TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9 * Alan Cox <alan@lxorguk.ukuu.org.uk>
10 *
11 * Fixes:
12 * Alan Cox : Split from ip.c , see ip_input.c for history.
13 * David S. Miller : Begin massive cleanup...
14 * Andi Kleen : Add sysctls.
15 * xxxx : Overlapfrag bug.
16 * Ultima : ip_expire() kernel panic.
17 * Bill Hawes : Frag accounting and evictor fixes.
18 * John McDonald : 0 length frag bug.
19 * Alexey Kuznetsov: SMP races, threading, cleanup.
20 * Patrick McHardy : LRU queue of frag heads for evictor.
21 */
22
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <linux/slab.h>
36 #include <net/route.h>
37 #include <net/dst.h>
38 #include <net/sock.h>
39 #include <net/ip.h>
40 #include <net/icmp.h>
41 #include <net/checksum.h>
42 #include <net/inetpeer.h>
43 #include <net/inet_frag.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/inet.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <net/inet_ecn.h>
49
50 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
51 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
52 * as well. Or notify me, at least. --ANK
53 */
54
55 static int sysctl_ipfrag_max_dist __read_mostly = 64;
56
57 struct ipfrag_skb_cb
58 {
59 struct inet_skb_parm h;
60 int offset;
61 };
62
63 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
64
65 /* Describe an entry in the "incomplete datagrams" queue. */
66 struct ipq {
67 struct inet_frag_queue q;
68
69 u32 user;
70 __be32 saddr;
71 __be32 daddr;
72 __be16 id;
73 u8 protocol;
74 u8 ecn; /* RFC3168 support */
75 int iif;
76 unsigned int rid;
77 struct inet_peer *peer;
78 };
79
80 #define IPFRAG_ECN_CLEAR 0x01 /* one frag had INET_ECN_NOT_ECT */
81 #define IPFRAG_ECN_SET_CE 0x04 /* one frag had INET_ECN_CE */
82
83 static inline u8 ip4_frag_ecn(u8 tos)
84 {
85 tos = (tos & INET_ECN_MASK) + 1;
86 /*
87 * After the last operation we have (in binary):
88 * INET_ECN_NOT_ECT => 001
89 * INET_ECN_ECT_1 => 010
90 * INET_ECN_ECT_0 => 011
91 * INET_ECN_CE => 100
92 */
93 return (tos & 2) ? 0 : tos;
94 }
95
96 static struct inet_frags ip4_frags;
97
98 int ip_frag_nqueues(struct net *net)
99 {
100 return net->ipv4.frags.nqueues;
101 }
102
103 int ip_frag_mem(struct net *net)
104 {
105 return atomic_read(&net->ipv4.frags.mem);
106 }
107
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 struct net_device *dev);
110
111 struct ip4_create_arg {
112 struct iphdr *iph;
113 u32 user;
114 };
115
116 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
117 {
118 return jhash_3words((__force u32)id << 16 | prot,
119 (__force u32)saddr, (__force u32)daddr,
120 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
121 }
122
123 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
124 {
125 struct ipq *ipq;
126
127 ipq = container_of(q, struct ipq, q);
128 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
129 }
130
131 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
132 {
133 struct ipq *qp;
134 struct ip4_create_arg *arg = a;
135
136 qp = container_of(q, struct ipq, q);
137 return qp->id == arg->iph->id &&
138 qp->saddr == arg->iph->saddr &&
139 qp->daddr == arg->iph->daddr &&
140 qp->protocol == arg->iph->protocol &&
141 qp->user == arg->user;
142 }
143
144 /* Memory Tracking Functions. */
145 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
146 {
147 atomic_sub(skb->truesize, &nf->mem);
148 kfree_skb(skb);
149 }
150
151 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
152 {
153 struct ipq *qp = container_of(q, struct ipq, q);
154 struct ip4_create_arg *arg = a;
155
156 qp->protocol = arg->iph->protocol;
157 qp->id = arg->iph->id;
158 qp->ecn = ip4_frag_ecn(arg->iph->tos);
159 qp->saddr = arg->iph->saddr;
160 qp->daddr = arg->iph->daddr;
161 qp->user = arg->user;
162 qp->peer = sysctl_ipfrag_max_dist ?
163 inet_getpeer_v4(arg->iph->saddr, 1) : NULL;
164 }
165
166 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
167 {
168 struct ipq *qp;
169
170 qp = container_of(q, struct ipq, q);
171 if (qp->peer)
172 inet_putpeer(qp->peer);
173 }
174
175
176 /* Destruction primitives. */
177
178 static __inline__ void ipq_put(struct ipq *ipq)
179 {
180 inet_frag_put(&ipq->q, &ip4_frags);
181 }
182
183 /* Kill ipq entry. It is not destroyed immediately,
184 * because caller (and someone more) holds reference count.
185 */
186 static void ipq_kill(struct ipq *ipq)
187 {
188 inet_frag_kill(&ipq->q, &ip4_frags);
189 }
190
191 /* Memory limiting on fragments. Evictor trashes the oldest
192 * fragment queue until we are back under the threshold.
193 */
194 static void ip_evictor(struct net *net)
195 {
196 int evicted;
197
198 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
199 if (evicted)
200 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
201 }
202
203 /*
204 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
205 */
206 static void ip_expire(unsigned long arg)
207 {
208 struct ipq *qp;
209 struct net *net;
210
211 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
212 net = container_of(qp->q.net, struct net, ipv4.frags);
213
214 spin_lock(&qp->q.lock);
215
216 if (qp->q.last_in & INET_FRAG_COMPLETE)
217 goto out;
218
219 ipq_kill(qp);
220
221 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
222 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
223
224 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
225 struct sk_buff *head = qp->q.fragments;
226
227 rcu_read_lock();
228 head->dev = dev_get_by_index_rcu(net, qp->iif);
229 if (!head->dev)
230 goto out_rcu_unlock;
231
232 /*
233 * Only search router table for the head fragment,
234 * when defraging timeout at PRE_ROUTING HOOK.
235 */
236 if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) {
237 const struct iphdr *iph = ip_hdr(head);
238 int err = ip_route_input(head, iph->daddr, iph->saddr,
239 iph->tos, head->dev);
240 if (unlikely(err))
241 goto out_rcu_unlock;
242
243 /*
244 * Only an end host needs to send an ICMP
245 * "Fragment Reassembly Timeout" message, per RFC792.
246 */
247 if (skb_rtable(head)->rt_type != RTN_LOCAL)
248 goto out_rcu_unlock;
249
250 }
251
252 /* Send an ICMP "Fragment Reassembly Timeout" message. */
253 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
254 out_rcu_unlock:
255 rcu_read_unlock();
256 }
257 out:
258 spin_unlock(&qp->q.lock);
259 ipq_put(qp);
260 }
261
262 /* Find the correct entry in the "incomplete datagrams" queue for
263 * this IP datagram, and create new one, if nothing is found.
264 */
265 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
266 {
267 struct inet_frag_queue *q;
268 struct ip4_create_arg arg;
269 unsigned int hash;
270
271 arg.iph = iph;
272 arg.user = user;
273
274 read_lock(&ip4_frags.lock);
275 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
276
277 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
278 if (q == NULL)
279 goto out_nomem;
280
281 return container_of(q, struct ipq, q);
282
283 out_nomem:
284 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
285 return NULL;
286 }
287
288 /* Is the fragment too far ahead to be part of ipq? */
289 static inline int ip_frag_too_far(struct ipq *qp)
290 {
291 struct inet_peer *peer = qp->peer;
292 unsigned int max = sysctl_ipfrag_max_dist;
293 unsigned int start, end;
294
295 int rc;
296
297 if (!peer || !max)
298 return 0;
299
300 start = qp->rid;
301 end = atomic_inc_return(&peer->rid);
302 qp->rid = end;
303
304 rc = qp->q.fragments && (end - start) > max;
305
306 if (rc) {
307 struct net *net;
308
309 net = container_of(qp->q.net, struct net, ipv4.frags);
310 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
311 }
312
313 return rc;
314 }
315
316 static int ip_frag_reinit(struct ipq *qp)
317 {
318 struct sk_buff *fp;
319
320 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
321 atomic_inc(&qp->q.refcnt);
322 return -ETIMEDOUT;
323 }
324
325 fp = qp->q.fragments;
326 do {
327 struct sk_buff *xp = fp->next;
328 frag_kfree_skb(qp->q.net, fp);
329 fp = xp;
330 } while (fp);
331
332 qp->q.last_in = 0;
333 qp->q.len = 0;
334 qp->q.meat = 0;
335 qp->q.fragments = NULL;
336 qp->q.fragments_tail = NULL;
337 qp->iif = 0;
338 qp->ecn = 0;
339
340 return 0;
341 }
342
343 /* Add new segment to existing queue. */
344 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
345 {
346 struct sk_buff *prev, *next;
347 struct net_device *dev;
348 int flags, offset;
349 int ihl, end;
350 int err = -ENOENT;
351 u8 ecn;
352
353 if (qp->q.last_in & INET_FRAG_COMPLETE)
354 goto err;
355
356 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
357 unlikely(ip_frag_too_far(qp)) &&
358 unlikely(err = ip_frag_reinit(qp))) {
359 ipq_kill(qp);
360 goto err;
361 }
362
363 ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
364 offset = ntohs(ip_hdr(skb)->frag_off);
365 flags = offset & ~IP_OFFSET;
366 offset &= IP_OFFSET;
367 offset <<= 3; /* offset is in 8-byte chunks */
368 ihl = ip_hdrlen(skb);
369
370 /* Determine the position of this fragment. */
371 end = offset + skb->len - ihl;
372 err = -EINVAL;
373
374 /* Is this the final fragment? */
375 if ((flags & IP_MF) == 0) {
376 /* If we already have some bits beyond end
377 * or have different end, the segment is corrrupted.
378 */
379 if (end < qp->q.len ||
380 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
381 goto err;
382 qp->q.last_in |= INET_FRAG_LAST_IN;
383 qp->q.len = end;
384 } else {
385 if (end&7) {
386 end &= ~7;
387 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
388 skb->ip_summed = CHECKSUM_NONE;
389 }
390 if (end > qp->q.len) {
391 /* Some bits beyond end -> corruption. */
392 if (qp->q.last_in & INET_FRAG_LAST_IN)
393 goto err;
394 qp->q.len = end;
395 }
396 }
397 if (end == offset)
398 goto err;
399
400 err = -ENOMEM;
401 if (pskb_pull(skb, ihl) == NULL)
402 goto err;
403
404 err = pskb_trim_rcsum(skb, end - offset);
405 if (err)
406 goto err;
407
408 /* Find out which fragments are in front and at the back of us
409 * in the chain of fragments so far. We must know where to put
410 * this fragment, right?
411 */
412 prev = qp->q.fragments_tail;
413 if (!prev || FRAG_CB(prev)->offset < offset) {
414 next = NULL;
415 goto found;
416 }
417 prev = NULL;
418 for (next = qp->q.fragments; next != NULL; next = next->next) {
419 if (FRAG_CB(next)->offset >= offset)
420 break; /* bingo! */
421 prev = next;
422 }
423
424 found:
425 /* We found where to put this one. Check for overlap with
426 * preceding fragment, and, if needed, align things so that
427 * any overlaps are eliminated.
428 */
429 if (prev) {
430 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
431
432 if (i > 0) {
433 offset += i;
434 err = -EINVAL;
435 if (end <= offset)
436 goto err;
437 err = -ENOMEM;
438 if (!pskb_pull(skb, i))
439 goto err;
440 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
441 skb->ip_summed = CHECKSUM_NONE;
442 }
443 }
444
445 err = -ENOMEM;
446
447 while (next && FRAG_CB(next)->offset < end) {
448 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
449
450 if (i < next->len) {
451 /* Eat head of the next overlapped fragment
452 * and leave the loop. The next ones cannot overlap.
453 */
454 if (!pskb_pull(next, i))
455 goto err;
456 FRAG_CB(next)->offset += i;
457 qp->q.meat -= i;
458 if (next->ip_summed != CHECKSUM_UNNECESSARY)
459 next->ip_summed = CHECKSUM_NONE;
460 break;
461 } else {
462 struct sk_buff *free_it = next;
463
464 /* Old fragment is completely overridden with
465 * new one drop it.
466 */
467 next = next->next;
468
469 if (prev)
470 prev->next = next;
471 else
472 qp->q.fragments = next;
473
474 qp->q.meat -= free_it->len;
475 frag_kfree_skb(qp->q.net, free_it);
476 }
477 }
478
479 FRAG_CB(skb)->offset = offset;
480
481 /* Insert this fragment in the chain of fragments. */
482 skb->next = next;
483 if (!next)
484 qp->q.fragments_tail = skb;
485 if (prev)
486 prev->next = skb;
487 else
488 qp->q.fragments = skb;
489
490 dev = skb->dev;
491 if (dev) {
492 qp->iif = dev->ifindex;
493 skb->dev = NULL;
494 }
495 qp->q.stamp = skb->tstamp;
496 qp->q.meat += skb->len;
497 qp->ecn |= ecn;
498 atomic_add(skb->truesize, &qp->q.net->mem);
499 if (offset == 0)
500 qp->q.last_in |= INET_FRAG_FIRST_IN;
501
502 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
503 qp->q.meat == qp->q.len)
504 return ip_frag_reasm(qp, prev, dev);
505
506 write_lock(&ip4_frags.lock);
507 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
508 write_unlock(&ip4_frags.lock);
509 return -EINPROGRESS;
510
511 err:
512 kfree_skb(skb);
513 return err;
514 }
515
516
517 /* Build a new IP datagram from all its fragments. */
518
519 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
520 struct net_device *dev)
521 {
522 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
523 struct iphdr *iph;
524 struct sk_buff *fp, *head = qp->q.fragments;
525 int len;
526 int ihlen;
527 int err;
528
529 ipq_kill(qp);
530
531 /* Make the one we just received the head. */
532 if (prev) {
533 head = prev->next;
534 fp = skb_clone(head, GFP_ATOMIC);
535 if (!fp)
536 goto out_nomem;
537
538 fp->next = head->next;
539 if (!fp->next)
540 qp->q.fragments_tail = fp;
541 prev->next = fp;
542
543 skb_morph(head, qp->q.fragments);
544 head->next = qp->q.fragments->next;
545
546 kfree_skb(qp->q.fragments);
547 qp->q.fragments = head;
548 }
549
550 WARN_ON(head == NULL);
551 WARN_ON(FRAG_CB(head)->offset != 0);
552
553 /* Allocate a new buffer for the datagram. */
554 ihlen = ip_hdrlen(head);
555 len = ihlen + qp->q.len;
556
557 err = -E2BIG;
558 if (len > 65535)
559 goto out_oversize;
560
561 /* Head of list must not be cloned. */
562 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
563 goto out_nomem;
564
565 /* If the first fragment is fragmented itself, we split
566 * it to two chunks: the first with data and paged part
567 * and the second, holding only fragments. */
568 if (skb_has_frag_list(head)) {
569 struct sk_buff *clone;
570 int i, plen = 0;
571
572 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
573 goto out_nomem;
574 clone->next = head->next;
575 head->next = clone;
576 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
577 skb_frag_list_init(head);
578 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
579 plen += skb_shinfo(head)->frags[i].size;
580 clone->len = clone->data_len = head->data_len - plen;
581 head->data_len -= clone->len;
582 head->len -= clone->len;
583 clone->csum = 0;
584 clone->ip_summed = head->ip_summed;
585 atomic_add(clone->truesize, &qp->q.net->mem);
586 }
587
588 skb_shinfo(head)->frag_list = head->next;
589 skb_push(head, head->data - skb_network_header(head));
590
591 for (fp=head->next; fp; fp = fp->next) {
592 head->data_len += fp->len;
593 head->len += fp->len;
594 if (head->ip_summed != fp->ip_summed)
595 head->ip_summed = CHECKSUM_NONE;
596 else if (head->ip_summed == CHECKSUM_COMPLETE)
597 head->csum = csum_add(head->csum, fp->csum);
598 head->truesize += fp->truesize;
599 }
600 atomic_sub(head->truesize, &qp->q.net->mem);
601
602 head->next = NULL;
603 head->dev = dev;
604 head->tstamp = qp->q.stamp;
605
606 iph = ip_hdr(head);
607 iph->frag_off = 0;
608 iph->tot_len = htons(len);
609 /* RFC3168 5.3 Fragmentation support
610 * If one fragment had INET_ECN_NOT_ECT,
611 * reassembled frame also has INET_ECN_NOT_ECT
612 * Elif one fragment had INET_ECN_CE
613 * reassembled frame also has INET_ECN_CE
614 */
615 if (qp->ecn & IPFRAG_ECN_CLEAR)
616 iph->tos &= ~INET_ECN_MASK;
617 else if (qp->ecn & IPFRAG_ECN_SET_CE)
618 iph->tos |= INET_ECN_CE;
619
620 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
621 qp->q.fragments = NULL;
622 qp->q.fragments_tail = NULL;
623 return 0;
624
625 out_nomem:
626 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
627 "queue %p\n", qp);
628 err = -ENOMEM;
629 goto out_fail;
630 out_oversize:
631 if (net_ratelimit())
632 printk(KERN_INFO "Oversized IP packet from %pI4.\n",
633 &qp->saddr);
634 out_fail:
635 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
636 return err;
637 }
638
639 /* Process an incoming IP datagram fragment. */
640 int ip_defrag(struct sk_buff *skb, u32 user)
641 {
642 struct ipq *qp;
643 struct net *net;
644
645 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
646 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
647
648 /* Start by cleaning up the memory. */
649 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
650 ip_evictor(net);
651
652 /* Lookup (or create) queue header */
653 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
654 int ret;
655
656 spin_lock(&qp->q.lock);
657
658 ret = ip_frag_queue(qp, skb);
659
660 spin_unlock(&qp->q.lock);
661 ipq_put(qp);
662 return ret;
663 }
664
665 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
666 kfree_skb(skb);
667 return -ENOMEM;
668 }
669 EXPORT_SYMBOL(ip_defrag);
670
671 #ifdef CONFIG_SYSCTL
672 static int zero;
673
674 static struct ctl_table ip4_frags_ns_ctl_table[] = {
675 {
676 .procname = "ipfrag_high_thresh",
677 .data = &init_net.ipv4.frags.high_thresh,
678 .maxlen = sizeof(int),
679 .mode = 0644,
680 .proc_handler = proc_dointvec
681 },
682 {
683 .procname = "ipfrag_low_thresh",
684 .data = &init_net.ipv4.frags.low_thresh,
685 .maxlen = sizeof(int),
686 .mode = 0644,
687 .proc_handler = proc_dointvec
688 },
689 {
690 .procname = "ipfrag_time",
691 .data = &init_net.ipv4.frags.timeout,
692 .maxlen = sizeof(int),
693 .mode = 0644,
694 .proc_handler = proc_dointvec_jiffies,
695 },
696 { }
697 };
698
699 static struct ctl_table ip4_frags_ctl_table[] = {
700 {
701 .procname = "ipfrag_secret_interval",
702 .data = &ip4_frags.secret_interval,
703 .maxlen = sizeof(int),
704 .mode = 0644,
705 .proc_handler = proc_dointvec_jiffies,
706 },
707 {
708 .procname = "ipfrag_max_dist",
709 .data = &sysctl_ipfrag_max_dist,
710 .maxlen = sizeof(int),
711 .mode = 0644,
712 .proc_handler = proc_dointvec_minmax,
713 .extra1 = &zero
714 },
715 { }
716 };
717
718 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
719 {
720 struct ctl_table *table;
721 struct ctl_table_header *hdr;
722
723 table = ip4_frags_ns_ctl_table;
724 if (!net_eq(net, &init_net)) {
725 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
726 if (table == NULL)
727 goto err_alloc;
728
729 table[0].data = &net->ipv4.frags.high_thresh;
730 table[1].data = &net->ipv4.frags.low_thresh;
731 table[2].data = &net->ipv4.frags.timeout;
732 }
733
734 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
735 if (hdr == NULL)
736 goto err_reg;
737
738 net->ipv4.frags_hdr = hdr;
739 return 0;
740
741 err_reg:
742 if (!net_eq(net, &init_net))
743 kfree(table);
744 err_alloc:
745 return -ENOMEM;
746 }
747
748 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
749 {
750 struct ctl_table *table;
751
752 table = net->ipv4.frags_hdr->ctl_table_arg;
753 unregister_net_sysctl_table(net->ipv4.frags_hdr);
754 kfree(table);
755 }
756
757 static void ip4_frags_ctl_register(void)
758 {
759 register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
760 }
761 #else
762 static inline int ip4_frags_ns_ctl_register(struct net *net)
763 {
764 return 0;
765 }
766
767 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
768 {
769 }
770
771 static inline void ip4_frags_ctl_register(void)
772 {
773 }
774 #endif
775
776 static int __net_init ipv4_frags_init_net(struct net *net)
777 {
778 /*
779 * Fragment cache limits. We will commit 256K at one time. Should we
780 * cross that limit we will prune down to 192K. This should cope with
781 * even the most extreme cases without allowing an attacker to
782 * measurably harm machine performance.
783 */
784 net->ipv4.frags.high_thresh = 256 * 1024;
785 net->ipv4.frags.low_thresh = 192 * 1024;
786 /*
787 * Important NOTE! Fragment queue must be destroyed before MSL expires.
788 * RFC791 is wrong proposing to prolongate timer each fragment arrival
789 * by TTL.
790 */
791 net->ipv4.frags.timeout = IP_FRAG_TIME;
792
793 inet_frags_init_net(&net->ipv4.frags);
794
795 return ip4_frags_ns_ctl_register(net);
796 }
797
798 static void __net_exit ipv4_frags_exit_net(struct net *net)
799 {
800 ip4_frags_ns_ctl_unregister(net);
801 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
802 }
803
804 static struct pernet_operations ip4_frags_ops = {
805 .init = ipv4_frags_init_net,
806 .exit = ipv4_frags_exit_net,
807 };
808
809 void __init ipfrag_init(void)
810 {
811 ip4_frags_ctl_register();
812 register_pernet_subsys(&ip4_frags_ops);
813 ip4_frags.hashfn = ip4_hashfn;
814 ip4_frags.constructor = ip4_frag_init;
815 ip4_frags.destructor = ip4_frag_free;
816 ip4_frags.skb_free = NULL;
817 ip4_frags.qsize = sizeof(struct ipq);
818 ip4_frags.match = ip4_frag_match;
819 ip4_frags.frag_expire = ip_expire;
820 ip4_frags.secret_interval = 10 * 60 * HZ;
821 inet_frags_init(&ip4_frags);
822 }