Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
9 *
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
12 *
13 * Fixes:
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
23 */
24
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
47
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
51 */
52
53 static int sysctl_ipfrag_max_dist __read_mostly = 64;
54
55 struct ipfrag_skb_cb
56 {
57 struct inet_skb_parm h;
58 int offset;
59 };
60
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
62
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 struct inet_frag_queue q;
66
67 u32 user;
68 __be32 saddr;
69 __be32 daddr;
70 __be16 id;
71 u8 protocol;
72 int iif;
73 unsigned int rid;
74 struct inet_peer *peer;
75 };
76
77 static struct inet_frags ip4_frags;
78
79 int ip_frag_nqueues(struct net *net)
80 {
81 return net->ipv4.frags.nqueues;
82 }
83
84 int ip_frag_mem(struct net *net)
85 {
86 return atomic_read(&net->ipv4.frags.mem);
87 }
88
89 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
90 struct net_device *dev);
91
92 struct ip4_create_arg {
93 struct iphdr *iph;
94 u32 user;
95 };
96
97 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
98 {
99 return jhash_3words((__force u32)id << 16 | prot,
100 (__force u32)saddr, (__force u32)daddr,
101 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
102 }
103
104 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
105 {
106 struct ipq *ipq;
107
108 ipq = container_of(q, struct ipq, q);
109 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
110 }
111
112 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
113 {
114 struct ipq *qp;
115 struct ip4_create_arg *arg = a;
116
117 qp = container_of(q, struct ipq, q);
118 return (qp->id == arg->iph->id &&
119 qp->saddr == arg->iph->saddr &&
120 qp->daddr == arg->iph->daddr &&
121 qp->protocol == arg->iph->protocol &&
122 qp->user == arg->user);
123 }
124
125 /* Memory Tracking Functions. */
126 static __inline__ void frag_kfree_skb(struct netns_frags *nf,
127 struct sk_buff *skb, int *work)
128 {
129 if (work)
130 *work -= skb->truesize;
131 atomic_sub(skb->truesize, &nf->mem);
132 kfree_skb(skb);
133 }
134
135 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
136 {
137 struct ipq *qp = container_of(q, struct ipq, q);
138 struct ip4_create_arg *arg = a;
139
140 qp->protocol = arg->iph->protocol;
141 qp->id = arg->iph->id;
142 qp->saddr = arg->iph->saddr;
143 qp->daddr = arg->iph->daddr;
144 qp->user = arg->user;
145 qp->peer = sysctl_ipfrag_max_dist ?
146 inet_getpeer(arg->iph->saddr, 1) : NULL;
147 }
148
149 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
150 {
151 struct ipq *qp;
152
153 qp = container_of(q, struct ipq, q);
154 if (qp->peer)
155 inet_putpeer(qp->peer);
156 }
157
158
159 /* Destruction primitives. */
160
161 static __inline__ void ipq_put(struct ipq *ipq)
162 {
163 inet_frag_put(&ipq->q, &ip4_frags);
164 }
165
166 /* Kill ipq entry. It is not destroyed immediately,
167 * because caller (and someone more) holds reference count.
168 */
169 static void ipq_kill(struct ipq *ipq)
170 {
171 inet_frag_kill(&ipq->q, &ip4_frags);
172 }
173
174 /* Memory limiting on fragments. Evictor trashes the oldest
175 * fragment queue until we are back under the threshold.
176 */
177 static void ip_evictor(struct net *net)
178 {
179 int evicted;
180
181 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
182 if (evicted)
183 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted);
184 }
185
186 /*
187 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
188 */
189 static void ip_expire(unsigned long arg)
190 {
191 struct ipq *qp;
192
193 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
194
195 spin_lock(&qp->q.lock);
196
197 if (qp->q.last_in & INET_FRAG_COMPLETE)
198 goto out;
199
200 ipq_kill(qp);
201
202 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
203 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
204
205 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
206 struct sk_buff *head = qp->q.fragments;
207 struct net *net;
208
209 net = container_of(qp->q.net, struct net, ipv4.frags);
210 /* Send an ICMP "Fragment Reassembly Timeout" message. */
211 if ((head->dev = dev_get_by_index(net, qp->iif)) != NULL) {
212 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
213 dev_put(head->dev);
214 }
215 }
216 out:
217 spin_unlock(&qp->q.lock);
218 ipq_put(qp);
219 }
220
221 /* Find the correct entry in the "incomplete datagrams" queue for
222 * this IP datagram, and create new one, if nothing is found.
223 */
224 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
225 {
226 struct inet_frag_queue *q;
227 struct ip4_create_arg arg;
228 unsigned int hash;
229
230 arg.iph = iph;
231 arg.user = user;
232
233 read_lock(&ip4_frags.lock);
234 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
235
236 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
237 if (q == NULL)
238 goto out_nomem;
239
240 return container_of(q, struct ipq, q);
241
242 out_nomem:
243 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
244 return NULL;
245 }
246
247 /* Is the fragment too far ahead to be part of ipq? */
248 static inline int ip_frag_too_far(struct ipq *qp)
249 {
250 struct inet_peer *peer = qp->peer;
251 unsigned int max = sysctl_ipfrag_max_dist;
252 unsigned int start, end;
253
254 int rc;
255
256 if (!peer || !max)
257 return 0;
258
259 start = qp->rid;
260 end = atomic_inc_return(&peer->rid);
261 qp->rid = end;
262
263 rc = qp->q.fragments && (end - start) > max;
264
265 if (rc) {
266 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
267 }
268
269 return rc;
270 }
271
272 static int ip_frag_reinit(struct ipq *qp)
273 {
274 struct sk_buff *fp;
275
276 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
277 atomic_inc(&qp->q.refcnt);
278 return -ETIMEDOUT;
279 }
280
281 fp = qp->q.fragments;
282 do {
283 struct sk_buff *xp = fp->next;
284 frag_kfree_skb(qp->q.net, fp, NULL);
285 fp = xp;
286 } while (fp);
287
288 qp->q.last_in = 0;
289 qp->q.len = 0;
290 qp->q.meat = 0;
291 qp->q.fragments = NULL;
292 qp->iif = 0;
293
294 return 0;
295 }
296
297 /* Add new segment to existing queue. */
298 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
299 {
300 struct sk_buff *prev, *next;
301 struct net_device *dev;
302 int flags, offset;
303 int ihl, end;
304 int err = -ENOENT;
305
306 if (qp->q.last_in & INET_FRAG_COMPLETE)
307 goto err;
308
309 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
310 unlikely(ip_frag_too_far(qp)) &&
311 unlikely(err = ip_frag_reinit(qp))) {
312 ipq_kill(qp);
313 goto err;
314 }
315
316 offset = ntohs(ip_hdr(skb)->frag_off);
317 flags = offset & ~IP_OFFSET;
318 offset &= IP_OFFSET;
319 offset <<= 3; /* offset is in 8-byte chunks */
320 ihl = ip_hdrlen(skb);
321
322 /* Determine the position of this fragment. */
323 end = offset + skb->len - ihl;
324 err = -EINVAL;
325
326 /* Is this the final fragment? */
327 if ((flags & IP_MF) == 0) {
328 /* If we already have some bits beyond end
329 * or have different end, the segment is corrrupted.
330 */
331 if (end < qp->q.len ||
332 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
333 goto err;
334 qp->q.last_in |= INET_FRAG_LAST_IN;
335 qp->q.len = end;
336 } else {
337 if (end&7) {
338 end &= ~7;
339 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
340 skb->ip_summed = CHECKSUM_NONE;
341 }
342 if (end > qp->q.len) {
343 /* Some bits beyond end -> corruption. */
344 if (qp->q.last_in & INET_FRAG_LAST_IN)
345 goto err;
346 qp->q.len = end;
347 }
348 }
349 if (end == offset)
350 goto err;
351
352 err = -ENOMEM;
353 if (pskb_pull(skb, ihl) == NULL)
354 goto err;
355
356 err = pskb_trim_rcsum(skb, end - offset);
357 if (err)
358 goto err;
359
360 /* Find out which fragments are in front and at the back of us
361 * in the chain of fragments so far. We must know where to put
362 * this fragment, right?
363 */
364 prev = NULL;
365 for (next = qp->q.fragments; next != NULL; next = next->next) {
366 if (FRAG_CB(next)->offset >= offset)
367 break; /* bingo! */
368 prev = next;
369 }
370
371 /* We found where to put this one. Check for overlap with
372 * preceding fragment, and, if needed, align things so that
373 * any overlaps are eliminated.
374 */
375 if (prev) {
376 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
377
378 if (i > 0) {
379 offset += i;
380 err = -EINVAL;
381 if (end <= offset)
382 goto err;
383 err = -ENOMEM;
384 if (!pskb_pull(skb, i))
385 goto err;
386 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
387 skb->ip_summed = CHECKSUM_NONE;
388 }
389 }
390
391 err = -ENOMEM;
392
393 while (next && FRAG_CB(next)->offset < end) {
394 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
395
396 if (i < next->len) {
397 /* Eat head of the next overlapped fragment
398 * and leave the loop. The next ones cannot overlap.
399 */
400 if (!pskb_pull(next, i))
401 goto err;
402 FRAG_CB(next)->offset += i;
403 qp->q.meat -= i;
404 if (next->ip_summed != CHECKSUM_UNNECESSARY)
405 next->ip_summed = CHECKSUM_NONE;
406 break;
407 } else {
408 struct sk_buff *free_it = next;
409
410 /* Old fragment is completely overridden with
411 * new one drop it.
412 */
413 next = next->next;
414
415 if (prev)
416 prev->next = next;
417 else
418 qp->q.fragments = next;
419
420 qp->q.meat -= free_it->len;
421 frag_kfree_skb(qp->q.net, free_it, NULL);
422 }
423 }
424
425 FRAG_CB(skb)->offset = offset;
426
427 /* Insert this fragment in the chain of fragments. */
428 skb->next = next;
429 if (prev)
430 prev->next = skb;
431 else
432 qp->q.fragments = skb;
433
434 dev = skb->dev;
435 if (dev) {
436 qp->iif = dev->ifindex;
437 skb->dev = NULL;
438 }
439 qp->q.stamp = skb->tstamp;
440 qp->q.meat += skb->len;
441 atomic_add(skb->truesize, &qp->q.net->mem);
442 if (offset == 0)
443 qp->q.last_in |= INET_FRAG_FIRST_IN;
444
445 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
446 qp->q.meat == qp->q.len)
447 return ip_frag_reasm(qp, prev, dev);
448
449 write_lock(&ip4_frags.lock);
450 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
451 write_unlock(&ip4_frags.lock);
452 return -EINPROGRESS;
453
454 err:
455 kfree_skb(skb);
456 return err;
457 }
458
459
460 /* Build a new IP datagram from all its fragments. */
461
462 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
463 struct net_device *dev)
464 {
465 struct iphdr *iph;
466 struct sk_buff *fp, *head = qp->q.fragments;
467 int len;
468 int ihlen;
469 int err;
470
471 ipq_kill(qp);
472
473 /* Make the one we just received the head. */
474 if (prev) {
475 head = prev->next;
476 fp = skb_clone(head, GFP_ATOMIC);
477 if (!fp)
478 goto out_nomem;
479
480 fp->next = head->next;
481 prev->next = fp;
482
483 skb_morph(head, qp->q.fragments);
484 head->next = qp->q.fragments->next;
485
486 kfree_skb(qp->q.fragments);
487 qp->q.fragments = head;
488 }
489
490 BUG_TRAP(head != NULL);
491 BUG_TRAP(FRAG_CB(head)->offset == 0);
492
493 /* Allocate a new buffer for the datagram. */
494 ihlen = ip_hdrlen(head);
495 len = ihlen + qp->q.len;
496
497 err = -E2BIG;
498 if (len > 65535)
499 goto out_oversize;
500
501 /* Head of list must not be cloned. */
502 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
503 goto out_nomem;
504
505 /* If the first fragment is fragmented itself, we split
506 * it to two chunks: the first with data and paged part
507 * and the second, holding only fragments. */
508 if (skb_shinfo(head)->frag_list) {
509 struct sk_buff *clone;
510 int i, plen = 0;
511
512 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
513 goto out_nomem;
514 clone->next = head->next;
515 head->next = clone;
516 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
517 skb_shinfo(head)->frag_list = NULL;
518 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
519 plen += skb_shinfo(head)->frags[i].size;
520 clone->len = clone->data_len = head->data_len - plen;
521 head->data_len -= clone->len;
522 head->len -= clone->len;
523 clone->csum = 0;
524 clone->ip_summed = head->ip_summed;
525 atomic_add(clone->truesize, &qp->q.net->mem);
526 }
527
528 skb_shinfo(head)->frag_list = head->next;
529 skb_push(head, head->data - skb_network_header(head));
530 atomic_sub(head->truesize, &qp->q.net->mem);
531
532 for (fp=head->next; fp; fp = fp->next) {
533 head->data_len += fp->len;
534 head->len += fp->len;
535 if (head->ip_summed != fp->ip_summed)
536 head->ip_summed = CHECKSUM_NONE;
537 else if (head->ip_summed == CHECKSUM_COMPLETE)
538 head->csum = csum_add(head->csum, fp->csum);
539 head->truesize += fp->truesize;
540 atomic_sub(fp->truesize, &qp->q.net->mem);
541 }
542
543 head->next = NULL;
544 head->dev = dev;
545 head->tstamp = qp->q.stamp;
546
547 iph = ip_hdr(head);
548 iph->frag_off = 0;
549 iph->tot_len = htons(len);
550 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
551 qp->q.fragments = NULL;
552 return 0;
553
554 out_nomem:
555 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
556 "queue %p\n", qp);
557 err = -ENOMEM;
558 goto out_fail;
559 out_oversize:
560 if (net_ratelimit())
561 printk(KERN_INFO
562 "Oversized IP packet from " NIPQUAD_FMT ".\n",
563 NIPQUAD(qp->saddr));
564 out_fail:
565 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
566 return err;
567 }
568
569 /* Process an incoming IP datagram fragment. */
570 int ip_defrag(struct sk_buff *skb, u32 user)
571 {
572 struct ipq *qp;
573 struct net *net;
574
575 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
576
577 net = skb->dev ? dev_net(skb->dev) : dev_net(skb->dst->dev);
578 /* Start by cleaning up the memory. */
579 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
580 ip_evictor(net);
581
582 /* Lookup (or create) queue header */
583 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
584 int ret;
585
586 spin_lock(&qp->q.lock);
587
588 ret = ip_frag_queue(qp, skb);
589
590 spin_unlock(&qp->q.lock);
591 ipq_put(qp);
592 return ret;
593 }
594
595 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
596 kfree_skb(skb);
597 return -ENOMEM;
598 }
599
600 #ifdef CONFIG_SYSCTL
601 static int zero;
602
603 static struct ctl_table ip4_frags_ctl_table[] = {
604 {
605 .ctl_name = NET_IPV4_IPFRAG_HIGH_THRESH,
606 .procname = "ipfrag_high_thresh",
607 .data = &init_net.ipv4.frags.high_thresh,
608 .maxlen = sizeof(int),
609 .mode = 0644,
610 .proc_handler = &proc_dointvec
611 },
612 {
613 .ctl_name = NET_IPV4_IPFRAG_LOW_THRESH,
614 .procname = "ipfrag_low_thresh",
615 .data = &init_net.ipv4.frags.low_thresh,
616 .maxlen = sizeof(int),
617 .mode = 0644,
618 .proc_handler = &proc_dointvec
619 },
620 {
621 .ctl_name = NET_IPV4_IPFRAG_TIME,
622 .procname = "ipfrag_time",
623 .data = &init_net.ipv4.frags.timeout,
624 .maxlen = sizeof(int),
625 .mode = 0644,
626 .proc_handler = &proc_dointvec_jiffies,
627 .strategy = &sysctl_jiffies
628 },
629 {
630 .ctl_name = NET_IPV4_IPFRAG_SECRET_INTERVAL,
631 .procname = "ipfrag_secret_interval",
632 .data = &ip4_frags.secret_interval,
633 .maxlen = sizeof(int),
634 .mode = 0644,
635 .proc_handler = &proc_dointvec_jiffies,
636 .strategy = &sysctl_jiffies
637 },
638 {
639 .procname = "ipfrag_max_dist",
640 .data = &sysctl_ipfrag_max_dist,
641 .maxlen = sizeof(int),
642 .mode = 0644,
643 .proc_handler = &proc_dointvec_minmax,
644 .extra1 = &zero
645 },
646 { }
647 };
648
649 static int ip4_frags_ctl_register(struct net *net)
650 {
651 struct ctl_table *table;
652 struct ctl_table_header *hdr;
653
654 table = ip4_frags_ctl_table;
655 if (net != &init_net) {
656 table = kmemdup(table, sizeof(ip4_frags_ctl_table), GFP_KERNEL);
657 if (table == NULL)
658 goto err_alloc;
659
660 table[0].data = &net->ipv4.frags.high_thresh;
661 table[1].data = &net->ipv4.frags.low_thresh;
662 table[2].data = &net->ipv4.frags.timeout;
663 table[3].mode &= ~0222;
664 table[4].mode &= ~0222;
665 }
666
667 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
668 if (hdr == NULL)
669 goto err_reg;
670
671 net->ipv4.frags_hdr = hdr;
672 return 0;
673
674 err_reg:
675 if (net != &init_net)
676 kfree(table);
677 err_alloc:
678 return -ENOMEM;
679 }
680
681 static void ip4_frags_ctl_unregister(struct net *net)
682 {
683 struct ctl_table *table;
684
685 table = net->ipv4.frags_hdr->ctl_table_arg;
686 unregister_net_sysctl_table(net->ipv4.frags_hdr);
687 kfree(table);
688 }
689 #else
690 static inline int ip4_frags_ctl_register(struct net *net)
691 {
692 return 0;
693 }
694
695 static inline void ip4_frags_ctl_unregister(struct net *net)
696 {
697 }
698 #endif
699
700 static int ipv4_frags_init_net(struct net *net)
701 {
702 /*
703 * Fragment cache limits. We will commit 256K at one time. Should we
704 * cross that limit we will prune down to 192K. This should cope with
705 * even the most extreme cases without allowing an attacker to
706 * measurably harm machine performance.
707 */
708 net->ipv4.frags.high_thresh = 256 * 1024;
709 net->ipv4.frags.low_thresh = 192 * 1024;
710 /*
711 * Important NOTE! Fragment queue must be destroyed before MSL expires.
712 * RFC791 is wrong proposing to prolongate timer each fragment arrival
713 * by TTL.
714 */
715 net->ipv4.frags.timeout = IP_FRAG_TIME;
716
717 inet_frags_init_net(&net->ipv4.frags);
718
719 return ip4_frags_ctl_register(net);
720 }
721
722 static void ipv4_frags_exit_net(struct net *net)
723 {
724 ip4_frags_ctl_unregister(net);
725 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
726 }
727
728 static struct pernet_operations ip4_frags_ops = {
729 .init = ipv4_frags_init_net,
730 .exit = ipv4_frags_exit_net,
731 };
732
733 void __init ipfrag_init(void)
734 {
735 register_pernet_subsys(&ip4_frags_ops);
736 ip4_frags.hashfn = ip4_hashfn;
737 ip4_frags.constructor = ip4_frag_init;
738 ip4_frags.destructor = ip4_frag_free;
739 ip4_frags.skb_free = NULL;
740 ip4_frags.qsize = sizeof(struct ipq);
741 ip4_frags.match = ip4_frag_match;
742 ip4_frags.frag_expire = ip_expire;
743 ip4_frags.secret_interval = 10 * 60 * HZ;
744 inet_frags_init(&ip4_frags);
745 }
746
747 EXPORT_SYMBOL(ip_defrag);