[NET]: Conversions from kmalloc+memset to k(z|c)alloc.
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / net / decnet / dn_dev.c
1 /*
2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * DECnet Device Layer
7 *
8 * Authors: Steve Whitehouse <SteveW@ACM.org>
9 * Eduardo Marcelo Serrat <emserrat@geocities.com>
10 *
11 * Changes:
12 * Steve Whitehouse : Devices now see incoming frames so they
13 * can mark on who it came from.
14 * Steve Whitehouse : Fixed bug in creating neighbours. Each neighbour
15 * can now have a device specific setup func.
16 * Steve Whitehouse : Added /proc/sys/net/decnet/conf/<dev>/
17 * Steve Whitehouse : Fixed bug which sometimes killed timer
18 * Steve Whitehouse : Multiple ifaddr support
19 * Steve Whitehouse : SIOCGIFCONF is now a compile time option
20 * Steve Whitehouse : /proc/sys/net/decnet/conf/<sys>/forwarding
21 * Steve Whitehouse : Removed timer1 - it's a user space issue now
22 * Patrick Caulfield : Fixed router hello message format
23 * Steve Whitehouse : Got rid of constant sizes for blksize for
24 * devices. All mtu based now.
25 */
26
27 #include <linux/capability.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/init.h>
31 #include <linux/net.h>
32 #include <linux/netdevice.h>
33 #include <linux/proc_fs.h>
34 #include <linux/seq_file.h>
35 #include <linux/timer.h>
36 #include <linux/string.h>
37 #include <linux/if_arp.h>
38 #include <linux/if_ether.h>
39 #include <linux/skbuff.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/sysctl.h>
42 #include <linux/notifier.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <net/neighbour.h>
46 #include <net/dst.h>
47 #include <net/flow.h>
48 #include <net/dn.h>
49 #include <net/dn_dev.h>
50 #include <net/dn_route.h>
51 #include <net/dn_neigh.h>
52 #include <net/dn_fib.h>
53
54 #define DN_IFREQ_SIZE (sizeof(struct ifreq) - sizeof(struct sockaddr) + sizeof(struct sockaddr_dn))
55
56 static char dn_rt_all_end_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x04,0x00,0x00};
57 static char dn_rt_all_rt_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x03,0x00,0x00};
58 static char dn_hiord[ETH_ALEN] = {0xAA,0x00,0x04,0x00,0x00,0x00};
59 static unsigned char dn_eco_version[3] = {0x02,0x00,0x00};
60
61 extern struct neigh_table dn_neigh_table;
62
63 /*
64 * decnet_address is kept in network order.
65 */
66 __le16 decnet_address = 0;
67
68 static DEFINE_RWLOCK(dndev_lock);
69 static struct net_device *decnet_default_device;
70 static BLOCKING_NOTIFIER_HEAD(dnaddr_chain);
71
72 static struct dn_dev *dn_dev_create(struct net_device *dev, int *err);
73 static void dn_dev_delete(struct net_device *dev);
74 static void rtmsg_ifa(int event, struct dn_ifaddr *ifa);
75
76 static int dn_eth_up(struct net_device *);
77 static void dn_eth_down(struct net_device *);
78 static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa);
79 static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa);
80
81 static struct dn_dev_parms dn_dev_list[] = {
82 {
83 .type = ARPHRD_ETHER, /* Ethernet */
84 .mode = DN_DEV_BCAST,
85 .state = DN_DEV_S_RU,
86 .t2 = 1,
87 .t3 = 10,
88 .name = "ethernet",
89 .ctl_name = NET_DECNET_CONF_ETHER,
90 .up = dn_eth_up,
91 .down = dn_eth_down,
92 .timer3 = dn_send_brd_hello,
93 },
94 {
95 .type = ARPHRD_IPGRE, /* DECnet tunneled over GRE in IP */
96 .mode = DN_DEV_BCAST,
97 .state = DN_DEV_S_RU,
98 .t2 = 1,
99 .t3 = 10,
100 .name = "ipgre",
101 .ctl_name = NET_DECNET_CONF_GRE,
102 .timer3 = dn_send_brd_hello,
103 },
104 #if 0
105 {
106 .type = ARPHRD_X25, /* Bog standard X.25 */
107 .mode = DN_DEV_UCAST,
108 .state = DN_DEV_S_DS,
109 .t2 = 1,
110 .t3 = 120,
111 .name = "x25",
112 .ctl_name = NET_DECNET_CONF_X25,
113 .timer3 = dn_send_ptp_hello,
114 },
115 #endif
116 #if 0
117 {
118 .type = ARPHRD_PPP, /* DECnet over PPP */
119 .mode = DN_DEV_BCAST,
120 .state = DN_DEV_S_RU,
121 .t2 = 1,
122 .t3 = 10,
123 .name = "ppp",
124 .ctl_name = NET_DECNET_CONF_PPP,
125 .timer3 = dn_send_brd_hello,
126 },
127 #endif
128 {
129 .type = ARPHRD_DDCMP, /* DECnet over DDCMP */
130 .mode = DN_DEV_UCAST,
131 .state = DN_DEV_S_DS,
132 .t2 = 1,
133 .t3 = 120,
134 .name = "ddcmp",
135 .ctl_name = NET_DECNET_CONF_DDCMP,
136 .timer3 = dn_send_ptp_hello,
137 },
138 {
139 .type = ARPHRD_LOOPBACK, /* Loopback interface - always last */
140 .mode = DN_DEV_BCAST,
141 .state = DN_DEV_S_RU,
142 .t2 = 1,
143 .t3 = 10,
144 .name = "loopback",
145 .ctl_name = NET_DECNET_CONF_LOOPBACK,
146 .timer3 = dn_send_brd_hello,
147 }
148 };
149
150 #define DN_DEV_LIST_SIZE (sizeof(dn_dev_list)/sizeof(struct dn_dev_parms))
151
152 #define DN_DEV_PARMS_OFFSET(x) ((int) ((char *) &((struct dn_dev_parms *)0)->x))
153
154 #ifdef CONFIG_SYSCTL
155
156 static int min_t2[] = { 1 };
157 static int max_t2[] = { 60 }; /* No max specified, but this seems sensible */
158 static int min_t3[] = { 1 };
159 static int max_t3[] = { 8191 }; /* Must fit in 16 bits when multiplied by BCT3MULT or T3MULT */
160
161 static int min_priority[1];
162 static int max_priority[] = { 127 }; /* From DECnet spec */
163
164 static int dn_forwarding_proc(ctl_table *, int, struct file *,
165 void __user *, size_t *, loff_t *);
166 static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
167 void __user *oldval, size_t __user *oldlenp,
168 void __user *newval, size_t newlen,
169 void **context);
170
171 static struct dn_dev_sysctl_table {
172 struct ctl_table_header *sysctl_header;
173 ctl_table dn_dev_vars[5];
174 ctl_table dn_dev_dev[2];
175 ctl_table dn_dev_conf_dir[2];
176 ctl_table dn_dev_proto_dir[2];
177 ctl_table dn_dev_root_dir[2];
178 } dn_dev_sysctl = {
179 NULL,
180 {
181 {
182 .ctl_name = NET_DECNET_CONF_DEV_FORWARDING,
183 .procname = "forwarding",
184 .data = (void *)DN_DEV_PARMS_OFFSET(forwarding),
185 .maxlen = sizeof(int),
186 .mode = 0644,
187 .proc_handler = dn_forwarding_proc,
188 .strategy = dn_forwarding_sysctl,
189 },
190 {
191 .ctl_name = NET_DECNET_CONF_DEV_PRIORITY,
192 .procname = "priority",
193 .data = (void *)DN_DEV_PARMS_OFFSET(priority),
194 .maxlen = sizeof(int),
195 .mode = 0644,
196 .proc_handler = proc_dointvec_minmax,
197 .strategy = sysctl_intvec,
198 .extra1 = &min_priority,
199 .extra2 = &max_priority
200 },
201 {
202 .ctl_name = NET_DECNET_CONF_DEV_T2,
203 .procname = "t2",
204 .data = (void *)DN_DEV_PARMS_OFFSET(t2),
205 .maxlen = sizeof(int),
206 .mode = 0644,
207 .proc_handler = proc_dointvec_minmax,
208 .strategy = sysctl_intvec,
209 .extra1 = &min_t2,
210 .extra2 = &max_t2
211 },
212 {
213 .ctl_name = NET_DECNET_CONF_DEV_T3,
214 .procname = "t3",
215 .data = (void *)DN_DEV_PARMS_OFFSET(t3),
216 .maxlen = sizeof(int),
217 .mode = 0644,
218 .proc_handler = proc_dointvec_minmax,
219 .strategy = sysctl_intvec,
220 .extra1 = &min_t3,
221 .extra2 = &max_t3
222 },
223 {0}
224 },
225 {{
226 .ctl_name = 0,
227 .procname = "",
228 .mode = 0555,
229 .child = dn_dev_sysctl.dn_dev_vars
230 }, {0}},
231 {{
232 .ctl_name = NET_DECNET_CONF,
233 .procname = "conf",
234 .mode = 0555,
235 .child = dn_dev_sysctl.dn_dev_dev
236 }, {0}},
237 {{
238 .ctl_name = NET_DECNET,
239 .procname = "decnet",
240 .mode = 0555,
241 .child = dn_dev_sysctl.dn_dev_conf_dir
242 }, {0}},
243 {{
244 .ctl_name = CTL_NET,
245 .procname = "net",
246 .mode = 0555,
247 .child = dn_dev_sysctl.dn_dev_proto_dir
248 }, {0}}
249 };
250
251 static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
252 {
253 struct dn_dev_sysctl_table *t;
254 int i;
255
256 t = kmalloc(sizeof(*t), GFP_KERNEL);
257 if (t == NULL)
258 return;
259
260 memcpy(t, &dn_dev_sysctl, sizeof(*t));
261
262 for(i = 0; i < ARRAY_SIZE(t->dn_dev_vars) - 1; i++) {
263 long offset = (long)t->dn_dev_vars[i].data;
264 t->dn_dev_vars[i].data = ((char *)parms) + offset;
265 t->dn_dev_vars[i].de = NULL;
266 }
267
268 if (dev) {
269 t->dn_dev_dev[0].procname = dev->name;
270 t->dn_dev_dev[0].ctl_name = dev->ifindex;
271 } else {
272 t->dn_dev_dev[0].procname = parms->name;
273 t->dn_dev_dev[0].ctl_name = parms->ctl_name;
274 }
275
276 t->dn_dev_dev[0].child = t->dn_dev_vars;
277 t->dn_dev_dev[0].de = NULL;
278 t->dn_dev_conf_dir[0].child = t->dn_dev_dev;
279 t->dn_dev_conf_dir[0].de = NULL;
280 t->dn_dev_proto_dir[0].child = t->dn_dev_conf_dir;
281 t->dn_dev_proto_dir[0].de = NULL;
282 t->dn_dev_root_dir[0].child = t->dn_dev_proto_dir;
283 t->dn_dev_root_dir[0].de = NULL;
284 t->dn_dev_vars[0].extra1 = (void *)dev;
285
286 t->sysctl_header = register_sysctl_table(t->dn_dev_root_dir, 0);
287 if (t->sysctl_header == NULL)
288 kfree(t);
289 else
290 parms->sysctl = t;
291 }
292
293 static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
294 {
295 if (parms->sysctl) {
296 struct dn_dev_sysctl_table *t = parms->sysctl;
297 parms->sysctl = NULL;
298 unregister_sysctl_table(t->sysctl_header);
299 kfree(t);
300 }
301 }
302
303 static int dn_forwarding_proc(ctl_table *table, int write,
304 struct file *filep,
305 void __user *buffer,
306 size_t *lenp, loff_t *ppos)
307 {
308 #ifdef CONFIG_DECNET_ROUTER
309 struct net_device *dev = table->extra1;
310 struct dn_dev *dn_db;
311 int err;
312 int tmp, old;
313
314 if (table->extra1 == NULL)
315 return -EINVAL;
316
317 dn_db = dev->dn_ptr;
318 old = dn_db->parms.forwarding;
319
320 err = proc_dointvec(table, write, filep, buffer, lenp, ppos);
321
322 if ((err >= 0) && write) {
323 if (dn_db->parms.forwarding < 0)
324 dn_db->parms.forwarding = 0;
325 if (dn_db->parms.forwarding > 2)
326 dn_db->parms.forwarding = 2;
327 /*
328 * What an ugly hack this is... its works, just. It
329 * would be nice if sysctl/proc were just that little
330 * bit more flexible so I don't have to write a special
331 * routine, or suffer hacks like this - SJW
332 */
333 tmp = dn_db->parms.forwarding;
334 dn_db->parms.forwarding = old;
335 if (dn_db->parms.down)
336 dn_db->parms.down(dev);
337 dn_db->parms.forwarding = tmp;
338 if (dn_db->parms.up)
339 dn_db->parms.up(dev);
340 }
341
342 return err;
343 #else
344 return -EINVAL;
345 #endif
346 }
347
348 static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen,
349 void __user *oldval, size_t __user *oldlenp,
350 void __user *newval, size_t newlen,
351 void **context)
352 {
353 #ifdef CONFIG_DECNET_ROUTER
354 struct net_device *dev = table->extra1;
355 struct dn_dev *dn_db;
356 int value;
357
358 if (table->extra1 == NULL)
359 return -EINVAL;
360
361 dn_db = dev->dn_ptr;
362
363 if (newval && newlen) {
364 if (newlen != sizeof(int))
365 return -EINVAL;
366
367 if (get_user(value, (int __user *)newval))
368 return -EFAULT;
369 if (value < 0)
370 return -EINVAL;
371 if (value > 2)
372 return -EINVAL;
373
374 if (dn_db->parms.down)
375 dn_db->parms.down(dev);
376 dn_db->parms.forwarding = value;
377 if (dn_db->parms.up)
378 dn_db->parms.up(dev);
379 }
380
381 return 0;
382 #else
383 return -EINVAL;
384 #endif
385 }
386
387 #else /* CONFIG_SYSCTL */
388 static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
389 {
390 }
391 static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
392 {
393 }
394
395 #endif /* CONFIG_SYSCTL */
396
397 static inline __u16 mtu2blksize(struct net_device *dev)
398 {
399 u32 blksize = dev->mtu;
400 if (blksize > 0xffff)
401 blksize = 0xffff;
402
403 if (dev->type == ARPHRD_ETHER ||
404 dev->type == ARPHRD_PPP ||
405 dev->type == ARPHRD_IPGRE ||
406 dev->type == ARPHRD_LOOPBACK)
407 blksize -= 2;
408
409 return (__u16)blksize;
410 }
411
412 static struct dn_ifaddr *dn_dev_alloc_ifa(void)
413 {
414 struct dn_ifaddr *ifa;
415
416 ifa = kzalloc(sizeof(*ifa), GFP_KERNEL);
417
418 return ifa;
419 }
420
421 static __inline__ void dn_dev_free_ifa(struct dn_ifaddr *ifa)
422 {
423 kfree(ifa);
424 }
425
426 static void dn_dev_del_ifa(struct dn_dev *dn_db, struct dn_ifaddr **ifap, int destroy)
427 {
428 struct dn_ifaddr *ifa1 = *ifap;
429 unsigned char mac_addr[6];
430 struct net_device *dev = dn_db->dev;
431
432 ASSERT_RTNL();
433
434 *ifap = ifa1->ifa_next;
435
436 if (dn_db->dev->type == ARPHRD_ETHER) {
437 if (ifa1->ifa_local != dn_eth2dn(dev->dev_addr)) {
438 dn_dn2eth(mac_addr, ifa1->ifa_local);
439 dev_mc_delete(dev, mac_addr, ETH_ALEN, 0);
440 }
441 }
442
443 rtmsg_ifa(RTM_DELADDR, ifa1);
444 blocking_notifier_call_chain(&dnaddr_chain, NETDEV_DOWN, ifa1);
445 if (destroy) {
446 dn_dev_free_ifa(ifa1);
447
448 if (dn_db->ifa_list == NULL)
449 dn_dev_delete(dn_db->dev);
450 }
451 }
452
453 static int dn_dev_insert_ifa(struct dn_dev *dn_db, struct dn_ifaddr *ifa)
454 {
455 struct net_device *dev = dn_db->dev;
456 struct dn_ifaddr *ifa1;
457 unsigned char mac_addr[6];
458
459 ASSERT_RTNL();
460
461 /* Check for duplicates */
462 for(ifa1 = dn_db->ifa_list; ifa1; ifa1 = ifa1->ifa_next) {
463 if (ifa1->ifa_local == ifa->ifa_local)
464 return -EEXIST;
465 }
466
467 if (dev->type == ARPHRD_ETHER) {
468 if (ifa->ifa_local != dn_eth2dn(dev->dev_addr)) {
469 dn_dn2eth(mac_addr, ifa->ifa_local);
470 dev_mc_add(dev, mac_addr, ETH_ALEN, 0);
471 dev_mc_upload(dev);
472 }
473 }
474
475 ifa->ifa_next = dn_db->ifa_list;
476 dn_db->ifa_list = ifa;
477
478 rtmsg_ifa(RTM_NEWADDR, ifa);
479 blocking_notifier_call_chain(&dnaddr_chain, NETDEV_UP, ifa);
480
481 return 0;
482 }
483
484 static int dn_dev_set_ifa(struct net_device *dev, struct dn_ifaddr *ifa)
485 {
486 struct dn_dev *dn_db = dev->dn_ptr;
487 int rv;
488
489 if (dn_db == NULL) {
490 int err;
491 dn_db = dn_dev_create(dev, &err);
492 if (dn_db == NULL)
493 return err;
494 }
495
496 ifa->ifa_dev = dn_db;
497
498 if (dev->flags & IFF_LOOPBACK)
499 ifa->ifa_scope = RT_SCOPE_HOST;
500
501 rv = dn_dev_insert_ifa(dn_db, ifa);
502 if (rv)
503 dn_dev_free_ifa(ifa);
504 return rv;
505 }
506
507
508 int dn_dev_ioctl(unsigned int cmd, void __user *arg)
509 {
510 char buffer[DN_IFREQ_SIZE];
511 struct ifreq *ifr = (struct ifreq *)buffer;
512 struct sockaddr_dn *sdn = (struct sockaddr_dn *)&ifr->ifr_addr;
513 struct dn_dev *dn_db;
514 struct net_device *dev;
515 struct dn_ifaddr *ifa = NULL, **ifap = NULL;
516 int ret = 0;
517
518 if (copy_from_user(ifr, arg, DN_IFREQ_SIZE))
519 return -EFAULT;
520 ifr->ifr_name[IFNAMSIZ-1] = 0;
521
522 #ifdef CONFIG_KMOD
523 dev_load(ifr->ifr_name);
524 #endif
525
526 switch(cmd) {
527 case SIOCGIFADDR:
528 break;
529 case SIOCSIFADDR:
530 if (!capable(CAP_NET_ADMIN))
531 return -EACCES;
532 if (sdn->sdn_family != AF_DECnet)
533 return -EINVAL;
534 break;
535 default:
536 return -EINVAL;
537 }
538
539 rtnl_lock();
540
541 if ((dev = __dev_get_by_name(ifr->ifr_name)) == NULL) {
542 ret = -ENODEV;
543 goto done;
544 }
545
546 if ((dn_db = dev->dn_ptr) != NULL) {
547 for (ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next)
548 if (strcmp(ifr->ifr_name, ifa->ifa_label) == 0)
549 break;
550 }
551
552 if (ifa == NULL && cmd != SIOCSIFADDR) {
553 ret = -EADDRNOTAVAIL;
554 goto done;
555 }
556
557 switch(cmd) {
558 case SIOCGIFADDR:
559 *((__le16 *)sdn->sdn_nodeaddr) = ifa->ifa_local;
560 goto rarok;
561
562 case SIOCSIFADDR:
563 if (!ifa) {
564 if ((ifa = dn_dev_alloc_ifa()) == NULL) {
565 ret = -ENOBUFS;
566 break;
567 }
568 memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
569 } else {
570 if (ifa->ifa_local == dn_saddr2dn(sdn))
571 break;
572 dn_dev_del_ifa(dn_db, ifap, 0);
573 }
574
575 ifa->ifa_local = ifa->ifa_address = dn_saddr2dn(sdn);
576
577 ret = dn_dev_set_ifa(dev, ifa);
578 }
579 done:
580 rtnl_unlock();
581
582 return ret;
583 rarok:
584 if (copy_to_user(arg, ifr, DN_IFREQ_SIZE))
585 ret = -EFAULT;
586 goto done;
587 }
588
589 struct net_device *dn_dev_get_default(void)
590 {
591 struct net_device *dev;
592 read_lock(&dndev_lock);
593 dev = decnet_default_device;
594 if (dev) {
595 if (dev->dn_ptr)
596 dev_hold(dev);
597 else
598 dev = NULL;
599 }
600 read_unlock(&dndev_lock);
601 return dev;
602 }
603
604 int dn_dev_set_default(struct net_device *dev, int force)
605 {
606 struct net_device *old = NULL;
607 int rv = -EBUSY;
608 if (!dev->dn_ptr)
609 return -ENODEV;
610 write_lock(&dndev_lock);
611 if (force || decnet_default_device == NULL) {
612 old = decnet_default_device;
613 decnet_default_device = dev;
614 rv = 0;
615 }
616 write_unlock(&dndev_lock);
617 if (old)
618 dev_put(old);
619 return rv;
620 }
621
622 static void dn_dev_check_default(struct net_device *dev)
623 {
624 write_lock(&dndev_lock);
625 if (dev == decnet_default_device) {
626 decnet_default_device = NULL;
627 } else {
628 dev = NULL;
629 }
630 write_unlock(&dndev_lock);
631 if (dev)
632 dev_put(dev);
633 }
634
635 static struct dn_dev *dn_dev_by_index(int ifindex)
636 {
637 struct net_device *dev;
638 struct dn_dev *dn_dev = NULL;
639 dev = dev_get_by_index(ifindex);
640 if (dev) {
641 dn_dev = dev->dn_ptr;
642 dev_put(dev);
643 }
644
645 return dn_dev;
646 }
647
648 static int dn_dev_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
649 {
650 struct rtattr **rta = arg;
651 struct dn_dev *dn_db;
652 struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
653 struct dn_ifaddr *ifa, **ifap;
654
655 if ((dn_db = dn_dev_by_index(ifm->ifa_index)) == NULL)
656 return -EADDRNOTAVAIL;
657
658 for(ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next) {
659 void *tmp = rta[IFA_LOCAL-1];
660 if ((tmp && memcmp(RTA_DATA(tmp), &ifa->ifa_local, 2)) ||
661 (rta[IFA_LABEL-1] && rtattr_strcmp(rta[IFA_LABEL-1], ifa->ifa_label)))
662 continue;
663
664 dn_dev_del_ifa(dn_db, ifap, 1);
665 return 0;
666 }
667
668 return -EADDRNOTAVAIL;
669 }
670
671 static int dn_dev_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
672 {
673 struct rtattr **rta = arg;
674 struct net_device *dev;
675 struct dn_dev *dn_db;
676 struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
677 struct dn_ifaddr *ifa;
678 int rv;
679
680 if (rta[IFA_LOCAL-1] == NULL)
681 return -EINVAL;
682
683 if ((dev = __dev_get_by_index(ifm->ifa_index)) == NULL)
684 return -ENODEV;
685
686 if ((dn_db = dev->dn_ptr) == NULL) {
687 int err;
688 dn_db = dn_dev_create(dev, &err);
689 if (!dn_db)
690 return err;
691 }
692
693 if ((ifa = dn_dev_alloc_ifa()) == NULL)
694 return -ENOBUFS;
695
696 if (!rta[IFA_ADDRESS - 1])
697 rta[IFA_ADDRESS - 1] = rta[IFA_LOCAL - 1];
698 memcpy(&ifa->ifa_local, RTA_DATA(rta[IFA_LOCAL-1]), 2);
699 memcpy(&ifa->ifa_address, RTA_DATA(rta[IFA_ADDRESS-1]), 2);
700 ifa->ifa_flags = ifm->ifa_flags;
701 ifa->ifa_scope = ifm->ifa_scope;
702 ifa->ifa_dev = dn_db;
703 if (rta[IFA_LABEL-1])
704 rtattr_strlcpy(ifa->ifa_label, rta[IFA_LABEL-1], IFNAMSIZ);
705 else
706 memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
707
708 rv = dn_dev_insert_ifa(dn_db, ifa);
709 if (rv)
710 dn_dev_free_ifa(ifa);
711 return rv;
712 }
713
714 static int dn_dev_fill_ifaddr(struct sk_buff *skb, struct dn_ifaddr *ifa,
715 u32 pid, u32 seq, int event, unsigned int flags)
716 {
717 struct ifaddrmsg *ifm;
718 struct nlmsghdr *nlh;
719 unsigned char *b = skb->tail;
720
721 nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags);
722 ifm = NLMSG_DATA(nlh);
723
724 ifm->ifa_family = AF_DECnet;
725 ifm->ifa_prefixlen = 16;
726 ifm->ifa_flags = ifa->ifa_flags | IFA_F_PERMANENT;
727 ifm->ifa_scope = ifa->ifa_scope;
728 ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
729 if (ifa->ifa_address)
730 RTA_PUT(skb, IFA_ADDRESS, 2, &ifa->ifa_address);
731 if (ifa->ifa_local)
732 RTA_PUT(skb, IFA_LOCAL, 2, &ifa->ifa_local);
733 if (ifa->ifa_label[0])
734 RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label);
735 nlh->nlmsg_len = skb->tail - b;
736 return skb->len;
737
738 nlmsg_failure:
739 rtattr_failure:
740 skb_trim(skb, b - skb->data);
741 return -1;
742 }
743
744 static void rtmsg_ifa(int event, struct dn_ifaddr *ifa)
745 {
746 struct sk_buff *skb;
747 int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128);
748
749 skb = alloc_skb(size, GFP_KERNEL);
750 if (!skb) {
751 netlink_set_err(rtnl, 0, RTNLGRP_DECnet_IFADDR, ENOBUFS);
752 return;
753 }
754 if (dn_dev_fill_ifaddr(skb, ifa, 0, 0, event, 0) < 0) {
755 kfree_skb(skb);
756 netlink_set_err(rtnl, 0, RTNLGRP_DECnet_IFADDR, EINVAL);
757 return;
758 }
759 NETLINK_CB(skb).dst_group = RTNLGRP_DECnet_IFADDR;
760 netlink_broadcast(rtnl, skb, 0, RTNLGRP_DECnet_IFADDR, GFP_KERNEL);
761 }
762
763 static int dn_dev_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
764 {
765 int idx, dn_idx;
766 int s_idx, s_dn_idx;
767 struct net_device *dev;
768 struct dn_dev *dn_db;
769 struct dn_ifaddr *ifa;
770
771 s_idx = cb->args[0];
772 s_dn_idx = dn_idx = cb->args[1];
773 read_lock(&dev_base_lock);
774 for(dev = dev_base, idx = 0; dev; dev = dev->next, idx++) {
775 if (idx < s_idx)
776 continue;
777 if (idx > s_idx)
778 s_dn_idx = 0;
779 if ((dn_db = dev->dn_ptr) == NULL)
780 continue;
781
782 for(ifa = dn_db->ifa_list, dn_idx = 0; ifa; ifa = ifa->ifa_next, dn_idx++) {
783 if (dn_idx < s_dn_idx)
784 continue;
785
786 if (dn_dev_fill_ifaddr(skb, ifa,
787 NETLINK_CB(cb->skb).pid,
788 cb->nlh->nlmsg_seq,
789 RTM_NEWADDR,
790 NLM_F_MULTI) <= 0)
791 goto done;
792 }
793 }
794 done:
795 read_unlock(&dev_base_lock);
796 cb->args[0] = idx;
797 cb->args[1] = dn_idx;
798
799 return skb->len;
800 }
801
802 static int dn_dev_get_first(struct net_device *dev, __le16 *addr)
803 {
804 struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
805 struct dn_ifaddr *ifa;
806 int rv = -ENODEV;
807 if (dn_db == NULL)
808 goto out;
809 ifa = dn_db->ifa_list;
810 if (ifa != NULL) {
811 *addr = ifa->ifa_local;
812 rv = 0;
813 }
814 out:
815 return rv;
816 }
817
818 /*
819 * Find a default address to bind to.
820 *
821 * This is one of those areas where the initial VMS concepts don't really
822 * map onto the Linux concepts, and since we introduced multiple addresses
823 * per interface we have to cope with slightly odd ways of finding out what
824 * "our address" really is. Mostly it's not a problem; for this we just guess
825 * a sensible default. Eventually the routing code will take care of all the
826 * nasties for us I hope.
827 */
828 int dn_dev_bind_default(__le16 *addr)
829 {
830 struct net_device *dev;
831 int rv;
832 dev = dn_dev_get_default();
833 last_chance:
834 if (dev) {
835 read_lock(&dev_base_lock);
836 rv = dn_dev_get_first(dev, addr);
837 read_unlock(&dev_base_lock);
838 dev_put(dev);
839 if (rv == 0 || dev == &loopback_dev)
840 return rv;
841 }
842 dev = &loopback_dev;
843 dev_hold(dev);
844 goto last_chance;
845 }
846
847 static void dn_send_endnode_hello(struct net_device *dev, struct dn_ifaddr *ifa)
848 {
849 struct endnode_hello_message *msg;
850 struct sk_buff *skb = NULL;
851 __le16 *pktlen;
852 struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
853
854 if ((skb = dn_alloc_skb(NULL, sizeof(*msg), GFP_ATOMIC)) == NULL)
855 return;
856
857 skb->dev = dev;
858
859 msg = (struct endnode_hello_message *)skb_put(skb,sizeof(*msg));
860
861 msg->msgflg = 0x0D;
862 memcpy(msg->tiver, dn_eco_version, 3);
863 dn_dn2eth(msg->id, ifa->ifa_local);
864 msg->iinfo = DN_RT_INFO_ENDN;
865 msg->blksize = dn_htons(mtu2blksize(dev));
866 msg->area = 0x00;
867 memset(msg->seed, 0, 8);
868 memcpy(msg->neighbor, dn_hiord, ETH_ALEN);
869
870 if (dn_db->router) {
871 struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
872 dn_dn2eth(msg->neighbor, dn->addr);
873 }
874
875 msg->timer = dn_htons((unsigned short)dn_db->parms.t3);
876 msg->mpd = 0x00;
877 msg->datalen = 0x02;
878 memset(msg->data, 0xAA, 2);
879
880 pktlen = (__le16 *)skb_push(skb,2);
881 *pktlen = dn_htons(skb->len - 2);
882
883 skb->nh.raw = skb->data;
884
885 dn_rt_finish_output(skb, dn_rt_all_rt_mcast, msg->id);
886 }
887
888
889 #define DRDELAY (5 * HZ)
890
891 static int dn_am_i_a_router(struct dn_neigh *dn, struct dn_dev *dn_db, struct dn_ifaddr *ifa)
892 {
893 /* First check time since device went up */
894 if ((jiffies - dn_db->uptime) < DRDELAY)
895 return 0;
896
897 /* If there is no router, then yes... */
898 if (!dn_db->router)
899 return 1;
900
901 /* otherwise only if we have a higher priority or.. */
902 if (dn->priority < dn_db->parms.priority)
903 return 1;
904
905 /* if we have equal priority and a higher node number */
906 if (dn->priority != dn_db->parms.priority)
907 return 0;
908
909 if (dn_ntohs(dn->addr) < dn_ntohs(ifa->ifa_local))
910 return 1;
911
912 return 0;
913 }
914
915 static void dn_send_router_hello(struct net_device *dev, struct dn_ifaddr *ifa)
916 {
917 int n;
918 struct dn_dev *dn_db = dev->dn_ptr;
919 struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
920 struct sk_buff *skb;
921 size_t size;
922 unsigned char *ptr;
923 unsigned char *i1, *i2;
924 __le16 *pktlen;
925 char *src;
926
927 if (mtu2blksize(dev) < (26 + 7))
928 return;
929
930 n = mtu2blksize(dev) - 26;
931 n /= 7;
932
933 if (n > 32)
934 n = 32;
935
936 size = 2 + 26 + 7 * n;
937
938 if ((skb = dn_alloc_skb(NULL, size, GFP_ATOMIC)) == NULL)
939 return;
940
941 skb->dev = dev;
942 ptr = skb_put(skb, size);
943
944 *ptr++ = DN_RT_PKT_CNTL | DN_RT_PKT_ERTH;
945 *ptr++ = 2; /* ECO */
946 *ptr++ = 0;
947 *ptr++ = 0;
948 dn_dn2eth(ptr, ifa->ifa_local);
949 src = ptr;
950 ptr += ETH_ALEN;
951 *ptr++ = dn_db->parms.forwarding == 1 ?
952 DN_RT_INFO_L1RT : DN_RT_INFO_L2RT;
953 *((__le16 *)ptr) = dn_htons(mtu2blksize(dev));
954 ptr += 2;
955 *ptr++ = dn_db->parms.priority; /* Priority */
956 *ptr++ = 0; /* Area: Reserved */
957 *((__le16 *)ptr) = dn_htons((unsigned short)dn_db->parms.t3);
958 ptr += 2;
959 *ptr++ = 0; /* MPD: Reserved */
960 i1 = ptr++;
961 memset(ptr, 0, 7); /* Name: Reserved */
962 ptr += 7;
963 i2 = ptr++;
964
965 n = dn_neigh_elist(dev, ptr, n);
966
967 *i2 = 7 * n;
968 *i1 = 8 + *i2;
969
970 skb_trim(skb, (27 + *i2));
971
972 pktlen = (__le16 *)skb_push(skb, 2);
973 *pktlen = dn_htons(skb->len - 2);
974
975 skb->nh.raw = skb->data;
976
977 if (dn_am_i_a_router(dn, dn_db, ifa)) {
978 struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
979 if (skb2) {
980 dn_rt_finish_output(skb2, dn_rt_all_end_mcast, src);
981 }
982 }
983
984 dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
985 }
986
987 static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa)
988 {
989 struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
990
991 if (dn_db->parms.forwarding == 0)
992 dn_send_endnode_hello(dev, ifa);
993 else
994 dn_send_router_hello(dev, ifa);
995 }
996
997 static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa)
998 {
999 int tdlen = 16;
1000 int size = dev->hard_header_len + 2 + 4 + tdlen;
1001 struct sk_buff *skb = dn_alloc_skb(NULL, size, GFP_ATOMIC);
1002 int i;
1003 unsigned char *ptr;
1004 char src[ETH_ALEN];
1005
1006 if (skb == NULL)
1007 return ;
1008
1009 skb->dev = dev;
1010 skb_push(skb, dev->hard_header_len);
1011 ptr = skb_put(skb, 2 + 4 + tdlen);
1012
1013 *ptr++ = DN_RT_PKT_HELO;
1014 *((__le16 *)ptr) = ifa->ifa_local;
1015 ptr += 2;
1016 *ptr++ = tdlen;
1017
1018 for(i = 0; i < tdlen; i++)
1019 *ptr++ = 0252;
1020
1021 dn_dn2eth(src, ifa->ifa_local);
1022 dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
1023 }
1024
1025 static int dn_eth_up(struct net_device *dev)
1026 {
1027 struct dn_dev *dn_db = dev->dn_ptr;
1028
1029 if (dn_db->parms.forwarding == 0)
1030 dev_mc_add(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
1031 else
1032 dev_mc_add(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
1033
1034 dev_mc_upload(dev);
1035
1036 dn_db->use_long = 1;
1037
1038 return 0;
1039 }
1040
1041 static void dn_eth_down(struct net_device *dev)
1042 {
1043 struct dn_dev *dn_db = dev->dn_ptr;
1044
1045 if (dn_db->parms.forwarding == 0)
1046 dev_mc_delete(dev, dn_rt_all_end_mcast, ETH_ALEN, 0);
1047 else
1048 dev_mc_delete(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0);
1049 }
1050
1051 static void dn_dev_set_timer(struct net_device *dev);
1052
1053 static void dn_dev_timer_func(unsigned long arg)
1054 {
1055 struct net_device *dev = (struct net_device *)arg;
1056 struct dn_dev *dn_db = dev->dn_ptr;
1057 struct dn_ifaddr *ifa;
1058
1059 if (dn_db->t3 <= dn_db->parms.t2) {
1060 if (dn_db->parms.timer3) {
1061 for(ifa = dn_db->ifa_list; ifa; ifa = ifa->ifa_next) {
1062 if (!(ifa->ifa_flags & IFA_F_SECONDARY))
1063 dn_db->parms.timer3(dev, ifa);
1064 }
1065 }
1066 dn_db->t3 = dn_db->parms.t3;
1067 } else {
1068 dn_db->t3 -= dn_db->parms.t2;
1069 }
1070
1071 dn_dev_set_timer(dev);
1072 }
1073
1074 static void dn_dev_set_timer(struct net_device *dev)
1075 {
1076 struct dn_dev *dn_db = dev->dn_ptr;
1077
1078 if (dn_db->parms.t2 > dn_db->parms.t3)
1079 dn_db->parms.t2 = dn_db->parms.t3;
1080
1081 dn_db->timer.data = (unsigned long)dev;
1082 dn_db->timer.function = dn_dev_timer_func;
1083 dn_db->timer.expires = jiffies + (dn_db->parms.t2 * HZ);
1084
1085 add_timer(&dn_db->timer);
1086 }
1087
1088 struct dn_dev *dn_dev_create(struct net_device *dev, int *err)
1089 {
1090 int i;
1091 struct dn_dev_parms *p = dn_dev_list;
1092 struct dn_dev *dn_db;
1093
1094 for(i = 0; i < DN_DEV_LIST_SIZE; i++, p++) {
1095 if (p->type == dev->type)
1096 break;
1097 }
1098
1099 *err = -ENODEV;
1100 if (i == DN_DEV_LIST_SIZE)
1101 return NULL;
1102
1103 *err = -ENOBUFS;
1104 if ((dn_db = kzalloc(sizeof(struct dn_dev), GFP_ATOMIC)) == NULL)
1105 return NULL;
1106
1107 memcpy(&dn_db->parms, p, sizeof(struct dn_dev_parms));
1108 smp_wmb();
1109 dev->dn_ptr = dn_db;
1110 dn_db->dev = dev;
1111 init_timer(&dn_db->timer);
1112
1113 dn_db->uptime = jiffies;
1114 if (dn_db->parms.up) {
1115 if (dn_db->parms.up(dev) < 0) {
1116 dev->dn_ptr = NULL;
1117 kfree(dn_db);
1118 return NULL;
1119 }
1120 }
1121
1122 dn_db->neigh_parms = neigh_parms_alloc(dev, &dn_neigh_table);
1123
1124 dn_dev_sysctl_register(dev, &dn_db->parms);
1125
1126 dn_dev_set_timer(dev);
1127
1128 *err = 0;
1129 return dn_db;
1130 }
1131
1132
1133 /*
1134 * This processes a device up event. We only start up
1135 * the loopback device & ethernet devices with correct
1136 * MAC addreses automatically. Others must be started
1137 * specifically.
1138 *
1139 * FIXME: How should we configure the loopback address ? If we could dispense
1140 * with using decnet_address here and for autobind, it will be one less thing
1141 * for users to worry about setting up.
1142 */
1143
1144 void dn_dev_up(struct net_device *dev)
1145 {
1146 struct dn_ifaddr *ifa;
1147 __le16 addr = decnet_address;
1148 int maybe_default = 0;
1149 struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr;
1150
1151 if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_LOOPBACK))
1152 return;
1153
1154 /*
1155 * Need to ensure that loopback device has a dn_db attached to it
1156 * to allow creation of neighbours against it, even though it might
1157 * not have a local address of its own. Might as well do the same for
1158 * all autoconfigured interfaces.
1159 */
1160 if (dn_db == NULL) {
1161 int err;
1162 dn_db = dn_dev_create(dev, &err);
1163 if (dn_db == NULL)
1164 return;
1165 }
1166
1167 if (dev->type == ARPHRD_ETHER) {
1168 if (memcmp(dev->dev_addr, dn_hiord, 4) != 0)
1169 return;
1170 addr = dn_eth2dn(dev->dev_addr);
1171 maybe_default = 1;
1172 }
1173
1174 if (addr == 0)
1175 return;
1176
1177 if ((ifa = dn_dev_alloc_ifa()) == NULL)
1178 return;
1179
1180 ifa->ifa_local = ifa->ifa_address = addr;
1181 ifa->ifa_flags = 0;
1182 ifa->ifa_scope = RT_SCOPE_UNIVERSE;
1183 strcpy(ifa->ifa_label, dev->name);
1184
1185 dn_dev_set_ifa(dev, ifa);
1186
1187 /*
1188 * Automagically set the default device to the first automatically
1189 * configured ethernet card in the system.
1190 */
1191 if (maybe_default) {
1192 dev_hold(dev);
1193 if (dn_dev_set_default(dev, 0))
1194 dev_put(dev);
1195 }
1196 }
1197
1198 static void dn_dev_delete(struct net_device *dev)
1199 {
1200 struct dn_dev *dn_db = dev->dn_ptr;
1201
1202 if (dn_db == NULL)
1203 return;
1204
1205 del_timer_sync(&dn_db->timer);
1206 dn_dev_sysctl_unregister(&dn_db->parms);
1207 dn_dev_check_default(dev);
1208 neigh_ifdown(&dn_neigh_table, dev);
1209
1210 if (dn_db->parms.down)
1211 dn_db->parms.down(dev);
1212
1213 dev->dn_ptr = NULL;
1214
1215 neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
1216 neigh_ifdown(&dn_neigh_table, dev);
1217
1218 if (dn_db->router)
1219 neigh_release(dn_db->router);
1220 if (dn_db->peer)
1221 neigh_release(dn_db->peer);
1222
1223 kfree(dn_db);
1224 }
1225
1226 void dn_dev_down(struct net_device *dev)
1227 {
1228 struct dn_dev *dn_db = dev->dn_ptr;
1229 struct dn_ifaddr *ifa;
1230
1231 if (dn_db == NULL)
1232 return;
1233
1234 while((ifa = dn_db->ifa_list) != NULL) {
1235 dn_dev_del_ifa(dn_db, &dn_db->ifa_list, 0);
1236 dn_dev_free_ifa(ifa);
1237 }
1238
1239 dn_dev_delete(dev);
1240 }
1241
1242 void dn_dev_init_pkt(struct sk_buff *skb)
1243 {
1244 return;
1245 }
1246
1247 void dn_dev_veri_pkt(struct sk_buff *skb)
1248 {
1249 return;
1250 }
1251
1252 void dn_dev_hello(struct sk_buff *skb)
1253 {
1254 return;
1255 }
1256
1257 void dn_dev_devices_off(void)
1258 {
1259 struct net_device *dev;
1260
1261 rtnl_lock();
1262 for(dev = dev_base; dev; dev = dev->next)
1263 dn_dev_down(dev);
1264 rtnl_unlock();
1265
1266 }
1267
1268 void dn_dev_devices_on(void)
1269 {
1270 struct net_device *dev;
1271
1272 rtnl_lock();
1273 for(dev = dev_base; dev; dev = dev->next) {
1274 if (dev->flags & IFF_UP)
1275 dn_dev_up(dev);
1276 }
1277 rtnl_unlock();
1278 }
1279
1280 int register_dnaddr_notifier(struct notifier_block *nb)
1281 {
1282 return blocking_notifier_chain_register(&dnaddr_chain, nb);
1283 }
1284
1285 int unregister_dnaddr_notifier(struct notifier_block *nb)
1286 {
1287 return blocking_notifier_chain_unregister(&dnaddr_chain, nb);
1288 }
1289
1290 #ifdef CONFIG_PROC_FS
1291 static inline struct net_device *dn_dev_get_next(struct seq_file *seq, struct net_device *dev)
1292 {
1293 do {
1294 dev = dev->next;
1295 } while(dev && !dev->dn_ptr);
1296
1297 return dev;
1298 }
1299
1300 static struct net_device *dn_dev_get_idx(struct seq_file *seq, loff_t pos)
1301 {
1302 struct net_device *dev;
1303
1304 dev = dev_base;
1305 if (dev && !dev->dn_ptr)
1306 dev = dn_dev_get_next(seq, dev);
1307 if (pos) {
1308 while(dev && (dev = dn_dev_get_next(seq, dev)))
1309 --pos;
1310 }
1311 return dev;
1312 }
1313
1314 static void *dn_dev_seq_start(struct seq_file *seq, loff_t *pos)
1315 {
1316 if (*pos) {
1317 struct net_device *dev;
1318 read_lock(&dev_base_lock);
1319 dev = dn_dev_get_idx(seq, *pos - 1);
1320 if (dev == NULL)
1321 read_unlock(&dev_base_lock);
1322 return dev;
1323 }
1324 return SEQ_START_TOKEN;
1325 }
1326
1327 static void *dn_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1328 {
1329 struct net_device *dev = v;
1330 loff_t one = 1;
1331
1332 if (v == SEQ_START_TOKEN) {
1333 dev = dn_dev_seq_start(seq, &one);
1334 } else {
1335 dev = dn_dev_get_next(seq, dev);
1336 if (dev == NULL)
1337 read_unlock(&dev_base_lock);
1338 }
1339 ++*pos;
1340 return dev;
1341 }
1342
1343 static void dn_dev_seq_stop(struct seq_file *seq, void *v)
1344 {
1345 if (v && v != SEQ_START_TOKEN)
1346 read_unlock(&dev_base_lock);
1347 }
1348
1349 static char *dn_type2asc(char type)
1350 {
1351 switch(type) {
1352 case DN_DEV_BCAST:
1353 return "B";
1354 case DN_DEV_UCAST:
1355 return "U";
1356 case DN_DEV_MPOINT:
1357 return "M";
1358 }
1359
1360 return "?";
1361 }
1362
1363 static int dn_dev_seq_show(struct seq_file *seq, void *v)
1364 {
1365 if (v == SEQ_START_TOKEN)
1366 seq_puts(seq, "Name Flags T1 Timer1 T3 Timer3 BlkSize Pri State DevType Router Peer\n");
1367 else {
1368 struct net_device *dev = v;
1369 char peer_buf[DN_ASCBUF_LEN];
1370 char router_buf[DN_ASCBUF_LEN];
1371 struct dn_dev *dn_db = dev->dn_ptr;
1372
1373 seq_printf(seq, "%-8s %1s %04u %04u %04lu %04lu"
1374 " %04hu %03d %02x %-10s %-7s %-7s\n",
1375 dev->name ? dev->name : "???",
1376 dn_type2asc(dn_db->parms.mode),
1377 0, 0,
1378 dn_db->t3, dn_db->parms.t3,
1379 mtu2blksize(dev),
1380 dn_db->parms.priority,
1381 dn_db->parms.state, dn_db->parms.name,
1382 dn_db->router ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->router->primary_key), router_buf) : "",
1383 dn_db->peer ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->peer->primary_key), peer_buf) : "");
1384 }
1385 return 0;
1386 }
1387
1388 static struct seq_operations dn_dev_seq_ops = {
1389 .start = dn_dev_seq_start,
1390 .next = dn_dev_seq_next,
1391 .stop = dn_dev_seq_stop,
1392 .show = dn_dev_seq_show,
1393 };
1394
1395 static int dn_dev_seq_open(struct inode *inode, struct file *file)
1396 {
1397 return seq_open(file, &dn_dev_seq_ops);
1398 }
1399
1400 static struct file_operations dn_dev_seq_fops = {
1401 .owner = THIS_MODULE,
1402 .open = dn_dev_seq_open,
1403 .read = seq_read,
1404 .llseek = seq_lseek,
1405 .release = seq_release,
1406 };
1407
1408 #endif /* CONFIG_PROC_FS */
1409
1410 static struct rtnetlink_link dnet_rtnetlink_table[RTM_NR_MSGTYPES] =
1411 {
1412 [RTM_NEWADDR - RTM_BASE] = { .doit = dn_dev_rtm_newaddr, },
1413 [RTM_DELADDR - RTM_BASE] = { .doit = dn_dev_rtm_deladdr, },
1414 [RTM_GETADDR - RTM_BASE] = { .dumpit = dn_dev_dump_ifaddr, },
1415 #ifdef CONFIG_DECNET_ROUTER
1416 [RTM_NEWROUTE - RTM_BASE] = { .doit = dn_fib_rtm_newroute, },
1417 [RTM_DELROUTE - RTM_BASE] = { .doit = dn_fib_rtm_delroute, },
1418 [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
1419 .dumpit = dn_fib_dump, },
1420 [RTM_NEWRULE - RTM_BASE] = { .doit = dn_fib_rtm_newrule, },
1421 [RTM_DELRULE - RTM_BASE] = { .doit = dn_fib_rtm_delrule, },
1422 [RTM_GETRULE - RTM_BASE] = { .dumpit = dn_fib_dump_rules, },
1423 #else
1424 [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute,
1425 .dumpit = dn_cache_dump, },
1426 #endif
1427
1428 };
1429
1430 static int __initdata addr[2];
1431 module_param_array(addr, int, NULL, 0444);
1432 MODULE_PARM_DESC(addr, "The DECnet address of this machine: area,node");
1433
1434 void __init dn_dev_init(void)
1435 {
1436 if (addr[0] > 63 || addr[0] < 0) {
1437 printk(KERN_ERR "DECnet: Area must be between 0 and 63");
1438 return;
1439 }
1440
1441 if (addr[1] > 1023 || addr[1] < 0) {
1442 printk(KERN_ERR "DECnet: Node must be between 0 and 1023");
1443 return;
1444 }
1445
1446 decnet_address = dn_htons((addr[0] << 10) | addr[1]);
1447
1448 dn_dev_devices_on();
1449
1450 rtnetlink_links[PF_DECnet] = dnet_rtnetlink_table;
1451
1452 proc_net_fops_create("decnet_dev", S_IRUGO, &dn_dev_seq_fops);
1453
1454 #ifdef CONFIG_SYSCTL
1455 {
1456 int i;
1457 for(i = 0; i < DN_DEV_LIST_SIZE; i++)
1458 dn_dev_sysctl_register(NULL, &dn_dev_list[i]);
1459 }
1460 #endif /* CONFIG_SYSCTL */
1461 }
1462
1463 void __exit dn_dev_cleanup(void)
1464 {
1465 rtnetlink_links[PF_DECnet] = NULL;
1466
1467 #ifdef CONFIG_SYSCTL
1468 {
1469 int i;
1470 for(i = 0; i < DN_DEV_LIST_SIZE; i++)
1471 dn_dev_sysctl_unregister(&dn_dev_list[i]);
1472 }
1473 #endif /* CONFIG_SYSCTL */
1474
1475 proc_net_remove("decnet_dev");
1476
1477 dn_dev_devices_off();
1478 }