfc_un.res.bytes;
1650 sr.wrong_if = c->mfc_un.res.wrong_if;
1651 rcu_read_unlock();
1652
1653 if (copy_to_user(arg, &sr, sizeof(sr)))
1654 return -EFAULT;
1655 return 0;
1656 }
1657 rcu_read_unlock();
1658 return -EADDRNOTAVAIL;
1659 default:
1660 return -ENOIOCTLCMD;
1661 }
1662 }
1663 #endif
1664
1665 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1666 {
1667 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1668 struct net *net = dev_net(dev);
1669 struct mr_table *mrt;
1670 struct vif_device *v;
1671 int ct;
1672
1673 if (event != NETDEV_UNREGISTER)
1674 return NOTIFY_DONE;
1675
1676 ipmr_for_each_table(mrt, net) {
1677 v = &mrt->vif_table[0];
1678 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1679 if (v->dev == dev)
1680 vif_delete(mrt, ct, 1, NULL);
1681 }
1682 }
1683 return NOTIFY_DONE;
1684 }
1685
1686 static struct notifier_block ip_mr_notifier = {
1687 .notifier_call = ipmr_device_event,
1688 };
1689
1690 /* Encapsulate a packet by attaching a valid IPIP header to it.
1691 * This avoids tunnel drivers and other mess and gives us the speed so
1692 * important for multicast video.
1693 */
1694 static void ip_encap(struct net *net, struct sk_buff *skb,
1695 __be32 saddr, __be32 daddr)
1696 {
1697 struct iphdr *iph;
1698 const struct iphdr *old_iph = ip_hdr(skb);
1699
1700 skb_push(skb, sizeof(struct iphdr));
1701 skb->transport_header = skb->network_header;
1702 skb_reset_network_header(skb);
1703 iph = ip_hdr(skb);
1704
1705 iph->version = 4;
1706 iph->tos = old_iph->tos;
1707 iph->ttl = old_iph->ttl;
1708 iph->frag_off = 0;
1709 iph->daddr = daddr;
1710 iph->saddr = saddr;
1711 iph->protocol = IPPROTO_IPIP;
1712 iph->ihl = 5;
1713 iph->tot_len = htons(skb->len);
1714 ip_select_ident(net, skb, NULL);
1715 ip_send_check(iph);
1716
1717 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1718 nf_reset(skb);
1719 }
1720
1721 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1722 struct sk_buff *skb)
1723 {
1724 struct ip_options *opt = &(IPCB(skb)->opt);
1725
1726 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1727 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1728
1729 if (unlikely(opt->optlen))
1730 ip_forward_options(skb);
1731
1732 return dst_output(net, sk, skb);
1733 }
1734
1735 /* Processing handlers for ipmr_forward */
1736
1737 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1738 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1739 {
1740 const struct iphdr *iph = ip_hdr(skb);
1741 struct vif_device *vif = &mrt->vif_table[vifi];
1742 struct net_device *dev;
1743 struct rtable *rt;
1744 struct flowi4 fl4;
1745 int encap = 0;
1746
1747 if (!vif->dev)
1748 goto out_free;
1749
1750 if (vif->flags & VIFF_REGISTER) {
1751 vif->pkt_out++;
1752 vif->bytes_out += skb->len;
1753 vif->dev->stats.tx_bytes += skb->len;
1754 vif->dev->stats.tx_packets++;
1755 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1756 goto out_free;
1757 }
1758
1759 if (vif->flags & VIFF_TUNNEL) {
1760 rt = ip_route_output_ports(net, &fl4, NULL,
1761 vif->remote, vif->local,
1762 0, 0,
1763 IPPROTO_IPIP,
1764 RT_TOS(iph->tos), vif->link);
1765 if (IS_ERR(rt))
1766 goto out_free;
1767 encap = sizeof(struct iphdr);
1768 } else {
1769 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1770 0, 0,
1771 IPPROTO_IPIP,
1772 RT_TOS(iph->tos), vif->link);
1773 if (IS_ERR(rt))
1774 goto out_free;
1775 }
1776
1777 dev = rt->dst.dev;
1778
1779 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1780 /* Do not fragment multicasts. Alas, IPv4 does not
1781 * allow to send ICMP, so that packets will disappear
1782 * to blackhole.
1783 */
1784 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1785 ip_rt_put(rt);
1786 goto out_free;
1787 }
1788
1789 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1790
1791 if (skb_cow(skb, encap)) {
1792 ip_rt_put(rt);
1793 goto out_free;
1794 }
1795
1796 vif->pkt_out++;
1797 vif->bytes_out += skb->len;
1798
1799 skb_dst_drop(skb);
1800 skb_dst_set(skb, &rt->dst);
1801 ip_decrease_ttl(ip_hdr(skb));
1802
1803 /* FIXME: forward and output firewalls used to be called here.
1804 * What do we do with netfilter? -- RR
1805 */
1806 if (vif->flags & VIFF_TUNNEL) {
1807 ip_encap(net, skb, vif->local, vif->remote);
1808 /* FIXME: extra output firewall step used to be here. --RR */
1809 vif->dev->stats.tx_packets++;
1810 vif->dev->stats.tx_bytes += skb->len;
1811 }
1812
1813 IPCB(skb)->flags |= IPSKB_FORWARDED;
1814
1815 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1816 * not only before forwarding, but after forwarding on all output
1817 * interfaces. It is clear, if mrouter runs a multicasting
1818 * program, it should receive packets not depending to what interface
1819 * program is joined.
1820 * If we will not make it, the program will have to join on all
1821 * interfaces. On the other hand, multihoming host (or router, but
1822 * not mrouter) cannot join to more than one interface - it will
1823 * result in receiving multiple packets.
1824 */
1825 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1826 net, NULL, skb, skb->dev, dev,
1827 ipmr_forward_finish);
1828 return;
1829
1830 out_free:
1831 kfree_skb(skb);
1832 }
1833
1834 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1835 {
1836 int ct;
1837
1838 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1839 if (mrt->vif_table[ct].dev == dev)
1840 break;
1841 }
1842 return ct;
1843 }
1844
1845 /* "local" means that we should preserve one skb (for local delivery) */
1846 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1847 struct net_device *dev, struct sk_buff *skb,
1848 struct mfc_cache *cache, int local)
1849 {
1850 int true_vifi = ipmr_find_vif(mrt, dev);
1851 int psend = -1;
1852 int vif, ct;
1853
1854 vif = cache->mfc_parent;
1855 cache->mfc_un.res.pkt++;
1856 cache->mfc_un.res.bytes += skb->len;
1857 cache->mfc_un.res.lastuse = jiffies;
1858
1859 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1860 struct mfc_cache *cache_proxy;
1861
1862 /* For an (*,G) entry, we only check that the incomming
1863 * interface is part of the static tree.
1864 */
1865 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1866 if (cache_proxy &&
1867 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1868 goto forward;
1869 }
1870
1871 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1872 if (mrt->vif_table[vif].dev != dev) {
1873 if (rt_is_output_route(skb_rtable(skb))) {
1874 /* It is our own packet, looped back.
1875 * Very complicated situation...
1876 *
1877 * The best workaround until routing daemons will be
1878 * fixed is not to redistribute packet, if it was
1879 * send through wrong interface. It means, that
1880 * multicast applications WILL NOT work for
1881 * (S,G), which have default multicast route pointing
1882 * to wrong oif. In any case, it is not a good
1883 * idea to use multicasting applications on router.
1884 */
1885 goto dont_forward;
1886 }
1887
1888 cache->mfc_un.res.wrong_if++;
1889
1890 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1891 /* pimsm uses asserts, when switching from RPT to SPT,
1892 * so that we cannot check that packet arrived on an oif.
1893 * It is bad, but otherwise we would need to move pretty
1894 * large chunk of pimd to kernel. Ough... --ANK
1895 */
1896 (mrt->mroute_do_pim ||
1897 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1898 time_after(jiffies,
1899 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1900 cache->mfc_un.res.last_assert = jiffies;
1901 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1902 }
1903 goto dont_forward;
1904 }
1905
1906 forward:
1907 mrt->vif_table[vif].pkt_in++;
1908 mrt->vif_table[vif].bytes_in += skb->len;
1909
1910 /* Forward the frame */
1911 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1912 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1913 if (true_vifi >= 0 &&
1914 true_vifi != cache->mfc_parent &&
1915 ip_hdr(skb)->ttl >
1916 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1917 /* It's an (*,*) entry and the packet is not coming from
1918 * the upstream: forward the packet to the upstream
1919 * only.
1920 */
1921 psend = cache->mfc_parent;
1922 goto last_forward;
1923 }
1924 goto dont_forward;
1925 }
1926 for (ct = cache->mfc_un.res.maxvif - 1;
1927 ct >= cache->mfc_un.res.minvif; ct--) {
1928 /* For (*,G) entry, don't forward to the incoming interface */
1929 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1930 ct != true_vifi) &&
1931 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1932 if (psend != -1) {
1933 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1934
1935 if (skb2)
1936 ipmr_queue_xmit(net, mrt, skb2, cache,
1937 psend);
1938 }
1939 psend = ct;
1940 }
1941 }
1942 last_forward:
1943 if (psend != -1) {
1944 if (local) {
1945 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1946
1947 if (skb2)
1948 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1949 } else {
1950 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1951 return;
1952 }
1953 }
1954
1955 dont_forward:
1956 if (!local)
1957 kfree_skb(skb);
1958 }
1959
1960 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1961 {
1962 struct rtable *rt = skb_rtable(skb);
1963 struct iphdr *iph = ip_hdr(skb);
1964 struct flowi4 fl4 = {
1965 .daddr = iph->daddr,
1966 .saddr = iph->saddr,
1967 .flowi4_tos = RT_TOS(iph->tos),
1968 .flowi4_oif = (rt_is_output_route(rt) ?
1969 skb->dev->ifindex : 0),
1970 .flowi4_iif = (rt_is_output_route(rt) ?
1971 LOOPBACK_IFINDEX :
1972 skb->dev->ifindex),
1973 .flowi4_mark = skb->mark,
1974 };
1975 struct mr_table *mrt;
1976 int err;
1977
1978 err = ipmr_fib_lookup(net, &fl4, &mrt);
1979 if (err)
1980 return ERR_PTR(err);
1981 return mrt;
1982 }
1983
1984 /* Multicast packets for forwarding arrive here
1985 * Called with rcu_read_lock();
1986 */
1987 int ip_mr_input(struct sk_buff *skb)
1988 {
1989 struct mfc_cache *cache;
1990 struct net *net = dev_net(skb->dev);
1991 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1992 struct mr_table *mrt;
1993 struct net_device *dev;
1994
1995 /* skb->dev passed in is the loX master dev for vrfs.
1996 * As there are no vifs associated with loopback devices,
1997 * get the proper interface that does have a vif associated with it.
1998 */
1999 dev = skb->dev;
2000 if (netif_is_l3_master(skb->dev)) {
2001 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2002 if (!dev) {
2003 kfree_skb(skb);
2004 return -ENODEV;
2005 }
2006 }
2007
2008 /* Packet is looped back after forward, it should not be
2009 * forwarded second time, but still can be delivered locally.
2010 */
2011 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2012 goto dont_forward;
2013
2014 mrt = ipmr_rt_fib_lookup(net, skb);
2015 if (IS_ERR(mrt)) {
2016 kfree_skb(skb);
2017 return PTR_ERR(mrt);
2018 }
2019 if (!local) {
2020 if (IPCB(skb)->opt.router_alert) {
2021 if (ip_call_ra_chain(skb))
2022 return 0;
2023 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2024 /* IGMPv1 (and broken IGMPv2 implementations sort of
2025 * Cisco IOS <= 11.2(8)) do not put router alert
2026 * option to IGMP packets destined to routable
2027 * groups. It is very bad, because it means
2028 * that we can forward NO IGMP messages.
2029 */
2030 struct sock *mroute_sk;
2031
2032 mroute_sk = rcu_dereference(mrt->mroute_sk);
2033 if (mroute_sk) {
2034 nf_reset(skb);
2035 raw_rcv(mroute_sk, skb);
2036 return 0;
2037 }
2038 }
2039 }
2040
2041 /* already under rcu_read_lock() */
2042 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2043 if (!cache) {
2044 int vif = ipmr_find_vif(mrt, dev);
2045
2046 if (vif >= 0)
2047 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2048 vif);
2049 }
2050
2051 /* No usable cache entry */
2052 if (!cache) {
2053 int vif;
2054
2055 if (local) {
2056 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2057 ip_local_deliver(skb);
2058 if (!skb2)
2059 return -ENOBUFS;
2060 skb = skb2;
2061 }
2062
2063 read_lock(&mrt_lock);
2064 vif = ipmr_find_vif(mrt, dev);
2065 if (vif >= 0) {
2066 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2067 read_unlock(&mrt_lock);
2068
2069 return err2;
2070 }
2071 read_unlock(&mrt_lock);
2072 kfree_skb(skb);
2073 return -ENODEV;
2074 }
2075
2076 read_lock(&mrt_lock);
2077 ip_mr_forward(net, mrt, dev, skb, cache, local);
2078 read_unlock(&mrt_lock);
2079
2080 if (local)
2081 return ip_local_deliver(skb);
2082
2083 return 0;
2084
2085 dont_forward:
2086 if (local)
2087 return ip_local_deliver(skb);
2088 kfree_skb(skb);
2089 return 0;
2090 }
2091
2092 #ifdef CONFIG_IP_PIMSM_V1
2093 /* Handle IGMP messages of PIMv1 */
2094 int pim_rcv_v1(struct sk_buff *skb)
2095 {
2096 struct igmphdr *pim;
2097 struct net *net = dev_net(skb->dev);
2098 struct mr_table *mrt;
2099
2100 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2101 goto drop;
2102
2103 pim = igmp_hdr(skb);
2104
2105 mrt = ipmr_rt_fib_lookup(net, skb);
2106 if (IS_ERR(mrt))
2107 goto drop;
2108 if (!mrt->mroute_do_pim ||
2109 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2110 goto drop;
2111
2112 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2113 drop:
2114 kfree_skb(skb);
2115 }
2116 return 0;
2117 }
2118 #endif
2119
2120 #ifdef CONFIG_IP_PIMSM_V2
2121 static int pim_rcv(struct sk_buff *skb)
2122 {
2123 struct pimreghdr *pim;
2124 struct net *net = dev_net(skb->dev);
2125 struct mr_table *mrt;
2126
2127 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2128 goto drop;
2129
2130 pim = (struct pimreghdr *)skb_transport_header(skb);
2131 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2132 (pim->flags & PIM_NULL_REGISTER) ||
2133 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2134 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2135 goto drop;
2136
2137 mrt = ipmr_rt_fib_lookup(net, skb);
2138 if (IS_ERR(mrt))
2139 goto drop;
2140 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2141 drop:
2142 kfree_skb(skb);
2143 }
2144 return 0;
2145 }
2146 #endif
2147
2148 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2149 struct mfc_cache *c, struct rtmsg *rtm)
2150 {
2151 struct rta_mfc_stats mfcs;
2152 struct nlattr *mp_attr;
2153 struct rtnexthop *nhp;
2154 unsigned long lastuse;
2155 int ct;
2156
2157 /* If cache is unresolved, don't try to parse IIF and OIF */
2158 if (c->mfc_parent >= MAXVIFS) {
2159 rtm->rtm_flags |= RTNH_F_UNRESOLVED;
2160 return -ENOENT;
2161 }
2162
2163 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2164 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2165 return -EMSGSIZE;
2166
2167 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2168 return -EMSGSIZE;
2169
2170 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2171 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2172 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2173 nla_nest_cancel(skb, mp_attr);
2174 return -EMSGSIZE;
2175 }
2176
2177 nhp->rtnh_flags = 0;
2178 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2179 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2180 nhp->rtnh_len = sizeof(*nhp);
2181 }
2182 }
2183
2184 nla_nest_end(skb, mp_attr);
2185
2186 lastuse = READ_ONCE(c->mfc_un.res.lastuse);
2187 lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0;
2188
2189 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2190 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2191 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2192 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2193 nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse),
2194 RTA_PAD))
2195 return -EMSGSIZE;
2196
2197 rtm->rtm_type = RTN_MULTICAST;
2198 return 1;
2199 }
2200
2201 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2202 __be32 saddr, __be32 daddr,
2203 struct rtmsg *rtm, u32 portid)
2204 {
2205 struct mfc_cache *cache;
2206 struct mr_table *mrt;
2207 int err;
2208
2209 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2210 if (!mrt)
2211 return -ENOENT;
2212
2213 rcu_read_lock();
2214 cache = ipmr_cache_find(mrt, saddr, daddr);
2215 if (!cache && skb->dev) {
2216 int vif = ipmr_find_vif(mrt, skb->dev);
2217
2218 if (vif >= 0)
2219 cache = ipmr_cache_find_any(mrt, daddr, vif);
2220 }
2221 if (!cache) {
2222 struct sk_buff *skb2;
2223 struct iphdr *iph;
2224 struct net_device *dev;
2225 int vif = -1;
2226
2227 dev = skb->dev;
2228 read_lock(&mrt_lock);
2229 if (dev)
2230 vif = ipmr_find_vif(mrt, dev);
2231 if (vif < 0) {
2232 read_unlock(&mrt_lock);
2233 rcu_read_unlock();
2234 return -ENODEV;
2235 }
2236 skb2 = skb_clone(skb, GFP_ATOMIC);
2237 if (!skb2) {
2238 read_unlock(&mrt_lock);
2239 rcu_read_unlock();
2240 return -ENOMEM;
2241 }
2242
2243 NETLINK_CB(skb2).portid = portid;
2244 skb_push(skb2, sizeof(struct iphdr));
2245 skb_reset_network_header(skb2);
2246 iph = ip_hdr(skb2);
2247 iph->ihl = sizeof(struct iphdr) >> 2;
2248 iph->saddr = saddr;
2249 iph->daddr = daddr;
2250 iph->version = 0;
2251 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2252 read_unlock(&mrt_lock);
2253 rcu_read_unlock();
2254 return err;
2255 }
2256
2257 read_lock(&mrt_lock);
2258 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2259 read_unlock(&mrt_lock);
2260 rcu_read_unlock();
2261 return err;
2262 }
2263
2264 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2265 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2266 int flags)
2267 {
2268 struct nlmsghdr *nlh;
2269 struct rtmsg *rtm;
2270 int err;
2271
2272 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2273 if (!nlh)
2274 return -EMSGSIZE;
2275
2276 rtm = nlmsg_data(nlh);
2277 rtm->rtm_family = RTNL_FAMILY_IPMR;
2278 rtm->rtm_dst_len = 32;
2279 rtm->rtm_src_len = 32;
2280 rtm->rtm_tos = 0;
2281 rtm->rtm_table = mrt->id;
2282 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2283 goto nla_put_failure;
2284 rtm->rtm_type = RTN_MULTICAST;
2285 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2286 if (c->mfc_flags & MFC_STATIC)
2287 rtm->rtm_protocol = RTPROT_STATIC;
2288 else
2289 rtm->rtm_protocol = RTPROT_MROUTED;
2290 rtm->rtm_flags = 0;
2291
2292 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2293 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2294 goto nla_put_failure;
2295 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2296 /* do not break the dump if cache is unresolved */
2297 if (err < 0 && err != -ENOENT)
2298 goto nla_put_failure;
2299
2300 nlmsg_end(skb, nlh);
2301 return 0;
2302
2303 nla_put_failure:
2304 nlmsg_cancel(skb, nlh);
2305 return -EMSGSIZE;
2306 }
2307
2308 static size_t mroute_msgsize(bool unresolved, int maxvif)
2309 {
2310 size_t len =
2311 NLMSG_ALIGN(sizeof(struct rtmsg))
2312 + nla_total_size(4) /* RTA_TABLE */
2313 + nla_total_size(4) /* RTA_SRC */
2314 + nla_total_size(4) /* RTA_DST */
2315 ;
2316
2317 if (!unresolved)
2318 len = len
2319 + nla_total_size(4) /* RTA_IIF */
2320 + nla_total_size(0) /* RTA_MULTIPATH */
2321 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2322 /* RTA_MFC_STATS */
2323 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2324 ;
2325
2326 return len;
2327 }
2328
2329 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2330 int cmd)
2331 {
2332 struct net *net = read_pnet(&mrt->net);
2333 struct sk_buff *skb;
2334 int err = -ENOBUFS;
2335
2336 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2337 GFP_ATOMIC);
2338 if (!skb)
2339 goto errout;
2340
2341 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2342 if (err < 0)
2343 goto errout;
2344
2345 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2346 return;
2347
2348 errout:
2349 kfree_skb(skb);
2350 if (err < 0)
2351 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2352 }
2353
2354 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2355 {
2356 size_t len =
2357 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2358 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2359 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2360 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2361 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2362 /* IPMRA_CREPORT_PKT */
2363 + nla_total_size(payloadlen)
2364 ;
2365
2366 return len;
2367 }
2368
2369 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2370 {
2371 struct net *net = read_pnet(&mrt->net);
2372 struct nlmsghdr *nlh;
2373 struct rtgenmsg *rtgenm;
2374 struct igmpmsg *msg;
2375 struct sk_buff *skb;
2376 struct nlattr *nla;
2377 int payloadlen;
2378
2379 payloadlen = pkt->len - sizeof(struct igmpmsg);
2380 msg = (struct igmpmsg *)skb_network_header(pkt);
2381
2382 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2383 if (!skb)
2384 goto errout;
2385
2386 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2387 sizeof(struct rtgenmsg), 0);
2388 if (!nlh)
2389 goto errout;
2390 rtgenm = nlmsg_data(nlh);
2391 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2392 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2393 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2394 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2395 msg->im_src.s_addr) ||
2396 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2397 msg->im_dst.s_addr))
2398 goto nla_put_failure;
2399
2400 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2401 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2402 nla_data(nla), payloadlen))
2403 goto nla_put_failure;
2404
2405 nlmsg_end(skb, nlh);
2406
2407 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2408 return;
2409
2410 nla_put_failure:
2411 nlmsg_cancel(skb, nlh);
2412 errout:
2413 kfree_skb(skb);
2414 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2415 }
2416
2417 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2418 struct netlink_ext_ack *extack)
2419 {
2420 struct net *net = sock_net(in_skb->sk);
2421 struct nlattr *tb[RTA_MAX + 1];
2422 struct sk_buff *skb = NULL;
2423 struct mfc_cache *cache;
2424 struct mr_table *mrt;
2425 struct rtmsg *rtm;
2426 __be32 src, grp;
2427 u32 tableid;
2428 int err;
2429
2430 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2431 rtm_ipv4_policy, extack);
2432 if (err < 0)
2433 goto errout;
2434
2435 rtm = nlmsg_data(nlh);
2436
2437 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2438 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2439 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2440
2441 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2442 if (!mrt) {
2443 err = -ENOENT;
2444 goto errout_free;
2445 }
2446
2447 /* entries are added/deleted only under RTNL */
2448 rcu_read_lock();
2449 cache = ipmr_cache_find(mrt, src, grp);
2450 rcu_read_unlock();
2451 if (!cache) {
2452 err = -ENOENT;
2453 goto errout_free;
2454 }
2455
2456 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2457 if (!skb) {
2458 err = -ENOBUFS;
2459 goto errout_free;
2460 }
2461
2462 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2463 nlh->nlmsg_seq, cache,
2464 RTM_NEWROUTE, 0);
2465 if (err < 0)
2466 goto errout_free;
2467
2468 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2469
2470 errout:
2471 return err;
2472
2473 errout_free:
2474 kfree_skb(skb);
2475 goto errout;
2476 }
2477
2478 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2479 {
2480 struct net *net = sock_net(skb->sk);
2481 struct mr_table *mrt;
2482 struct mfc_cache *mfc;
2483 unsigned int t = 0, s_t;
2484 unsigned int e = 0, s_e;
2485
2486 s_t = cb->args[0];
2487 s_e = cb->args[1];
2488
2489 rcu_read_lock();
2490 ipmr_for_each_table(mrt, net) {
2491 if (t < s_t)
2492 goto next_table;
2493 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list) {
2494 if (e < s_e)
2495 goto next_entry;
2496 if (ipmr_fill_mroute(mrt, skb,
2497 NETLINK_CB(cb->skb).portid,
2498 cb->nlh->nlmsg_seq,
2499 mfc, RTM_NEWROUTE,
2500 NLM_F_MULTI) < 0)
2501 goto done;
2502 next_entry:
2503 e++;
2504 }
2505
2506 spin_lock_bh(&mfc_unres_lock);
2507 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2508 if (e < s_e)
2509 goto next_entry2;
2510 if (ipmr_fill_mroute(mrt, skb,
2511 NETLINK_CB(cb->skb).portid,
2512 cb->nlh->nlmsg_seq,
2513 mfc, RTM_NEWROUTE,
2514 NLM_F_MULTI) < 0) {
2515 spin_unlock_bh(&mfc_unres_lock);
2516 goto done;
2517 }
2518 next_entry2:
2519 e++;
2520 }
2521 spin_unlock_bh(&mfc_unres_lock);
2522 e = 0;
2523 s_e = 0;
2524 next_table:
2525 t++;
2526 }
2527 done:
2528 rcu_read_unlock();
2529
2530 cb->args[1] = e;
2531 cb->args[0] = t;
2532
2533 return skb->len;
2534 }
2535
2536 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2537 [RTA_SRC] = { .type = NLA_U32 },
2538 [RTA_DST] = { .type = NLA_U32 },
2539 [RTA_IIF] = { .type = NLA_U32 },
2540 [RTA_TABLE] = { .type = NLA_U32 },
2541 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2542 };
2543
2544 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2545 {
2546 switch (rtm_protocol) {
2547 case RTPROT_STATIC:
2548 case RTPROT_MROUTED:
2549 return true;
2550 }
2551 return false;
2552 }
2553
2554 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2555 {
2556 struct rtnexthop *rtnh = nla_data(nla);
2557 int remaining = nla_len(nla), vifi = 0;
2558
2559 while (rtnh_ok(rtnh, remaining)) {
2560 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2561 if (++vifi == MAXVIFS)
2562 break;
2563 rtnh = rtnh_next(rtnh, &remaining);
2564 }
2565
2566 return remaining > 0 ? -EINVAL : vifi;
2567 }
2568
2569 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2570 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2571 struct mfcctl *mfcc, int *mrtsock,
2572 struct mr_table **mrtret,
2573 struct netlink_ext_ack *extack)
2574 {
2575 struct net_device *dev = NULL;
2576 u32 tblid = RT_TABLE_DEFAULT;
2577 struct mr_table *mrt;
2578 struct nlattr *attr;
2579 struct rtmsg *rtm;
2580 int ret, rem;
2581
2582 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2583 extack);
2584 if (ret < 0)
2585 goto out;
2586 rtm = nlmsg_data(nlh);
2587
2588 ret = -EINVAL;
2589 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2590 rtm->rtm_type != RTN_MULTICAST ||
2591 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2592 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2593 goto out;
2594
2595 memset(mfcc, 0, sizeof(*mfcc));
2596 mfcc->mfcc_parent = -1;
2597 ret = 0;
2598 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2599 switch (nla_type(attr)) {
2600 case RTA_SRC:
2601 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2602 break;
2603 case RTA_DST:
2604 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2605 break;
2606 case RTA_IIF:
2607 dev = __dev_get_by_index(net, nla_get_u32(attr));
2608 if (!dev) {
2609 ret = -ENODEV;
2610 goto out;
2611 }
2612 break;
2613 case RTA_MULTIPATH:
2614 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2615 ret = -EINVAL;
2616 goto out;
2617 }
2618 break;
2619 case RTA_PREFSRC:
2620 ret = 1;
2621 break;
2622 case RTA_TABLE:
2623 tblid = nla_get_u32(attr);
2624 break;
2625 }
2626 }
2627 mrt = ipmr_get_table(net, tblid);
2628 if (!mrt) {
2629 ret = -ENOENT;
2630 goto out;
2631 }
2632 *mrtret = mrt;
2633 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2634 if (dev)
2635 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2636
2637 out:
2638 return ret;
2639 }
2640
2641 /* takes care of both newroute and delroute */
2642 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2643 struct netlink_ext_ack *extack)
2644 {
2645 struct net *net = sock_net(skb->sk);
2646 int ret, mrtsock, parent;
2647 struct mr_table *tbl;
2648 struct mfcctl mfcc;
2649
2650 mrtsock = 0;
2651 tbl = NULL;
2652 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2653 if (ret < 0)
2654 return ret;
2655
2656 parent = ret ? mfcc.mfcc_parent : -1;
2657 if (nlh->nlmsg_type == RTM_NEWROUTE)
2658 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2659 else
2660 return ipmr_mfc_delete(tbl, &mfcc, parent);
2661 }
2662
2663 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2664 {
2665 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2666
2667 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2668 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2669 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2670 mrt->mroute_reg_vif_num) ||
2671 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2672 mrt->mroute_do_assert) ||
2673 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
2674 return false;
2675
2676 return true;
2677 }
2678
2679 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2680 {
2681 struct nlattr *vif_nest;
2682 struct vif_device *vif;
2683
2684 /* if the VIF doesn't exist just continue */
2685 if (!VIF_EXISTS(mrt, vifid))
2686 return true;
2687
2688 vif = &mrt->vif_table[vifid];
2689 vif_nest = nla_nest_start(skb, IPMRA_VIF);
2690 if (!vif_nest)
2691 return false;
2692 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2693 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2694 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2695 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2696 IPMRA_VIFA_PAD) ||
2697 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2698 IPMRA_VIFA_PAD) ||
2699 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2700 IPMRA_VIFA_PAD) ||
2701 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2702 IPMRA_VIFA_PAD) ||
2703 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2704 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2705 nla_nest_cancel(skb, vif_nest);
2706 return false;
2707 }
2708 nla_nest_end(skb, vif_nest);
2709
2710 return true;
2711 }
2712
2713 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2714 {
2715 struct net *net = sock_net(skb->sk);
2716 struct nlmsghdr *nlh = NULL;
2717 unsigned int t = 0, s_t;
2718 unsigned int e = 0, s_e;
2719 struct mr_table *mrt;
2720
2721 s_t = cb->args[0];
2722 s_e = cb->args[1];
2723
2724 ipmr_for_each_table(mrt, net) {
2725 struct nlattr *vifs, *af;
2726 struct ifinfomsg *hdr;
2727 u32 i;
2728
2729 if (t < s_t)
2730 goto skip_table;
2731 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2732 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2733 sizeof(*hdr), NLM_F_MULTI);
2734 if (!nlh)
2735 break;
2736
2737 hdr = nlmsg_data(nlh);
2738 memset(hdr, 0, sizeof(*hdr));
2739 hdr->ifi_family = RTNL_FAMILY_IPMR;
2740
2741 af = nla_nest_start(skb, IFLA_AF_SPEC);
2742 if (!af) {
2743 nlmsg_cancel(skb, nlh);
2744 goto out;
2745 }
2746
2747 if (!ipmr_fill_table(mrt, skb)) {
2748 nlmsg_cancel(skb, nlh);
2749 goto out;
2750 }
2751
2752 vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2753 if (!vifs) {
2754 nla_nest_end(skb, af);
2755 nlmsg_end(skb, nlh);
2756 goto out;
2757 }
2758 for (i = 0; i < mrt->maxvif; i++) {
2759 if (e < s_e)
2760 goto skip_entry;
2761 if (!ipmr_fill_vif(mrt, i, skb)) {
2762 nla_nest_end(skb, vifs);
2763 nla_nest_end(skb, af);
2764 nlmsg_end(skb, nlh);
2765 goto out;
2766 }
2767 skip_entry:
2768 e++;
2769 }
2770 s_e = 0;
2771 e = 0;
2772 nla_nest_end(skb, vifs);
2773 nla_nest_end(skb, af);
2774 nlmsg_end(skb, nlh);
2775 skip_table:
2776 t++;
2777 }
2778
2779 out:
2780 cb->args[1] = e;
2781 cb->args[0] = t;
2782
2783 return skb->len;
2784 }
2785
2786 #ifdef CONFIG_PROC_FS
2787 /* The /proc interfaces to multicast routing :
2788 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2789 */
2790 struct ipmr_vif_iter {
2791 struct seq_net_private p;
2792 struct mr_table *mrt;
2793 int ct;
2794 };
2795
2796 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2797 struct ipmr_vif_iter *iter,
2798 loff_t pos)
2799 {
2800 struct mr_table *mrt = iter->mrt;
2801
2802 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2803 if (!VIF_EXISTS(mrt, iter->ct))
2804 continue;
2805 if (pos-- == 0)
2806 return &mrt->vif_table[iter->ct];
2807 }
2808 return NULL;
2809 }
2810
2811 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2812 __acquires(mrt_lock)
2813 {
2814 struct ipmr_vif_iter *iter = seq->private;
2815 struct net *net = seq_file_net(seq);
2816 struct mr_table *mrt;
2817
2818 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2819 if (!mrt)
2820 return ERR_PTR(-ENOENT);
2821
2822 iter->mrt = mrt;
2823
2824 read_lock(&mrt_lock);
2825 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2826 : SEQ_START_TOKEN;
2827 }
2828
2829 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2830 {
2831 struct ipmr_vif_iter *iter = seq->private;
2832 struct net *net = seq_file_net(seq);
2833 struct mr_table *mrt = iter->mrt;
2834
2835 ++*pos;
2836 if (v == SEQ_START_TOKEN)
2837 return ipmr_vif_seq_idx(net, iter, 0);
2838
2839 while (++iter->ct < mrt->maxvif) {
2840 if (!VIF_EXISTS(mrt, iter->ct))
2841 continue;
2842 return &mrt->vif_table[iter->ct];
2843 }
2844 return NULL;
2845 }
2846
2847 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2848 __releases(mrt_lock)
2849 {
2850 read_unlock(&mrt_lock);
2851 }
2852
2853 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2854 {
2855 struct ipmr_vif_iter *iter = seq->private;
2856 struct mr_table *mrt = iter->mrt;
2857
2858 if (v == SEQ_START_TOKEN) {
2859 seq_puts(seq,
2860 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2861 } else {
2862 const struct vif_device *vif = v;
2863 const char *name = vif->dev ? vif->dev->name : "none";
2864
2865 seq_printf(seq,
2866 "%2zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2867 vif - mrt->vif_table,
2868 name, vif->bytes_in, vif->pkt_in,
2869 vif->bytes_out, vif->pkt_out,
2870 vif->flags, vif->local, vif->remote);
2871 }
2872 return 0;
2873 }
2874
2875 static const struct seq_operations ipmr_vif_seq_ops = {
2876 .start = ipmr_vif_seq_start,
2877 .next = ipmr_vif_seq_next,
2878 .stop = ipmr_vif_seq_stop,
2879 .show = ipmr_vif_seq_show,
2880 };
2881
2882 static int ipmr_vif_open(struct inode *inode, struct file *file)
2883 {
2884 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2885 sizeof(struct ipmr_vif_iter));
2886 }
2887
2888 static const struct file_operations ipmr_vif_fops = {
2889 .owner = THIS_MODULE,
2890 .open = ipmr_vif_open,
2891 .read = seq_read,
2892 .llseek = seq_lseek,
2893 .release = seq_release_net,
2894 };
2895
2896 struct ipmr_mfc_iter {
2897 struct seq_net_private p;
2898 struct mr_table *mrt;
2899 struct list_head *cache;
2900 };
2901
2902 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2903 struct ipmr_mfc_iter *it, loff_t pos)
2904 {
2905 struct mr_table *mrt = it->mrt;
2906 struct mfc_cache *mfc;
2907
2908 rcu_read_lock();
2909 it->cache = &mrt->mfc_cache_list;
2910 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_list, list)
2911 if (pos-- == 0)
2912 return mfc;
2913 rcu_read_unlock();
2914
2915 spin_lock_bh(&mfc_unres_lock);
2916 it->cache = &mrt->mfc_unres_queue;
2917 list_for_each_entry(mfc, it->cache, list)
2918 if (pos-- == 0)
2919 return mfc;
2920 spin_unlock_bh(&mfc_unres_lock);
2921
2922 it->cache = NULL;
2923 return NULL;
2924 }
2925
2926
2927 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2928 {
2929 struct ipmr_mfc_iter *it = seq->private;
2930 struct net *net = seq_file_net(seq);
2931 struct mr_table *mrt;
2932
2933 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2934 if (!mrt)
2935 return ERR_PTR(-ENOENT);
2936
2937 it->mrt = mrt;
2938 it->cache = NULL;
2939 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2940 : SEQ_START_TOKEN;
2941 }
2942
2943 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2944 {
2945 struct ipmr_mfc_iter *it = seq->private;
2946 struct net *net = seq_file_net(seq);
2947 struct mr_table *mrt = it->mrt;
2948 struct mfc_cache *mfc = v;
2949
2950 ++*pos;
2951
2952 if (v == SEQ_START_TOKEN)
2953 return ipmr_mfc_seq_idx(net, seq->private, 0);
2954
2955 if (mfc->list.next != it->cache)
2956 return list_entry(mfc->list.next, struct mfc_cache, list);
2957
2958 if (it->cache == &mrt->mfc_unres_queue)
2959 goto end_of_list;
2960
2961 /* exhausted cache_array, show unresolved */
2962 rcu_read_unlock();
2963 it->cache = &mrt->mfc_unres_queue;
2964
2965 spin_lock_bh(&mfc_unres_lock);
2966 if (!list_empty(it->cache))
2967 return list_first_entry(it->cache, struct mfc_cache, list);
2968
2969 end_of_list:
2970 spin_unlock_bh(&mfc_unres_lock);
2971 it->cache = NULL;
2972
2973 return NULL;
2974 }
2975
2976 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2977 {
2978 struct ipmr_mfc_iter *it = seq->private;
2979 struct mr_table *mrt = it->mrt;
2980
2981 if (it->cache == &mrt->mfc_unres_queue)
2982 spin_unlock_bh(&mfc_unres_lock);
2983 else if (it->cache == &mrt->mfc_cache_list)
2984 rcu_read_unlock();
2985 }
2986
2987 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2988 {
2989 int n;
2990
2991 if (v == SEQ_START_TOKEN) {
2992 seq_puts(seq,
2993 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2994 } else {
2995 const struct mfc_cache *mfc = v;
2996 const struct ipmr_mfc_iter *it = seq->private;
2997 const struct mr_table *mrt = it->mrt;
2998
2999 seq_printf(seq, "%08X %08X %-3hd",
3000 (__force u32) mfc->mfc_mcastgrp,
3001 (__force u32) mfc->mfc_origin,
3002 mfc->mfc_parent);
3003
3004 if (it->cache != &mrt->mfc_unres_queue) {
3005 seq_printf(seq, " %8lu %8lu %8lu",
3006 mfc->mfc_un.res.pkt,
3007 mfc->mfc_un.res.bytes,
3008 mfc->mfc_un.res.wrong_if);
3009 for (n = mfc->mfc_un.res.minvif;
3010 n < mfc->mfc_un.res.maxvif; n++) {
3011 if (VIF_EXISTS(mrt, n) &&
3012 mfc->mfc_un.res.ttls[n] < 255)
3013 seq_printf(seq,
3014 " %2d:%-3d",
3015 n, mfc->mfc_un.res.ttls[n]);
3016 }
3017 } else {
3018 /* unresolved mfc_caches don't contain
3019 * pkt, bytes and wrong_if values
3020 */
3021 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
3022 }
3023 seq_putc(seq, '\n');
3024 }
3025 return 0;
3026 }
3027
3028 static const struct seq_operations ipmr_mfc_seq_ops = {
3029 .start = ipmr_mfc_seq_start,
3030 .next = ipmr_mfc_seq_next,
3031 .stop = ipmr_mfc_seq_stop,
3032 .show = ipmr_mfc_seq_show,
3033 };
3034
3035 static int ipmr_mfc_open(struct inode *inode, struct file *file)
3036 {
3037 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
3038 sizeof(struct ipmr_mfc_iter));
3039 }
3040
3041 static const struct file_operations ipmr_mfc_fops = {
3042 .owner = THIS_MODULE,
3043 .open = ipmr_mfc_open,
3044 .read = seq_read,
3045 .llseek = seq_lseek,
3046 .release = seq_release_net,
3047 };
3048 #endif
3049
3050 #ifdef CONFIG_IP_PIMSM_V2
3051 static const struct net_protocol pim_protocol = {
3052 .handler = pim_rcv,
3053 .netns_ok = 1,
3054 };
3055 #endif
3056
3057 /* Setup for IP multicast routing */
3058 static int __net_init ipmr_net_init(struct net *net)
3059 {
3060 int err;
3061
3062 err = ipmr_rules_init(net);
3063 if (err < 0)
3064 goto fail;
3065
3066 #ifdef CONFIG_PROC_FS
3067 err = -ENOMEM;
3068 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
3069 goto proc_vif_fail;
3070 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
3071 goto proc_cache_fail;
3072 #endif
3073 return 0;
3074
3075 #ifdef CONFIG_PROC_FS
3076 proc_cache_fail:
3077 remove_proc_entry("ip_mr_vif", net->proc_net);
3078 proc_vif_fail:
3079 ipmr_rules_exit(net);
3080 #endif
3081 fail:
3082 return err;
3083 }
3084
3085 static void __net_exit ipmr_net_exit(struct net *net)
3086 {
3087 #ifdef CONFIG_PROC_FS
3088 remove_proc_entry("ip_mr_cache", net->proc_net);
3089 remove_proc_entry("ip_mr_vif", net->proc_net);
3090 #endif
3091 ipmr_rules_exit(net);
3092 }
3093
3094 static struct pernet_operations ipmr_net_ops = {
3095 .init = ipmr_net_init,
3096 .exit = ipmr_net_exit,
3097 };
3098
3099 int __init ip_mr_init(void)
3100 {
3101 int err;
3102
3103 mrt_cachep = kmem_cache_create("ip_mrt_cache",
3104 sizeof(struct mfc_cache),
3105 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
3106 NULL);
3107
3108 err = register_pernet_subsys(&ipmr_net_ops);
3109 if (err)
3110 goto reg_pernet_fail;
3111
3112 err = register_netdevice_notifier(&ip_mr_notifier);
3113 if (err)
3114 goto reg_notif_fail;
3115 #ifdef CONFIG_IP_PIMSM_V2
3116 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3117 pr_err("%s: can't add PIM protocol\n", __func__);
3118 err = -EAGAIN;
3119 goto add_proto_fail;
3120 }
3121 #endif
3122 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3123 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3124 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3125 ipmr_rtm_route, NULL, 0);
3126 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3127 ipmr_rtm_route, NULL, 0);
3128
3129 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3130 NULL, ipmr_rtm_dumplink, 0);
3131 return 0;
3132
3133 #ifdef CONFIG_IP_PIMSM_V2
3134 add_proto_fail:
3135 unregister_netdevice_notifier(&ip_mr_notifier);
3136 #endif
3137 reg_notif_fail:
3138 unregister_pernet_subsys(&ipmr_net_ops);
3139 reg_pernet_fail:
3140 kmem_cache_destroy(mrt_cachep);
3141 return err;
3142 }