[IPV4] fib_trie: Add credits.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.404"
54
55 #include <linux/config.h>
56 #include <asm/uaccess.h>
57 #include <asm/system.h>
58 #include <asm/bitops.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
61 #include <linux/sched.h>
62 #include <linux/mm.h>
63 #include <linux/string.h>
64 #include <linux/socket.h>
65 #include <linux/sockios.h>
66 #include <linux/errno.h>
67 #include <linux/in.h>
68 #include <linux/inet.h>
69 #include <linux/netdevice.h>
70 #include <linux/if_arp.h>
71 #include <linux/proc_fs.h>
72 #include <linux/rcupdate.h>
73 #include <linux/skbuff.h>
74 #include <linux/netlink.h>
75 #include <linux/init.h>
76 #include <linux/list.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #undef CONFIG_IP_FIB_TRIE_STATS
86 #define MAX_CHILDS 16384
87
88 #define KEYLENGTH (8*sizeof(t_key))
89 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
90 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
91
92 typedef unsigned int t_key;
93
94 #define T_TNODE 0
95 #define T_LEAF 1
96 #define NODE_TYPE_MASK 0x1UL
97 #define NODE_PARENT(node) \
98 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
99
100 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
101
102 #define NODE_SET_PARENT(node, ptr) \
103 rcu_assign_pointer((node)->parent, \
104 ((unsigned long)(ptr)) | NODE_TYPE(node))
105
106 #define IS_TNODE(n) (!(n->parent & T_LEAF))
107 #define IS_LEAF(n) (n->parent & T_LEAF)
108
109 struct node {
110 t_key key;
111 unsigned long parent;
112 };
113
114 struct leaf {
115 t_key key;
116 unsigned long parent;
117 struct hlist_head list;
118 struct rcu_head rcu;
119 };
120
121 struct leaf_info {
122 struct hlist_node hlist;
123 struct rcu_head rcu;
124 int plen;
125 struct list_head falh;
126 };
127
128 struct tnode {
129 t_key key;
130 unsigned long parent;
131 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
132 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
133 unsigned short full_children; /* KEYLENGTH bits needed */
134 unsigned short empty_children; /* KEYLENGTH bits needed */
135 struct rcu_head rcu;
136 struct node *child[0];
137 };
138
139 #ifdef CONFIG_IP_FIB_TRIE_STATS
140 struct trie_use_stats {
141 unsigned int gets;
142 unsigned int backtrack;
143 unsigned int semantic_match_passed;
144 unsigned int semantic_match_miss;
145 unsigned int null_node_hit;
146 unsigned int resize_node_skipped;
147 };
148 #endif
149
150 struct trie_stat {
151 unsigned int totdepth;
152 unsigned int maxdepth;
153 unsigned int tnodes;
154 unsigned int leaves;
155 unsigned int nullpointers;
156 unsigned int nodesizes[MAX_CHILDS];
157 };
158
159 struct trie {
160 struct node *trie;
161 #ifdef CONFIG_IP_FIB_TRIE_STATS
162 struct trie_use_stats stats;
163 #endif
164 int size;
165 unsigned int revision;
166 };
167
168 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
169 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
170 static struct node *resize(struct trie *t, struct tnode *tn);
171 static struct tnode *inflate(struct trie *t, struct tnode *tn);
172 static struct tnode *halve(struct trie *t, struct tnode *tn);
173 static void tnode_free(struct tnode *tn);
174
175 static kmem_cache_t *fn_alias_kmem __read_mostly;
176 static struct trie *trie_local = NULL, *trie_main = NULL;
177
178
179 /* rcu_read_lock needs to be hold by caller from readside */
180
181 static inline struct node *tnode_get_child(struct tnode *tn, int i)
182 {
183 BUG_ON(i >= 1 << tn->bits);
184
185 return rcu_dereference(tn->child[i]);
186 }
187
188 static inline int tnode_child_length(const struct tnode *tn)
189 {
190 return 1 << tn->bits;
191 }
192
193 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
194 {
195 if (offset < KEYLENGTH)
196 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
197 else
198 return 0;
199 }
200
201 static inline int tkey_equals(t_key a, t_key b)
202 {
203 return a == b;
204 }
205
206 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
207 {
208 if (bits == 0 || offset >= KEYLENGTH)
209 return 1;
210 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
211 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
212 }
213
214 static inline int tkey_mismatch(t_key a, int offset, t_key b)
215 {
216 t_key diff = a ^ b;
217 int i = offset;
218
219 if (!diff)
220 return 0;
221 while ((diff << i) >> (KEYLENGTH-1) == 0)
222 i++;
223 return i;
224 }
225
226 /*
227 To understand this stuff, an understanding of keys and all their bits is
228 necessary. Every node in the trie has a key associated with it, but not
229 all of the bits in that key are significant.
230
231 Consider a node 'n' and its parent 'tp'.
232
233 If n is a leaf, every bit in its key is significant. Its presence is
234 necessitated by path compression, since during a tree traversal (when
235 searching for a leaf - unless we are doing an insertion) we will completely
236 ignore all skipped bits we encounter. Thus we need to verify, at the end of
237 a potentially successful search, that we have indeed been walking the
238 correct key path.
239
240 Note that we can never "miss" the correct key in the tree if present by
241 following the wrong path. Path compression ensures that segments of the key
242 that are the same for all keys with a given prefix are skipped, but the
243 skipped part *is* identical for each node in the subtrie below the skipped
244 bit! trie_insert() in this implementation takes care of that - note the
245 call to tkey_sub_equals() in trie_insert().
246
247 if n is an internal node - a 'tnode' here, the various parts of its key
248 have many different meanings.
249
250 Example:
251 _________________________________________________________________
252 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
253 -----------------------------------------------------------------
254 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
255
256 _________________________________________________________________
257 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
258 -----------------------------------------------------------------
259 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
260
261 tp->pos = 7
262 tp->bits = 3
263 n->pos = 15
264 n->bits = 4
265
266 First, let's just ignore the bits that come before the parent tp, that is
267 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
268 not use them for anything.
269
270 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
271 index into the parent's child array. That is, they will be used to find
272 'n' among tp's children.
273
274 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
275 for the node n.
276
277 All the bits we have seen so far are significant to the node n. The rest
278 of the bits are really not needed or indeed known in n->key.
279
280 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
281 n's child array, and will of course be different for each child.
282
283
284 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
285 at this point.
286
287 */
288
289 static inline void check_tnode(const struct tnode *tn)
290 {
291 WARN_ON(tn && tn->pos+tn->bits > 32);
292 }
293
294 static int halve_threshold = 25;
295 static int inflate_threshold = 50;
296 static int halve_threshold_root = 15;
297 static int inflate_threshold_root = 25;
298
299
300 static void __alias_free_mem(struct rcu_head *head)
301 {
302 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
303 kmem_cache_free(fn_alias_kmem, fa);
304 }
305
306 static inline void alias_free_mem_rcu(struct fib_alias *fa)
307 {
308 call_rcu(&fa->rcu, __alias_free_mem);
309 }
310
311 static void __leaf_free_rcu(struct rcu_head *head)
312 {
313 kfree(container_of(head, struct leaf, rcu));
314 }
315
316 static inline void free_leaf(struct leaf *leaf)
317 {
318 call_rcu(&leaf->rcu, __leaf_free_rcu);
319 }
320
321 static void __leaf_info_free_rcu(struct rcu_head *head)
322 {
323 kfree(container_of(head, struct leaf_info, rcu));
324 }
325
326 static inline void free_leaf_info(struct leaf_info *leaf)
327 {
328 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
329 }
330
331 static struct tnode *tnode_alloc(unsigned int size)
332 {
333 struct page *pages;
334
335 if (size <= PAGE_SIZE)
336 return kcalloc(size, 1, GFP_KERNEL);
337
338 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
339 if (!pages)
340 return NULL;
341
342 return page_address(pages);
343 }
344
345 static void __tnode_free_rcu(struct rcu_head *head)
346 {
347 struct tnode *tn = container_of(head, struct tnode, rcu);
348 unsigned int size = sizeof(struct tnode) +
349 (1 << tn->bits) * sizeof(struct node *);
350
351 if (size <= PAGE_SIZE)
352 kfree(tn);
353 else
354 free_pages((unsigned long)tn, get_order(size));
355 }
356
357 static inline void tnode_free(struct tnode *tn)
358 {
359 call_rcu(&tn->rcu, __tnode_free_rcu);
360 }
361
362 static struct leaf *leaf_new(void)
363 {
364 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
365 if (l) {
366 l->parent = T_LEAF;
367 INIT_HLIST_HEAD(&l->list);
368 }
369 return l;
370 }
371
372 static struct leaf_info *leaf_info_new(int plen)
373 {
374 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
375 if (li) {
376 li->plen = plen;
377 INIT_LIST_HEAD(&li->falh);
378 }
379 return li;
380 }
381
382 static struct tnode* tnode_new(t_key key, int pos, int bits)
383 {
384 int nchildren = 1<<bits;
385 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
386 struct tnode *tn = tnode_alloc(sz);
387
388 if (tn) {
389 memset(tn, 0, sz);
390 tn->parent = T_TNODE;
391 tn->pos = pos;
392 tn->bits = bits;
393 tn->key = key;
394 tn->full_children = 0;
395 tn->empty_children = 1<<bits;
396 }
397
398 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
399 (unsigned int) (sizeof(struct node) * 1<<bits));
400 return tn;
401 }
402
403 /*
404 * Check whether a tnode 'n' is "full", i.e. it is an internal node
405 * and no bits are skipped. See discussion in dyntree paper p. 6
406 */
407
408 static inline int tnode_full(const struct tnode *tn, const struct node *n)
409 {
410 if (n == NULL || IS_LEAF(n))
411 return 0;
412
413 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
414 }
415
416 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
417 {
418 tnode_put_child_reorg(tn, i, n, -1);
419 }
420
421 /*
422 * Add a child at position i overwriting the old value.
423 * Update the value of full_children and empty_children.
424 */
425
426 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
427 {
428 struct node *chi = tn->child[i];
429 int isfull;
430
431 BUG_ON(i >= 1<<tn->bits);
432
433
434 /* update emptyChildren */
435 if (n == NULL && chi != NULL)
436 tn->empty_children++;
437 else if (n != NULL && chi == NULL)
438 tn->empty_children--;
439
440 /* update fullChildren */
441 if (wasfull == -1)
442 wasfull = tnode_full(tn, chi);
443
444 isfull = tnode_full(tn, n);
445 if (wasfull && !isfull)
446 tn->full_children--;
447 else if (!wasfull && isfull)
448 tn->full_children++;
449
450 if (n)
451 NODE_SET_PARENT(n, tn);
452
453 rcu_assign_pointer(tn->child[i], n);
454 }
455
456 static struct node *resize(struct trie *t, struct tnode *tn)
457 {
458 int i;
459 int err = 0;
460 struct tnode *old_tn;
461 int inflate_threshold_use;
462 int halve_threshold_use;
463
464 if (!tn)
465 return NULL;
466
467 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
468 tn, inflate_threshold, halve_threshold);
469
470 /* No children */
471 if (tn->empty_children == tnode_child_length(tn)) {
472 tnode_free(tn);
473 return NULL;
474 }
475 /* One child */
476 if (tn->empty_children == tnode_child_length(tn) - 1)
477 for (i = 0; i < tnode_child_length(tn); i++) {
478 struct node *n;
479
480 n = tn->child[i];
481 if (!n)
482 continue;
483
484 /* compress one level */
485 NODE_SET_PARENT(n, NULL);
486 tnode_free(tn);
487 return n;
488 }
489 /*
490 * Double as long as the resulting node has a number of
491 * nonempty nodes that are above the threshold.
492 */
493
494 /*
495 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
496 * the Helsinki University of Technology and Matti Tikkanen of Nokia
497 * Telecommunications, page 6:
498 * "A node is doubled if the ratio of non-empty children to all
499 * children in the *doubled* node is at least 'high'."
500 *
501 * 'high' in this instance is the variable 'inflate_threshold'. It
502 * is expressed as a percentage, so we multiply it with
503 * tnode_child_length() and instead of multiplying by 2 (since the
504 * child array will be doubled by inflate()) and multiplying
505 * the left-hand side by 100 (to handle the percentage thing) we
506 * multiply the left-hand side by 50.
507 *
508 * The left-hand side may look a bit weird: tnode_child_length(tn)
509 * - tn->empty_children is of course the number of non-null children
510 * in the current node. tn->full_children is the number of "full"
511 * children, that is non-null tnodes with a skip value of 0.
512 * All of those will be doubled in the resulting inflated tnode, so
513 * we just count them one extra time here.
514 *
515 * A clearer way to write this would be:
516 *
517 * to_be_doubled = tn->full_children;
518 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
519 * tn->full_children;
520 *
521 * new_child_length = tnode_child_length(tn) * 2;
522 *
523 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
524 * new_child_length;
525 * if (new_fill_factor >= inflate_threshold)
526 *
527 * ...and so on, tho it would mess up the while () loop.
528 *
529 * anyway,
530 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
531 * inflate_threshold
532 *
533 * avoid a division:
534 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
535 * inflate_threshold * new_child_length
536 *
537 * expand not_to_be_doubled and to_be_doubled, and shorten:
538 * 100 * (tnode_child_length(tn) - tn->empty_children +
539 * tn->full_children) >= inflate_threshold * new_child_length
540 *
541 * expand new_child_length:
542 * 100 * (tnode_child_length(tn) - tn->empty_children +
543 * tn->full_children) >=
544 * inflate_threshold * tnode_child_length(tn) * 2
545 *
546 * shorten again:
547 * 50 * (tn->full_children + tnode_child_length(tn) -
548 * tn->empty_children) >= inflate_threshold *
549 * tnode_child_length(tn)
550 *
551 */
552
553 check_tnode(tn);
554
555 /* Keep root node larger */
556
557 if(!tn->parent)
558 inflate_threshold_use = inflate_threshold_root;
559 else
560 inflate_threshold_use = inflate_threshold;
561
562 err = 0;
563 while ((tn->full_children > 0 &&
564 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
565 inflate_threshold_use * tnode_child_length(tn))) {
566
567 old_tn = tn;
568 tn = inflate(t, tn);
569 if (IS_ERR(tn)) {
570 tn = old_tn;
571 #ifdef CONFIG_IP_FIB_TRIE_STATS
572 t->stats.resize_node_skipped++;
573 #endif
574 break;
575 }
576 }
577
578 check_tnode(tn);
579
580 /*
581 * Halve as long as the number of empty children in this
582 * node is above threshold.
583 */
584
585
586 /* Keep root node larger */
587
588 if(!tn->parent)
589 halve_threshold_use = halve_threshold_root;
590 else
591 halve_threshold_use = halve_threshold;
592
593 err = 0;
594 while (tn->bits > 1 &&
595 100 * (tnode_child_length(tn) - tn->empty_children) <
596 halve_threshold_use * tnode_child_length(tn)) {
597
598 old_tn = tn;
599 tn = halve(t, tn);
600 if (IS_ERR(tn)) {
601 tn = old_tn;
602 #ifdef CONFIG_IP_FIB_TRIE_STATS
603 t->stats.resize_node_skipped++;
604 #endif
605 break;
606 }
607 }
608
609
610 /* Only one child remains */
611 if (tn->empty_children == tnode_child_length(tn) - 1)
612 for (i = 0; i < tnode_child_length(tn); i++) {
613 struct node *n;
614
615 n = tn->child[i];
616 if (!n)
617 continue;
618
619 /* compress one level */
620
621 NODE_SET_PARENT(n, NULL);
622 tnode_free(tn);
623 return n;
624 }
625
626 return (struct node *) tn;
627 }
628
629 static struct tnode *inflate(struct trie *t, struct tnode *tn)
630 {
631 struct tnode *inode;
632 struct tnode *oldtnode = tn;
633 int olen = tnode_child_length(tn);
634 int i;
635
636 pr_debug("In inflate\n");
637
638 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
639
640 if (!tn)
641 return ERR_PTR(-ENOMEM);
642
643 /*
644 * Preallocate and store tnodes before the actual work so we
645 * don't get into an inconsistent state if memory allocation
646 * fails. In case of failure we return the oldnode and inflate
647 * of tnode is ignored.
648 */
649
650 for (i = 0; i < olen; i++) {
651 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
652
653 if (inode &&
654 IS_TNODE(inode) &&
655 inode->pos == oldtnode->pos + oldtnode->bits &&
656 inode->bits > 1) {
657 struct tnode *left, *right;
658 t_key m = TKEY_GET_MASK(inode->pos, 1);
659
660 left = tnode_new(inode->key&(~m), inode->pos + 1,
661 inode->bits - 1);
662 if (!left)
663 goto nomem;
664
665 right = tnode_new(inode->key|m, inode->pos + 1,
666 inode->bits - 1);
667
668 if (!right) {
669 tnode_free(left);
670 goto nomem;
671 }
672
673 put_child(t, tn, 2*i, (struct node *) left);
674 put_child(t, tn, 2*i+1, (struct node *) right);
675 }
676 }
677
678 for (i = 0; i < olen; i++) {
679 struct node *node = tnode_get_child(oldtnode, i);
680 struct tnode *left, *right;
681 int size, j;
682
683 /* An empty child */
684 if (node == NULL)
685 continue;
686
687 /* A leaf or an internal node with skipped bits */
688
689 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
690 tn->pos + tn->bits - 1) {
691 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
692 1) == 0)
693 put_child(t, tn, 2*i, node);
694 else
695 put_child(t, tn, 2*i+1, node);
696 continue;
697 }
698
699 /* An internal node with two children */
700 inode = (struct tnode *) node;
701
702 if (inode->bits == 1) {
703 put_child(t, tn, 2*i, inode->child[0]);
704 put_child(t, tn, 2*i+1, inode->child[1]);
705
706 tnode_free(inode);
707 continue;
708 }
709
710 /* An internal node with more than two children */
711
712 /* We will replace this node 'inode' with two new
713 * ones, 'left' and 'right', each with half of the
714 * original children. The two new nodes will have
715 * a position one bit further down the key and this
716 * means that the "significant" part of their keys
717 * (see the discussion near the top of this file)
718 * will differ by one bit, which will be "0" in
719 * left's key and "1" in right's key. Since we are
720 * moving the key position by one step, the bit that
721 * we are moving away from - the bit at position
722 * (inode->pos) - is the one that will differ between
723 * left and right. So... we synthesize that bit in the
724 * two new keys.
725 * The mask 'm' below will be a single "one" bit at
726 * the position (inode->pos)
727 */
728
729 /* Use the old key, but set the new significant
730 * bit to zero.
731 */
732
733 left = (struct tnode *) tnode_get_child(tn, 2*i);
734 put_child(t, tn, 2*i, NULL);
735
736 BUG_ON(!left);
737
738 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
739 put_child(t, tn, 2*i+1, NULL);
740
741 BUG_ON(!right);
742
743 size = tnode_child_length(left);
744 for (j = 0; j < size; j++) {
745 put_child(t, left, j, inode->child[j]);
746 put_child(t, right, j, inode->child[j + size]);
747 }
748 put_child(t, tn, 2*i, resize(t, left));
749 put_child(t, tn, 2*i+1, resize(t, right));
750
751 tnode_free(inode);
752 }
753 tnode_free(oldtnode);
754 return tn;
755 nomem:
756 {
757 int size = tnode_child_length(tn);
758 int j;
759
760 for (j = 0; j < size; j++)
761 if (tn->child[j])
762 tnode_free((struct tnode *)tn->child[j]);
763
764 tnode_free(tn);
765
766 return ERR_PTR(-ENOMEM);
767 }
768 }
769
770 static struct tnode *halve(struct trie *t, struct tnode *tn)
771 {
772 struct tnode *oldtnode = tn;
773 struct node *left, *right;
774 int i;
775 int olen = tnode_child_length(tn);
776
777 pr_debug("In halve\n");
778
779 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
780
781 if (!tn)
782 return ERR_PTR(-ENOMEM);
783
784 /*
785 * Preallocate and store tnodes before the actual work so we
786 * don't get into an inconsistent state if memory allocation
787 * fails. In case of failure we return the oldnode and halve
788 * of tnode is ignored.
789 */
790
791 for (i = 0; i < olen; i += 2) {
792 left = tnode_get_child(oldtnode, i);
793 right = tnode_get_child(oldtnode, i+1);
794
795 /* Two nonempty children */
796 if (left && right) {
797 struct tnode *newn;
798
799 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
800
801 if (!newn)
802 goto nomem;
803
804 put_child(t, tn, i/2, (struct node *)newn);
805 }
806
807 }
808
809 for (i = 0; i < olen; i += 2) {
810 struct tnode *newBinNode;
811
812 left = tnode_get_child(oldtnode, i);
813 right = tnode_get_child(oldtnode, i+1);
814
815 /* At least one of the children is empty */
816 if (left == NULL) {
817 if (right == NULL) /* Both are empty */
818 continue;
819 put_child(t, tn, i/2, right);
820 continue;
821 }
822
823 if (right == NULL) {
824 put_child(t, tn, i/2, left);
825 continue;
826 }
827
828 /* Two nonempty children */
829 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
830 put_child(t, tn, i/2, NULL);
831 put_child(t, newBinNode, 0, left);
832 put_child(t, newBinNode, 1, right);
833 put_child(t, tn, i/2, resize(t, newBinNode));
834 }
835 tnode_free(oldtnode);
836 return tn;
837 nomem:
838 {
839 int size = tnode_child_length(tn);
840 int j;
841
842 for (j = 0; j < size; j++)
843 if (tn->child[j])
844 tnode_free((struct tnode *)tn->child[j]);
845
846 tnode_free(tn);
847
848 return ERR_PTR(-ENOMEM);
849 }
850 }
851
852 static void trie_init(struct trie *t)
853 {
854 if (!t)
855 return;
856
857 t->size = 0;
858 rcu_assign_pointer(t->trie, NULL);
859 t->revision = 0;
860 #ifdef CONFIG_IP_FIB_TRIE_STATS
861 memset(&t->stats, 0, sizeof(struct trie_use_stats));
862 #endif
863 }
864
865 /* readside must use rcu_read_lock currently dump routines
866 via get_fa_head and dump */
867
868 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
869 {
870 struct hlist_head *head = &l->list;
871 struct hlist_node *node;
872 struct leaf_info *li;
873
874 hlist_for_each_entry_rcu(li, node, head, hlist)
875 if (li->plen == plen)
876 return li;
877
878 return NULL;
879 }
880
881 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
882 {
883 struct leaf_info *li = find_leaf_info(l, plen);
884
885 if (!li)
886 return NULL;
887
888 return &li->falh;
889 }
890
891 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
892 {
893 struct leaf_info *li = NULL, *last = NULL;
894 struct hlist_node *node;
895
896 if (hlist_empty(head)) {
897 hlist_add_head_rcu(&new->hlist, head);
898 } else {
899 hlist_for_each_entry(li, node, head, hlist) {
900 if (new->plen > li->plen)
901 break;
902
903 last = li;
904 }
905 if (last)
906 hlist_add_after_rcu(&last->hlist, &new->hlist);
907 else
908 hlist_add_before_rcu(&new->hlist, &li->hlist);
909 }
910 }
911
912 /* rcu_read_lock needs to be hold by caller from readside */
913
914 static struct leaf *
915 fib_find_node(struct trie *t, u32 key)
916 {
917 int pos;
918 struct tnode *tn;
919 struct node *n;
920
921 pos = 0;
922 n = rcu_dereference(t->trie);
923
924 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
925 tn = (struct tnode *) n;
926
927 check_tnode(tn);
928
929 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
930 pos = tn->pos + tn->bits;
931 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
932 } else
933 break;
934 }
935 /* Case we have found a leaf. Compare prefixes */
936
937 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
938 return (struct leaf *)n;
939
940 return NULL;
941 }
942
943 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
944 {
945 int wasfull;
946 t_key cindex, key;
947 struct tnode *tp = NULL;
948
949 key = tn->key;
950
951 while (tn != NULL && NODE_PARENT(tn) != NULL) {
952
953 tp = NODE_PARENT(tn);
954 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
955 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
956 tn = (struct tnode *) resize (t, (struct tnode *)tn);
957 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
958
959 if (!NODE_PARENT(tn))
960 break;
961
962 tn = NODE_PARENT(tn);
963 }
964 /* Handle last (top) tnode */
965 if (IS_TNODE(tn))
966 tn = (struct tnode*) resize(t, (struct tnode *)tn);
967
968 return (struct node*) tn;
969 }
970
971 /* only used from updater-side */
972
973 static struct list_head *
974 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
975 {
976 int pos, newpos;
977 struct tnode *tp = NULL, *tn = NULL;
978 struct node *n;
979 struct leaf *l;
980 int missbit;
981 struct list_head *fa_head = NULL;
982 struct leaf_info *li;
983 t_key cindex;
984
985 pos = 0;
986 n = t->trie;
987
988 /* If we point to NULL, stop. Either the tree is empty and we should
989 * just put a new leaf in if, or we have reached an empty child slot,
990 * and we should just put our new leaf in that.
991 * If we point to a T_TNODE, check if it matches our key. Note that
992 * a T_TNODE might be skipping any number of bits - its 'pos' need
993 * not be the parent's 'pos'+'bits'!
994 *
995 * If it does match the current key, get pos/bits from it, extract
996 * the index from our key, push the T_TNODE and walk the tree.
997 *
998 * If it doesn't, we have to replace it with a new T_TNODE.
999 *
1000 * If we point to a T_LEAF, it might or might not have the same key
1001 * as we do. If it does, just change the value, update the T_LEAF's
1002 * value, and return it.
1003 * If it doesn't, we need to replace it with a T_TNODE.
1004 */
1005
1006 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1007 tn = (struct tnode *) n;
1008
1009 check_tnode(tn);
1010
1011 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1012 tp = tn;
1013 pos = tn->pos + tn->bits;
1014 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1015
1016 BUG_ON(n && NODE_PARENT(n) != tn);
1017 } else
1018 break;
1019 }
1020
1021 /*
1022 * n ----> NULL, LEAF or TNODE
1023 *
1024 * tp is n's (parent) ----> NULL or TNODE
1025 */
1026
1027 BUG_ON(tp && IS_LEAF(tp));
1028
1029 /* Case 1: n is a leaf. Compare prefixes */
1030
1031 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1032 struct leaf *l = (struct leaf *) n;
1033
1034 li = leaf_info_new(plen);
1035
1036 if (!li) {
1037 *err = -ENOMEM;
1038 goto err;
1039 }
1040
1041 fa_head = &li->falh;
1042 insert_leaf_info(&l->list, li);
1043 goto done;
1044 }
1045 t->size++;
1046 l = leaf_new();
1047
1048 if (!l) {
1049 *err = -ENOMEM;
1050 goto err;
1051 }
1052
1053 l->key = key;
1054 li = leaf_info_new(plen);
1055
1056 if (!li) {
1057 tnode_free((struct tnode *) l);
1058 *err = -ENOMEM;
1059 goto err;
1060 }
1061
1062 fa_head = &li->falh;
1063 insert_leaf_info(&l->list, li);
1064
1065 if (t->trie && n == NULL) {
1066 /* Case 2: n is NULL, and will just insert a new leaf */
1067
1068 NODE_SET_PARENT(l, tp);
1069
1070 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1071 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1072 } else {
1073 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1074 /*
1075 * Add a new tnode here
1076 * first tnode need some special handling
1077 */
1078
1079 if (tp)
1080 pos = tp->pos+tp->bits;
1081 else
1082 pos = 0;
1083
1084 if (n) {
1085 newpos = tkey_mismatch(key, pos, n->key);
1086 tn = tnode_new(n->key, newpos, 1);
1087 } else {
1088 newpos = 0;
1089 tn = tnode_new(key, newpos, 1); /* First tnode */
1090 }
1091
1092 if (!tn) {
1093 free_leaf_info(li);
1094 tnode_free((struct tnode *) l);
1095 *err = -ENOMEM;
1096 goto err;
1097 }
1098
1099 NODE_SET_PARENT(tn, tp);
1100
1101 missbit = tkey_extract_bits(key, newpos, 1);
1102 put_child(t, tn, missbit, (struct node *)l);
1103 put_child(t, tn, 1-missbit, n);
1104
1105 if (tp) {
1106 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1107 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1108 } else {
1109 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1110 tp = tn;
1111 }
1112 }
1113
1114 if (tp && tp->pos + tp->bits > 32)
1115 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1116 tp, tp->pos, tp->bits, key, plen);
1117
1118 /* Rebalance the trie */
1119
1120 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1121 done:
1122 t->revision++;
1123 err:
1124 return fa_head;
1125 }
1126
1127 static int
1128 fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1129 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1130 {
1131 struct trie *t = (struct trie *) tb->tb_data;
1132 struct fib_alias *fa, *new_fa;
1133 struct list_head *fa_head = NULL;
1134 struct fib_info *fi;
1135 int plen = r->rtm_dst_len;
1136 int type = r->rtm_type;
1137 u8 tos = r->rtm_tos;
1138 u32 key, mask;
1139 int err;
1140 struct leaf *l;
1141
1142 if (plen > 32)
1143 return -EINVAL;
1144
1145 key = 0;
1146 if (rta->rta_dst)
1147 memcpy(&key, rta->rta_dst, 4);
1148
1149 key = ntohl(key);
1150
1151 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
1152
1153 mask = ntohl(inet_make_mask(plen));
1154
1155 if (key & ~mask)
1156 return -EINVAL;
1157
1158 key = key & mask;
1159
1160 fi = fib_create_info(r, rta, nlhdr, &err);
1161
1162 if (!fi)
1163 goto err;
1164
1165 l = fib_find_node(t, key);
1166 fa = NULL;
1167
1168 if (l) {
1169 fa_head = get_fa_head(l, plen);
1170 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1171 }
1172
1173 /* Now fa, if non-NULL, points to the first fib alias
1174 * with the same keys [prefix,tos,priority], if such key already
1175 * exists or to the node before which we will insert new one.
1176 *
1177 * If fa is NULL, we will need to allocate a new one and
1178 * insert to the head of f.
1179 *
1180 * If f is NULL, no fib node matched the destination key
1181 * and we need to allocate a new one of those as well.
1182 */
1183
1184 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1185 struct fib_alias *fa_orig;
1186
1187 err = -EEXIST;
1188 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1189 goto out;
1190
1191 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1192 struct fib_info *fi_drop;
1193 u8 state;
1194
1195 err = -ENOBUFS;
1196 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1197 if (new_fa == NULL)
1198 goto out;
1199
1200 fi_drop = fa->fa_info;
1201 new_fa->fa_tos = fa->fa_tos;
1202 new_fa->fa_info = fi;
1203 new_fa->fa_type = type;
1204 new_fa->fa_scope = r->rtm_scope;
1205 state = fa->fa_state;
1206 new_fa->fa_state &= ~FA_S_ACCESSED;
1207
1208 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1209 alias_free_mem_rcu(fa);
1210
1211 fib_release_info(fi_drop);
1212 if (state & FA_S_ACCESSED)
1213 rt_cache_flush(-1);
1214
1215 goto succeeded;
1216 }
1217 /* Error if we find a perfect match which
1218 * uses the same scope, type, and nexthop
1219 * information.
1220 */
1221 fa_orig = fa;
1222 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1223 if (fa->fa_tos != tos)
1224 break;
1225 if (fa->fa_info->fib_priority != fi->fib_priority)
1226 break;
1227 if (fa->fa_type == type &&
1228 fa->fa_scope == r->rtm_scope &&
1229 fa->fa_info == fi) {
1230 goto out;
1231 }
1232 }
1233 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1234 fa = fa_orig;
1235 }
1236 err = -ENOENT;
1237 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
1238 goto out;
1239
1240 err = -ENOBUFS;
1241 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1242 if (new_fa == NULL)
1243 goto out;
1244
1245 new_fa->fa_info = fi;
1246 new_fa->fa_tos = tos;
1247 new_fa->fa_type = type;
1248 new_fa->fa_scope = r->rtm_scope;
1249 new_fa->fa_state = 0;
1250 /*
1251 * Insert new entry to the list.
1252 */
1253
1254 if (!fa_head) {
1255 fa_head = fib_insert_node(t, &err, key, plen);
1256 err = 0;
1257 if (err)
1258 goto out_free_new_fa;
1259 }
1260
1261 list_add_tail_rcu(&new_fa->fa_list,
1262 (fa ? &fa->fa_list : fa_head));
1263
1264 rt_cache_flush(-1);
1265 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1266 succeeded:
1267 return 0;
1268
1269 out_free_new_fa:
1270 kmem_cache_free(fn_alias_kmem, new_fa);
1271 out:
1272 fib_release_info(fi);
1273 err:
1274 return err;
1275 }
1276
1277
1278 /* should be called with rcu_read_lock */
1279 static inline int check_leaf(struct trie *t, struct leaf *l,
1280 t_key key, int *plen, const struct flowi *flp,
1281 struct fib_result *res)
1282 {
1283 int err, i;
1284 t_key mask;
1285 struct leaf_info *li;
1286 struct hlist_head *hhead = &l->list;
1287 struct hlist_node *node;
1288
1289 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1290 i = li->plen;
1291 mask = ntohl(inet_make_mask(i));
1292 if (l->key != (key & mask))
1293 continue;
1294
1295 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
1296 *plen = i;
1297 #ifdef CONFIG_IP_FIB_TRIE_STATS
1298 t->stats.semantic_match_passed++;
1299 #endif
1300 return err;
1301 }
1302 #ifdef CONFIG_IP_FIB_TRIE_STATS
1303 t->stats.semantic_match_miss++;
1304 #endif
1305 }
1306 return 1;
1307 }
1308
1309 static int
1310 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1311 {
1312 struct trie *t = (struct trie *) tb->tb_data;
1313 int plen, ret = 0;
1314 struct node *n;
1315 struct tnode *pn;
1316 int pos, bits;
1317 t_key key = ntohl(flp->fl4_dst);
1318 int chopped_off;
1319 t_key cindex = 0;
1320 int current_prefix_length = KEYLENGTH;
1321 struct tnode *cn;
1322 t_key node_prefix, key_prefix, pref_mismatch;
1323 int mp;
1324
1325 rcu_read_lock();
1326
1327 n = rcu_dereference(t->trie);
1328 if (!n)
1329 goto failed;
1330
1331 #ifdef CONFIG_IP_FIB_TRIE_STATS
1332 t->stats.gets++;
1333 #endif
1334
1335 /* Just a leaf? */
1336 if (IS_LEAF(n)) {
1337 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1338 goto found;
1339 goto failed;
1340 }
1341 pn = (struct tnode *) n;
1342 chopped_off = 0;
1343
1344 while (pn) {
1345 pos = pn->pos;
1346 bits = pn->bits;
1347
1348 if (!chopped_off)
1349 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1350
1351 n = tnode_get_child(pn, cindex);
1352
1353 if (n == NULL) {
1354 #ifdef CONFIG_IP_FIB_TRIE_STATS
1355 t->stats.null_node_hit++;
1356 #endif
1357 goto backtrace;
1358 }
1359
1360 if (IS_LEAF(n)) {
1361 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1362 goto found;
1363 else
1364 goto backtrace;
1365 }
1366
1367 #define HL_OPTIMIZE
1368 #ifdef HL_OPTIMIZE
1369 cn = (struct tnode *)n;
1370
1371 /*
1372 * It's a tnode, and we can do some extra checks here if we
1373 * like, to avoid descending into a dead-end branch.
1374 * This tnode is in the parent's child array at index
1375 * key[p_pos..p_pos+p_bits] but potentially with some bits
1376 * chopped off, so in reality the index may be just a
1377 * subprefix, padded with zero at the end.
1378 * We can also take a look at any skipped bits in this
1379 * tnode - everything up to p_pos is supposed to be ok,
1380 * and the non-chopped bits of the index (se previous
1381 * paragraph) are also guaranteed ok, but the rest is
1382 * considered unknown.
1383 *
1384 * The skipped bits are key[pos+bits..cn->pos].
1385 */
1386
1387 /* If current_prefix_length < pos+bits, we are already doing
1388 * actual prefix matching, which means everything from
1389 * pos+(bits-chopped_off) onward must be zero along some
1390 * branch of this subtree - otherwise there is *no* valid
1391 * prefix present. Here we can only check the skipped
1392 * bits. Remember, since we have already indexed into the
1393 * parent's child array, we know that the bits we chopped of
1394 * *are* zero.
1395 */
1396
1397 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1398
1399 if (current_prefix_length < pos+bits) {
1400 if (tkey_extract_bits(cn->key, current_prefix_length,
1401 cn->pos - current_prefix_length) != 0 ||
1402 !(cn->child[0]))
1403 goto backtrace;
1404 }
1405
1406 /*
1407 * If chopped_off=0, the index is fully validated and we
1408 * only need to look at the skipped bits for this, the new,
1409 * tnode. What we actually want to do is to find out if
1410 * these skipped bits match our key perfectly, or if we will
1411 * have to count on finding a matching prefix further down,
1412 * because if we do, we would like to have some way of
1413 * verifying the existence of such a prefix at this point.
1414 */
1415
1416 /* The only thing we can do at this point is to verify that
1417 * any such matching prefix can indeed be a prefix to our
1418 * key, and if the bits in the node we are inspecting that
1419 * do not match our key are not ZERO, this cannot be true.
1420 * Thus, find out where there is a mismatch (before cn->pos)
1421 * and verify that all the mismatching bits are zero in the
1422 * new tnode's key.
1423 */
1424
1425 /* Note: We aren't very concerned about the piece of the key
1426 * that precede pn->pos+pn->bits, since these have already been
1427 * checked. The bits after cn->pos aren't checked since these are
1428 * by definition "unknown" at this point. Thus, what we want to
1429 * see is if we are about to enter the "prefix matching" state,
1430 * and in that case verify that the skipped bits that will prevail
1431 * throughout this subtree are zero, as they have to be if we are
1432 * to find a matching prefix.
1433 */
1434
1435 node_prefix = MASK_PFX(cn->key, cn->pos);
1436 key_prefix = MASK_PFX(key, cn->pos);
1437 pref_mismatch = key_prefix^node_prefix;
1438 mp = 0;
1439
1440 /* In short: If skipped bits in this node do not match the search
1441 * key, enter the "prefix matching" state.directly.
1442 */
1443 if (pref_mismatch) {
1444 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1445 mp++;
1446 pref_mismatch = pref_mismatch <<1;
1447 }
1448 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1449
1450 if (key_prefix != 0)
1451 goto backtrace;
1452
1453 if (current_prefix_length >= cn->pos)
1454 current_prefix_length = mp;
1455 }
1456 #endif
1457 pn = (struct tnode *)n; /* Descend */
1458 chopped_off = 0;
1459 continue;
1460
1461 backtrace:
1462 chopped_off++;
1463
1464 /* As zero don't change the child key (cindex) */
1465 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1466 chopped_off++;
1467
1468 /* Decrease current_... with bits chopped off */
1469 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1470 current_prefix_length = pn->pos + pn->bits - chopped_off;
1471
1472 /*
1473 * Either we do the actual chop off according or if we have
1474 * chopped off all bits in this tnode walk up to our parent.
1475 */
1476
1477 if (chopped_off <= pn->bits) {
1478 cindex &= ~(1 << (chopped_off-1));
1479 } else {
1480 if (NODE_PARENT(pn) == NULL)
1481 goto failed;
1482
1483 /* Get Child's index */
1484 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1485 pn = NODE_PARENT(pn);
1486 chopped_off = 0;
1487
1488 #ifdef CONFIG_IP_FIB_TRIE_STATS
1489 t->stats.backtrack++;
1490 #endif
1491 goto backtrace;
1492 }
1493 }
1494 failed:
1495 ret = 1;
1496 found:
1497 rcu_read_unlock();
1498 return ret;
1499 }
1500
1501 /* only called from updater side */
1502 static int trie_leaf_remove(struct trie *t, t_key key)
1503 {
1504 t_key cindex;
1505 struct tnode *tp = NULL;
1506 struct node *n = t->trie;
1507 struct leaf *l;
1508
1509 pr_debug("entering trie_leaf_remove(%p)\n", n);
1510
1511 /* Note that in the case skipped bits, those bits are *not* checked!
1512 * When we finish this, we will have NULL or a T_LEAF, and the
1513 * T_LEAF may or may not match our key.
1514 */
1515
1516 while (n != NULL && IS_TNODE(n)) {
1517 struct tnode *tn = (struct tnode *) n;
1518 check_tnode(tn);
1519 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1520
1521 BUG_ON(n && NODE_PARENT(n) != tn);
1522 }
1523 l = (struct leaf *) n;
1524
1525 if (!n || !tkey_equals(l->key, key))
1526 return 0;
1527
1528 /*
1529 * Key found.
1530 * Remove the leaf and rebalance the tree
1531 */
1532
1533 t->revision++;
1534 t->size--;
1535
1536 preempt_disable();
1537 tp = NODE_PARENT(n);
1538 tnode_free((struct tnode *) n);
1539
1540 if (tp) {
1541 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1542 put_child(t, (struct tnode *)tp, cindex, NULL);
1543 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1544 } else
1545 rcu_assign_pointer(t->trie, NULL);
1546 preempt_enable();
1547
1548 return 1;
1549 }
1550
1551 static int
1552 fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1553 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1554 {
1555 struct trie *t = (struct trie *) tb->tb_data;
1556 u32 key, mask;
1557 int plen = r->rtm_dst_len;
1558 u8 tos = r->rtm_tos;
1559 struct fib_alias *fa, *fa_to_delete;
1560 struct list_head *fa_head;
1561 struct leaf *l;
1562 struct leaf_info *li;
1563
1564
1565 if (plen > 32)
1566 return -EINVAL;
1567
1568 key = 0;
1569 if (rta->rta_dst)
1570 memcpy(&key, rta->rta_dst, 4);
1571
1572 key = ntohl(key);
1573 mask = ntohl(inet_make_mask(plen));
1574
1575 if (key & ~mask)
1576 return -EINVAL;
1577
1578 key = key & mask;
1579 l = fib_find_node(t, key);
1580
1581 if (!l)
1582 return -ESRCH;
1583
1584 fa_head = get_fa_head(l, plen);
1585 fa = fib_find_alias(fa_head, tos, 0);
1586
1587 if (!fa)
1588 return -ESRCH;
1589
1590 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1591
1592 fa_to_delete = NULL;
1593 fa_head = fa->fa_list.prev;
1594
1595 list_for_each_entry(fa, fa_head, fa_list) {
1596 struct fib_info *fi = fa->fa_info;
1597
1598 if (fa->fa_tos != tos)
1599 break;
1600
1601 if ((!r->rtm_type ||
1602 fa->fa_type == r->rtm_type) &&
1603 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1604 fa->fa_scope == r->rtm_scope) &&
1605 (!r->rtm_protocol ||
1606 fi->fib_protocol == r->rtm_protocol) &&
1607 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1608 fa_to_delete = fa;
1609 break;
1610 }
1611 }
1612
1613 if (!fa_to_delete)
1614 return -ESRCH;
1615
1616 fa = fa_to_delete;
1617 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1618
1619 l = fib_find_node(t, key);
1620 li = find_leaf_info(l, plen);
1621
1622 list_del_rcu(&fa->fa_list);
1623
1624 if (list_empty(fa_head)) {
1625 hlist_del_rcu(&li->hlist);
1626 free_leaf_info(li);
1627 }
1628
1629 if (hlist_empty(&l->list))
1630 trie_leaf_remove(t, key);
1631
1632 if (fa->fa_state & FA_S_ACCESSED)
1633 rt_cache_flush(-1);
1634
1635 fib_release_info(fa->fa_info);
1636 alias_free_mem_rcu(fa);
1637 return 0;
1638 }
1639
1640 static int trie_flush_list(struct trie *t, struct list_head *head)
1641 {
1642 struct fib_alias *fa, *fa_node;
1643 int found = 0;
1644
1645 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1646 struct fib_info *fi = fa->fa_info;
1647
1648 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1649 list_del_rcu(&fa->fa_list);
1650 fib_release_info(fa->fa_info);
1651 alias_free_mem_rcu(fa);
1652 found++;
1653 }
1654 }
1655 return found;
1656 }
1657
1658 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1659 {
1660 int found = 0;
1661 struct hlist_head *lih = &l->list;
1662 struct hlist_node *node, *tmp;
1663 struct leaf_info *li = NULL;
1664
1665 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1666 found += trie_flush_list(t, &li->falh);
1667
1668 if (list_empty(&li->falh)) {
1669 hlist_del_rcu(&li->hlist);
1670 free_leaf_info(li);
1671 }
1672 }
1673 return found;
1674 }
1675
1676 /* rcu_read_lock needs to be hold by caller from readside */
1677
1678 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1679 {
1680 struct node *c = (struct node *) thisleaf;
1681 struct tnode *p;
1682 int idx;
1683 struct node *trie = rcu_dereference(t->trie);
1684
1685 if (c == NULL) {
1686 if (trie == NULL)
1687 return NULL;
1688
1689 if (IS_LEAF(trie)) /* trie w. just a leaf */
1690 return (struct leaf *) trie;
1691
1692 p = (struct tnode*) trie; /* Start */
1693 } else
1694 p = (struct tnode *) NODE_PARENT(c);
1695
1696 while (p) {
1697 int pos, last;
1698
1699 /* Find the next child of the parent */
1700 if (c)
1701 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1702 else
1703 pos = 0;
1704
1705 last = 1 << p->bits;
1706 for (idx = pos; idx < last ; idx++) {
1707 c = rcu_dereference(p->child[idx]);
1708
1709 if (!c)
1710 continue;
1711
1712 /* Decend if tnode */
1713 while (IS_TNODE(c)) {
1714 p = (struct tnode *) c;
1715 idx = 0;
1716
1717 /* Rightmost non-NULL branch */
1718 if (p && IS_TNODE(p))
1719 while (!(c = rcu_dereference(p->child[idx]))
1720 && idx < (1<<p->bits)) idx++;
1721
1722 /* Done with this tnode? */
1723 if (idx >= (1 << p->bits) || !c)
1724 goto up;
1725 }
1726 return (struct leaf *) c;
1727 }
1728 up:
1729 /* No more children go up one step */
1730 c = (struct node *) p;
1731 p = (struct tnode *) NODE_PARENT(p);
1732 }
1733 return NULL; /* Ready. Root of trie */
1734 }
1735
1736 static int fn_trie_flush(struct fib_table *tb)
1737 {
1738 struct trie *t = (struct trie *) tb->tb_data;
1739 struct leaf *ll = NULL, *l = NULL;
1740 int found = 0, h;
1741
1742 t->revision++;
1743
1744 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1745 found += trie_flush_leaf(t, l);
1746
1747 if (ll && hlist_empty(&ll->list))
1748 trie_leaf_remove(t, ll->key);
1749 ll = l;
1750 }
1751
1752 if (ll && hlist_empty(&ll->list))
1753 trie_leaf_remove(t, ll->key);
1754
1755 pr_debug("trie_flush found=%d\n", found);
1756 return found;
1757 }
1758
1759 static int trie_last_dflt = -1;
1760
1761 static void
1762 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1763 {
1764 struct trie *t = (struct trie *) tb->tb_data;
1765 int order, last_idx;
1766 struct fib_info *fi = NULL;
1767 struct fib_info *last_resort;
1768 struct fib_alias *fa = NULL;
1769 struct list_head *fa_head;
1770 struct leaf *l;
1771
1772 last_idx = -1;
1773 last_resort = NULL;
1774 order = -1;
1775
1776 rcu_read_lock();
1777
1778 l = fib_find_node(t, 0);
1779 if (!l)
1780 goto out;
1781
1782 fa_head = get_fa_head(l, 0);
1783 if (!fa_head)
1784 goto out;
1785
1786 if (list_empty(fa_head))
1787 goto out;
1788
1789 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1790 struct fib_info *next_fi = fa->fa_info;
1791
1792 if (fa->fa_scope != res->scope ||
1793 fa->fa_type != RTN_UNICAST)
1794 continue;
1795
1796 if (next_fi->fib_priority > res->fi->fib_priority)
1797 break;
1798 if (!next_fi->fib_nh[0].nh_gw ||
1799 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1800 continue;
1801 fa->fa_state |= FA_S_ACCESSED;
1802
1803 if (fi == NULL) {
1804 if (next_fi != res->fi)
1805 break;
1806 } else if (!fib_detect_death(fi, order, &last_resort,
1807 &last_idx, &trie_last_dflt)) {
1808 if (res->fi)
1809 fib_info_put(res->fi);
1810 res->fi = fi;
1811 atomic_inc(&fi->fib_clntref);
1812 trie_last_dflt = order;
1813 goto out;
1814 }
1815 fi = next_fi;
1816 order++;
1817 }
1818 if (order <= 0 || fi == NULL) {
1819 trie_last_dflt = -1;
1820 goto out;
1821 }
1822
1823 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1824 if (res->fi)
1825 fib_info_put(res->fi);
1826 res->fi = fi;
1827 atomic_inc(&fi->fib_clntref);
1828 trie_last_dflt = order;
1829 goto out;
1830 }
1831 if (last_idx >= 0) {
1832 if (res->fi)
1833 fib_info_put(res->fi);
1834 res->fi = last_resort;
1835 if (last_resort)
1836 atomic_inc(&last_resort->fib_clntref);
1837 }
1838 trie_last_dflt = last_idx;
1839 out:;
1840 rcu_read_unlock();
1841 }
1842
1843 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1844 struct sk_buff *skb, struct netlink_callback *cb)
1845 {
1846 int i, s_i;
1847 struct fib_alias *fa;
1848
1849 u32 xkey = htonl(key);
1850
1851 s_i = cb->args[3];
1852 i = 0;
1853
1854 /* rcu_read_lock is hold by caller */
1855
1856 list_for_each_entry_rcu(fa, fah, fa_list) {
1857 if (i < s_i) {
1858 i++;
1859 continue;
1860 }
1861 BUG_ON(!fa->fa_info);
1862
1863 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1864 cb->nlh->nlmsg_seq,
1865 RTM_NEWROUTE,
1866 tb->tb_id,
1867 fa->fa_type,
1868 fa->fa_scope,
1869 &xkey,
1870 plen,
1871 fa->fa_tos,
1872 fa->fa_info, 0) < 0) {
1873 cb->args[3] = i;
1874 return -1;
1875 }
1876 i++;
1877 }
1878 cb->args[3] = i;
1879 return skb->len;
1880 }
1881
1882 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1883 struct netlink_callback *cb)
1884 {
1885 int h, s_h;
1886 struct list_head *fa_head;
1887 struct leaf *l = NULL;
1888
1889 s_h = cb->args[2];
1890
1891 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1892 if (h < s_h)
1893 continue;
1894 if (h > s_h)
1895 memset(&cb->args[3], 0,
1896 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1897
1898 fa_head = get_fa_head(l, plen);
1899
1900 if (!fa_head)
1901 continue;
1902
1903 if (list_empty(fa_head))
1904 continue;
1905
1906 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1907 cb->args[2] = h;
1908 return -1;
1909 }
1910 }
1911 cb->args[2] = h;
1912 return skb->len;
1913 }
1914
1915 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1916 {
1917 int m, s_m;
1918 struct trie *t = (struct trie *) tb->tb_data;
1919
1920 s_m = cb->args[1];
1921
1922 rcu_read_lock();
1923 for (m = 0; m <= 32; m++) {
1924 if (m < s_m)
1925 continue;
1926 if (m > s_m)
1927 memset(&cb->args[2], 0,
1928 sizeof(cb->args) - 2*sizeof(cb->args[0]));
1929
1930 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1931 cb->args[1] = m;
1932 goto out;
1933 }
1934 }
1935 rcu_read_unlock();
1936 cb->args[1] = m;
1937 return skb->len;
1938 out:
1939 rcu_read_unlock();
1940 return -1;
1941 }
1942
1943 /* Fix more generic FIB names for init later */
1944
1945 #ifdef CONFIG_IP_MULTIPLE_TABLES
1946 struct fib_table * fib_hash_init(int id)
1947 #else
1948 struct fib_table * __init fib_hash_init(int id)
1949 #endif
1950 {
1951 struct fib_table *tb;
1952 struct trie *t;
1953
1954 if (fn_alias_kmem == NULL)
1955 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1956 sizeof(struct fib_alias),
1957 0, SLAB_HWCACHE_ALIGN,
1958 NULL, NULL);
1959
1960 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1961 GFP_KERNEL);
1962 if (tb == NULL)
1963 return NULL;
1964
1965 tb->tb_id = id;
1966 tb->tb_lookup = fn_trie_lookup;
1967 tb->tb_insert = fn_trie_insert;
1968 tb->tb_delete = fn_trie_delete;
1969 tb->tb_flush = fn_trie_flush;
1970 tb->tb_select_default = fn_trie_select_default;
1971 tb->tb_dump = fn_trie_dump;
1972 memset(tb->tb_data, 0, sizeof(struct trie));
1973
1974 t = (struct trie *) tb->tb_data;
1975
1976 trie_init(t);
1977
1978 if (id == RT_TABLE_LOCAL)
1979 trie_local = t;
1980 else if (id == RT_TABLE_MAIN)
1981 trie_main = t;
1982
1983 if (id == RT_TABLE_LOCAL)
1984 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1985
1986 return tb;
1987 }
1988
1989 #ifdef CONFIG_PROC_FS
1990 /* Depth first Trie walk iterator */
1991 struct fib_trie_iter {
1992 struct tnode *tnode;
1993 struct trie *trie;
1994 unsigned index;
1995 unsigned depth;
1996 };
1997
1998 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1999 {
2000 struct tnode *tn = iter->tnode;
2001 unsigned cindex = iter->index;
2002 struct tnode *p;
2003
2004 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2005 iter->tnode, iter->index, iter->depth);
2006 rescan:
2007 while (cindex < (1<<tn->bits)) {
2008 struct node *n = tnode_get_child(tn, cindex);
2009
2010 if (n) {
2011 if (IS_LEAF(n)) {
2012 iter->tnode = tn;
2013 iter->index = cindex + 1;
2014 } else {
2015 /* push down one level */
2016 iter->tnode = (struct tnode *) n;
2017 iter->index = 0;
2018 ++iter->depth;
2019 }
2020 return n;
2021 }
2022
2023 ++cindex;
2024 }
2025
2026 /* Current node exhausted, pop back up */
2027 p = NODE_PARENT(tn);
2028 if (p) {
2029 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2030 tn = p;
2031 --iter->depth;
2032 goto rescan;
2033 }
2034
2035 /* got root? */
2036 return NULL;
2037 }
2038
2039 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2040 struct trie *t)
2041 {
2042 struct node *n = rcu_dereference(t->trie);
2043
2044 if (n && IS_TNODE(n)) {
2045 iter->tnode = (struct tnode *) n;
2046 iter->trie = t;
2047 iter->index = 0;
2048 iter->depth = 1;
2049 return n;
2050 }
2051 return NULL;
2052 }
2053
2054 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2055 {
2056 struct node *n;
2057 struct fib_trie_iter iter;
2058
2059 memset(s, 0, sizeof(*s));
2060
2061 rcu_read_lock();
2062 for (n = fib_trie_get_first(&iter, t); n;
2063 n = fib_trie_get_next(&iter)) {
2064 if (IS_LEAF(n)) {
2065 s->leaves++;
2066 s->totdepth += iter.depth;
2067 if (iter.depth > s->maxdepth)
2068 s->maxdepth = iter.depth;
2069 } else {
2070 const struct tnode *tn = (const struct tnode *) n;
2071 int i;
2072
2073 s->tnodes++;
2074 s->nodesizes[tn->bits]++;
2075 for (i = 0; i < (1<<tn->bits); i++)
2076 if (!tn->child[i])
2077 s->nullpointers++;
2078 }
2079 }
2080 rcu_read_unlock();
2081 }
2082
2083 /*
2084 * This outputs /proc/net/fib_triestats
2085 */
2086 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2087 {
2088 unsigned i, max, pointers, bytes, avdepth;
2089
2090 if (stat->leaves)
2091 avdepth = stat->totdepth*100 / stat->leaves;
2092 else
2093 avdepth = 0;
2094
2095 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2096 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2097
2098 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2099
2100 bytes = sizeof(struct leaf) * stat->leaves;
2101 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2102 bytes += sizeof(struct tnode) * stat->tnodes;
2103
2104 max = MAX_CHILDS-1;
2105 while (max >= 0 && stat->nodesizes[max] == 0)
2106 max--;
2107
2108 pointers = 0;
2109 for (i = 1; i <= max; i++)
2110 if (stat->nodesizes[i] != 0) {
2111 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2112 pointers += (1<<i) * stat->nodesizes[i];
2113 }
2114 seq_putc(seq, '\n');
2115 seq_printf(seq, "\tPointers: %d\n", pointers);
2116
2117 bytes += sizeof(struct node *) * pointers;
2118 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2119 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2120
2121 #ifdef CONFIG_IP_FIB_TRIE_STATS
2122 seq_printf(seq, "Counters:\n---------\n");
2123 seq_printf(seq,"gets = %d\n", t->stats.gets);
2124 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2125 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2126 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2127 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2128 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2129 #ifdef CLEAR_STATS
2130 memset(&(t->stats), 0, sizeof(t->stats));
2131 #endif
2132 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2133 }
2134
2135 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2136 {
2137 struct trie_stat *stat;
2138
2139 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2140 if (!stat)
2141 return -ENOMEM;
2142
2143 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2144 sizeof(struct leaf), sizeof(struct tnode));
2145
2146 if (trie_local) {
2147 seq_printf(seq, "Local:\n");
2148 trie_collect_stats(trie_local, stat);
2149 trie_show_stats(seq, stat);
2150 }
2151
2152 if (trie_main) {
2153 seq_printf(seq, "Main:\n");
2154 trie_collect_stats(trie_main, stat);
2155 trie_show_stats(seq, stat);
2156 }
2157 kfree(stat);
2158
2159 return 0;
2160 }
2161
2162 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2163 {
2164 return single_open(file, fib_triestat_seq_show, NULL);
2165 }
2166
2167 static struct file_operations fib_triestat_fops = {
2168 .owner = THIS_MODULE,
2169 .open = fib_triestat_seq_open,
2170 .read = seq_read,
2171 .llseek = seq_lseek,
2172 .release = single_release,
2173 };
2174
2175 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2176 loff_t pos)
2177 {
2178 loff_t idx = 0;
2179 struct node *n;
2180
2181 for (n = fib_trie_get_first(iter, trie_local);
2182 n; ++idx, n = fib_trie_get_next(iter)) {
2183 if (pos == idx)
2184 return n;
2185 }
2186
2187 for (n = fib_trie_get_first(iter, trie_main);
2188 n; ++idx, n = fib_trie_get_next(iter)) {
2189 if (pos == idx)
2190 return n;
2191 }
2192 return NULL;
2193 }
2194
2195 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2196 {
2197 rcu_read_lock();
2198 if (*pos == 0)
2199 return SEQ_START_TOKEN;
2200 return fib_trie_get_idx(seq->private, *pos - 1);
2201 }
2202
2203 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2204 {
2205 struct fib_trie_iter *iter = seq->private;
2206 void *l = v;
2207
2208 ++*pos;
2209 if (v == SEQ_START_TOKEN)
2210 return fib_trie_get_idx(iter, 0);
2211
2212 v = fib_trie_get_next(iter);
2213 BUG_ON(v == l);
2214 if (v)
2215 return v;
2216
2217 /* continue scan in next trie */
2218 if (iter->trie == trie_local)
2219 return fib_trie_get_first(iter, trie_main);
2220
2221 return NULL;
2222 }
2223
2224 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2225 {
2226 rcu_read_unlock();
2227 }
2228
2229 static void seq_indent(struct seq_file *seq, int n)
2230 {
2231 while (n-- > 0) seq_puts(seq, " ");
2232 }
2233
2234 static inline const char *rtn_scope(enum rt_scope_t s)
2235 {
2236 static char buf[32];
2237
2238 switch(s) {
2239 case RT_SCOPE_UNIVERSE: return "universe";
2240 case RT_SCOPE_SITE: return "site";
2241 case RT_SCOPE_LINK: return "link";
2242 case RT_SCOPE_HOST: return "host";
2243 case RT_SCOPE_NOWHERE: return "nowhere";
2244 default:
2245 snprintf(buf, sizeof(buf), "scope=%d", s);
2246 return buf;
2247 }
2248 }
2249
2250 static const char *rtn_type_names[__RTN_MAX] = {
2251 [RTN_UNSPEC] = "UNSPEC",
2252 [RTN_UNICAST] = "UNICAST",
2253 [RTN_LOCAL] = "LOCAL",
2254 [RTN_BROADCAST] = "BROADCAST",
2255 [RTN_ANYCAST] = "ANYCAST",
2256 [RTN_MULTICAST] = "MULTICAST",
2257 [RTN_BLACKHOLE] = "BLACKHOLE",
2258 [RTN_UNREACHABLE] = "UNREACHABLE",
2259 [RTN_PROHIBIT] = "PROHIBIT",
2260 [RTN_THROW] = "THROW",
2261 [RTN_NAT] = "NAT",
2262 [RTN_XRESOLVE] = "XRESOLVE",
2263 };
2264
2265 static inline const char *rtn_type(unsigned t)
2266 {
2267 static char buf[32];
2268
2269 if (t < __RTN_MAX && rtn_type_names[t])
2270 return rtn_type_names[t];
2271 snprintf(buf, sizeof(buf), "type %d", t);
2272 return buf;
2273 }
2274
2275 /* Pretty print the trie */
2276 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2277 {
2278 const struct fib_trie_iter *iter = seq->private;
2279 struct node *n = v;
2280
2281 if (v == SEQ_START_TOKEN)
2282 return 0;
2283
2284 if (IS_TNODE(n)) {
2285 struct tnode *tn = (struct tnode *) n;
2286 t_key prf = ntohl(MASK_PFX(tn->key, tn->pos));
2287
2288 if (!NODE_PARENT(n)) {
2289 if (iter->trie == trie_local)
2290 seq_puts(seq, "<local>:\n");
2291 else
2292 seq_puts(seq, "<main>:\n");
2293 }
2294 seq_indent(seq, iter->depth-1);
2295 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2296 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2297 tn->empty_children);
2298
2299 } else {
2300 struct leaf *l = (struct leaf *) n;
2301 int i;
2302 u32 val = ntohl(l->key);
2303
2304 seq_indent(seq, iter->depth);
2305 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2306 for (i = 32; i >= 0; i--) {
2307 struct leaf_info *li = find_leaf_info(l, i);
2308 if (li) {
2309 struct fib_alias *fa;
2310 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2311 seq_indent(seq, iter->depth+1);
2312 seq_printf(seq, " /%d %s %s", i,
2313 rtn_scope(fa->fa_scope),
2314 rtn_type(fa->fa_type));
2315 if (fa->fa_tos)
2316 seq_printf(seq, "tos =%d\n",
2317 fa->fa_tos);
2318 seq_putc(seq, '\n');
2319 }
2320 }
2321 }
2322 }
2323
2324 return 0;
2325 }
2326
2327 static struct seq_operations fib_trie_seq_ops = {
2328 .start = fib_trie_seq_start,
2329 .next = fib_trie_seq_next,
2330 .stop = fib_trie_seq_stop,
2331 .show = fib_trie_seq_show,
2332 };
2333
2334 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2335 {
2336 struct seq_file *seq;
2337 int rc = -ENOMEM;
2338 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2339
2340 if (!s)
2341 goto out;
2342
2343 rc = seq_open(file, &fib_trie_seq_ops);
2344 if (rc)
2345 goto out_kfree;
2346
2347 seq = file->private_data;
2348 seq->private = s;
2349 memset(s, 0, sizeof(*s));
2350 out:
2351 return rc;
2352 out_kfree:
2353 kfree(s);
2354 goto out;
2355 }
2356
2357 static struct file_operations fib_trie_fops = {
2358 .owner = THIS_MODULE,
2359 .open = fib_trie_seq_open,
2360 .read = seq_read,
2361 .llseek = seq_lseek,
2362 .release = seq_release_private,
2363 };
2364
2365 static unsigned fib_flag_trans(int type, u32 mask, const struct fib_info *fi)
2366 {
2367 static unsigned type2flags[RTN_MAX + 1] = {
2368 [7] = RTF_REJECT, [8] = RTF_REJECT,
2369 };
2370 unsigned flags = type2flags[type];
2371
2372 if (fi && fi->fib_nh->nh_gw)
2373 flags |= RTF_GATEWAY;
2374 if (mask == 0xFFFFFFFF)
2375 flags |= RTF_HOST;
2376 flags |= RTF_UP;
2377 return flags;
2378 }
2379
2380 /*
2381 * This outputs /proc/net/route.
2382 * The format of the file is not supposed to be changed
2383 * and needs to be same as fib_hash output to avoid breaking
2384 * legacy utilities
2385 */
2386 static int fib_route_seq_show(struct seq_file *seq, void *v)
2387 {
2388 const struct fib_trie_iter *iter = seq->private;
2389 struct leaf *l = v;
2390 int i;
2391 char bf[128];
2392
2393 if (v == SEQ_START_TOKEN) {
2394 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2395 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2396 "\tWindow\tIRTT");
2397 return 0;
2398 }
2399
2400 if (iter->trie == trie_local)
2401 return 0;
2402 if (IS_TNODE(l))
2403 return 0;
2404
2405 for (i=32; i>=0; i--) {
2406 struct leaf_info *li = find_leaf_info(l, i);
2407 struct fib_alias *fa;
2408 u32 mask, prefix;
2409
2410 if (!li)
2411 continue;
2412
2413 mask = inet_make_mask(li->plen);
2414 prefix = htonl(l->key);
2415
2416 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2417 const struct fib_info *fi = fa->fa_info;
2418 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2419
2420 if (fa->fa_type == RTN_BROADCAST
2421 || fa->fa_type == RTN_MULTICAST)
2422 continue;
2423
2424 if (fi)
2425 snprintf(bf, sizeof(bf),
2426 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2427 fi->fib_dev ? fi->fib_dev->name : "*",
2428 prefix,
2429 fi->fib_nh->nh_gw, flags, 0, 0,
2430 fi->fib_priority,
2431 mask,
2432 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2433 fi->fib_window,
2434 fi->fib_rtt >> 3);
2435 else
2436 snprintf(bf, sizeof(bf),
2437 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2438 prefix, 0, flags, 0, 0, 0,
2439 mask, 0, 0, 0);
2440
2441 seq_printf(seq, "%-127s\n", bf);
2442 }
2443 }
2444
2445 return 0;
2446 }
2447
2448 static struct seq_operations fib_route_seq_ops = {
2449 .start = fib_trie_seq_start,
2450 .next = fib_trie_seq_next,
2451 .stop = fib_trie_seq_stop,
2452 .show = fib_route_seq_show,
2453 };
2454
2455 static int fib_route_seq_open(struct inode *inode, struct file *file)
2456 {
2457 struct seq_file *seq;
2458 int rc = -ENOMEM;
2459 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2460
2461 if (!s)
2462 goto out;
2463
2464 rc = seq_open(file, &fib_route_seq_ops);
2465 if (rc)
2466 goto out_kfree;
2467
2468 seq = file->private_data;
2469 seq->private = s;
2470 memset(s, 0, sizeof(*s));
2471 out:
2472 return rc;
2473 out_kfree:
2474 kfree(s);
2475 goto out;
2476 }
2477
2478 static struct file_operations fib_route_fops = {
2479 .owner = THIS_MODULE,
2480 .open = fib_route_seq_open,
2481 .read = seq_read,
2482 .llseek = seq_lseek,
2483 .release = seq_release_private,
2484 };
2485
2486 int __init fib_proc_init(void)
2487 {
2488 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2489 goto out1;
2490
2491 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2492 goto out2;
2493
2494 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2495 goto out3;
2496
2497 return 0;
2498
2499 out3:
2500 proc_net_remove("fib_triestat");
2501 out2:
2502 proc_net_remove("fib_trie");
2503 out1:
2504 return -ENOMEM;
2505 }
2506
2507 void __init fib_proc_exit(void)
2508 {
2509 proc_net_remove("fib_trie");
2510 proc_net_remove("fib_triestat");
2511 proc_net_remove("route");
2512 }
2513
2514 #endif /* CONFIG_PROC_FS */