ipv4: fix nexthop attlen check in fib_nh_match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97
98 struct rt_trie_node {
99 unsigned long parent;
100 t_key key;
101 };
102
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
108 };
109
110 struct leaf_info {
111 struct hlist_node hlist;
112 int plen;
113 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
114 struct list_head falh;
115 struct rcu_head rcu;
116 };
117
118 struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 union {
126 struct rcu_head rcu;
127 struct tnode *tnode_free;
128 };
129 struct rt_trie_node __rcu *child[0];
130 };
131
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140 };
141 #endif
142
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152
153 struct trie {
154 struct rt_trie_node __rcu *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
158 };
159
160 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
161 int wasfull);
162 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
163 static struct tnode *inflate(struct trie *t, struct tnode *tn);
164 static struct tnode *halve(struct trie *t, struct tnode *tn);
165 /* tnodes to free after resize(); protected by RTNL */
166 static struct tnode *tnode_free_head;
167 static size_t tnode_free_size;
168
169 /*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174 static const int sync_pages = 128;
175
176 static struct kmem_cache *fn_alias_kmem __read_mostly;
177 static struct kmem_cache *trie_leaf_kmem __read_mostly;
178
179 /*
180 * caller must hold RTNL
181 */
182 static inline struct tnode *node_parent(const struct rt_trie_node *node)
183 {
184 unsigned long parent;
185
186 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
187
188 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
189 }
190
191 /*
192 * caller must hold RCU read lock or RTNL
193 */
194 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
195 {
196 unsigned long parent;
197
198 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
199 lockdep_rtnl_is_held());
200
201 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
202 }
203
204 /* Same as rcu_assign_pointer
205 * but that macro() assumes that value is a pointer.
206 */
207 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
208 {
209 smp_wmb();
210 node->parent = (unsigned long)ptr | NODE_TYPE(node);
211 }
212
213 /*
214 * caller must hold RTNL
215 */
216 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
217 {
218 BUG_ON(i >= 1U << tn->bits);
219
220 return rtnl_dereference(tn->child[i]);
221 }
222
223 /*
224 * caller must hold RCU read lock or RTNL
225 */
226 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
227 {
228 BUG_ON(i >= 1U << tn->bits);
229
230 return rcu_dereference_rtnl(tn->child[i]);
231 }
232
233 static inline int tnode_child_length(const struct tnode *tn)
234 {
235 return 1 << tn->bits;
236 }
237
238 static inline t_key mask_pfx(t_key k, unsigned int l)
239 {
240 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
241 }
242
243 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
244 {
245 if (offset < KEYLENGTH)
246 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
247 else
248 return 0;
249 }
250
251 static inline int tkey_equals(t_key a, t_key b)
252 {
253 return a == b;
254 }
255
256 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
257 {
258 if (bits == 0 || offset >= KEYLENGTH)
259 return 1;
260 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
261 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
262 }
263
264 static inline int tkey_mismatch(t_key a, int offset, t_key b)
265 {
266 t_key diff = a ^ b;
267 int i = offset;
268
269 if (!diff)
270 return 0;
271 while ((diff << i) >> (KEYLENGTH-1) == 0)
272 i++;
273 return i;
274 }
275
276 /*
277 To understand this stuff, an understanding of keys and all their bits is
278 necessary. Every node in the trie has a key associated with it, but not
279 all of the bits in that key are significant.
280
281 Consider a node 'n' and its parent 'tp'.
282
283 If n is a leaf, every bit in its key is significant. Its presence is
284 necessitated by path compression, since during a tree traversal (when
285 searching for a leaf - unless we are doing an insertion) we will completely
286 ignore all skipped bits we encounter. Thus we need to verify, at the end of
287 a potentially successful search, that we have indeed been walking the
288 correct key path.
289
290 Note that we can never "miss" the correct key in the tree if present by
291 following the wrong path. Path compression ensures that segments of the key
292 that are the same for all keys with a given prefix are skipped, but the
293 skipped part *is* identical for each node in the subtrie below the skipped
294 bit! trie_insert() in this implementation takes care of that - note the
295 call to tkey_sub_equals() in trie_insert().
296
297 if n is an internal node - a 'tnode' here, the various parts of its key
298 have many different meanings.
299
300 Example:
301 _________________________________________________________________
302 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
303 -----------------------------------------------------------------
304 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
305
306 _________________________________________________________________
307 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
308 -----------------------------------------------------------------
309 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
310
311 tp->pos = 7
312 tp->bits = 3
313 n->pos = 15
314 n->bits = 4
315
316 First, let's just ignore the bits that come before the parent tp, that is
317 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
318 not use them for anything.
319
320 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
321 index into the parent's child array. That is, they will be used to find
322 'n' among tp's children.
323
324 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
325 for the node n.
326
327 All the bits we have seen so far are significant to the node n. The rest
328 of the bits are really not needed or indeed known in n->key.
329
330 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
331 n's child array, and will of course be different for each child.
332
333
334 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
335 at this point.
336
337 */
338
339 static inline void check_tnode(const struct tnode *tn)
340 {
341 WARN_ON(tn && tn->pos+tn->bits > 32);
342 }
343
344 static const int halve_threshold = 25;
345 static const int inflate_threshold = 50;
346 static const int halve_threshold_root = 15;
347 static const int inflate_threshold_root = 30;
348
349 static void __alias_free_mem(struct rcu_head *head)
350 {
351 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
352 kmem_cache_free(fn_alias_kmem, fa);
353 }
354
355 static inline void alias_free_mem_rcu(struct fib_alias *fa)
356 {
357 call_rcu(&fa->rcu, __alias_free_mem);
358 }
359
360 static void __leaf_free_rcu(struct rcu_head *head)
361 {
362 struct leaf *l = container_of(head, struct leaf, rcu);
363 kmem_cache_free(trie_leaf_kmem, l);
364 }
365
366 static inline void free_leaf(struct leaf *l)
367 {
368 call_rcu(&l->rcu, __leaf_free_rcu);
369 }
370
371 static inline void free_leaf_info(struct leaf_info *leaf)
372 {
373 kfree_rcu(leaf, rcu);
374 }
375
376 static struct tnode *tnode_alloc(size_t size)
377 {
378 if (size <= PAGE_SIZE)
379 return kzalloc(size, GFP_KERNEL);
380 else
381 return vzalloc(size);
382 }
383
384 static void __tnode_free_rcu(struct rcu_head *head)
385 {
386 struct tnode *tn = container_of(head, struct tnode, rcu);
387 size_t size = sizeof(struct tnode) +
388 (sizeof(struct rt_trie_node *) << tn->bits);
389
390 if (size <= PAGE_SIZE)
391 kfree(tn);
392 else
393 vfree(tn);
394 }
395
396 static inline void tnode_free(struct tnode *tn)
397 {
398 if (IS_LEAF(tn))
399 free_leaf((struct leaf *) tn);
400 else
401 call_rcu(&tn->rcu, __tnode_free_rcu);
402 }
403
404 static void tnode_free_safe(struct tnode *tn)
405 {
406 BUG_ON(IS_LEAF(tn));
407 tn->tnode_free = tnode_free_head;
408 tnode_free_head = tn;
409 tnode_free_size += sizeof(struct tnode) +
410 (sizeof(struct rt_trie_node *) << tn->bits);
411 }
412
413 static void tnode_free_flush(void)
414 {
415 struct tnode *tn;
416
417 while ((tn = tnode_free_head)) {
418 tnode_free_head = tn->tnode_free;
419 tn->tnode_free = NULL;
420 tnode_free(tn);
421 }
422
423 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
424 tnode_free_size = 0;
425 synchronize_rcu();
426 }
427 }
428
429 static struct leaf *leaf_new(void)
430 {
431 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
432 if (l) {
433 l->parent = T_LEAF;
434 INIT_HLIST_HEAD(&l->list);
435 }
436 return l;
437 }
438
439 static struct leaf_info *leaf_info_new(int plen)
440 {
441 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
442 if (li) {
443 li->plen = plen;
444 li->mask_plen = ntohl(inet_make_mask(plen));
445 INIT_LIST_HEAD(&li->falh);
446 }
447 return li;
448 }
449
450 static struct tnode *tnode_new(t_key key, int pos, int bits)
451 {
452 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
453 struct tnode *tn = tnode_alloc(sz);
454
455 if (tn) {
456 tn->parent = T_TNODE;
457 tn->pos = pos;
458 tn->bits = bits;
459 tn->key = key;
460 tn->full_children = 0;
461 tn->empty_children = 1<<bits;
462 }
463
464 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
465 sizeof(struct rt_trie_node *) << bits);
466 return tn;
467 }
468
469 /*
470 * Check whether a tnode 'n' is "full", i.e. it is an internal node
471 * and no bits are skipped. See discussion in dyntree paper p. 6
472 */
473
474 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
475 {
476 if (n == NULL || IS_LEAF(n))
477 return 0;
478
479 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
480 }
481
482 static inline void put_child(struct tnode *tn, int i,
483 struct rt_trie_node *n)
484 {
485 tnode_put_child_reorg(tn, i, n, -1);
486 }
487
488 /*
489 * Add a child at position i overwriting the old value.
490 * Update the value of full_children and empty_children.
491 */
492
493 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
494 int wasfull)
495 {
496 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
497 int isfull;
498
499 BUG_ON(i >= 1<<tn->bits);
500
501 /* update emptyChildren */
502 if (n == NULL && chi != NULL)
503 tn->empty_children++;
504 else if (n != NULL && chi == NULL)
505 tn->empty_children--;
506
507 /* update fullChildren */
508 if (wasfull == -1)
509 wasfull = tnode_full(tn, chi);
510
511 isfull = tnode_full(tn, n);
512 if (wasfull && !isfull)
513 tn->full_children--;
514 else if (!wasfull && isfull)
515 tn->full_children++;
516
517 if (n)
518 node_set_parent(n, tn);
519
520 rcu_assign_pointer(tn->child[i], n);
521 }
522
523 #define MAX_WORK 10
524 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
525 {
526 int i;
527 struct tnode *old_tn;
528 int inflate_threshold_use;
529 int halve_threshold_use;
530 int max_work;
531
532 if (!tn)
533 return NULL;
534
535 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
536 tn, inflate_threshold, halve_threshold);
537
538 /* No children */
539 if (tn->empty_children == tnode_child_length(tn)) {
540 tnode_free_safe(tn);
541 return NULL;
542 }
543 /* One child */
544 if (tn->empty_children == tnode_child_length(tn) - 1)
545 goto one_child;
546 /*
547 * Double as long as the resulting node has a number of
548 * nonempty nodes that are above the threshold.
549 */
550
551 /*
552 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
553 * the Helsinki University of Technology and Matti Tikkanen of Nokia
554 * Telecommunications, page 6:
555 * "A node is doubled if the ratio of non-empty children to all
556 * children in the *doubled* node is at least 'high'."
557 *
558 * 'high' in this instance is the variable 'inflate_threshold'. It
559 * is expressed as a percentage, so we multiply it with
560 * tnode_child_length() and instead of multiplying by 2 (since the
561 * child array will be doubled by inflate()) and multiplying
562 * the left-hand side by 100 (to handle the percentage thing) we
563 * multiply the left-hand side by 50.
564 *
565 * The left-hand side may look a bit weird: tnode_child_length(tn)
566 * - tn->empty_children is of course the number of non-null children
567 * in the current node. tn->full_children is the number of "full"
568 * children, that is non-null tnodes with a skip value of 0.
569 * All of those will be doubled in the resulting inflated tnode, so
570 * we just count them one extra time here.
571 *
572 * A clearer way to write this would be:
573 *
574 * to_be_doubled = tn->full_children;
575 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
576 * tn->full_children;
577 *
578 * new_child_length = tnode_child_length(tn) * 2;
579 *
580 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
581 * new_child_length;
582 * if (new_fill_factor >= inflate_threshold)
583 *
584 * ...and so on, tho it would mess up the while () loop.
585 *
586 * anyway,
587 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
588 * inflate_threshold
589 *
590 * avoid a division:
591 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
592 * inflate_threshold * new_child_length
593 *
594 * expand not_to_be_doubled and to_be_doubled, and shorten:
595 * 100 * (tnode_child_length(tn) - tn->empty_children +
596 * tn->full_children) >= inflate_threshold * new_child_length
597 *
598 * expand new_child_length:
599 * 100 * (tnode_child_length(tn) - tn->empty_children +
600 * tn->full_children) >=
601 * inflate_threshold * tnode_child_length(tn) * 2
602 *
603 * shorten again:
604 * 50 * (tn->full_children + tnode_child_length(tn) -
605 * tn->empty_children) >= inflate_threshold *
606 * tnode_child_length(tn)
607 *
608 */
609
610 check_tnode(tn);
611
612 /* Keep root node larger */
613
614 if (!node_parent((struct rt_trie_node *)tn)) {
615 inflate_threshold_use = inflate_threshold_root;
616 halve_threshold_use = halve_threshold_root;
617 } else {
618 inflate_threshold_use = inflate_threshold;
619 halve_threshold_use = halve_threshold;
620 }
621
622 max_work = MAX_WORK;
623 while ((tn->full_children > 0 && max_work-- &&
624 50 * (tn->full_children + tnode_child_length(tn)
625 - tn->empty_children)
626 >= inflate_threshold_use * tnode_child_length(tn))) {
627
628 old_tn = tn;
629 tn = inflate(t, tn);
630
631 if (IS_ERR(tn)) {
632 tn = old_tn;
633 #ifdef CONFIG_IP_FIB_TRIE_STATS
634 t->stats.resize_node_skipped++;
635 #endif
636 break;
637 }
638 }
639
640 check_tnode(tn);
641
642 /* Return if at least one inflate is run */
643 if (max_work != MAX_WORK)
644 return (struct rt_trie_node *) tn;
645
646 /*
647 * Halve as long as the number of empty children in this
648 * node is above threshold.
649 */
650
651 max_work = MAX_WORK;
652 while (tn->bits > 1 && max_work-- &&
653 100 * (tnode_child_length(tn) - tn->empty_children) <
654 halve_threshold_use * tnode_child_length(tn)) {
655
656 old_tn = tn;
657 tn = halve(t, tn);
658 if (IS_ERR(tn)) {
659 tn = old_tn;
660 #ifdef CONFIG_IP_FIB_TRIE_STATS
661 t->stats.resize_node_skipped++;
662 #endif
663 break;
664 }
665 }
666
667
668 /* Only one child remains */
669 if (tn->empty_children == tnode_child_length(tn) - 1) {
670 one_child:
671 for (i = 0; i < tnode_child_length(tn); i++) {
672 struct rt_trie_node *n;
673
674 n = rtnl_dereference(tn->child[i]);
675 if (!n)
676 continue;
677
678 /* compress one level */
679
680 node_set_parent(n, NULL);
681 tnode_free_safe(tn);
682 return n;
683 }
684 }
685 return (struct rt_trie_node *) tn;
686 }
687
688
689 static void tnode_clean_free(struct tnode *tn)
690 {
691 int i;
692 struct tnode *tofree;
693
694 for (i = 0; i < tnode_child_length(tn); i++) {
695 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
696 if (tofree)
697 tnode_free(tofree);
698 }
699 tnode_free(tn);
700 }
701
702 static struct tnode *inflate(struct trie *t, struct tnode *tn)
703 {
704 struct tnode *oldtnode = tn;
705 int olen = tnode_child_length(tn);
706 int i;
707
708 pr_debug("In inflate\n");
709
710 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
711
712 if (!tn)
713 return ERR_PTR(-ENOMEM);
714
715 /*
716 * Preallocate and store tnodes before the actual work so we
717 * don't get into an inconsistent state if memory allocation
718 * fails. In case of failure we return the oldnode and inflate
719 * of tnode is ignored.
720 */
721
722 for (i = 0; i < olen; i++) {
723 struct tnode *inode;
724
725 inode = (struct tnode *) tnode_get_child(oldtnode, i);
726 if (inode &&
727 IS_TNODE(inode) &&
728 inode->pos == oldtnode->pos + oldtnode->bits &&
729 inode->bits > 1) {
730 struct tnode *left, *right;
731 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
732
733 left = tnode_new(inode->key&(~m), inode->pos + 1,
734 inode->bits - 1);
735 if (!left)
736 goto nomem;
737
738 right = tnode_new(inode->key|m, inode->pos + 1,
739 inode->bits - 1);
740
741 if (!right) {
742 tnode_free(left);
743 goto nomem;
744 }
745
746 put_child(tn, 2*i, (struct rt_trie_node *) left);
747 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
748 }
749 }
750
751 for (i = 0; i < olen; i++) {
752 struct tnode *inode;
753 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
754 struct tnode *left, *right;
755 int size, j;
756
757 /* An empty child */
758 if (node == NULL)
759 continue;
760
761 /* A leaf or an internal node with skipped bits */
762
763 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
764 tn->pos + tn->bits - 1) {
765 if (tkey_extract_bits(node->key,
766 oldtnode->pos + oldtnode->bits,
767 1) == 0)
768 put_child(tn, 2*i, node);
769 else
770 put_child(tn, 2*i+1, node);
771 continue;
772 }
773
774 /* An internal node with two children */
775 inode = (struct tnode *) node;
776
777 if (inode->bits == 1) {
778 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
779 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
780
781 tnode_free_safe(inode);
782 continue;
783 }
784
785 /* An internal node with more than two children */
786
787 /* We will replace this node 'inode' with two new
788 * ones, 'left' and 'right', each with half of the
789 * original children. The two new nodes will have
790 * a position one bit further down the key and this
791 * means that the "significant" part of their keys
792 * (see the discussion near the top of this file)
793 * will differ by one bit, which will be "0" in
794 * left's key and "1" in right's key. Since we are
795 * moving the key position by one step, the bit that
796 * we are moving away from - the bit at position
797 * (inode->pos) - is the one that will differ between
798 * left and right. So... we synthesize that bit in the
799 * two new keys.
800 * The mask 'm' below will be a single "one" bit at
801 * the position (inode->pos)
802 */
803
804 /* Use the old key, but set the new significant
805 * bit to zero.
806 */
807
808 left = (struct tnode *) tnode_get_child(tn, 2*i);
809 put_child(tn, 2*i, NULL);
810
811 BUG_ON(!left);
812
813 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
814 put_child(tn, 2*i+1, NULL);
815
816 BUG_ON(!right);
817
818 size = tnode_child_length(left);
819 for (j = 0; j < size; j++) {
820 put_child(left, j, rtnl_dereference(inode->child[j]));
821 put_child(right, j, rtnl_dereference(inode->child[j + size]));
822 }
823 put_child(tn, 2*i, resize(t, left));
824 put_child(tn, 2*i+1, resize(t, right));
825
826 tnode_free_safe(inode);
827 }
828 tnode_free_safe(oldtnode);
829 return tn;
830 nomem:
831 tnode_clean_free(tn);
832 return ERR_PTR(-ENOMEM);
833 }
834
835 static struct tnode *halve(struct trie *t, struct tnode *tn)
836 {
837 struct tnode *oldtnode = tn;
838 struct rt_trie_node *left, *right;
839 int i;
840 int olen = tnode_child_length(tn);
841
842 pr_debug("In halve\n");
843
844 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
845
846 if (!tn)
847 return ERR_PTR(-ENOMEM);
848
849 /*
850 * Preallocate and store tnodes before the actual work so we
851 * don't get into an inconsistent state if memory allocation
852 * fails. In case of failure we return the oldnode and halve
853 * of tnode is ignored.
854 */
855
856 for (i = 0; i < olen; i += 2) {
857 left = tnode_get_child(oldtnode, i);
858 right = tnode_get_child(oldtnode, i+1);
859
860 /* Two nonempty children */
861 if (left && right) {
862 struct tnode *newn;
863
864 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
865
866 if (!newn)
867 goto nomem;
868
869 put_child(tn, i/2, (struct rt_trie_node *)newn);
870 }
871
872 }
873
874 for (i = 0; i < olen; i += 2) {
875 struct tnode *newBinNode;
876
877 left = tnode_get_child(oldtnode, i);
878 right = tnode_get_child(oldtnode, i+1);
879
880 /* At least one of the children is empty */
881 if (left == NULL) {
882 if (right == NULL) /* Both are empty */
883 continue;
884 put_child(tn, i/2, right);
885 continue;
886 }
887
888 if (right == NULL) {
889 put_child(tn, i/2, left);
890 continue;
891 }
892
893 /* Two nonempty children */
894 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
895 put_child(tn, i/2, NULL);
896 put_child(newBinNode, 0, left);
897 put_child(newBinNode, 1, right);
898 put_child(tn, i/2, resize(t, newBinNode));
899 }
900 tnode_free_safe(oldtnode);
901 return tn;
902 nomem:
903 tnode_clean_free(tn);
904 return ERR_PTR(-ENOMEM);
905 }
906
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
909
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
911 {
912 struct hlist_head *head = &l->list;
913 struct leaf_info *li;
914
915 hlist_for_each_entry_rcu(li, head, hlist)
916 if (li->plen == plen)
917 return li;
918
919 return NULL;
920 }
921
922 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
923 {
924 struct leaf_info *li = find_leaf_info(l, plen);
925
926 if (!li)
927 return NULL;
928
929 return &li->falh;
930 }
931
932 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
933 {
934 struct leaf_info *li = NULL, *last = NULL;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
950 }
951
952 /* rcu_read_lock needs to be hold by caller from readside */
953
954 static struct leaf *
955 fib_find_node(struct trie *t, u32 key)
956 {
957 int pos;
958 struct tnode *tn;
959 struct rt_trie_node *n;
960
961 pos = 0;
962 n = rcu_dereference_rtnl(t->trie);
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
966
967 check_tnode(tn);
968
969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
970 pos = tn->pos + tn->bits;
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
975 } else
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
983 return NULL;
984 }
985
986 static void trie_rebalance(struct trie *t, struct tnode *tn)
987 {
988 int wasfull;
989 t_key cindex, key;
990 struct tnode *tp;
991
992 key = tn->key;
993
994 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
995 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
996 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
997 tn = (struct tnode *)resize(t, tn);
998
999 tnode_put_child_reorg(tp, cindex,
1000 (struct rt_trie_node *)tn, wasfull);
1001
1002 tp = node_parent((struct rt_trie_node *) tn);
1003 if (!tp)
1004 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1005
1006 tnode_free_flush();
1007 if (!tp)
1008 break;
1009 tn = tp;
1010 }
1011
1012 /* Handle last (top) tnode */
1013 if (IS_TNODE(tn))
1014 tn = (struct tnode *)resize(t, tn);
1015
1016 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1017 tnode_free_flush();
1018 }
1019
1020 /* only used from updater-side */
1021
1022 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1023 {
1024 int pos, newpos;
1025 struct tnode *tp = NULL, *tn = NULL;
1026 struct rt_trie_node *n;
1027 struct leaf *l;
1028 int missbit;
1029 struct list_head *fa_head = NULL;
1030 struct leaf_info *li;
1031 t_key cindex;
1032
1033 pos = 0;
1034 n = rtnl_dereference(t->trie);
1035
1036 /* If we point to NULL, stop. Either the tree is empty and we should
1037 * just put a new leaf in if, or we have reached an empty child slot,
1038 * and we should just put our new leaf in that.
1039 * If we point to a T_TNODE, check if it matches our key. Note that
1040 * a T_TNODE might be skipping any number of bits - its 'pos' need
1041 * not be the parent's 'pos'+'bits'!
1042 *
1043 * If it does match the current key, get pos/bits from it, extract
1044 * the index from our key, push the T_TNODE and walk the tree.
1045 *
1046 * If it doesn't, we have to replace it with a new T_TNODE.
1047 *
1048 * If we point to a T_LEAF, it might or might not have the same key
1049 * as we do. If it does, just change the value, update the T_LEAF's
1050 * value, and return it.
1051 * If it doesn't, we need to replace it with a T_TNODE.
1052 */
1053
1054 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1055 tn = (struct tnode *) n;
1056
1057 check_tnode(tn);
1058
1059 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1060 tp = tn;
1061 pos = tn->pos + tn->bits;
1062 n = tnode_get_child(tn,
1063 tkey_extract_bits(key,
1064 tn->pos,
1065 tn->bits));
1066
1067 BUG_ON(n && node_parent(n) != tn);
1068 } else
1069 break;
1070 }
1071
1072 /*
1073 * n ----> NULL, LEAF or TNODE
1074 *
1075 * tp is n's (parent) ----> NULL or TNODE
1076 */
1077
1078 BUG_ON(tp && IS_LEAF(tp));
1079
1080 /* Case 1: n is a leaf. Compare prefixes */
1081
1082 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1083 l = (struct leaf *) n;
1084 li = leaf_info_new(plen);
1085
1086 if (!li)
1087 return NULL;
1088
1089 fa_head = &li->falh;
1090 insert_leaf_info(&l->list, li);
1091 goto done;
1092 }
1093 l = leaf_new();
1094
1095 if (!l)
1096 return NULL;
1097
1098 l->key = key;
1099 li = leaf_info_new(plen);
1100
1101 if (!li) {
1102 free_leaf(l);
1103 return NULL;
1104 }
1105
1106 fa_head = &li->falh;
1107 insert_leaf_info(&l->list, li);
1108
1109 if (t->trie && n == NULL) {
1110 /* Case 2: n is NULL, and will just insert a new leaf */
1111
1112 node_set_parent((struct rt_trie_node *)l, tp);
1113
1114 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1115 put_child(tp, cindex, (struct rt_trie_node *)l);
1116 } else {
1117 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1118 /*
1119 * Add a new tnode here
1120 * first tnode need some special handling
1121 */
1122
1123 if (tp)
1124 pos = tp->pos+tp->bits;
1125 else
1126 pos = 0;
1127
1128 if (n) {
1129 newpos = tkey_mismatch(key, pos, n->key);
1130 tn = tnode_new(n->key, newpos, 1);
1131 } else {
1132 newpos = 0;
1133 tn = tnode_new(key, newpos, 1); /* First tnode */
1134 }
1135
1136 if (!tn) {
1137 free_leaf_info(li);
1138 free_leaf(l);
1139 return NULL;
1140 }
1141
1142 node_set_parent((struct rt_trie_node *)tn, tp);
1143
1144 missbit = tkey_extract_bits(key, newpos, 1);
1145 put_child(tn, missbit, (struct rt_trie_node *)l);
1146 put_child(tn, 1-missbit, n);
1147
1148 if (tp) {
1149 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1150 put_child(tp, cindex, (struct rt_trie_node *)tn);
1151 } else {
1152 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1153 tp = tn;
1154 }
1155 }
1156
1157 if (tp && tp->pos + tp->bits > 32)
1158 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1159 tp, tp->pos, tp->bits, key, plen);
1160
1161 /* Rebalance the trie */
1162
1163 trie_rebalance(t, tp);
1164 done:
1165 return fa_head;
1166 }
1167
1168 /*
1169 * Caller must hold RTNL.
1170 */
1171 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1172 {
1173 struct trie *t = (struct trie *) tb->tb_data;
1174 struct fib_alias *fa, *new_fa;
1175 struct list_head *fa_head = NULL;
1176 struct fib_info *fi;
1177 int plen = cfg->fc_dst_len;
1178 u8 tos = cfg->fc_tos;
1179 u32 key, mask;
1180 int err;
1181 struct leaf *l;
1182
1183 if (plen > 32)
1184 return -EINVAL;
1185
1186 key = ntohl(cfg->fc_dst);
1187
1188 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1189
1190 mask = ntohl(inet_make_mask(plen));
1191
1192 if (key & ~mask)
1193 return -EINVAL;
1194
1195 key = key & mask;
1196
1197 fi = fib_create_info(cfg);
1198 if (IS_ERR(fi)) {
1199 err = PTR_ERR(fi);
1200 goto err;
1201 }
1202
1203 l = fib_find_node(t, key);
1204 fa = NULL;
1205
1206 if (l) {
1207 fa_head = get_fa_head(l, plen);
1208 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1209 }
1210
1211 /* Now fa, if non-NULL, points to the first fib alias
1212 * with the same keys [prefix,tos,priority], if such key already
1213 * exists or to the node before which we will insert new one.
1214 *
1215 * If fa is NULL, we will need to allocate a new one and
1216 * insert to the head of f.
1217 *
1218 * If f is NULL, no fib node matched the destination key
1219 * and we need to allocate a new one of those as well.
1220 */
1221
1222 if (fa && fa->fa_tos == tos &&
1223 fa->fa_info->fib_priority == fi->fib_priority) {
1224 struct fib_alias *fa_first, *fa_match;
1225
1226 err = -EEXIST;
1227 if (cfg->fc_nlflags & NLM_F_EXCL)
1228 goto out;
1229
1230 /* We have 2 goals:
1231 * 1. Find exact match for type, scope, fib_info to avoid
1232 * duplicate routes
1233 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1234 */
1235 fa_match = NULL;
1236 fa_first = fa;
1237 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1238 list_for_each_entry_continue(fa, fa_head, fa_list) {
1239 if (fa->fa_tos != tos)
1240 break;
1241 if (fa->fa_info->fib_priority != fi->fib_priority)
1242 break;
1243 if (fa->fa_type == cfg->fc_type &&
1244 fa->fa_info == fi) {
1245 fa_match = fa;
1246 break;
1247 }
1248 }
1249
1250 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1251 struct fib_info *fi_drop;
1252 u8 state;
1253
1254 fa = fa_first;
1255 if (fa_match) {
1256 if (fa == fa_match)
1257 err = 0;
1258 goto out;
1259 }
1260 err = -ENOBUFS;
1261 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1262 if (new_fa == NULL)
1263 goto out;
1264
1265 fi_drop = fa->fa_info;
1266 new_fa->fa_tos = fa->fa_tos;
1267 new_fa->fa_info = fi;
1268 new_fa->fa_type = cfg->fc_type;
1269 state = fa->fa_state;
1270 new_fa->fa_state = state & ~FA_S_ACCESSED;
1271
1272 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1273 alias_free_mem_rcu(fa);
1274
1275 fib_release_info(fi_drop);
1276 if (state & FA_S_ACCESSED)
1277 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1278 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1279 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1280
1281 goto succeeded;
1282 }
1283 /* Error if we find a perfect match which
1284 * uses the same scope, type, and nexthop
1285 * information.
1286 */
1287 if (fa_match)
1288 goto out;
1289
1290 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1291 fa = fa_first;
1292 }
1293 err = -ENOENT;
1294 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1295 goto out;
1296
1297 err = -ENOBUFS;
1298 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1299 if (new_fa == NULL)
1300 goto out;
1301
1302 new_fa->fa_info = fi;
1303 new_fa->fa_tos = tos;
1304 new_fa->fa_type = cfg->fc_type;
1305 new_fa->fa_state = 0;
1306 /*
1307 * Insert new entry to the list.
1308 */
1309
1310 if (!fa_head) {
1311 fa_head = fib_insert_node(t, key, plen);
1312 if (unlikely(!fa_head)) {
1313 err = -ENOMEM;
1314 goto out_free_new_fa;
1315 }
1316 }
1317
1318 if (!plen)
1319 tb->tb_num_default++;
1320
1321 list_add_tail_rcu(&new_fa->fa_list,
1322 (fa ? &fa->fa_list : fa_head));
1323
1324 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1325 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1326 &cfg->fc_nlinfo, 0);
1327 succeeded:
1328 return 0;
1329
1330 out_free_new_fa:
1331 kmem_cache_free(fn_alias_kmem, new_fa);
1332 out:
1333 fib_release_info(fi);
1334 err:
1335 return err;
1336 }
1337
1338 /* should be called with rcu_read_lock */
1339 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1340 t_key key, const struct flowi4 *flp,
1341 struct fib_result *res, int fib_flags)
1342 {
1343 struct leaf_info *li;
1344 struct hlist_head *hhead = &l->list;
1345
1346 hlist_for_each_entry_rcu(li, hhead, hlist) {
1347 struct fib_alias *fa;
1348
1349 if (l->key != (key & li->mask_plen))
1350 continue;
1351
1352 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1353 struct fib_info *fi = fa->fa_info;
1354 int nhsel, err;
1355
1356 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1357 continue;
1358 if (fi->fib_dead)
1359 continue;
1360 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1361 continue;
1362 fib_alias_accessed(fa);
1363 err = fib_props[fa->fa_type].error;
1364 if (err) {
1365 #ifdef CONFIG_IP_FIB_TRIE_STATS
1366 t->stats.semantic_match_passed++;
1367 #endif
1368 return err;
1369 }
1370 if (fi->fib_flags & RTNH_F_DEAD)
1371 continue;
1372 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1373 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1374
1375 if (nh->nh_flags & RTNH_F_DEAD)
1376 continue;
1377 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1378 continue;
1379
1380 #ifdef CONFIG_IP_FIB_TRIE_STATS
1381 t->stats.semantic_match_passed++;
1382 #endif
1383 res->prefixlen = li->plen;
1384 res->nh_sel = nhsel;
1385 res->type = fa->fa_type;
1386 res->scope = fa->fa_info->fib_scope;
1387 res->fi = fi;
1388 res->table = tb;
1389 res->fa_head = &li->falh;
1390 if (!(fib_flags & FIB_LOOKUP_NOREF))
1391 atomic_inc(&fi->fib_clntref);
1392 return 0;
1393 }
1394 }
1395
1396 #ifdef CONFIG_IP_FIB_TRIE_STATS
1397 t->stats.semantic_match_miss++;
1398 #endif
1399 }
1400
1401 return 1;
1402 }
1403
1404 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1405 struct fib_result *res, int fib_flags)
1406 {
1407 struct trie *t = (struct trie *) tb->tb_data;
1408 int ret;
1409 struct rt_trie_node *n;
1410 struct tnode *pn;
1411 unsigned int pos, bits;
1412 t_key key = ntohl(flp->daddr);
1413 unsigned int chopped_off;
1414 t_key cindex = 0;
1415 unsigned int current_prefix_length = KEYLENGTH;
1416 struct tnode *cn;
1417 t_key pref_mismatch;
1418
1419 rcu_read_lock();
1420
1421 n = rcu_dereference(t->trie);
1422 if (!n)
1423 goto failed;
1424
1425 #ifdef CONFIG_IP_FIB_TRIE_STATS
1426 t->stats.gets++;
1427 #endif
1428
1429 /* Just a leaf? */
1430 if (IS_LEAF(n)) {
1431 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1432 goto found;
1433 }
1434
1435 pn = (struct tnode *) n;
1436 chopped_off = 0;
1437
1438 while (pn) {
1439 pos = pn->pos;
1440 bits = pn->bits;
1441
1442 if (!chopped_off)
1443 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1444 pos, bits);
1445
1446 n = tnode_get_child_rcu(pn, cindex);
1447
1448 if (n == NULL) {
1449 #ifdef CONFIG_IP_FIB_TRIE_STATS
1450 t->stats.null_node_hit++;
1451 #endif
1452 goto backtrace;
1453 }
1454
1455 if (IS_LEAF(n)) {
1456 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1457 if (ret > 0)
1458 goto backtrace;
1459 goto found;
1460 }
1461
1462 cn = (struct tnode *)n;
1463
1464 /*
1465 * It's a tnode, and we can do some extra checks here if we
1466 * like, to avoid descending into a dead-end branch.
1467 * This tnode is in the parent's child array at index
1468 * key[p_pos..p_pos+p_bits] but potentially with some bits
1469 * chopped off, so in reality the index may be just a
1470 * subprefix, padded with zero at the end.
1471 * We can also take a look at any skipped bits in this
1472 * tnode - everything up to p_pos is supposed to be ok,
1473 * and the non-chopped bits of the index (se previous
1474 * paragraph) are also guaranteed ok, but the rest is
1475 * considered unknown.
1476 *
1477 * The skipped bits are key[pos+bits..cn->pos].
1478 */
1479
1480 /* If current_prefix_length < pos+bits, we are already doing
1481 * actual prefix matching, which means everything from
1482 * pos+(bits-chopped_off) onward must be zero along some
1483 * branch of this subtree - otherwise there is *no* valid
1484 * prefix present. Here we can only check the skipped
1485 * bits. Remember, since we have already indexed into the
1486 * parent's child array, we know that the bits we chopped of
1487 * *are* zero.
1488 */
1489
1490 /* NOTA BENE: Checking only skipped bits
1491 for the new node here */
1492
1493 if (current_prefix_length < pos+bits) {
1494 if (tkey_extract_bits(cn->key, current_prefix_length,
1495 cn->pos - current_prefix_length)
1496 || !(cn->child[0]))
1497 goto backtrace;
1498 }
1499
1500 /*
1501 * If chopped_off=0, the index is fully validated and we
1502 * only need to look at the skipped bits for this, the new,
1503 * tnode. What we actually want to do is to find out if
1504 * these skipped bits match our key perfectly, or if we will
1505 * have to count on finding a matching prefix further down,
1506 * because if we do, we would like to have some way of
1507 * verifying the existence of such a prefix at this point.
1508 */
1509
1510 /* The only thing we can do at this point is to verify that
1511 * any such matching prefix can indeed be a prefix to our
1512 * key, and if the bits in the node we are inspecting that
1513 * do not match our key are not ZERO, this cannot be true.
1514 * Thus, find out where there is a mismatch (before cn->pos)
1515 * and verify that all the mismatching bits are zero in the
1516 * new tnode's key.
1517 */
1518
1519 /*
1520 * Note: We aren't very concerned about the piece of
1521 * the key that precede pn->pos+pn->bits, since these
1522 * have already been checked. The bits after cn->pos
1523 * aren't checked since these are by definition
1524 * "unknown" at this point. Thus, what we want to see
1525 * is if we are about to enter the "prefix matching"
1526 * state, and in that case verify that the skipped
1527 * bits that will prevail throughout this subtree are
1528 * zero, as they have to be if we are to find a
1529 * matching prefix.
1530 */
1531
1532 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1533
1534 /*
1535 * In short: If skipped bits in this node do not match
1536 * the search key, enter the "prefix matching"
1537 * state.directly.
1538 */
1539 if (pref_mismatch) {
1540 /* fls(x) = __fls(x) + 1 */
1541 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
1542
1543 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1544 goto backtrace;
1545
1546 if (current_prefix_length >= cn->pos)
1547 current_prefix_length = mp;
1548 }
1549
1550 pn = (struct tnode *)n; /* Descend */
1551 chopped_off = 0;
1552 continue;
1553
1554 backtrace:
1555 chopped_off++;
1556
1557 /* As zero don't change the child key (cindex) */
1558 while ((chopped_off <= pn->bits)
1559 && !(cindex & (1<<(chopped_off-1))))
1560 chopped_off++;
1561
1562 /* Decrease current_... with bits chopped off */
1563 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1564 current_prefix_length = pn->pos + pn->bits
1565 - chopped_off;
1566
1567 /*
1568 * Either we do the actual chop off according or if we have
1569 * chopped off all bits in this tnode walk up to our parent.
1570 */
1571
1572 if (chopped_off <= pn->bits) {
1573 cindex &= ~(1 << (chopped_off-1));
1574 } else {
1575 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1576 if (!parent)
1577 goto failed;
1578
1579 /* Get Child's index */
1580 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1581 pn = parent;
1582 chopped_off = 0;
1583
1584 #ifdef CONFIG_IP_FIB_TRIE_STATS
1585 t->stats.backtrack++;
1586 #endif
1587 goto backtrace;
1588 }
1589 }
1590 failed:
1591 ret = 1;
1592 found:
1593 rcu_read_unlock();
1594 return ret;
1595 }
1596 EXPORT_SYMBOL_GPL(fib_table_lookup);
1597
1598 /*
1599 * Remove the leaf and return parent.
1600 */
1601 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1602 {
1603 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1604
1605 pr_debug("entering trie_leaf_remove(%p)\n", l);
1606
1607 if (tp) {
1608 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1609 put_child(tp, cindex, NULL);
1610 trie_rebalance(t, tp);
1611 } else
1612 RCU_INIT_POINTER(t->trie, NULL);
1613
1614 free_leaf(l);
1615 }
1616
1617 /*
1618 * Caller must hold RTNL.
1619 */
1620 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1621 {
1622 struct trie *t = (struct trie *) tb->tb_data;
1623 u32 key, mask;
1624 int plen = cfg->fc_dst_len;
1625 u8 tos = cfg->fc_tos;
1626 struct fib_alias *fa, *fa_to_delete;
1627 struct list_head *fa_head;
1628 struct leaf *l;
1629 struct leaf_info *li;
1630
1631 if (plen > 32)
1632 return -EINVAL;
1633
1634 key = ntohl(cfg->fc_dst);
1635 mask = ntohl(inet_make_mask(plen));
1636
1637 if (key & ~mask)
1638 return -EINVAL;
1639
1640 key = key & mask;
1641 l = fib_find_node(t, key);
1642
1643 if (!l)
1644 return -ESRCH;
1645
1646 li = find_leaf_info(l, plen);
1647
1648 if (!li)
1649 return -ESRCH;
1650
1651 fa_head = &li->falh;
1652 fa = fib_find_alias(fa_head, tos, 0);
1653
1654 if (!fa)
1655 return -ESRCH;
1656
1657 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1658
1659 fa_to_delete = NULL;
1660 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1661 list_for_each_entry_continue(fa, fa_head, fa_list) {
1662 struct fib_info *fi = fa->fa_info;
1663
1664 if (fa->fa_tos != tos)
1665 break;
1666
1667 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1668 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1669 fa->fa_info->fib_scope == cfg->fc_scope) &&
1670 (!cfg->fc_prefsrc ||
1671 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1672 (!cfg->fc_protocol ||
1673 fi->fib_protocol == cfg->fc_protocol) &&
1674 fib_nh_match(cfg, fi) == 0) {
1675 fa_to_delete = fa;
1676 break;
1677 }
1678 }
1679
1680 if (!fa_to_delete)
1681 return -ESRCH;
1682
1683 fa = fa_to_delete;
1684 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1685 &cfg->fc_nlinfo, 0);
1686
1687 list_del_rcu(&fa->fa_list);
1688
1689 if (!plen)
1690 tb->tb_num_default--;
1691
1692 if (list_empty(fa_head)) {
1693 hlist_del_rcu(&li->hlist);
1694 free_leaf_info(li);
1695 }
1696
1697 if (hlist_empty(&l->list))
1698 trie_leaf_remove(t, l);
1699
1700 if (fa->fa_state & FA_S_ACCESSED)
1701 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1702
1703 fib_release_info(fa->fa_info);
1704 alias_free_mem_rcu(fa);
1705 return 0;
1706 }
1707
1708 static int trie_flush_list(struct list_head *head)
1709 {
1710 struct fib_alias *fa, *fa_node;
1711 int found = 0;
1712
1713 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1714 struct fib_info *fi = fa->fa_info;
1715
1716 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1717 list_del_rcu(&fa->fa_list);
1718 fib_release_info(fa->fa_info);
1719 alias_free_mem_rcu(fa);
1720 found++;
1721 }
1722 }
1723 return found;
1724 }
1725
1726 static int trie_flush_leaf(struct leaf *l)
1727 {
1728 int found = 0;
1729 struct hlist_head *lih = &l->list;
1730 struct hlist_node *tmp;
1731 struct leaf_info *li = NULL;
1732
1733 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1734 found += trie_flush_list(&li->falh);
1735
1736 if (list_empty(&li->falh)) {
1737 hlist_del_rcu(&li->hlist);
1738 free_leaf_info(li);
1739 }
1740 }
1741 return found;
1742 }
1743
1744 /*
1745 * Scan for the next right leaf starting at node p->child[idx]
1746 * Since we have back pointer, no recursion necessary.
1747 */
1748 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1749 {
1750 do {
1751 t_key idx;
1752
1753 if (c)
1754 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1755 else
1756 idx = 0;
1757
1758 while (idx < 1u << p->bits) {
1759 c = tnode_get_child_rcu(p, idx++);
1760 if (!c)
1761 continue;
1762
1763 if (IS_LEAF(c))
1764 return (struct leaf *) c;
1765
1766 /* Rescan start scanning in new node */
1767 p = (struct tnode *) c;
1768 idx = 0;
1769 }
1770
1771 /* Node empty, walk back up to parent */
1772 c = (struct rt_trie_node *) p;
1773 } while ((p = node_parent_rcu(c)) != NULL);
1774
1775 return NULL; /* Root of trie */
1776 }
1777
1778 static struct leaf *trie_firstleaf(struct trie *t)
1779 {
1780 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1781
1782 if (!n)
1783 return NULL;
1784
1785 if (IS_LEAF(n)) /* trie is just a leaf */
1786 return (struct leaf *) n;
1787
1788 return leaf_walk_rcu(n, NULL);
1789 }
1790
1791 static struct leaf *trie_nextleaf(struct leaf *l)
1792 {
1793 struct rt_trie_node *c = (struct rt_trie_node *) l;
1794 struct tnode *p = node_parent_rcu(c);
1795
1796 if (!p)
1797 return NULL; /* trie with just one leaf */
1798
1799 return leaf_walk_rcu(p, c);
1800 }
1801
1802 static struct leaf *trie_leafindex(struct trie *t, int index)
1803 {
1804 struct leaf *l = trie_firstleaf(t);
1805
1806 while (l && index-- > 0)
1807 l = trie_nextleaf(l);
1808
1809 return l;
1810 }
1811
1812
1813 /*
1814 * Caller must hold RTNL.
1815 */
1816 int fib_table_flush(struct fib_table *tb)
1817 {
1818 struct trie *t = (struct trie *) tb->tb_data;
1819 struct leaf *l, *ll = NULL;
1820 int found = 0;
1821
1822 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1823 found += trie_flush_leaf(l);
1824
1825 if (ll && hlist_empty(&ll->list))
1826 trie_leaf_remove(t, ll);
1827 ll = l;
1828 }
1829
1830 if (ll && hlist_empty(&ll->list))
1831 trie_leaf_remove(t, ll);
1832
1833 pr_debug("trie_flush found=%d\n", found);
1834 return found;
1835 }
1836
1837 void fib_free_table(struct fib_table *tb)
1838 {
1839 kfree(tb);
1840 }
1841
1842 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1843 struct fib_table *tb,
1844 struct sk_buff *skb, struct netlink_callback *cb)
1845 {
1846 int i, s_i;
1847 struct fib_alias *fa;
1848 __be32 xkey = htonl(key);
1849
1850 s_i = cb->args[5];
1851 i = 0;
1852
1853 /* rcu_read_lock is hold by caller */
1854
1855 list_for_each_entry_rcu(fa, fah, fa_list) {
1856 if (i < s_i) {
1857 i++;
1858 continue;
1859 }
1860
1861 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1862 cb->nlh->nlmsg_seq,
1863 RTM_NEWROUTE,
1864 tb->tb_id,
1865 fa->fa_type,
1866 xkey,
1867 plen,
1868 fa->fa_tos,
1869 fa->fa_info, NLM_F_MULTI) < 0) {
1870 cb->args[5] = i;
1871 return -1;
1872 }
1873 i++;
1874 }
1875 cb->args[5] = i;
1876 return skb->len;
1877 }
1878
1879 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1880 struct sk_buff *skb, struct netlink_callback *cb)
1881 {
1882 struct leaf_info *li;
1883 int i, s_i;
1884
1885 s_i = cb->args[4];
1886 i = 0;
1887
1888 /* rcu_read_lock is hold by caller */
1889 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1890 if (i < s_i) {
1891 i++;
1892 continue;
1893 }
1894
1895 if (i > s_i)
1896 cb->args[5] = 0;
1897
1898 if (list_empty(&li->falh))
1899 continue;
1900
1901 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1902 cb->args[4] = i;
1903 return -1;
1904 }
1905 i++;
1906 }
1907
1908 cb->args[4] = i;
1909 return skb->len;
1910 }
1911
1912 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1913 struct netlink_callback *cb)
1914 {
1915 struct leaf *l;
1916 struct trie *t = (struct trie *) tb->tb_data;
1917 t_key key = cb->args[2];
1918 int count = cb->args[3];
1919
1920 rcu_read_lock();
1921 /* Dump starting at last key.
1922 * Note: 0.0.0.0/0 (ie default) is first key.
1923 */
1924 if (count == 0)
1925 l = trie_firstleaf(t);
1926 else {
1927 /* Normally, continue from last key, but if that is missing
1928 * fallback to using slow rescan
1929 */
1930 l = fib_find_node(t, key);
1931 if (!l)
1932 l = trie_leafindex(t, count);
1933 }
1934
1935 while (l) {
1936 cb->args[2] = l->key;
1937 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1938 cb->args[3] = count;
1939 rcu_read_unlock();
1940 return -1;
1941 }
1942
1943 ++count;
1944 l = trie_nextleaf(l);
1945 memset(&cb->args[4], 0,
1946 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1947 }
1948 cb->args[3] = count;
1949 rcu_read_unlock();
1950
1951 return skb->len;
1952 }
1953
1954 void __init fib_trie_init(void)
1955 {
1956 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1957 sizeof(struct fib_alias),
1958 0, SLAB_PANIC, NULL);
1959
1960 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1961 max(sizeof(struct leaf),
1962 sizeof(struct leaf_info)),
1963 0, SLAB_PANIC, NULL);
1964 }
1965
1966
1967 struct fib_table *fib_trie_table(u32 id)
1968 {
1969 struct fib_table *tb;
1970 struct trie *t;
1971
1972 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1973 GFP_KERNEL);
1974 if (tb == NULL)
1975 return NULL;
1976
1977 tb->tb_id = id;
1978 tb->tb_default = -1;
1979 tb->tb_num_default = 0;
1980
1981 t = (struct trie *) tb->tb_data;
1982 memset(t, 0, sizeof(*t));
1983
1984 return tb;
1985 }
1986
1987 #ifdef CONFIG_PROC_FS
1988 /* Depth first Trie walk iterator */
1989 struct fib_trie_iter {
1990 struct seq_net_private p;
1991 struct fib_table *tb;
1992 struct tnode *tnode;
1993 unsigned int index;
1994 unsigned int depth;
1995 };
1996
1997 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
1998 {
1999 struct tnode *tn = iter->tnode;
2000 unsigned int cindex = iter->index;
2001 struct tnode *p;
2002
2003 /* A single entry routing table */
2004 if (!tn)
2005 return NULL;
2006
2007 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2008 iter->tnode, iter->index, iter->depth);
2009 rescan:
2010 while (cindex < (1<<tn->bits)) {
2011 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2012
2013 if (n) {
2014 if (IS_LEAF(n)) {
2015 iter->tnode = tn;
2016 iter->index = cindex + 1;
2017 } else {
2018 /* push down one level */
2019 iter->tnode = (struct tnode *) n;
2020 iter->index = 0;
2021 ++iter->depth;
2022 }
2023 return n;
2024 }
2025
2026 ++cindex;
2027 }
2028
2029 /* Current node exhausted, pop back up */
2030 p = node_parent_rcu((struct rt_trie_node *)tn);
2031 if (p) {
2032 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2033 tn = p;
2034 --iter->depth;
2035 goto rescan;
2036 }
2037
2038 /* got root? */
2039 return NULL;
2040 }
2041
2042 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2043 struct trie *t)
2044 {
2045 struct rt_trie_node *n;
2046
2047 if (!t)
2048 return NULL;
2049
2050 n = rcu_dereference(t->trie);
2051 if (!n)
2052 return NULL;
2053
2054 if (IS_TNODE(n)) {
2055 iter->tnode = (struct tnode *) n;
2056 iter->index = 0;
2057 iter->depth = 1;
2058 } else {
2059 iter->tnode = NULL;
2060 iter->index = 0;
2061 iter->depth = 0;
2062 }
2063
2064 return n;
2065 }
2066
2067 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2068 {
2069 struct rt_trie_node *n;
2070 struct fib_trie_iter iter;
2071
2072 memset(s, 0, sizeof(*s));
2073
2074 rcu_read_lock();
2075 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2076 if (IS_LEAF(n)) {
2077 struct leaf *l = (struct leaf *)n;
2078 struct leaf_info *li;
2079
2080 s->leaves++;
2081 s->totdepth += iter.depth;
2082 if (iter.depth > s->maxdepth)
2083 s->maxdepth = iter.depth;
2084
2085 hlist_for_each_entry_rcu(li, &l->list, hlist)
2086 ++s->prefixes;
2087 } else {
2088 const struct tnode *tn = (const struct tnode *) n;
2089 int i;
2090
2091 s->tnodes++;
2092 if (tn->bits < MAX_STAT_DEPTH)
2093 s->nodesizes[tn->bits]++;
2094
2095 for (i = 0; i < (1<<tn->bits); i++)
2096 if (!tn->child[i])
2097 s->nullpointers++;
2098 }
2099 }
2100 rcu_read_unlock();
2101 }
2102
2103 /*
2104 * This outputs /proc/net/fib_triestats
2105 */
2106 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2107 {
2108 unsigned int i, max, pointers, bytes, avdepth;
2109
2110 if (stat->leaves)
2111 avdepth = stat->totdepth*100 / stat->leaves;
2112 else
2113 avdepth = 0;
2114
2115 seq_printf(seq, "\tAver depth: %u.%02d\n",
2116 avdepth / 100, avdepth % 100);
2117 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2118
2119 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2120 bytes = sizeof(struct leaf) * stat->leaves;
2121
2122 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2123 bytes += sizeof(struct leaf_info) * stat->prefixes;
2124
2125 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2126 bytes += sizeof(struct tnode) * stat->tnodes;
2127
2128 max = MAX_STAT_DEPTH;
2129 while (max > 0 && stat->nodesizes[max-1] == 0)
2130 max--;
2131
2132 pointers = 0;
2133 for (i = 1; i <= max; i++)
2134 if (stat->nodesizes[i] != 0) {
2135 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2136 pointers += (1<<i) * stat->nodesizes[i];
2137 }
2138 seq_putc(seq, '\n');
2139 seq_printf(seq, "\tPointers: %u\n", pointers);
2140
2141 bytes += sizeof(struct rt_trie_node *) * pointers;
2142 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2143 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2144 }
2145
2146 #ifdef CONFIG_IP_FIB_TRIE_STATS
2147 static void trie_show_usage(struct seq_file *seq,
2148 const struct trie_use_stats *stats)
2149 {
2150 seq_printf(seq, "\nCounters:\n---------\n");
2151 seq_printf(seq, "gets = %u\n", stats->gets);
2152 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2153 seq_printf(seq, "semantic match passed = %u\n",
2154 stats->semantic_match_passed);
2155 seq_printf(seq, "semantic match miss = %u\n",
2156 stats->semantic_match_miss);
2157 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2158 seq_printf(seq, "skipped node resize = %u\n\n",
2159 stats->resize_node_skipped);
2160 }
2161 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2162
2163 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2164 {
2165 if (tb->tb_id == RT_TABLE_LOCAL)
2166 seq_puts(seq, "Local:\n");
2167 else if (tb->tb_id == RT_TABLE_MAIN)
2168 seq_puts(seq, "Main:\n");
2169 else
2170 seq_printf(seq, "Id %d:\n", tb->tb_id);
2171 }
2172
2173
2174 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2175 {
2176 struct net *net = (struct net *)seq->private;
2177 unsigned int h;
2178
2179 seq_printf(seq,
2180 "Basic info: size of leaf:"
2181 " %Zd bytes, size of tnode: %Zd bytes.\n",
2182 sizeof(struct leaf), sizeof(struct tnode));
2183
2184 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2185 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2186 struct fib_table *tb;
2187
2188 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2189 struct trie *t = (struct trie *) tb->tb_data;
2190 struct trie_stat stat;
2191
2192 if (!t)
2193 continue;
2194
2195 fib_table_print(seq, tb);
2196
2197 trie_collect_stats(t, &stat);
2198 trie_show_stats(seq, &stat);
2199 #ifdef CONFIG_IP_FIB_TRIE_STATS
2200 trie_show_usage(seq, &t->stats);
2201 #endif
2202 }
2203 }
2204
2205 return 0;
2206 }
2207
2208 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2209 {
2210 return single_open_net(inode, file, fib_triestat_seq_show);
2211 }
2212
2213 static const struct file_operations fib_triestat_fops = {
2214 .owner = THIS_MODULE,
2215 .open = fib_triestat_seq_open,
2216 .read = seq_read,
2217 .llseek = seq_lseek,
2218 .release = single_release_net,
2219 };
2220
2221 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2222 {
2223 struct fib_trie_iter *iter = seq->private;
2224 struct net *net = seq_file_net(seq);
2225 loff_t idx = 0;
2226 unsigned int h;
2227
2228 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2229 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2230 struct fib_table *tb;
2231
2232 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2233 struct rt_trie_node *n;
2234
2235 for (n = fib_trie_get_first(iter,
2236 (struct trie *) tb->tb_data);
2237 n; n = fib_trie_get_next(iter))
2238 if (pos == idx++) {
2239 iter->tb = tb;
2240 return n;
2241 }
2242 }
2243 }
2244
2245 return NULL;
2246 }
2247
2248 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2249 __acquires(RCU)
2250 {
2251 rcu_read_lock();
2252 return fib_trie_get_idx(seq, *pos);
2253 }
2254
2255 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2256 {
2257 struct fib_trie_iter *iter = seq->private;
2258 struct net *net = seq_file_net(seq);
2259 struct fib_table *tb = iter->tb;
2260 struct hlist_node *tb_node;
2261 unsigned int h;
2262 struct rt_trie_node *n;
2263
2264 ++*pos;
2265 /* next node in same table */
2266 n = fib_trie_get_next(iter);
2267 if (n)
2268 return n;
2269
2270 /* walk rest of this hash chain */
2271 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2272 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2273 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2274 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2275 if (n)
2276 goto found;
2277 }
2278
2279 /* new hash chain */
2280 while (++h < FIB_TABLE_HASHSZ) {
2281 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2282 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2283 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2284 if (n)
2285 goto found;
2286 }
2287 }
2288 return NULL;
2289
2290 found:
2291 iter->tb = tb;
2292 return n;
2293 }
2294
2295 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2296 __releases(RCU)
2297 {
2298 rcu_read_unlock();
2299 }
2300
2301 static void seq_indent(struct seq_file *seq, int n)
2302 {
2303 while (n-- > 0)
2304 seq_puts(seq, " ");
2305 }
2306
2307 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2308 {
2309 switch (s) {
2310 case RT_SCOPE_UNIVERSE: return "universe";
2311 case RT_SCOPE_SITE: return "site";
2312 case RT_SCOPE_LINK: return "link";
2313 case RT_SCOPE_HOST: return "host";
2314 case RT_SCOPE_NOWHERE: return "nowhere";
2315 default:
2316 snprintf(buf, len, "scope=%d", s);
2317 return buf;
2318 }
2319 }
2320
2321 static const char *const rtn_type_names[__RTN_MAX] = {
2322 [RTN_UNSPEC] = "UNSPEC",
2323 [RTN_UNICAST] = "UNICAST",
2324 [RTN_LOCAL] = "LOCAL",
2325 [RTN_BROADCAST] = "BROADCAST",
2326 [RTN_ANYCAST] = "ANYCAST",
2327 [RTN_MULTICAST] = "MULTICAST",
2328 [RTN_BLACKHOLE] = "BLACKHOLE",
2329 [RTN_UNREACHABLE] = "UNREACHABLE",
2330 [RTN_PROHIBIT] = "PROHIBIT",
2331 [RTN_THROW] = "THROW",
2332 [RTN_NAT] = "NAT",
2333 [RTN_XRESOLVE] = "XRESOLVE",
2334 };
2335
2336 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2337 {
2338 if (t < __RTN_MAX && rtn_type_names[t])
2339 return rtn_type_names[t];
2340 snprintf(buf, len, "type %u", t);
2341 return buf;
2342 }
2343
2344 /* Pretty print the trie */
2345 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2346 {
2347 const struct fib_trie_iter *iter = seq->private;
2348 struct rt_trie_node *n = v;
2349
2350 if (!node_parent_rcu(n))
2351 fib_table_print(seq, iter->tb);
2352
2353 if (IS_TNODE(n)) {
2354 struct tnode *tn = (struct tnode *) n;
2355 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2356
2357 seq_indent(seq, iter->depth-1);
2358 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2359 &prf, tn->pos, tn->bits, tn->full_children,
2360 tn->empty_children);
2361
2362 } else {
2363 struct leaf *l = (struct leaf *) n;
2364 struct leaf_info *li;
2365 __be32 val = htonl(l->key);
2366
2367 seq_indent(seq, iter->depth);
2368 seq_printf(seq, " |-- %pI4\n", &val);
2369
2370 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2371 struct fib_alias *fa;
2372
2373 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2374 char buf1[32], buf2[32];
2375
2376 seq_indent(seq, iter->depth+1);
2377 seq_printf(seq, " /%d %s %s", li->plen,
2378 rtn_scope(buf1, sizeof(buf1),
2379 fa->fa_info->fib_scope),
2380 rtn_type(buf2, sizeof(buf2),
2381 fa->fa_type));
2382 if (fa->fa_tos)
2383 seq_printf(seq, " tos=%d", fa->fa_tos);
2384 seq_putc(seq, '\n');
2385 }
2386 }
2387 }
2388
2389 return 0;
2390 }
2391
2392 static const struct seq_operations fib_trie_seq_ops = {
2393 .start = fib_trie_seq_start,
2394 .next = fib_trie_seq_next,
2395 .stop = fib_trie_seq_stop,
2396 .show = fib_trie_seq_show,
2397 };
2398
2399 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2400 {
2401 return seq_open_net(inode, file, &fib_trie_seq_ops,
2402 sizeof(struct fib_trie_iter));
2403 }
2404
2405 static const struct file_operations fib_trie_fops = {
2406 .owner = THIS_MODULE,
2407 .open = fib_trie_seq_open,
2408 .read = seq_read,
2409 .llseek = seq_lseek,
2410 .release = seq_release_net,
2411 };
2412
2413 struct fib_route_iter {
2414 struct seq_net_private p;
2415 struct trie *main_trie;
2416 loff_t pos;
2417 t_key key;
2418 };
2419
2420 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2421 {
2422 struct leaf *l = NULL;
2423 struct trie *t = iter->main_trie;
2424
2425 /* use cache location of last found key */
2426 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2427 pos -= iter->pos;
2428 else {
2429 iter->pos = 0;
2430 l = trie_firstleaf(t);
2431 }
2432
2433 while (l && pos-- > 0) {
2434 iter->pos++;
2435 l = trie_nextleaf(l);
2436 }
2437
2438 if (l)
2439 iter->key = pos; /* remember it */
2440 else
2441 iter->pos = 0; /* forget it */
2442
2443 return l;
2444 }
2445
2446 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2447 __acquires(RCU)
2448 {
2449 struct fib_route_iter *iter = seq->private;
2450 struct fib_table *tb;
2451
2452 rcu_read_lock();
2453 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2454 if (!tb)
2455 return NULL;
2456
2457 iter->main_trie = (struct trie *) tb->tb_data;
2458 if (*pos == 0)
2459 return SEQ_START_TOKEN;
2460 else
2461 return fib_route_get_idx(iter, *pos - 1);
2462 }
2463
2464 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2465 {
2466 struct fib_route_iter *iter = seq->private;
2467 struct leaf *l = v;
2468
2469 ++*pos;
2470 if (v == SEQ_START_TOKEN) {
2471 iter->pos = 0;
2472 l = trie_firstleaf(iter->main_trie);
2473 } else {
2474 iter->pos++;
2475 l = trie_nextleaf(l);
2476 }
2477
2478 if (l)
2479 iter->key = l->key;
2480 else
2481 iter->pos = 0;
2482 return l;
2483 }
2484
2485 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2486 __releases(RCU)
2487 {
2488 rcu_read_unlock();
2489 }
2490
2491 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2492 {
2493 unsigned int flags = 0;
2494
2495 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2496 flags = RTF_REJECT;
2497 if (fi && fi->fib_nh->nh_gw)
2498 flags |= RTF_GATEWAY;
2499 if (mask == htonl(0xFFFFFFFF))
2500 flags |= RTF_HOST;
2501 flags |= RTF_UP;
2502 return flags;
2503 }
2504
2505 /*
2506 * This outputs /proc/net/route.
2507 * The format of the file is not supposed to be changed
2508 * and needs to be same as fib_hash output to avoid breaking
2509 * legacy utilities
2510 */
2511 static int fib_route_seq_show(struct seq_file *seq, void *v)
2512 {
2513 struct leaf *l = v;
2514 struct leaf_info *li;
2515
2516 if (v == SEQ_START_TOKEN) {
2517 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2518 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2519 "\tWindow\tIRTT");
2520 return 0;
2521 }
2522
2523 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2524 struct fib_alias *fa;
2525 __be32 mask, prefix;
2526
2527 mask = inet_make_mask(li->plen);
2528 prefix = htonl(l->key);
2529
2530 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2531 const struct fib_info *fi = fa->fa_info;
2532 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2533 int len;
2534
2535 if (fa->fa_type == RTN_BROADCAST
2536 || fa->fa_type == RTN_MULTICAST)
2537 continue;
2538
2539 if (fi)
2540 seq_printf(seq,
2541 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2542 "%d\t%08X\t%d\t%u\t%u%n",
2543 fi->fib_dev ? fi->fib_dev->name : "*",
2544 prefix,
2545 fi->fib_nh->nh_gw, flags, 0, 0,
2546 fi->fib_priority,
2547 mask,
2548 (fi->fib_advmss ?
2549 fi->fib_advmss + 40 : 0),
2550 fi->fib_window,
2551 fi->fib_rtt >> 3, &len);
2552 else
2553 seq_printf(seq,
2554 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2555 "%d\t%08X\t%d\t%u\t%u%n",
2556 prefix, 0, flags, 0, 0, 0,
2557 mask, 0, 0, 0, &len);
2558
2559 seq_printf(seq, "%*s\n", 127 - len, "");
2560 }
2561 }
2562
2563 return 0;
2564 }
2565
2566 static const struct seq_operations fib_route_seq_ops = {
2567 .start = fib_route_seq_start,
2568 .next = fib_route_seq_next,
2569 .stop = fib_route_seq_stop,
2570 .show = fib_route_seq_show,
2571 };
2572
2573 static int fib_route_seq_open(struct inode *inode, struct file *file)
2574 {
2575 return seq_open_net(inode, file, &fib_route_seq_ops,
2576 sizeof(struct fib_route_iter));
2577 }
2578
2579 static const struct file_operations fib_route_fops = {
2580 .owner = THIS_MODULE,
2581 .open = fib_route_seq_open,
2582 .read = seq_read,
2583 .llseek = seq_lseek,
2584 .release = seq_release_net,
2585 };
2586
2587 int __net_init fib_proc_init(struct net *net)
2588 {
2589 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2590 goto out1;
2591
2592 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2593 &fib_triestat_fops))
2594 goto out2;
2595
2596 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2597 goto out3;
2598
2599 return 0;
2600
2601 out3:
2602 remove_proc_entry("fib_triestat", net->proc_net);
2603 out2:
2604 remove_proc_entry("fib_trie", net->proc_net);
2605 out1:
2606 return -ENOMEM;
2607 }
2608
2609 void __net_exit fib_proc_exit(struct net *net)
2610 {
2611 remove_proc_entry("fib_trie", net->proc_net);
2612 remove_proc_entry("fib_triestat", net->proc_net);
2613 remove_proc_entry("route", net->proc_net);
2614 }
2615
2616 #endif /* CONFIG_PROC_FS */