Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/jhash.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 EXPORT_SYMBOL(clip_tbl_hook);
120 #endif
121
122 #include <asm/system.h>
123 #include <linux/uaccess.h>
124
125 #include <linux/netfilter_arp.h>
126
127 /*
128 * Interface to generic neighbour cache.
129 */
130 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
131 static int arp_constructor(struct neighbour *neigh);
132 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
133 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
134 static void parp_redo(struct sk_buff *skb);
135
136 static const struct neigh_ops arp_generic_ops = {
137 .family = AF_INET,
138 .solicit = arp_solicit,
139 .error_report = arp_error_report,
140 .output = neigh_resolve_output,
141 .connected_output = neigh_connected_output,
142 .hh_output = dev_queue_xmit,
143 .queue_xmit = dev_queue_xmit,
144 };
145
146 static const struct neigh_ops arp_hh_ops = {
147 .family = AF_INET,
148 .solicit = arp_solicit,
149 .error_report = arp_error_report,
150 .output = neigh_resolve_output,
151 .connected_output = neigh_resolve_output,
152 .hh_output = dev_queue_xmit,
153 .queue_xmit = dev_queue_xmit,
154 };
155
156 static const struct neigh_ops arp_direct_ops = {
157 .family = AF_INET,
158 .output = dev_queue_xmit,
159 .connected_output = dev_queue_xmit,
160 .hh_output = dev_queue_xmit,
161 .queue_xmit = dev_queue_xmit,
162 };
163
164 static const struct neigh_ops arp_broken_ops = {
165 .family = AF_INET,
166 .solicit = arp_solicit,
167 .error_report = arp_error_report,
168 .output = neigh_compat_output,
169 .connected_output = neigh_compat_output,
170 .hh_output = dev_queue_xmit,
171 .queue_xmit = dev_queue_xmit,
172 };
173
174 struct neigh_table arp_tbl = {
175 .family = AF_INET,
176 .entry_size = sizeof(struct neighbour) + 4,
177 .key_len = 4,
178 .hash = arp_hash,
179 .constructor = arp_constructor,
180 .proxy_redo = parp_redo,
181 .id = "arp_cache",
182 .parms = {
183 .tbl = &arp_tbl,
184 .base_reachable_time = 30 * HZ,
185 .retrans_time = 1 * HZ,
186 .gc_staletime = 60 * HZ,
187 .reachable_time = 30 * HZ,
188 .delay_probe_time = 5 * HZ,
189 .queue_len = 3,
190 .ucast_probes = 3,
191 .mcast_probes = 3,
192 .anycast_delay = 1 * HZ,
193 .proxy_delay = (8 * HZ) / 10,
194 .proxy_qlen = 64,
195 .locktime = 1 * HZ,
196 },
197 .gc_interval = 30 * HZ,
198 .gc_thresh1 = 128,
199 .gc_thresh2 = 512,
200 .gc_thresh3 = 1024,
201 };
202 EXPORT_SYMBOL(arp_tbl);
203
204 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
205 {
206 switch (dev->type) {
207 case ARPHRD_ETHER:
208 case ARPHRD_FDDI:
209 case ARPHRD_IEEE802:
210 ip_eth_mc_map(addr, haddr);
211 return 0;
212 case ARPHRD_IEEE802_TR:
213 ip_tr_mc_map(addr, haddr);
214 return 0;
215 case ARPHRD_INFINIBAND:
216 ip_ib_mc_map(addr, dev->broadcast, haddr);
217 return 0;
218 default:
219 if (dir) {
220 memcpy(haddr, dev->broadcast, dev->addr_len);
221 return 0;
222 }
223 }
224 return -EINVAL;
225 }
226
227
228 static u32 arp_hash(const void *pkey,
229 const struct net_device *dev,
230 __u32 hash_rnd)
231 {
232 return jhash_2words(*(u32 *)pkey, dev->ifindex, hash_rnd);
233 }
234
235 static int arp_constructor(struct neighbour *neigh)
236 {
237 __be32 addr = *(__be32 *)neigh->primary_key;
238 struct net_device *dev = neigh->dev;
239 struct in_device *in_dev;
240 struct neigh_parms *parms;
241
242 rcu_read_lock();
243 in_dev = __in_dev_get_rcu(dev);
244 if (in_dev == NULL) {
245 rcu_read_unlock();
246 return -EINVAL;
247 }
248
249 neigh->type = inet_addr_type(dev_net(dev), addr);
250
251 parms = in_dev->arp_parms;
252 __neigh_parms_put(neigh->parms);
253 neigh->parms = neigh_parms_clone(parms);
254 rcu_read_unlock();
255
256 if (!dev->header_ops) {
257 neigh->nud_state = NUD_NOARP;
258 neigh->ops = &arp_direct_ops;
259 neigh->output = neigh->ops->queue_xmit;
260 } else {
261 /* Good devices (checked by reading texts, but only Ethernet is
262 tested)
263
264 ARPHRD_ETHER: (ethernet, apfddi)
265 ARPHRD_FDDI: (fddi)
266 ARPHRD_IEEE802: (tr)
267 ARPHRD_METRICOM: (strip)
268 ARPHRD_ARCNET:
269 etc. etc. etc.
270
271 ARPHRD_IPDDP will also work, if author repairs it.
272 I did not it, because this driver does not work even
273 in old paradigm.
274 */
275
276 #if 1
277 /* So... these "amateur" devices are hopeless.
278 The only thing, that I can say now:
279 It is very sad that we need to keep ugly obsolete
280 code to make them happy.
281
282 They should be moved to more reasonable state, now
283 they use rebuild_header INSTEAD OF hard_start_xmit!!!
284 Besides that, they are sort of out of date
285 (a lot of redundant clones/copies, useless in 2.1),
286 I wonder why people believe that they work.
287 */
288 switch (dev->type) {
289 default:
290 break;
291 case ARPHRD_ROSE:
292 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
293 case ARPHRD_AX25:
294 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
295 case ARPHRD_NETROM:
296 #endif
297 neigh->ops = &arp_broken_ops;
298 neigh->output = neigh->ops->output;
299 return 0;
300 #else
301 break;
302 #endif
303 }
304 #endif
305 if (neigh->type == RTN_MULTICAST) {
306 neigh->nud_state = NUD_NOARP;
307 arp_mc_map(addr, neigh->ha, dev, 1);
308 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
309 neigh->nud_state = NUD_NOARP;
310 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
311 } else if (neigh->type == RTN_BROADCAST ||
312 (dev->flags & IFF_POINTOPOINT)) {
313 neigh->nud_state = NUD_NOARP;
314 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
315 }
316
317 if (dev->header_ops->cache)
318 neigh->ops = &arp_hh_ops;
319 else
320 neigh->ops = &arp_generic_ops;
321
322 if (neigh->nud_state & NUD_VALID)
323 neigh->output = neigh->ops->connected_output;
324 else
325 neigh->output = neigh->ops->output;
326 }
327 return 0;
328 }
329
330 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
331 {
332 dst_link_failure(skb);
333 kfree_skb(skb);
334 }
335
336 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
337 {
338 __be32 saddr = 0;
339 u8 *dst_ha = NULL;
340 struct net_device *dev = neigh->dev;
341 __be32 target = *(__be32 *)neigh->primary_key;
342 int probes = atomic_read(&neigh->probes);
343 struct in_device *in_dev;
344
345 rcu_read_lock();
346 in_dev = __in_dev_get_rcu(dev);
347 if (!in_dev) {
348 rcu_read_unlock();
349 return;
350 }
351 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
352 default:
353 case 0: /* By default announce any local IP */
354 if (skb && inet_addr_type(dev_net(dev),
355 ip_hdr(skb)->saddr) == RTN_LOCAL)
356 saddr = ip_hdr(skb)->saddr;
357 break;
358 case 1: /* Restrict announcements of saddr in same subnet */
359 if (!skb)
360 break;
361 saddr = ip_hdr(skb)->saddr;
362 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
363 /* saddr should be known to target */
364 if (inet_addr_onlink(in_dev, target, saddr))
365 break;
366 }
367 saddr = 0;
368 break;
369 case 2: /* Avoid secondary IPs, get a primary/preferred one */
370 break;
371 }
372 rcu_read_unlock();
373
374 if (!saddr)
375 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
376
377 probes -= neigh->parms->ucast_probes;
378 if (probes < 0) {
379 if (!(neigh->nud_state & NUD_VALID))
380 printk(KERN_DEBUG
381 "trying to ucast probe in NUD_INVALID\n");
382 dst_ha = neigh->ha;
383 read_lock_bh(&neigh->lock);
384 } else {
385 probes -= neigh->parms->app_probes;
386 if (probes < 0) {
387 #ifdef CONFIG_ARPD
388 neigh_app_ns(neigh);
389 #endif
390 return;
391 }
392 }
393
394 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
395 dst_ha, dev->dev_addr, NULL);
396 if (dst_ha)
397 read_unlock_bh(&neigh->lock);
398 }
399
400 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
401 {
402 int scope;
403
404 switch (IN_DEV_ARP_IGNORE(in_dev)) {
405 case 0: /* Reply, the tip is already validated */
406 return 0;
407 case 1: /* Reply only if tip is configured on the incoming interface */
408 sip = 0;
409 scope = RT_SCOPE_HOST;
410 break;
411 case 2: /*
412 * Reply only if tip is configured on the incoming interface
413 * and is in same subnet as sip
414 */
415 scope = RT_SCOPE_HOST;
416 break;
417 case 3: /* Do not reply for scope host addresses */
418 sip = 0;
419 scope = RT_SCOPE_LINK;
420 break;
421 case 4: /* Reserved */
422 case 5:
423 case 6:
424 case 7:
425 return 0;
426 case 8: /* Do not reply */
427 return 1;
428 default:
429 return 0;
430 }
431 return !inet_confirm_addr(in_dev, sip, tip, scope);
432 }
433
434 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
435 {
436 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
437 .saddr = tip } } };
438 struct rtable *rt;
439 int flag = 0;
440 /*unsigned long now; */
441 struct net *net = dev_net(dev);
442
443 if (ip_route_output_key(net, &rt, &fl) < 0)
444 return 1;
445 if (rt->dst.dev != dev) {
446 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
447 flag = 1;
448 }
449 ip_rt_put(rt);
450 return flag;
451 }
452
453 /* OBSOLETE FUNCTIONS */
454
455 /*
456 * Find an arp mapping in the cache. If not found, post a request.
457 *
458 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
459 * even if it exists. It is supposed that skb->dev was mangled
460 * by a virtual device (eql, shaper). Nobody but broken devices
461 * is allowed to use this function, it is scheduled to be removed. --ANK
462 */
463
464 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
465 __be32 paddr, struct net_device *dev)
466 {
467 switch (addr_hint) {
468 case RTN_LOCAL:
469 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
470 memcpy(haddr, dev->dev_addr, dev->addr_len);
471 return 1;
472 case RTN_MULTICAST:
473 arp_mc_map(paddr, haddr, dev, 1);
474 return 1;
475 case RTN_BROADCAST:
476 memcpy(haddr, dev->broadcast, dev->addr_len);
477 return 1;
478 }
479 return 0;
480 }
481
482
483 int arp_find(unsigned char *haddr, struct sk_buff *skb)
484 {
485 struct net_device *dev = skb->dev;
486 __be32 paddr;
487 struct neighbour *n;
488
489 if (!skb_dst(skb)) {
490 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
491 kfree_skb(skb);
492 return 1;
493 }
494
495 paddr = skb_rtable(skb)->rt_gateway;
496
497 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
498 paddr, dev))
499 return 0;
500
501 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
502
503 if (n) {
504 n->used = jiffies;
505 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
506 read_lock_bh(&n->lock);
507 memcpy(haddr, n->ha, dev->addr_len);
508 read_unlock_bh(&n->lock);
509 neigh_release(n);
510 return 0;
511 }
512 neigh_release(n);
513 } else
514 kfree_skb(skb);
515 return 1;
516 }
517 EXPORT_SYMBOL(arp_find);
518
519 /* END OF OBSOLETE FUNCTIONS */
520
521 int arp_bind_neighbour(struct dst_entry *dst)
522 {
523 struct net_device *dev = dst->dev;
524 struct neighbour *n = dst->neighbour;
525
526 if (dev == NULL)
527 return -EINVAL;
528 if (n == NULL) {
529 __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
530 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
531 nexthop = 0;
532 n = __neigh_lookup_errno(
533 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
534 dev->type == ARPHRD_ATM ?
535 clip_tbl_hook :
536 #endif
537 &arp_tbl, &nexthop, dev);
538 if (IS_ERR(n))
539 return PTR_ERR(n);
540 dst->neighbour = n;
541 }
542 return 0;
543 }
544
545 /*
546 * Check if we can use proxy ARP for this path
547 */
548 static inline int arp_fwd_proxy(struct in_device *in_dev,
549 struct net_device *dev, struct rtable *rt)
550 {
551 struct in_device *out_dev;
552 int imi, omi = -1;
553
554 if (rt->dst.dev == dev)
555 return 0;
556
557 if (!IN_DEV_PROXY_ARP(in_dev))
558 return 0;
559 imi = IN_DEV_MEDIUM_ID(in_dev);
560 if (imi == 0)
561 return 1;
562 if (imi == -1)
563 return 0;
564
565 /* place to check for proxy_arp for routes */
566
567 out_dev = __in_dev_get_rcu(rt->dst.dev);
568 if (out_dev)
569 omi = IN_DEV_MEDIUM_ID(out_dev);
570
571 return omi != imi && omi != -1;
572 }
573
574 /*
575 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
576 *
577 * RFC3069 supports proxy arp replies back to the same interface. This
578 * is done to support (ethernet) switch features, like RFC 3069, where
579 * the individual ports are not allowed to communicate with each
580 * other, BUT they are allowed to talk to the upstream router. As
581 * described in RFC 3069, it is possible to allow these hosts to
582 * communicate through the upstream router, by proxy_arp'ing.
583 *
584 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
585 *
586 * This technology is known by different names:
587 * In RFC 3069 it is called VLAN Aggregation.
588 * Cisco and Allied Telesyn call it Private VLAN.
589 * Hewlett-Packard call it Source-Port filtering or port-isolation.
590 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
591 *
592 */
593 static inline int arp_fwd_pvlan(struct in_device *in_dev,
594 struct net_device *dev, struct rtable *rt,
595 __be32 sip, __be32 tip)
596 {
597 /* Private VLAN is only concerned about the same ethernet segment */
598 if (rt->dst.dev != dev)
599 return 0;
600
601 /* Don't reply on self probes (often done by windowz boxes)*/
602 if (sip == tip)
603 return 0;
604
605 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
606 return 1;
607 else
608 return 0;
609 }
610
611 /*
612 * Interface to link layer: send routine and receive handler.
613 */
614
615 /*
616 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
617 * message.
618 */
619 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
620 struct net_device *dev, __be32 src_ip,
621 const unsigned char *dest_hw,
622 const unsigned char *src_hw,
623 const unsigned char *target_hw)
624 {
625 struct sk_buff *skb;
626 struct arphdr *arp;
627 unsigned char *arp_ptr;
628
629 /*
630 * Allocate a buffer
631 */
632
633 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
634 if (skb == NULL)
635 return NULL;
636
637 skb_reserve(skb, LL_RESERVED_SPACE(dev));
638 skb_reset_network_header(skb);
639 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
640 skb->dev = dev;
641 skb->protocol = htons(ETH_P_ARP);
642 if (src_hw == NULL)
643 src_hw = dev->dev_addr;
644 if (dest_hw == NULL)
645 dest_hw = dev->broadcast;
646
647 /*
648 * Fill the device header for the ARP frame
649 */
650 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
651 goto out;
652
653 /*
654 * Fill out the arp protocol part.
655 *
656 * The arp hardware type should match the device type, except for FDDI,
657 * which (according to RFC 1390) should always equal 1 (Ethernet).
658 */
659 /*
660 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
661 * DIX code for the protocol. Make these device structure fields.
662 */
663 switch (dev->type) {
664 default:
665 arp->ar_hrd = htons(dev->type);
666 arp->ar_pro = htons(ETH_P_IP);
667 break;
668
669 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
670 case ARPHRD_AX25:
671 arp->ar_hrd = htons(ARPHRD_AX25);
672 arp->ar_pro = htons(AX25_P_IP);
673 break;
674
675 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
676 case ARPHRD_NETROM:
677 arp->ar_hrd = htons(ARPHRD_NETROM);
678 arp->ar_pro = htons(AX25_P_IP);
679 break;
680 #endif
681 #endif
682
683 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
684 case ARPHRD_FDDI:
685 arp->ar_hrd = htons(ARPHRD_ETHER);
686 arp->ar_pro = htons(ETH_P_IP);
687 break;
688 #endif
689 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
690 case ARPHRD_IEEE802_TR:
691 arp->ar_hrd = htons(ARPHRD_IEEE802);
692 arp->ar_pro = htons(ETH_P_IP);
693 break;
694 #endif
695 }
696
697 arp->ar_hln = dev->addr_len;
698 arp->ar_pln = 4;
699 arp->ar_op = htons(type);
700
701 arp_ptr = (unsigned char *)(arp + 1);
702
703 memcpy(arp_ptr, src_hw, dev->addr_len);
704 arp_ptr += dev->addr_len;
705 memcpy(arp_ptr, &src_ip, 4);
706 arp_ptr += 4;
707 if (target_hw != NULL)
708 memcpy(arp_ptr, target_hw, dev->addr_len);
709 else
710 memset(arp_ptr, 0, dev->addr_len);
711 arp_ptr += dev->addr_len;
712 memcpy(arp_ptr, &dest_ip, 4);
713
714 return skb;
715
716 out:
717 kfree_skb(skb);
718 return NULL;
719 }
720 EXPORT_SYMBOL(arp_create);
721
722 /*
723 * Send an arp packet.
724 */
725 void arp_xmit(struct sk_buff *skb)
726 {
727 /* Send it off, maybe filter it using firewalling first. */
728 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
729 }
730 EXPORT_SYMBOL(arp_xmit);
731
732 /*
733 * Create and send an arp packet.
734 */
735 void arp_send(int type, int ptype, __be32 dest_ip,
736 struct net_device *dev, __be32 src_ip,
737 const unsigned char *dest_hw, const unsigned char *src_hw,
738 const unsigned char *target_hw)
739 {
740 struct sk_buff *skb;
741
742 /*
743 * No arp on this interface.
744 */
745
746 if (dev->flags&IFF_NOARP)
747 return;
748
749 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
750 dest_hw, src_hw, target_hw);
751 if (skb == NULL)
752 return;
753
754 arp_xmit(skb);
755 }
756 EXPORT_SYMBOL(arp_send);
757
758 /*
759 * Process an arp request.
760 */
761
762 static int arp_process(struct sk_buff *skb)
763 {
764 struct net_device *dev = skb->dev;
765 struct in_device *in_dev = __in_dev_get_rcu(dev);
766 struct arphdr *arp;
767 unsigned char *arp_ptr;
768 struct rtable *rt;
769 unsigned char *sha;
770 __be32 sip, tip;
771 u16 dev_type = dev->type;
772 int addr_type;
773 struct neighbour *n;
774 struct net *net = dev_net(dev);
775
776 /* arp_rcv below verifies the ARP header and verifies the device
777 * is ARP'able.
778 */
779
780 if (in_dev == NULL)
781 goto out;
782
783 arp = arp_hdr(skb);
784
785 switch (dev_type) {
786 default:
787 if (arp->ar_pro != htons(ETH_P_IP) ||
788 htons(dev_type) != arp->ar_hrd)
789 goto out;
790 break;
791 case ARPHRD_ETHER:
792 case ARPHRD_IEEE802_TR:
793 case ARPHRD_FDDI:
794 case ARPHRD_IEEE802:
795 /*
796 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
797 * devices, according to RFC 2625) devices will accept ARP
798 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
799 * This is the case also of FDDI, where the RFC 1390 says that
800 * FDDI devices should accept ARP hardware of (1) Ethernet,
801 * however, to be more robust, we'll accept both 1 (Ethernet)
802 * or 6 (IEEE 802.2)
803 */
804 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
805 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
806 arp->ar_pro != htons(ETH_P_IP))
807 goto out;
808 break;
809 case ARPHRD_AX25:
810 if (arp->ar_pro != htons(AX25_P_IP) ||
811 arp->ar_hrd != htons(ARPHRD_AX25))
812 goto out;
813 break;
814 case ARPHRD_NETROM:
815 if (arp->ar_pro != htons(AX25_P_IP) ||
816 arp->ar_hrd != htons(ARPHRD_NETROM))
817 goto out;
818 break;
819 }
820
821 /* Understand only these message types */
822
823 if (arp->ar_op != htons(ARPOP_REPLY) &&
824 arp->ar_op != htons(ARPOP_REQUEST))
825 goto out;
826
827 /*
828 * Extract fields
829 */
830 arp_ptr = (unsigned char *)(arp + 1);
831 sha = arp_ptr;
832 arp_ptr += dev->addr_len;
833 memcpy(&sip, arp_ptr, 4);
834 arp_ptr += 4;
835 arp_ptr += dev->addr_len;
836 memcpy(&tip, arp_ptr, 4);
837 /*
838 * Check for bad requests for 127.x.x.x and requests for multicast
839 * addresses. If this is one such, delete it.
840 */
841 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
842 goto out;
843
844 /*
845 * Special case: We must set Frame Relay source Q.922 address
846 */
847 if (dev_type == ARPHRD_DLCI)
848 sha = dev->broadcast;
849
850 /*
851 * Process entry. The idea here is we want to send a reply if it is a
852 * request for us or if it is a request for someone else that we hold
853 * a proxy for. We want to add an entry to our cache if it is a reply
854 * to us or if it is a request for our address.
855 * (The assumption for this last is that if someone is requesting our
856 * address, they are probably intending to talk to us, so it saves time
857 * if we cache their address. Their address is also probably not in
858 * our cache, since ours is not in their cache.)
859 *
860 * Putting this another way, we only care about replies if they are to
861 * us, in which case we add them to the cache. For requests, we care
862 * about those for us and those for our proxies. We reply to both,
863 * and in the case of requests for us we add the requester to the arp
864 * cache.
865 */
866
867 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
868 if (sip == 0) {
869 if (arp->ar_op == htons(ARPOP_REQUEST) &&
870 inet_addr_type(net, tip) == RTN_LOCAL &&
871 !arp_ignore(in_dev, sip, tip))
872 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
873 dev->dev_addr, sha);
874 goto out;
875 }
876
877 if (arp->ar_op == htons(ARPOP_REQUEST) &&
878 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
879
880 rt = skb_rtable(skb);
881 addr_type = rt->rt_type;
882
883 if (addr_type == RTN_LOCAL) {
884 int dont_send;
885
886 dont_send = arp_ignore(in_dev, sip, tip);
887 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
888 dont_send |= arp_filter(sip, tip, dev);
889 if (!dont_send) {
890 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
891 if (n) {
892 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
893 dev, tip, sha, dev->dev_addr,
894 sha);
895 neigh_release(n);
896 }
897 }
898 goto out;
899 } else if (IN_DEV_FORWARD(in_dev)) {
900 if (addr_type == RTN_UNICAST &&
901 (arp_fwd_proxy(in_dev, dev, rt) ||
902 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
903 pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
904 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
905 if (n)
906 neigh_release(n);
907
908 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
909 skb->pkt_type == PACKET_HOST ||
910 in_dev->arp_parms->proxy_delay == 0) {
911 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
912 dev, tip, sha, dev->dev_addr,
913 sha);
914 } else {
915 pneigh_enqueue(&arp_tbl,
916 in_dev->arp_parms, skb);
917 return 0;
918 }
919 goto out;
920 }
921 }
922 }
923
924 /* Update our ARP tables */
925
926 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
927
928 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
929 /* Unsolicited ARP is not accepted by default.
930 It is possible, that this option should be enabled for some
931 devices (strip is candidate)
932 */
933 if (n == NULL &&
934 (arp->ar_op == htons(ARPOP_REPLY) ||
935 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
936 inet_addr_type(net, sip) == RTN_UNICAST)
937 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
938 }
939
940 if (n) {
941 int state = NUD_REACHABLE;
942 int override;
943
944 /* If several different ARP replies follows back-to-back,
945 use the FIRST one. It is possible, if several proxy
946 agents are active. Taking the first reply prevents
947 arp trashing and chooses the fastest router.
948 */
949 override = time_after(jiffies, n->updated + n->parms->locktime);
950
951 /* Broadcast replies and request packets
952 do not assert neighbour reachability.
953 */
954 if (arp->ar_op != htons(ARPOP_REPLY) ||
955 skb->pkt_type != PACKET_HOST)
956 state = NUD_STALE;
957 neigh_update(n, sha, state,
958 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
959 neigh_release(n);
960 }
961
962 out:
963 consume_skb(skb);
964 return 0;
965 }
966
967 static void parp_redo(struct sk_buff *skb)
968 {
969 arp_process(skb);
970 }
971
972
973 /*
974 * Receive an arp request from the device layer.
975 */
976
977 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
978 struct packet_type *pt, struct net_device *orig_dev)
979 {
980 struct arphdr *arp;
981
982 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
983 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
984 goto freeskb;
985
986 arp = arp_hdr(skb);
987 if (arp->ar_hln != dev->addr_len ||
988 dev->flags & IFF_NOARP ||
989 skb->pkt_type == PACKET_OTHERHOST ||
990 skb->pkt_type == PACKET_LOOPBACK ||
991 arp->ar_pln != 4)
992 goto freeskb;
993
994 skb = skb_share_check(skb, GFP_ATOMIC);
995 if (skb == NULL)
996 goto out_of_mem;
997
998 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
999
1000 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
1001
1002 freeskb:
1003 kfree_skb(skb);
1004 out_of_mem:
1005 return 0;
1006 }
1007
1008 /*
1009 * User level interface (ioctl)
1010 */
1011
1012 /*
1013 * Set (create) an ARP cache entry.
1014 */
1015
1016 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1017 {
1018 if (dev == NULL) {
1019 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1020 return 0;
1021 }
1022 if (__in_dev_get_rtnl(dev)) {
1023 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1024 return 0;
1025 }
1026 return -ENXIO;
1027 }
1028
1029 static int arp_req_set_public(struct net *net, struct arpreq *r,
1030 struct net_device *dev)
1031 {
1032 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1033 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1034
1035 if (mask && mask != htonl(0xFFFFFFFF))
1036 return -EINVAL;
1037 if (!dev && (r->arp_flags & ATF_COM)) {
1038 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1039 r->arp_ha.sa_data);
1040 if (!dev)
1041 return -ENODEV;
1042 }
1043 if (mask) {
1044 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1045 return -ENOBUFS;
1046 return 0;
1047 }
1048
1049 return arp_req_set_proxy(net, dev, 1);
1050 }
1051
1052 static int arp_req_set(struct net *net, struct arpreq *r,
1053 struct net_device *dev)
1054 {
1055 __be32 ip;
1056 struct neighbour *neigh;
1057 int err;
1058
1059 if (r->arp_flags & ATF_PUBL)
1060 return arp_req_set_public(net, r, dev);
1061
1062 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1063 if (r->arp_flags & ATF_PERM)
1064 r->arp_flags |= ATF_COM;
1065 if (dev == NULL) {
1066 struct flowi fl = { .nl_u.ip4_u = { .daddr = ip,
1067 .tos = RTO_ONLINK } };
1068 struct rtable *rt;
1069 err = ip_route_output_key(net, &rt, &fl);
1070 if (err != 0)
1071 return err;
1072 dev = rt->dst.dev;
1073 ip_rt_put(rt);
1074 if (!dev)
1075 return -EINVAL;
1076 }
1077 switch (dev->type) {
1078 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1079 case ARPHRD_FDDI:
1080 /*
1081 * According to RFC 1390, FDDI devices should accept ARP
1082 * hardware types of 1 (Ethernet). However, to be more
1083 * robust, we'll accept hardware types of either 1 (Ethernet)
1084 * or 6 (IEEE 802.2).
1085 */
1086 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1087 r->arp_ha.sa_family != ARPHRD_ETHER &&
1088 r->arp_ha.sa_family != ARPHRD_IEEE802)
1089 return -EINVAL;
1090 break;
1091 #endif
1092 default:
1093 if (r->arp_ha.sa_family != dev->type)
1094 return -EINVAL;
1095 break;
1096 }
1097
1098 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1099 err = PTR_ERR(neigh);
1100 if (!IS_ERR(neigh)) {
1101 unsigned state = NUD_STALE;
1102 if (r->arp_flags & ATF_PERM)
1103 state = NUD_PERMANENT;
1104 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1105 r->arp_ha.sa_data : NULL, state,
1106 NEIGH_UPDATE_F_OVERRIDE |
1107 NEIGH_UPDATE_F_ADMIN);
1108 neigh_release(neigh);
1109 }
1110 return err;
1111 }
1112
1113 static unsigned arp_state_to_flags(struct neighbour *neigh)
1114 {
1115 if (neigh->nud_state&NUD_PERMANENT)
1116 return ATF_PERM | ATF_COM;
1117 else if (neigh->nud_state&NUD_VALID)
1118 return ATF_COM;
1119 else
1120 return 0;
1121 }
1122
1123 /*
1124 * Get an ARP cache entry.
1125 */
1126
1127 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1128 {
1129 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1130 struct neighbour *neigh;
1131 int err = -ENXIO;
1132
1133 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1134 if (neigh) {
1135 read_lock_bh(&neigh->lock);
1136 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1137 r->arp_flags = arp_state_to_flags(neigh);
1138 read_unlock_bh(&neigh->lock);
1139 r->arp_ha.sa_family = dev->type;
1140 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1141 neigh_release(neigh);
1142 err = 0;
1143 }
1144 return err;
1145 }
1146
1147 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1148 struct net_device *dev)
1149 {
1150 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1151 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1152
1153 if (mask == htonl(0xFFFFFFFF))
1154 return pneigh_delete(&arp_tbl, net, &ip, dev);
1155
1156 if (mask)
1157 return -EINVAL;
1158
1159 return arp_req_set_proxy(net, dev, 0);
1160 }
1161
1162 static int arp_req_delete(struct net *net, struct arpreq *r,
1163 struct net_device *dev)
1164 {
1165 int err;
1166 __be32 ip;
1167 struct neighbour *neigh;
1168
1169 if (r->arp_flags & ATF_PUBL)
1170 return arp_req_delete_public(net, r, dev);
1171
1172 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1173 if (dev == NULL) {
1174 struct flowi fl = { .nl_u.ip4_u = { .daddr = ip,
1175 .tos = RTO_ONLINK } };
1176 struct rtable *rt;
1177 err = ip_route_output_key(net, &rt, &fl);
1178 if (err != 0)
1179 return err;
1180 dev = rt->dst.dev;
1181 ip_rt_put(rt);
1182 if (!dev)
1183 return -EINVAL;
1184 }
1185 err = -ENXIO;
1186 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1187 if (neigh) {
1188 if (neigh->nud_state & ~NUD_NOARP)
1189 err = neigh_update(neigh, NULL, NUD_FAILED,
1190 NEIGH_UPDATE_F_OVERRIDE|
1191 NEIGH_UPDATE_F_ADMIN);
1192 neigh_release(neigh);
1193 }
1194 return err;
1195 }
1196
1197 /*
1198 * Handle an ARP layer I/O control request.
1199 */
1200
1201 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1202 {
1203 int err;
1204 struct arpreq r;
1205 struct net_device *dev = NULL;
1206
1207 switch (cmd) {
1208 case SIOCDARP:
1209 case SIOCSARP:
1210 if (!capable(CAP_NET_ADMIN))
1211 return -EPERM;
1212 case SIOCGARP:
1213 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1214 if (err)
1215 return -EFAULT;
1216 break;
1217 default:
1218 return -EINVAL;
1219 }
1220
1221 if (r.arp_pa.sa_family != AF_INET)
1222 return -EPFNOSUPPORT;
1223
1224 if (!(r.arp_flags & ATF_PUBL) &&
1225 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1226 return -EINVAL;
1227 if (!(r.arp_flags & ATF_NETMASK))
1228 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1229 htonl(0xFFFFFFFFUL);
1230 rtnl_lock();
1231 if (r.arp_dev[0]) {
1232 err = -ENODEV;
1233 dev = __dev_get_by_name(net, r.arp_dev);
1234 if (dev == NULL)
1235 goto out;
1236
1237 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1238 if (!r.arp_ha.sa_family)
1239 r.arp_ha.sa_family = dev->type;
1240 err = -EINVAL;
1241 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1242 goto out;
1243 } else if (cmd == SIOCGARP) {
1244 err = -ENODEV;
1245 goto out;
1246 }
1247
1248 switch (cmd) {
1249 case SIOCDARP:
1250 err = arp_req_delete(net, &r, dev);
1251 break;
1252 case SIOCSARP:
1253 err = arp_req_set(net, &r, dev);
1254 break;
1255 case SIOCGARP:
1256 err = arp_req_get(&r, dev);
1257 if (!err && copy_to_user(arg, &r, sizeof(r)))
1258 err = -EFAULT;
1259 break;
1260 }
1261 out:
1262 rtnl_unlock();
1263 return err;
1264 }
1265
1266 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1267 void *ptr)
1268 {
1269 struct net_device *dev = ptr;
1270
1271 switch (event) {
1272 case NETDEV_CHANGEADDR:
1273 neigh_changeaddr(&arp_tbl, dev);
1274 rt_cache_flush(dev_net(dev), 0);
1275 break;
1276 default:
1277 break;
1278 }
1279
1280 return NOTIFY_DONE;
1281 }
1282
1283 static struct notifier_block arp_netdev_notifier = {
1284 .notifier_call = arp_netdev_event,
1285 };
1286
1287 /* Note, that it is not on notifier chain.
1288 It is necessary, that this routine was called after route cache will be
1289 flushed.
1290 */
1291 void arp_ifdown(struct net_device *dev)
1292 {
1293 neigh_ifdown(&arp_tbl, dev);
1294 }
1295
1296
1297 /*
1298 * Called once on startup.
1299 */
1300
1301 static struct packet_type arp_packet_type __read_mostly = {
1302 .type = cpu_to_be16(ETH_P_ARP),
1303 .func = arp_rcv,
1304 };
1305
1306 static int arp_proc_init(void);
1307
1308 void __init arp_init(void)
1309 {
1310 neigh_table_init(&arp_tbl);
1311
1312 dev_add_pack(&arp_packet_type);
1313 arp_proc_init();
1314 #ifdef CONFIG_SYSCTL
1315 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1316 #endif
1317 register_netdevice_notifier(&arp_netdev_notifier);
1318 }
1319
1320 #ifdef CONFIG_PROC_FS
1321 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1322
1323 /* ------------------------------------------------------------------------ */
1324 /*
1325 * ax25 -> ASCII conversion
1326 */
1327 static char *ax2asc2(ax25_address *a, char *buf)
1328 {
1329 char c, *s;
1330 int n;
1331
1332 for (n = 0, s = buf; n < 6; n++) {
1333 c = (a->ax25_call[n] >> 1) & 0x7F;
1334
1335 if (c != ' ')
1336 *s++ = c;
1337 }
1338
1339 *s++ = '-';
1340 n = (a->ax25_call[6] >> 1) & 0x0F;
1341 if (n > 9) {
1342 *s++ = '1';
1343 n -= 10;
1344 }
1345
1346 *s++ = n + '0';
1347 *s++ = '\0';
1348
1349 if (*buf == '\0' || *buf == '-')
1350 return "*";
1351
1352 return buf;
1353 }
1354 #endif /* CONFIG_AX25 */
1355
1356 #define HBUFFERLEN 30
1357
1358 static void arp_format_neigh_entry(struct seq_file *seq,
1359 struct neighbour *n)
1360 {
1361 char hbuffer[HBUFFERLEN];
1362 int k, j;
1363 char tbuf[16];
1364 struct net_device *dev = n->dev;
1365 int hatype = dev->type;
1366
1367 read_lock(&n->lock);
1368 /* Convert hardware address to XX:XX:XX:XX ... form. */
1369 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1370 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1371 ax2asc2((ax25_address *)n->ha, hbuffer);
1372 else {
1373 #endif
1374 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1375 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1376 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1377 hbuffer[k++] = ':';
1378 }
1379 if (k != 0)
1380 --k;
1381 hbuffer[k] = 0;
1382 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1383 }
1384 #endif
1385 sprintf(tbuf, "%pI4", n->primary_key);
1386 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1387 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1388 read_unlock(&n->lock);
1389 }
1390
1391 static void arp_format_pneigh_entry(struct seq_file *seq,
1392 struct pneigh_entry *n)
1393 {
1394 struct net_device *dev = n->dev;
1395 int hatype = dev ? dev->type : 0;
1396 char tbuf[16];
1397
1398 sprintf(tbuf, "%pI4", n->key);
1399 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1400 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1401 dev ? dev->name : "*");
1402 }
1403
1404 static int arp_seq_show(struct seq_file *seq, void *v)
1405 {
1406 if (v == SEQ_START_TOKEN) {
1407 seq_puts(seq, "IP address HW type Flags "
1408 "HW address Mask Device\n");
1409 } else {
1410 struct neigh_seq_state *state = seq->private;
1411
1412 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1413 arp_format_pneigh_entry(seq, v);
1414 else
1415 arp_format_neigh_entry(seq, v);
1416 }
1417
1418 return 0;
1419 }
1420
1421 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1422 {
1423 /* Don't want to confuse "arp -a" w/ magic entries,
1424 * so we tell the generic iterator to skip NUD_NOARP.
1425 */
1426 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1427 }
1428
1429 /* ------------------------------------------------------------------------ */
1430
1431 static const struct seq_operations arp_seq_ops = {
1432 .start = arp_seq_start,
1433 .next = neigh_seq_next,
1434 .stop = neigh_seq_stop,
1435 .show = arp_seq_show,
1436 };
1437
1438 static int arp_seq_open(struct inode *inode, struct file *file)
1439 {
1440 return seq_open_net(inode, file, &arp_seq_ops,
1441 sizeof(struct neigh_seq_state));
1442 }
1443
1444 static const struct file_operations arp_seq_fops = {
1445 .owner = THIS_MODULE,
1446 .open = arp_seq_open,
1447 .read = seq_read,
1448 .llseek = seq_lseek,
1449 .release = seq_release_net,
1450 };
1451
1452
1453 static int __net_init arp_net_init(struct net *net)
1454 {
1455 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1456 return -ENOMEM;
1457 return 0;
1458 }
1459
1460 static void __net_exit arp_net_exit(struct net *net)
1461 {
1462 proc_net_remove(net, "arp");
1463 }
1464
1465 static struct pernet_operations arp_net_ops = {
1466 .init = arp_net_init,
1467 .exit = arp_net_exit,
1468 };
1469
1470 static int __init arp_proc_init(void)
1471 {
1472 return register_pernet_subsys(&arp_net_ops);
1473 }
1474
1475 #else /* CONFIG_PROC_FS */
1476
1477 static int __init arp_proc_init(void)
1478 {
1479 return 0;
1480 }
1481
1482 #endif /* CONFIG_PROC_FS */